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Abstract

Recently, valuable knowledge that can be retrieved from a huge volume of datasets (called Big Data)
set in motion the development of frameworks to process data based on parallel and distributed comput-
ing, including Apache Hadoop, Facebook Corona, and Microsoft Dryad. Apache Hadoop is an open
source implementation of Google MapReduce that attracted strong attention from the research commu-
nity both in academia and industry. Hadoop MapReduce scheduling algorithms play a critical role in
the management of large commodity clusters, controlling QoS requirements by supervising users, jobs,
and tasks execution. Hadoop MapReduce comprises three schedulers: FIFO, Fair, and Capacity. How-
ever, the research community has developed new optimizations to consider advances and dynamic
changes in hardware and operating environments. Numerous efforts have been made in the literature to
address issues of network congestion, straggling, data locality, heterogeneity, resource under-utilization,
and skew mitigation in Hadoop scheduling. Recently, the volume of research published in journals and
conferences about Hadoop scheduling has consistently increased, which makes it difficult for research-
ers to grasp the overall view of research and areas that require further investigation. A scientific litera-
ture review has been conducted in this study to assess preceding research contributions to the Apache
Hadoop scheduling mechanism. We classify and quantify the main issues addressed in the literature
based on their jargon and areas addressed. Moreover, we explain and discuss the various challenges and
open issue aspects in Hadoop scheduling optimizations.

1 Introduction

One of the indispensable qualities of cloud computing is the aggregation of resources and data in data
centers over the Internet. Recently, cloud computing (Armbrust et al., 2010) has transmuted the bulky part
of the IT industry to make services more affordable by offering a pay-as-you-go package. Different cloud
services improve the aggregate applications at different levels, such as servers, OS, and middleware levels.
Furthermore, the amount of digital data is increasing daily as Google processes about 20 petabytes of
information per day (Gunelius 2015). To make use of this digital information, these tens of petabytes of
data must be handled properly, which requires a new type of technology rather than traditional information
and communications termed as big data processing.

The term big data (James et al., 2011) refers to datasets of enormous volume, complexity, and growth
rate, which makes them difficult to be stored, managed, and processed by conventional technologies and
tools such as relational database management systems and other traditional statistics systems within the
necessary time to take advantage of the analysis. The information is coming from instrumented, consistent
supply chains transmitting real-time data about instabilities in everything from market demand to weather.
Furthermore, deliberate information has begun arriving through unstructured digital channels: social
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media, smartphone applications, and an ever-increasing stream of emerging Internet-based gadgets. The
data management of this large volume of data comes with some challenges: data are ‘big’; hence, how
should we scale them?; data are fast,” how do we keep up?; data are ‘unstructured’, how do we model
them?; data come from ‘many sources’, how do we ingest and integrate this data?; and data ‘contain spatial
text, graphs’; hence, how do we analyze them? Cloud computing is a point of interest for industrial and
academic research communities because it is scalable, distributed, and has fault tolerant storage servers
and applications which handle challenges related to big data. The data processing of big data in the cloud
computing environment is a core issue and has been the focus of research for quite a while. Hadoop
(Apache! 2015c) has ascended as an open source implementation of a distributed storage and processing
framework which supports computational models like MapReduce on large-scale data over distributed
infrastructures such as cloud computing.

MapReduce (Dean & Ghemawat 2008), popularized by Google, is an emerging data-intensive pro-
gramming model for large-scale data parallel applications, such as web indexing, data mining, and sci-
entific simulations. MapReduce offers an easy parallel programming interface in a distributed computing
environment. It is primarily used for distributed fault tolerance for managing multiple processing nodes in
Hadoop’s MapReduce clusters. The most influential feature of MapReduce is its high scalability that
allows users to process an enormous amount of data in a brief amount of time. There are numerous fields
that benefit from MapReduce, such as bioinformatics (Matsunaga et al., 2008); machine learning (Chu
et al., 2007); scientific analysis (Ekanayake et al., 2008); and web data analysis, astrophysics, and security
(Mackey et al., 2008). Hadoop has been successfully adopted by many companies including AOL,
Amazon, Facebook, Yahoo, and the New York Times to run their applications over the cluster. For
example, AOL uses it to run an application that analyzes the behavioral pattern of their users to offer
targeted services based on location or interest, etc. In such distributed environments, scheduling plays an
imperative role in the performance and efficiency of frameworks.

Hadoop framework’s default scheduler is based on a First-in First-out (FIFO) scheduling algorithm
where jobs are executed in the order of their submission in the system. After a job is partitioned into
individual tasks, they are loaded into the queue and assigned to free containers as they become available on
nodes in the cluster. Although there is support for the assignment of priorities to jobs, it is not turned on by
default. By default, each job would use the entire Hadoop cluster; thus, jobs had to wait for their turn to be
processed. Although a shared cluster offers great potential for offering large resources to many users, the
problem of sharing resources fairly among users requires a better scheduler, such as Capacity Scheduler
and Fair Scheduler. These schedulers have been added in the new releases of Hadoop by Yahoo and
Facebook, respectively. Production jobs need to be completed in a timely manner while allowing users
who are building smaller ad-hoc queries to acquire results in a reasonable time.

To handle numerous nodes with various MapReduce jobs in a shared cluster environment, an efficient
scheduling mechanism is needed to achieve the best performance. There are quite a few key factors that
affect scheduling issues, such as locality, synchronization, fairness constraints, etc. Locality is about
engaging a task on the node containing the input data. Scheduling in view of locality can save the network
I/O cost because network bandwidth is an inadequate resource in a shared cluster. Synchronization
overhead is instigated by stragglers, which causes an intact delay in the reduce phase of MapReduce jobs
and an under-utilization of resource problem in the cluster. Another important issue is how to allocate jobs
with fairness among multiple jobs and multiple users.

Hadoop scheduling considers different factors such as the state of tasks or jobs, node availability,
locality, among others. Several efforts have been made to date to optimize Hadoop schedulers for job/task
assignment to available resources in clusters of homogeneous/heterogeneous machines with some modest
assumptions. The authors in Yoo and Sim (2011) and some others, Rao and Reddy (2012) and Tiwari et al.
(2015), present surveys on scheduling techniques and issues faced in MapReduce, such as locality, syn-
chronization, fairness, and heterogeneity. Their research approach is to present the strength and weakness
of the techniques and compare them on the basis of their pros and cons. In addition, their revisions focus on
partial numbers of techniques such as Longest Approximate Time to End (LATE) (Zaharia et al., 2008),
Dominant Resource Fairness (DRF) (Ghodsi et al., 2011), and Capacity Scheduler (Apache! 2015a), etc.,
and do not cover the development area entirely. These approaches are unable to classify various methods
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and techniques according to precise topics or issues covered, such as data locality, data replication,
speculation, starvation, and fault tolerance. In this paper, we explain the issues related to the scheduling in
Hadoop MapReduce and different techniques used in handling or solving these issues. The available
scheduling techniques have been categorized and compared on the basis of their unique features, pluses,
and affected areas in the Hadoop MapReduce framework. The objectives of this paper include,

∙ Discern and explain different issues related to the scheduling problem in Hadoop MapReduce, such as
locality, synchronization overhead, fairness constraints, etc.

∙ Create a landscape review of existing scheduling practices in Hadoop.
∙ Categorize these existing Hadoop MapReduce scheduling techniques.
∙ Create an extensive analysis view of existing scheduling techniques to help researchers understand the
overall view of the area.

The remainder of the paper is organized as follows: Section 2 briefly describes the background
knowledge about Hadoop and MapReduce framework while Section 3 explains the different issues
affecting scheduling performance in the Hadoop framework. In Section 4, recently improved schedulers
for Hadoop MapReduce are discussed. Section 5 creates a comparative analysis view of Hadoop sche-
duling techniques with state-of-the-art schedulers, and Section 6 concludes the work.

2 Background

In this section, we will briefly describe the MapReduce framework, Hadoop implementation, and the role
of the scheduling procedure to set the context for our subsequent analysis of various Hadoop MapReduce
schedulers.

Hadoop is one of the most popular open source implementations of the Google MapReduce (Apache!
2015e) parallel processing framework. Hadoop hides the details of parallel processing, including data
distribution over the cluster nodes, speculative execution for slower tasks, restarting of failed tasks,
exchanging of intermediate data over the nodes, and merging results after computation finish. This type of
framework permits developers to write parallel programs that place an emphasis on their computational
problem, rather than the parallelization issues which are handled by the framework, and it also allows
programmers to abstract from other scheduling issues such as parallelization, replication, partitioning, etc.
Hadoop follows a master slave architectural design for both data storage and disturbed data processing, the
underlying architecture of the Hadoop ecosystem is shown in Figure 1. It has been separated vertically into
the Hadoop Distributed File System (HDFS) layer and MapReduce layer, of which each work in parallel
manner. The HDFS layer handles data-related information such as meta-data for data distribution and
partitioning, whereas the MapReduce layer keeps track of computation and application related information
such as scheduling tasks and executing tasks over the cluster. The master node for HDFS layer is
NameNode and the master node for MapReduce layer is Application Manager. The slave nodes are the
machines in the cluster which store data and perform complex computations. Every slave node has
DataNode and Application Master daemons that synchronizes with NameNode and Application Manager
accordingly. Hadoop cluster can be setup either in the cloud or on-premise. Apache Hadoop includes
HDFS and Hadoop MapReduce, which are discussed in details in the following subsections.

2.1 Hadoop distributed file system

The HDFS is inspired by Google File System (GFS) for storing large amounts of data with high throughput
(as high number of bytes read/write) access to data over huge clusters of commodity servers (Shafer et al.,
2010). HDFS has fault tolerance, high throughput, and server failure handling mechanism similar to GFS.
It also maintains by default three replicas (a second copy should be stored in a local rack and a third copy
stored in a remote rack’s node) of its data split across different machines to provide data locality and
reliability. By default, files are divided into 64 MB chunks and are usually once-write-multiple-read
chunks. HDFS is designed to run over distributed machines throughout the cluster and to provide high
throughput, lower latency, and survive individual server failures. It achieves reliability by replicating data
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across multiple nodes. As shown in Figure 2, it is built based on the principle of master-slave architecture.
It comprises a single NameNode and multiple DataNodes. NameNode is responsible for assigning data
blocks to DataNodes, and managing file system operations, such as opening, closing, renaming, among

Figure 1 High level Hadoop system architecture.

Figure 2 Hadoop distributed file system architecture
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others, files and directories in the cluster. A DataNode is the actual storage resource for the running jobs of
the Hadoop cluster. NameNode instructs the DataNodes to create, delete, and modify blocks throughout
the cluster. NameNode also maintains file system namespace which records metadata regarding the
creation, deletion, and modification of files by client programs.

2.2 Hadoop MapReduce

The processing spine in the Hadoop system is a parallel processing framework calledMapReduce. Hadoop
MapReduce is inspired by the originally designed parallel processing framework in Google, named
MapReduce. It is a simple and efficient approach for big data processing. It hides low-level programming
details, such as partitioning, data distribution, and scheduling, from the developers. It usually divides a
bigger problem into smaller pieces and runs in a parallel manner over the Hadoop cluster. MapReduce
programs run in two phases, Map and Reduce, as shown in Figure 3. The input data chunks obtained from
splitting input files are mapped as <key, value> pairs in the map phase. The output of the map phase is
obtained as a collection of key-value pairs called intermediate data which are aggregated in the reduce
phase on the basis of the keys throughout the data over the cluster. The middle phase of the map and reduce

Figure 3 Hadoop MapReduce architecture.
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phase is called the Shue phase where the sorting, partitioning, and communicating among different
mappers and reducers takes place. In Hadoop version 2, the job is submitted to the Resource Manager
(RM) which manages the global assignment of computational resources to each application or job. For
each job, there is a per-application ApplicationMaster which manages the life cycle of the application. The
RM schedules tasks to available resources in the cluster using the pluggable Scheduler component. In the
Hadoop system, there are different types of schedulers available such as FIFO, Capacity Scheduler, and
Fair Scheduler; additionally, different researchers proposed several scheduling techniques to achieve
better cluster performance, which will be discussed in later sections.

Hadoop MapReduce word count example: Word count reads text files and counts how often each
word occurs in the document and write the output result to one or more files accordingly. Each mapper
takes a line as an input and breaks it down into words. It then emits a<key, value> pair of the word and
value 1 each time it occurs. Each reducer sums the counts for each word and emits a single < key, value>
pair with the word and the sum. A combiner is used on the map output as an optimization that combines
each word into a single record and reduces the amount of data sent across the network in the shuffle phase.
Suppose we have an input file containing the travel arrangement of a Tech Company CEO to quarterly
business meeting at different branches of the company. Each line represents different year travel record of
each quarter. The workflow of Map-Reducing of a word count example is shown in Figure 4. The whole
process consists of five steps. (1). Splitting: Splits the input using splitting parameter such as splitting by
space, semicolon, comma, or new line characters. The input file is divided by new line and each line is
given to different machine to process. (2). Mapping: takes a dataset and convert it into a set of <key,
value> pairs. Input lines are converted to <key, value> pairs of rides by types of vehicle with the number
of time as value. (3). Intermediate Splitting: the order to group the same keys, it shuffle the data accord-
ingly. (4). Reduce: takes the output from Map as an input and combine those data tuples into a smaller set
of tuples. (5). Combining: gather the individual results and combine it into an output. The final output file
contains results of the CEO trips of the last three years that the CEO takes Bus 3 times, Car 2 times, Train 2
times, and Plane 2 times.

3 Scheduling issues in Hadoop

There are diverse scheduling issues such as locality, fairness, starvation, parallelization, replication, par-
titioning, among others, in Hadoop during the process of scheduling jobs and tasks in the cluster. These
issues are not considered in the default Hadoop scheduling technique even though they affect the per-
formance of the Hadoop MapReduce cluster. Significant issues are shown in Figure 5. All the issues are

Figure 4 Workflow of Map-Reducing of a word count example.
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categorized as top to bottom and left to right, as more to less significant to the performance and efficient
utilization of the cluster. The Locality issue received extensive research courage along with Fairness,
therefore, both of the issues has been sub-categorized accordingly. Locality has sub-categories of Map task
Locality and Reduce task locality, whereas Fairness has Resource Fairness and User Fairness. Each of
these issues is explained in detail in the following subsections.

3.1 Heterogeneity

Heterogeneity is a word that signifies diversity. A Hadoop cluster comprising machines with different
processing power, memory, and input/output (I/O) would be considered as having the quality of hetero-
geneity. The trade-off between faster push and faster map is usually a challenge in heterogeneous
environments.

3.2 Scalability

Scalability in the case of Hadoop is the capability of the Hadoop MapReduce system to handle a growing
amount of work, or its potential to be enlarged to accommodate that growth. Usually there is performance
vs scalability tradeoffs to consider as sometimes both of these are used interchangeably and will be
discussed in details in later section.

3.3 Locality

Data locality in Hadoop MapReduce clusters means that the tasks are assigned to those nodes which are
holding the data or where the data is stored locally for those tasks. The execution of local data by a map
reduce task plays a vital role in the inclusive performance of MapReduce job. There are two kinds of
locality (the distance between a node with the input data and the task allocated node) addressed in Hadoop
by different researchers: Map locality and Reduce locality. Map locality in Hadoop MapReduce clusters
means that the Map tasks are assigned to those nodes which have the input data for those Map tasks.

Figure 5 Hadoop scheduling issues.
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Reduce locality in MapReduce clusters means that the Reduce tasks are assigned to those nodes which
have most of the intermediate data for Reduce tasks. In bulky clusters, data locality is critical because the
network bisection bandwidth becomes a bottleneck. Therefore, we categorize scheduling techniques that
address the problem of data locality in scheduling.

3.4 Network overhead

Network overhead is any combination of excess or unnecessary bandwidth usage during the execution of a
MapReduce job in Hadoop cluster. In Hadoop, the MapReduce application works in two phases: Map
phase and Reduce phase. The output data of mappers in map phase and input to the reducers in the reduce
phase is known as intermediate data. The exchange of intermediate data and communication between
mappers to mappers, reducers to mappers, and reducers to reducers plays an important role in overall job
performance and execution time.

3.5 Speculation

Speculative execution is an optimization technique where some nodes in the Hadoop system perform a
task that may not necessarily be needed, i.e., executing extra copies of tasks to mitigate the straggling tasks
execution problem on stragglers nodes in the system. The speculative execution in the default Hadoop
system is based on several false assumptions, such as the cluster contains only homogeneous machines, all
tasks progress at the same rate, and all the Reduce tasks process the same amount of data. Speculative
execution is directly proportional to network overhead, so as the speculative jobs increases, it also
increases the network overhead. So the user has to decide a trade-off between these two.

3.6 Straggler

Nodes that have the lagging out behavior in the cluster slow down execution of other parallel running tasks
in the Hadoop MapReduce system. These nodes ultimately prolong the total execution time of the
MapReduce job. Stragglers affect the flow of data over the network, especially in the shuffle phase of the
process. Hence it is related to the network overhead problem in a direct way.

3.7 Fairness

Fairness is a property of unbounded non-determinism, i.e., the quality of the system to give fair resources
to every user or job by making judgments that are free from discrimination. Several MapReduce jobs are
executed in a multi-tenant manner or shared data warehouses of cloud computing enterprises like Amazon,
Google, Facebook, and Yahoo, to use the available resources efficiently. A MapReduce job with a heavy
workload may dominate the utilization of the shared clusters. As a result, some short jobs may not have the
desired response time. The demands of the workload can be elastic. Thus, a fair sharing of resources with
each job or user in the shared cluster should be considered. Fairness constraints have trade-offs with
locality, dependency, and several other factors depending on the environment. In most circumstances, a
corporate approach used to ensure fairness is to schedule jobs, such that all users or jobs receive an equal
percentage of resources.

3.8 Constraints

Constraints are the conditions or specific settings and configurations which are requisite for the applica-
tion’s survival, such as time constraints for deadline-based applications and resource constraints such as
minimum resources to run an application or program smoothly.
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3.9 Virtualization

Virtualization is the formation of a virtual (rather than concrete or physical) form of resources, such as an
operating system, a server, a storage device, or a network. Hadoop has a different behavior under vir-
tualized resources which is targeted in both academic and industry-based research work.

3.10 Starvation

Starvation is a problem encountered in a parallel computing framework like MapReduce where a process
is perpetually denied the necessary resources to process its work (Tanenbaum 2009). Starvation may be
caused by errors in scheduling or a mutual exclusion algorithm, but can also be caused by resource leaks,
and it can be intentionally caused via a denial-of-service attack, etc. In Hadoop scheduling, such a scenario
occurs where one type of task starves for a long time while other jobs or tasks hold the resources for long
periods of time. For example, in FIFO-based scheduling, long jobs hold the execution queue for long a
time while the short jobs are starved until the longer jobs finish execution.

3.11 Load balancing

Load balancing distributes workloads across multiple computing resources, such as commodity computers
in a cluster, network links, CPUs, or disk drives. Load balancing aims to optimize resource usage, max-
imize throughput, minimize response time, and avoid overloading any single resource. Using multiple
components with load balancing instead of a single component may increase reliability and availability
through redundancy. Load balancing helps to increase performance gain and reduce different kinds of
congestion in Hadoop’s MapReduce systems.

3.12 Skew

Data skew principally refers to a non-uniform distribution in a dataset. Skewed distribution can follow
common distributions, for instance, Zipfian, Gaussian, and Poisson; however, Zipfian distribution is
commonly considered to be a model for skewed datasets. The direct impact of data skew on the parallel
execution of complex big data applications results in poor load balancing leading to a higher response
time. In Hadoop’s MapReduce applications, it leads to a computational skew caused by the load imbalance
of the intermediate data in the cluster.

3.13 Workload heterogeneity

Workload heterogeneity means that workloads may have heterogeneous resource demands because some
workloads may be CPU-intensive, whereas others are I/O intensive. Others might be able to use special
hardware like GPUs to achieve dramatic performance gains.

3.14 App optimization

Application optimization is the process of modifying an application to make some aspect of it work more
efficiently. In general, an application like PageRank, Grep, etc., may be optimized so that it executes more
rapidly, or is capable of operating with less memory storage or other resources, or draws less power. In the
case of Hadoop, application optimization means that the underlying architecture of Hadoop must not
change, and instead use a different application implementation so that it runs more efficiently over the
Hadoop cluster.

3.15 Energy consumption efficiency

Energy consumption is a major and costly problem in data centers and big clusters such as a 4000 node
Hadoop cluster. Big data and the use of commodity nodes in Hadoop clusters have caused a huge increase
in power consumption and an increase in the operational cost of data centers. Therefore, increasing the
energy efficiency of Hadoop clusters has attracted significant attention in both academia and industry
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research. The low utilization levels of servers, owing to low load and data duplication, also result in poor
energy efficiency in Hadoop clusters. For many workloads, a large fraction of energy goes to powering idle
machines that are not performing useful work. There are two causes for this inefficiency: low server
utilization and a lack of power proportionality. Therefore, energy consumption is an important issue in
Hadoop clusters which has been addressed by numerous researchers.

3.16 Throughput

In the process of analyzing big data and running big data applications, the number of jobs or tasks
completed over time is of significant value, because they mirror the overall performance of the cluster.
High throughput can be achieved by refining other quality measures, such as data localization, energy
efficiency, and optimal resource utilization. In upcoming sections, we describe how several scheduling
algorithms achieve throughput improvement and how, sometimes, overemphasis on data locality can
actually reduce the throughput of the system.

4 Scientific categorization: jargon of scheduling techniques

The Hadoop MapReduce runtime infrastructure attempts to ensure different quality attributes including
availability, performance, and fault tolerance. Every worker node sends a periodic heartbeat signal to the
master node, and if any of the nodes do not respond within the stipulated amount of time, that node is
marked as either dead or failed. When the master detects a failed node, it reschedules its assigned tasks to
any other available nodes in the cluster. To handle fault tolerance and other-related problems like strag-
glers, the Hadoop system uses a number of different strategies, including data replication, starting backup
tasks, i.e., speculative execution, and many more.

The scheduling problem in Hadoop is based on multiple aspects which need to be addressed; therefore,
the efficient classification of these scheduling techniques needs to be broad enough to cover those aspects.
Our classification and categorization process deliberates aspects of the scheduling techniques in the area.
Different aspects of Hadoop schedulers include: a scheduling technique that can adapt to different situa-
tions and environments like data distribution, resources, and job characteristics; a technique designed to
meet multiple QoS requirements, such as fault tolerance, availability, optimal resource utilization, fairness,
energy consumption efficiency and reliability; and lastly, a technique that has different scopes, such as job
scheduling or task scheduling, or that can cover both entities. These different aspects are dependent on
each other in most of the real-world scenarios. Therefore, we use the principle of spiral model to show all
these interdependence possibilities based on the situation and underlying platform at which the Hadoop
system run, as shown in Figure 6. The Hadoop scheduling techniques are in the middle of the spiral so that
to show that each aspect handling ultimately benefits the Hadoop scheduling.

The scope of the schedulers usually varies from system to system. Some systems utilize a job level
scope, while others utilize a task level scope, and some even have a hybrid of both. A job level scheduling
algorithm chooses a job from the job queue for the execution of its tasks. A cluster can have either a single
job queue or multiple job queues containing a number of tasks. Task level scheduling involves the
selection of tasks based on node availability. Whereas hybrid tries to schedule both jobs and tasks in
efficient ways possible. In MapReduce programming model, there are two types of tasks, map and reduce,
that need to be scheduled. There is one other type of task created during the runtime of a MapReduce job
called a speculative task, which acts as a backup task in the case of straggling tasks. Each Hadoop
application has an Application Master, which keeps track of the application’s progress. Hadoop
MapReduce scheduling is performed based on different metrics, including data locality on DataNodes, the
input of map and reduce tasks, availability of containers, and avoiding factors such as long waiting times
and stragglers. In the following sections, we will discuss several scheduling techniques and classify these
approaches into various categories and classes based on the areas covered by these techniques, as shown in
Figure 7.

Hadoop has two main versions as 1.0 and 2.0(YARN). Hadoop’s version 1.0 default scheduler is a
FIFO-based scheduler which maintains jobs in the queue which are delivered as they appeared or arrived.
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It also supports prioritizing the tasks which are switched off by default and need to be turned on manually.
Different scheduling techniques in Hadoop include deadline-based (Teng et al., 2014), (Morton et al.,
2010); locality-aware (Palanisamy et al., 2011), (Arslan et al., 2014), (Wei et al., 2015); situation-aware
(Yoo & Sim 2011), delay (Zaharia et al., 2009) (Zaharia & Borthakur et al., 2010), resource-aware
(Palanisamy et al., 2011); heterogeneity-aware (Zaharia et al., 2008); network-aware (Ahmad et al.,
2014), (Seo et al., 2009); and environment-aware (Zaharia et al., 2008), (Chen et al., 2010) schedulers.

Figure 6 Aspects of Hadoop scheduling techniques.

Figure 7 Scientific categorization of Hadoop schedulers
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Yet Another Resource Negotiator (YARN) (Douglas et al., n.d.) raises the default Hadoop to version
2.0 architecture to a new level by splitting the resource allocation and job scheduling duties from a Job-
Tracker to a Resource Manager and Application Master, respectively. In YARN, the Fair scheduler
(Apache! 2015b) divides and assigns a fair share of resources based on both memory and CPU capacity to
all applications in the cluster, unlike the previous default fair scheduling which considered only memory
capacity. In addition, in the new architecture, newly submitted applications do not have to wait and will be
assigned resources immediately. The speculation of tasks depends upon the ratio of progress of tasks
compared to the average progress of the job.

Although this paper does not discuss the high performance of computing schedulers and their opti-
mization for schedulers other than Hadoop, a distributed framework scheduler such as Apache Mesos will
be compared with the Hadoop version 2.0 i.e., YARN. Apache Mesos (Hindman et al., 2011) is a
distributed framework that provides abstraction over the storage, processing, and memory of machines
(both physical and virtual). It is based on the Linux kernel, even though it has a different level of
abstraction. Compared to YARN, Mesos supports several distributed frameworks, including Spark,
Hadoop, and Kafka. It can be utilized for different purposes, including resource management and sche-
duling applications. Unlike YARN, it does not consider the MapReduce application specifically; and, like
YARN, it also uses the master and slave architecture for resource management.

There are significant issues that occur while scheduling in Hadoop, and as we discussed in the previous
section, various improvements and optimizations have been proposed for each of them in both academic
and industrial research. We will review, criticize, and explicate these techniques according to our scientific
classification. Our classification is based on the different areas covered for optimizing scheduling and
mitigating problems (as discussed in the previous section) related to scheduling. We divide the Hadoop
scheduling techniques and optimizations into four broad categories, which are further divided into sub-
categories, as shown in Figure 7. The categories are job level schedulers, task level schedulers, a hybrid of
both job and task level schedulers, and cloud-based schedulers. These categories and their subcategories
are explained in the following subsections.

4.1 Job level schedulers

The job level scheduling algorithm selects a job from the job queue to schedule its tasks. A Hadoop cluster
can have either a single job queue or multiple job queues. In the case of a single job queue, the jobs of all
users are submitted to this sole job queue in the cluster, while in the case of multiple job queues, each job
queue contains jobs from different users. There are numerous approaches that optimize job scheduling in
Hadoop systems which will be discussed in the following subsections.

4.1.1 Deadline schedulers
These schedulers are specifically designed for special use cases where the deadline constraints are essential
requirements in the Service Level Agreement (SLA). The schedulers usually try to predict the near-optimal
approximation of the deadline for long-running jobs. Authors (Teng et al., 2014) proposed the paused rate
monotonic (PRM) scheduling algorithm that defines a certain response time for deadline constraints
services of SLA and provisions coexisting service sharing in a cloud environment. It proposes a real-time
scheduling technique to deliver broad formulation and theoretical analysis of Hadoop scheduling. It
considers different dimensions of the real-time scheduling problem. First, it models services as a series of
map reduce tasks and articulates the problem by identifying the features of tasks, algorithms, and clusters.
Second, it develops a PRM scheduling algorithm for priority determined algorithms and to schedule tasks
on the basis of their constraints. It pauses the MapReduce job in between the map and reduce phases to
optimize the default system by using this time for partitioning, sorting, and combining intermediate results
of the map phase. It helps maximize the number of tasks meeting their deadline and analyzed them
claiming better performance than other real-time scheduling. In contrast , ParaTimer (Morton et al., 2010)
is designed for Dynamic Acyclic Graphs (DAGs) flair jobs written for Hadoop, and it estimates DAG
progress in MapReduce. It distinguishes a critical path that takes longer than others in a comparable query
plan. It makes the indicator overlook other shorter paths when approximating progress because the longest
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path would subsidize the overall execution time. It leads to this rule of thumb about Hadoop performance:
‘making the size of the data block bigger makes Hadoop work faster’.

D-Scheduler (Kc & Anyanwu 2010) is a deadline-based scheduling approach designed to satisfy the
problem of long-running Hadoop jobs. In this work, the authors proposed two models to solve this
problem. First is a job execution model which considers metrics like mappers and reducers running time,
data distribution, and input data; and schedules the jobs on the basis of these metrics. Second is a deadline
approximation approach to estimate the deadline for a single job based on certain assumptions, such as
homogeneity in cluster, uniform distribution of keys throughout the cluster, data already transferred and
stored in HDFS, and asynchronous execution of mappers and reducers; although they allow these
assumptions to be broken at a later stage. To meet the response time SLA constraints (i.e., deadline), it is
the obligation of the scheduling algorithm to estimate the number of container slots necessary to finish the
job within the deadline and stated requirements to ensure the specified job receives those slots. The SLA
Constraints algorithm accepts a job only if the estimated minimum number of slots required to meet the
deadline SLA are available at its arrival time. After acceptance of a job, the scheduling algorithmmaintains
the minimum number of tasks running for the job to meet the deadline. It calculates the number of map and
reduce tasks (Nmin

m ,Nmin
r ) depending on the input data set, output data sizes (σ, Fσ), time required to process

the block of data by mapper, time for reduce task execution, and time for Shue phase to transfer data (cm,
cr, cd). It also takes the arrival time of job (A), deadline of job (D), and starting time of map and reduce
tasks (sm, sr) into account for calculating the minimum number of mappers and reducers using the fol-
lowing equations.

Nmin
m = ½ σ � cm

ðSmaxr � SmÞ� (1)

Nmin
r = ½ F σ � cr

ðA +D�Fσ � cd � srÞ� (2)

The earliest deadline first algorithm accepts a job if its deadline can be met with the idle containers
available after allotting the minimum required container slots to the jobs in the system. The algorithm
assigns the necessary slots to jobs in increasing order of their deadlines. All extra free slots are distributed
among certain jobs to finish them swiftly before the arrival of the new jobs.

4.1.2 Dynamic schedulers
Dynamic schedulers are the scheduling algorithms that can work in dynamic environments and are able to
adopt the changes in the required situations. The default scheduler in Hadoop schedules the reduce tasks of
a job the moment one of the map tasks has completed. This often leads to a ‘slot hoarding’ problem where
long-running reduce tasks continue waiting for all the map tasks to finish and thus waste CPU resources in
busy-waiting. Authors in the multi-user MR job scheduler (Zaharia et al., 2009) propose a different
approach from the default one in the case where the reduce task is executed. They split the reduce task into
‘copy’ and ‘compute’ phases and use their new algorithm to schedule the reduce tasks. The copy phase
begins to collect the intermediate data after the completion of map tasks, while the compute phases process
those intermediate data after they are collected and made available. They set a limit on the number of copy
and compute phases running on each node such that the number of compute processes is always higher
than that of the copy processes.

Nanduri et al. (2011) propose a task vector-based model, job-aware scheduler, to maintain congruence
among jobs in the cluster by allocating tasks to nodes without affecting other tasks. They divide the job
into map tasks and reduce tasks based on characteristics of the task, such as CPU-intensive, memory-
intensive, disk-intensive, or network-intensive. It uses the task vector for the representation of each task
and resource vector for each node. A task vector (Tj) is the combination of CPU, memory, disk and
network utilization variables (CPUj, memj, diskj, NWj) of job j, as shown in the equation below,

Tj =CPUj � e1 +memj � e2 + diskj � e3 +NWj � e4 (3)

where e1, e2, e3, and e4 are a weight base for each variable. Similarly, a resource vector is the summation
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of available resources on the node. The task assignment uses two algorithms to check task compatibility
with the requesting node. First, incremental Naive Bayes classifier is used to determine task compatibility
with the task tracker specification using its vectors. Second, the heuristic-based algorithm is used to test the
compatibility of the task with the task tracker. This is accomplished through computing the Tavailabilityvector
as the difference of Tr(total resource) and Tcompoundand finally compute the Tunused (unused resources).
Using these heuristics, a combination value is computed and compared to the threshold to determine the
compatibility of a task with the specified task tracker. This approach claims a 21% improvement of
response time in the heuristic-based technique and a 27% improvement using the machine learning
technique.

The dynamic proportional (DP) share (Sandholm & Lai 2010) scheduling technique is an extension of
the default Hadoop scheduler to provide QoS to users based on certain priorities. It provides a user
interface to select which job to schedule and prioritize among the total jobs. It also gives users the
capability to adjust their allotted resources to scale-up and scale-down according to the job requirements. It
supports preemption to avoid starvation and guarantees extra payment for holding the resources for a long
time. It adopts to dynamic job priorities determined from their SLAs. The DP scheduler addresses the
problem of Hadoop’s Fair scheduler that is maintaining separate queues for separate pools, guaranteed
service over time, and manual priority settings. It ensures that resource consumption is only allowed until
the budget for the user is available. Despite being one of the most reliable schedulers that take QoS into
account, it does not consider data locality or data replication, which has a firm ground on the dynamic
proportional shares scheduling decision much precise and improved performance guarantee.

Dynamic smart speculative (Chen et al., 2014) proposed a new speculative execution algorithm to stun
the problems that affect the performance for already implemented speculation techniques in Hadoop
system, such as data skew, improper phase percentage configuration, and asynchronous start of certain
tasks. However, it degrades cluster efficiency which implies a degradation of performance for batch jobs.
While job scheduler (Xia et al., 2011) schedules tasks only on healthy nodes that have a lower ratio of error
occurrence, it reduces the resource waste from failing tasks. When a healthy node reports an available slot,
the Euclidean distance D between characteristic variables of a job is calculated by the following equation,

D= ðCidle �CusageÞ2 + ðIidle � IusageÞ2 + ½ðMidle �MusageÞ
ðMidleÞ �2 (4)

where Cidle, Iidle, and Midle are the available resources on the node and Cusage, Iusage, and Musage are the
resources utilized by map and reduce tasks running on the node.

4.1.3 Delay schedulers
These schedulers usually consider delaying some jobs for a certain time, so that other jobs can benefit from
the time delay. They attempt to ensure fairness by giving a slot to the job that has the fewest running tasks.
Delay-based schedulers reduce starvation for small jobs at the cost of hurting the data locality. The delay
scheduler (Zaharia, Borthakur, et al., 2010) follows the principle of giving a fair share of resources to jobs,
including newly arrived jobs. In the Hadoop default FIFO scheduling algorithm, the task is scheduled and
launched on any node (even to a non-local node) when it reaches the head of the waiting queue. Delay
scheduler interrupts this FIFO principle and allows the task at the head of the queue to wait for its locality
by delaying it and executing it at the data local node. Delay scheduler uses long task balancing and hot-
spot replication to reduce the chance of a node becoming stuck in long tasks and simultaneous access to a
small data file by multiple jobs. In long task balancing, it considers the new jobs as long tasks and identifies
them as small tasks if they finish swiftly. In hot-spot replication, it replicates the tiny data file at runtime to
be available on numerous nodes and it could be used by multiple jobs simultaneously. Through experi-
mentation, a Facebook workload mix showed that smaller jobs benefit more from the Delay algorithm
(Zaharia, Borthakur, et al., 2010) at the cost of longer jobs. In the case of IO-intensive jobs, those jobs with
a large number of map tasks perform better than the jobs with a higher number of reduce tasks. It claims an
almost five-times improvement in the response times of small jobs and a two-times increase in throughput
for IO-intensive jobs.
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4.2 Task level schedulers

The task level scheduling algorithm includes the selection of tasks from a specific job of a specific user for
scheduling on available nodes. Hadoop MapReduce framework has two types of tasks, i.e., map tasks and
reduce tasks. Map tasks run the first phase of the MapReduce program by processing the entire input
dataset where each map task processes one block of input data. Reduce tasks process the intermediate data
produced by mappers and write back the results to the HDFS. Furthermore, there is another kind of task
created in the Hadoop system called speculative tasks which handle straggler tasks in the system by
duplicating a similar task in another available container in the cluster. The scheduling algorithms neces-
sitate optimizing multiple attributes associated to these tasks, which is why a large number of research
proposals developed novel scheduling algorithms to improve the scheduling of tasks (map, reduce, and
speculative tasks) in the Hadoop cluster. These research proposals will be discussed in subsequent
subsections.

4.2.1 Environment-aware schedulers
The environment-aware schedulers are those schedulers which can adopt to a variety of different situations
and environment. These environments include the running environment, i.e., homogeneous or hetero-
geneous environment, data distributions, resource characteristics, job characteristics, etc. There are
numerous research efforts in this area including LATE (Zaharia et al., 2008), Self-Adaptive MapReduce
(SAMR) (Chen et al., 2010), Enhanced Self-Adaptive MapReduce (ESAMR ) (Sun et al., 2012), and
(Ghodsi et al., 2011). We believe that some other reseach proposal from other section can also be con-
sidered as part of environment-aware scheduler, but we classify those based on most relevance to a
category or subcategory. These and other research efforts in the same category will be explained in detail
in the upcoming paragraphs.

LATE (Zaharia et al., 2008), was initially developed for the heterogeneous cluster. It demonstrates that
the implicit Hadoop default assumptions could be broken in a heterogeneous (Rao et al., 2012) cluster; for
example, default Hadoop assumes nodes that perform roughly at the same rate (i.e., the cluster is com-
posed of homogeneous machines) and constant throughput time could be broken owing to heterogeneity
and assumptions, such as no extra cost for launching tasks. LATE exploits the speculative (Chen et al.,
2014) execution strategy and proposes a new scheduling technique by prioritizing speculative tasks,
selecting faster nodes for execution, and limiting the number of speculative copies of tasks using a
threshold. It uses heuristics for calculating the Progress Rate (Zaharia et al., 2008) for the identification of
faster nodes using the following equation:

ProgressRate=
ProgressScore

Execution Time of Task
(5)

It schedules the speculative task for only those tasks whose Progress Rate is lower than a threshold
based on the slowest task. Furthermore, it schedules the speculative task for the task which has the longest
time to completion estimation using the equation below:

Time to Completion=
ð1�ProgressScoreÞ

ProgressRate
(6)

LATE compares the tasks progress rate and maintains a SlowTaskThreshold for the classification of a
task as a slow task. It claims to double performance compared to the default Hadoop scheduler in a 200
Amazon’s EC2 (Amazon! 2016d) virtual machine (VM) cluster. Unlike other state-of-the-art research
proposals, the estimated remaining execution time for tasks in LATE is based on static information which
is not very reliable in many scenarios, leading to improper slower nodes classification within the server.

The SAMR (Chen et al., 2010) scheduling algorithm proposed to maintain different weights for dif-
ferent map and reduce phases on every node based on task execution time on the specified node. These
dynamic weights are used to estimate the time to end of execution of tasks on a specified node. The tasks
with the longest time to end are scheduled for speculation. This solves the problem with the LATE
(Zaharia et al., 2008) scheduler of using static information for decisions about slow tasks and nodes.
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SAMR maintains the historical information of each task, and identifies map slow tasks and reduces slow
tasks separately. It uses Progress Rate with Average Progress Rate (APR) as

PRi < ð1� STaCÞ �APR (7)

where STaC is SlowTaskCap ranging from 0 to 1. In the same manner, for the identification of slow
TaskTrackers, it uses the following equation:

TrRmi < ð1� STrCÞ �ATrRm (8)

where STrC is SlowTrackerCap ranging from 0 to 1. SAMR launches the speculative copies for tasks
based on slow tasks and accepts the results of the early finished task of both the original and the speculative
copies. It launches the speculative copies on diverse nodes to ensure that they will no longer be slow.
SAMR claims a 25% improvement in response time in comparison with the default Hadoop scheduler and
a 14% improvement over the LATE (Zaharia et al., 2008) scheduler. However, it often does not consider
the type of job, input data size, and nodes types in the calculation of their metrics to be used as the criteria
for estimating remaining time of the execution, leading to incorrect classification and poor performance
accordingly.

Dynamic scheduling for speculative execution (Jung &Nakazato 2014) considers the processing power
and system resources of each node to improve the performance while scheduling the speculative copies of
the tasks. The authors use the effective speculative execution term to execute backup copies of tasks for a
slow node in a heterogeneous environment on faster nodes. They calculate the throughput per second
(TPS) (Jung & Nakazato 2014) using the following formula,

TPS=
ðProgressi + 1 �ProgressiÞ

ðExecutionTimei + 1 �ExecutionTimeiÞ (9)

where Progressi is the ith measurement of task execution ranges from 0 to 1. They calculate the
Approximate-time-to-Finish (ATF) as follows,

ATF =
ð1�ProgressiÞ

TPS½t� (10)

and check if the ATF of the specified task tracker is shorter than the first ATF in the ATF list, then a
speculative copy of the task will be launched; otherwise it will not launch any copy for the task.

ESAMR (Sun et al., 2012) scheduling algorithm is the proposed successor of SAMR (Chen et al.,
2010) and LATE (Zaharia et al., 2008). It solves the issues of LATE and SAMR, such as LATE’s
approximation of remaining execution time of tasks not being accurate enough because of its usage of
static information which leads to the incorrect classification of slower nodes in the system. ESAMR
considers the type of job and input data size in combination with the node type in the calculation of weights
for different phases of map and reduce tasks. It categorizes tasks on a node using k-means clustering and
stores the weights of different phases of map and reduce tasks for each job class, which in turn is used for
estimating time for the completion of each task. From the experimental results, ESAMR claims the lowest
error rate in the estimation of time to completion, as compared to SAMR and LATE.

DRF (Ghodsi et al., 2011) was proposed to show highly desirable theoretical properties under Leontief
preferences. In DRF, the dominant resource of an entity is the resource for which the entity’s task requires
the major fraction of the total availability. DRF aims to maximize the number of allocated tasks, under the
constraints that the fraction of the allocated dominant resources (called dominant shares) are equalized.
Slowdown Predictor Model (Bortnikov et al., 2012) is another environment-aware approach that improves
the Hadoop performance through predicting straggler tasks before they are launched using machine
learning. It uses smarter scheduling and avoids unnecessary speculation of tasks, which leads to efficient
resource utilization.

4.2.2 Locality-aware schedulers
Data locality is a basic supposition of Hadoop MapReduce framework which critically affects its perfor-
mance. Hadoop scheduler schedules map and reduce tasks to process data on their local nodes where the
input data resides. Execution of tasks locally on the same nodes where the data resides moderates network
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communication in the cluster in shuing the data across the nodes, which consequently improves the
performance of the Hadoop system. The Hadoop system may consist of homogeneous or heterogeneous
nodes. There are numerous researchers in academia and industry who consider the performance
improvements of Hadoop on the basis of data distribution over the cluster. Purlieus (Palanisamy et al.,
2011) proposed a resource allocation system that focuses on clusters of VMs such as Amazon’s elastic
compute cloud (EC2) (Amazon! 2016d). They developed an algorithm which improved data locality in the
map and reduced phases for the reduction of Hadoop MapReduce network traffic. Their proposed scheme
has the following techniques: they place map tasks locally for map-input heavy jobs while reduce tasks can
be scheduled on any node in the cluster; schedule reduce tasks locally for the reduce-input heavy jobs; and
for the Map-and-Reduce input heavy jobs, both the map and reduce tasks are scheduled in a set of narrowly
linked nodes. It introduces a data assignment method in a cloud environment for dynamically assigning
VMs to the users, avoiding data redundancy and loading time. It suggests the locality-based cloud service
provisioning using VMs placement in an autonomous way. It claims about a 70% reduction in network
traffic and a 50% improvement in response time or execution time.

MapReduce Adapted Algorithms to Heterogeneous Environments (MRA++ ) (Anjos et al., 2015) is a
new heterogeneity-aware data distribution, task scheduling, and job control mechanism based MapReduce
framework design. It uses training tasks to collect information before the distribution of data over the
cluster. It adjusts the amount of data processed during the map phase to the distributed computing cap-
ability of the nodes. The intermediate data for the Reducer is partitioned into smaller sizes based on the
sum of the granularity factors, i.e., the faster nodes process more data than other slower nodes. Owing to
the reduction of intermediate data partition sizes, which increases the number of executed tasks and data
granularity, a global reduce task queue controls the execution and provides the available nodes with data
distribution information for its processing. MRA++ has a higher degree of parallelism for the tasks and
higher improvement in the job response time. It achieves a performance gain of approximately 70% in
10-Mbps networks over the native Hadoop system.

The Locality and Network-Aware Reduce Task Scheduling (LoNARS) (Arslan et al., 2014) algorithm
is proposed for the scheduling of reduce tasks in a Hadoop MapReduce system. It takes data locality and
network traffic into consideration while making the scheduling decision. It attempts to schedule the reduce
tasks near the map tasks in the system through the data locality approach which implicitly decreases the
network traffic. Through network traffic awareness, it distributes the traffic over the whole network and
condenses the hot-spots to minimize the effect of the network bottleneck in the Shue phase of Hadoop
MapReduce job runtime. LoNARS provides an improvement of approximately 15% in network traffic
reduction and 3–4% in total job completion time. Multithreading Task Scheduler (MTL) (Althebyan et al.,
2014) uses a multi-threading technique to schedule the tasks to different data blocks where each thread is
assigned to a predetermined block of jobs. It divides the whole cluster into N blocks where each block’s
job in the wait queue is scheduled by a specified thread. Each thread searches for the local data block upon
the arrival of a job into the ready queue. Threads receive a notification from other threads upon finding the
local data for the jobs; hence, other threads stop searching. If none of the threads find a local data block for
a task, then that task is scheduled on a non-local node. It acquires its processing advantage through parallel
searches by different threads instead of single-threaded processes in similar schedulers. Bi-Hadoop (Yu &
Hong 2013) is another locality-based approach which supports dual-map-input applications and attempts
to minimize the network resource congestion for such an application.

FIFO with Shareability and Locality-Aware (Wei et al., 2015) scheduling algorithm is a FIFO-based
scheduling policy that takes the locality and data sharing probability between tasks into account for its
scheduling decisions. The main objective is to gather the tasks that require the same data, batch process
them, and reduce the overhead of shuing the data over cluster nodes. The Shared-Input-Policy (Bezerra
et al., 2013) scheduling algorithm chooses tasks from a waiting queue by investigating the available
resources of the cluster to improve cluster performance. Although it cannot predict the resource con-
sumption of waiting jobs, it appropriately submits tasks to the cluster by analyzing the available resources
in the cluster.

A variation of the Delay Scheduling algorithm called the Matchmaking (He et al., 2011) algorithm has
been proposed to schedule map tasks to improve data locality in the Hadoop system. It provides a fair
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chance of executing a data-local task to all nodes before launching a non-local task, i.e., it delays the
execution on a node until it receives a data-local task instead of delaying a job execution. It always prefers
the local map task over non-local tasks. It uses a locality marker for node classification and ensures that all
nodes will have a fair chance to seize its local tasks. This has been achieved through relaxation of job
scheduling to improve the performance by avoiding data transfer in map tasks.

Hadoop performance in the heterogeneous environment degrades in comparison with a homogeneous
cluster. Heterogeneous environment Locality-Aware Scheduler (Zhang et al., 2011) addressed the issues
of heterogeneity and locality and proposed a solution to simulate optimal task execution time. It is based
on maintaining a tradeoff between task waiting time and transmission time. It first attempts to respond to
the Task Tracker request for a task with a task at a local DataNode. In case such task is non-existent, it
attempts to assign a task with data closest to the requesting node. It makes this decision based on the metric
whether or not waiting time for a task is less than transmission time.

Data-local Reduce Task Scheduler (Geetha et al., 2016) proposed to schedule tasks on nodes that tend
to result in the least number of bytes shued. This scheduler exploits the index file and heartbeat protocol to
gather the information about each map task’s output data stored in the local file system of each Task
Tracker node and maintains a data structure of it. For each reduce task ready to be scheduled, the scheduler
checks if the requesting Task Tracker is the one that contains the largest amount of intermediate output
data. If that is the case, the reduce task is scheduled to that Task Tracker. In other cases, the next requesting
Task Tracker is considered, and so on. The modified Job Tracker maintains the data structure that ensures
the Task Trackers with the largest intermediate output must run the reducer. Their scheduler minimizes the
data-local traffic by 11–80% considering the varying number of mappers and reducers.

USSOP (Su et al., 2011) is a grid-enabled MapReduce framework which provides a set of C-Language
based MapReduce APIs and a runtime system for exploiting the computing resources available on public
resource grids. The authors proposed Locality-Aware Reduce Scheduling (LARS), specifically designed
to minimize data transfer in USSOP. The intermediate data are hashed and stored as regions, as one region
may contain different keys. Master node assigns reduce tasks to the grid nodes using the LARS algorithm
until all maps are completed, i.e., nodes with the largest region size will be assigned reduce tasks. In this
way, LARS avoids transferring large regions out to other nodes. It works better in heterogeneous grid
environments. In another research effort, authors of the Minimum Network Resource Consumption
(MNRC) (Shang et al., 2017) model took the liberty of taking two main data streams of slow tasks
migration and remote copies of data in the cluster network into consideration using the use case of Hadoop
MapReduce clusters. MNRC is used to calculate network resources consumption of reduce tasks to
minimize the amount of remote copies of data, in combination with data locality, using their priority
scheduling policy for the Reduce task.

In Hadoop, the input data of map tasks are transferred in numerous small parts. Mappers process the
first part of the input data upon receiving it and wait until its execution is finished. From there, the next part
is transferred and so on, which is a waste of time because data processing and transmission can be carried
out in parallel. Improving MapReduce by Data Prefetching (IMPDP) (Gu et al., 2013) introduces a data
prefetching mechanism for map tasks using intra-block prefetching in heterogeneous or shared environ-
ments. The main objective is to reduce the overhead of data transmission over the network. IMPDP creates
a data prefetching thread which requests non-local input data and a prefetching buffer is used to store the
temporary data for the task. The data prefetching thread pulls the input data through the network and stores
it in the prefetching buffer temporarily, and the map task reads the data from this buffer to process.
Experimental results show an approximate 15% improvement in job response time.

4.2.3 Situation-aware schedulers
The situation-aware schedulers are those schedulers which can adopt to different situations among task
communications, map execution, shuing, and combining. A number of researchers address situation-
awareness in their work in the area of Hadoop optimizations. Certain significant research approaches
include Preemption-based Scheduler (Polo et al., 2010), Map Optimizer (Yoo & Sim 2011), Acclimate
MapReduce (Acclimate MR) (Balmin & Beyer n.d.), MOMTH (Nita et al., 2015), and Speculative Aware
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Resource Allocation (SARA) (Ren 2015). These research approaches are improving the native Hadoop
performance by adapting to situations and using different heuristics. A preemption-based scheduler (Polo
et al., 2010) introduces an online job completion time estimator which can be used for fine-tuning the
resource provisioning of different jobs. The main objective is performance-driven co-task scheduling in
HadoopMapReduce runtime to provide better resource utilization in a shared environment. The goal is the
exploitation of MapReduce’s multiple small tasks capability for the prediction of tasks completion time
and characteristics of the wait queue tasks. The fine-tuning of resource provisioning among jobs is based
on the estimation of the completion time for individual jobs based on a given set of resources. It also has
the capability of preempting other low priority jobs to provision the resources to the high priority job. It
allows applications to meet their performance goals without the over-provisioning of physical resources.
The scheduler has two strategies to provision resources: a max-scheduler approach, in which all the
resources of the Hadoop cluster are allocated when there are enough tasks; and a min-scheduler approach,
in which the completion time goal for each job is wisely observed and resources are freed, if possible.
Their evaluation is based on four things : job completion time, job with deadlines minimum scheduler, job
with deadlines maximum scheduler, and comparison with Facebook’s Fair scheduler.

MOMTH (Nita et al., 2015) expounds on a multi-purpose scheduling algorithm for numerous tasks in
the Apache Hadoop big data processing framework. They consider the fine grain functions of users and
resources with the constraints of deadline and budget simultaneously. MOMTH addresses the most rele-
vant constraints for Hadoop (i.e., avoiding resource conflict and having a near-optimal cluster workload)
and relevant objectives (deadline and budget). This type of scheduler is beneficial when there are cost and
time limitations. The authors used a Hadoop integrated tool scheduling load simulator for the evaluation of
this research work. They analyzed the performance of MOMTH using MobiWay, which is a collaboration
podium to expose the interoperability between a huge number of sensing mobile devices and an extensive
variety of mobility applications. SARA (Ren 2015) is a distributed and decentralized speculation-aware
cluster scheduler. The speculative execution of tasks is a very effective method to mitigate the impact of
stragglers, thus far. However, schedulers have to decide between the scheduling of speculative copies of
some jobs and original tasks execution of other jobs. They define two guidelines for selecting which tasks
should be scheduled for execution in the cluster. The first guideline states that: In the absence of enough
slots for every job to maintain its anticipated level of speculation, slots should be dedicated to the smallest
jobs, and each job should be given a specified number of slots equal to its virtual size to achieve near-
optimal performance. The second guideline states that: In the presence of enough slots to permit every job
to maintain its desired level of speculation, slots should be shared proportionally to the virtual sizes of jobs
to achieve a near-optimal throughput.

Acclimate MR (Balmin & Beyer n.d.) is one of the situation-aware schedulers using the principle of
‘situation awareness in mappers’. It changes the native Hadoop assumption about independent mappers by
implementing the mappers which communicate with each other through Distributed Meta Data Store.
Unlike the native Hadoop system, the mappers in Acclimate MR communicate for situation awareness.
The mappers take a data block for the diminution of initial starting time, Acclimate MR combiner performs
local aggregation and caches frequently appearing keys, and their sampling and partitioning (which
sample intermediate data and provide well-balanced input to reducers) assists in handling the situation
dynamically. The authors claimed evaluation shows that adaptive techniques provide up to three-time
performance improvement over native Hadoop, and exponentially improve performance stability across
the board.

4.2.4 Replica-aware schedulers
The Hadoop framework uses data replication for the availability and reliability of the system. By default,
the replication factor is three, which can be modified using the replication property in the Hadoop con-
figuration file. Replication-awareness is the property of the scheduler which is aware of and changes the
behavior of the scheduling policy while taking the number of replicas and distribution information of each
replica throughout the cluster. Maestro (Ibrahim et al., 2012) is a probability-based, fine-grained, replica-
aware algorithm to alleviate the non-local Map tasks execution problem that relies on the replica-aware
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execution of Map tasks. It stores the number of unprocessed data blocks in each node j as HCNj to keep
track of all unprocessed data blocks in the cluster. It then calculates the probability of processing a data
block non-locally as block weight (WBi) using the following equation:

WBi = 1�
Xr

1

½ 1
HCNj

� (11)

where HCNj represents the number of blocks of data stored in node j of the cluster. Using the replication
feature of Hadoop, nodes that share some blocks as replicas present in both the nodes. ShareRate is the
number of data blocks a node shares with other nodes and can be calculated as,

ShareRateNj = max
1≤ i≤N

Sbj (12)

where Sbj is the number of shared blocks between Ni and Nj. The scheduler schedules Map task in two
phases using the above information: (a) It attempts to ensure Map task executes on all nodes locally. For
that reason, it assigns the node-local tasks for blocks with the highest block weights to various nodes in
descending order of their shares in the job initialization phase; (b) Upon availability of container at
runtime, it schedules an unprocessed block with the highest block weight to minimize the non-local map
tasks execution. Maestro demonstrates a 95% improvement in the speculative execution of data local map
tasks and a 34% improvement in execution time.

Optimal Task Selection (Suresh & Gopalan 2014) scheduling algorithm is an optimal task selection
scheme to assist the scheduler in case multiple local tasks are available for a node. The main objective is to
launch the task with the least number of replicas of input data, individual load of disks attached to the node,
and the maximum expected waiting time for the next local node to improve the probability of percentage of
local tasks launched for a job in future. It shows an improvement of approximately 20% in terms of locality
over the HDFS and a significant improvement in fairness without affecting the locality when used with
delay scheduling.

Multiple-FIFO (Jin et al., 2012) based scheduling is an optimization of the native Hadoop’s map
assignment mechanism. The Hadoop works on the principle of ‘moving computation to data’; hence, the
map task assignments to the free slots on the data node holding the data become a key issue of research.
Multiple-FIFO is a two-step technique to optimize the map task assignment mechanism in homogeneous
Hadoop clusters. Its technique of scheduling works on: (a) data locality scheduling tactics and (b) replica
selection methodologies. It introduces multiple queues in the MapReduce framework to overcome the
limitations of FIFO scheduler by their data locality scheduling tactics. Using replica selection methodol-
ogies, it estimates the load on nodes for the load balancing in the system using the following equation.

load=A +mi �B + ri �C (13)

where A is the OS overhead, mi is the ith map task, B is the combined overhead of map tasks, ri is the ith
reduce task, and C denotes the combined overhead of all reduce tasks in the system. They claimed
approximately a 2.5-times performance gain over the native Hadoop FIFO scheduler.

4.2.5 Network-aware schedulers
Network-awareness is the property of schedulers to take network traffic information into account while
making scheduling decisions. In the Hadoop framework, the network becomes a bottleneck in most
situations compared to other resources owing to the shuing of intermediate data over the network. This all-
to-all communication in the Shue phase creates the network congestion and degrades the performance of
the whole system. Owing to these reasons, adding network awareness to the scheduler to optimize the
Hadoop system has become a popular research topic in the last few years. Numerous researchers from
academia and industry contributed in the area by adding network-awareness to the native Hadoop system
through different techniques to enhance the overall performance of the Hadoop ecosystem. We discuss the
key efforts in this area in the following paragraphs in this section.

Recently, Hadoop MapReduce clusters are usually shared among multiple users and jobs for better
resource utilization. Job performance in multi-tenant Hadoop cluster is greatly impacted by all-to-all
communication in the Shue phase, which leads to network blockage due to heavy network traffic.
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ShueWatcher (Ahmad et al., 2014) is a multi-tenant Hadoop scheduler that minimizes network traffic in
the Shue phase while maintaining the particular fairness constraints. It works on the basis of three key
techniques. First, it limits intra-job map-shue concurrency to shape network traffic in the Shue phase by
procrastinating the Shue phase of a job according to the network traffic load. Second, it favorably allocates
a job’s Map tasks to localize the intermediate data to as few nodes as possible by exploiting the minimized
intra-job concurrency and flexibility prompted by the replication of map input data for fault tolerance.
Third, it exploits a localized map output and delayed shue to reduce the network traffic in Shue phase by
preferentially scheduling a job’s Reduce tasks in the nodes holding the intermediate data. It claims a
performance gain of 39–46% in cluster throughput and 27–32% in job response time. ShueWatcher works
well in shared environment situations, e.g., an overlapping map with Shue phase inter-jobs rather than
intra-jobs and adjusting intra-job concurrency for minimized network traffic in the Shue phase.

The BAlance-Reduce (BAR) (Jin et al., 2011) scheduling algorithm introduced a heuristic task sche-
duling technique which takes a global view and adjusts the data locality of map tasks, vigorously con-
ferring to the network traffic condition and cluster workload. The main objective is to iteratively schedule
map tasks to improve the locality of input data, which leads to an improvement in job performance. At the
first iteration, the scheduler’s aim is to schedule tasks to local node slots. It considers rack-locality and off-
rack locality (non-local execution of tasks) in succeeding iterations. In the case of a poor network situation
and overloaded cluster environment, BAR attempts to adjust data locality to enhance resource
optimization.

Data locality and the reduce tasks scheduling and partitioning skew may excessively degrade Hadoop
performance. The Minimum Transmission Cost Reduce Task Scheduler (MTCRS) (Tang et al., 2015)
proposed a sampling evaluation to solve the issues of partitioning skew and locality of intermediate data
for the reduce tasks in the Hadoop system. It uses the transmission cost and waiting time of each reduce
task as heuristics for decisions about scheduling reduce tasks in the cluster. It uses the Average Reservoir
Sampling algorithm to generate the parameters as sizes and locations of intermediate data partitions to use
in a mathematical model for estimating transmission cost as follows,

CjðU; vÞ=
Xi=U

i= 1
Pði; jÞ �DisðUi; vÞ (14)

where Cj(U, v) symbolizes the estimated transmission cost, P(i, j) denotes partition proportion, andDis(Ui,
v) is the hop distance between node u and node v.U represents the set of nodes containing the intermediate
data for a job. This model is used to ultimately calculate the best reduce task launching node in the cluster.
MTCRS minimizes approximately 8.4% of the network traffic in the cluster in comparison with Fair
scheduler.

High Performance MapReduce Engine (HPMR) (Seo et al., 2009) introduced two optimization
schemes, prefetching and pre-shuing, that improve the overall performance in a multi-tenant environment
while holding compatibility with the default Apache Hadoop framework. The prefetching exploits the data
locality, and pre-shuing aims to minimize the network overhead in all-to-all communication during the
Shue phase. The newly introduced prefetching mechanism has two sub-modules. The first one is for the
intra-block prefetching to pre-fetch data within a single data block while performing a processing or
complex computation. The second is inter-block prefetching to pre-fetch the entire block of replica to a
local rack before the processing of that block. The pre-shuing mechanism changes the scheduler to check
the map input split and predicts the partitioning of key-value pairs while taking the reducer locations into
consideration. The main objective is to schedule map tasks near the future reducer before the map tasks
execution. The evaluation results using Yahoo! Grid show a performance gain of approximately 73% in
response time over the native Hadoop system.

The default Hadoop scheduler neither considers the data locality of reduce tasks nor addresses the load
unbalance among map and reduce tasks, which causes performance degradation. Hammoud & Sakr (2011)
proposed Locality-Aware Reduce Task Scheduling (LARTS), a technique that uses sizes and location of
partitions to exploit data locality, i.e., combines data locality with a reduce scheduling policy. It attempts to
schedule reducers close to their maximum amount of intermediate input data and conservatively switches
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to a relaxation strategy seeking a trade-off among the scheduling delay, resource utilization, scheduling
skew, and degree of parallelism. It outperforms the native Hadoop performance by an average of 7%. NW-
Aware Scheduler (Kondikoppa et al., 2012) introduced a network-aware scheduling algorithm for Hadoop
MapReduce system. The transferring of data over the network is costly and causes performance degra-
dation more severely in federated clusters. The authors designed and implemented a network-aware
scheduler to be used on federated clusters, improving map tasks scheduling in such environments and
accordingly minimized the network traffic overhead leading to an improved performance.

In the Hadoop MapReduce system, if the node creating the intermediate data for a given reduce task is
not close to it, then a large amount of data transferring through the network is required to get data to the
reduce node, resulting in high network traffic. Another issue is that of the partitioning skew that ascends
owing to an unbalanced distribution of map output across nodes, causing a huge amount of input data for
some reduce tasks. Both have a negative impact on the application performance. To address these pro-
blems, the Centre-of-Gravity Reduce Scheduler (CoGRS) (Hammoud et al., 2012) reduce scheduling
algorithm is introduced which adds locality and skew awareness to the scheduler. CoGRS schedules
reduce tasks to the node based on location closeness to the nodes creating intermediate data for it. They
used Weighted-Total-Network-Distance (WTNDr) for reduce ‘r’ as a heuristic for identifying the appro-
priate node for the reduce task, and is calculated using the following equation,

WTNDr =
Xn

i= 0
ðNDi � r �wiÞ (15)

where ‘n’ symbolizes number of partitions that are input to Reducerr, NDi denotes network distance to
transfer partition i to Reducerr in the shuffle phase, and wi is weight assigned to i. In the CoGRS algorithm,
the node with the minimumWTNDr is considered to be the Center of Gravity node and the reduce task r is
scheduled to it. CoGRS reduce scheduler reduces the network traffic and job response time by approxi-
mately 9% and 23%, respectively, as compared to native Hadoop.

4.2.6 Priority schedulers
Priority scheduling is a technique for scheduling progressions based on priority. It involves assigning
priorities to different tasks or jobs and then processing them based on the assigned priorities. Hadoop
MapReduce has priority based schedulers developed by different researchers. We will explain the sig-
nificant schedulers in this subsection of the paper. The Task Co-Scheduler (Polo et al., 2010) presented
performance-ambitious co-task allocation in HadoopMapReduce for better resource utilization in a shared
environment. The authors exploit Hadoop MapReduce’s several small task’s capability to forecast the
completion time for the waiting tasks. Their resource allocation tuning methodology among jobs is cen-
tered on the estimated completion time for each job based on some given resources.

Gu et al. (2014) introduced Priority scheduler, a priority-based scheduling algorithm for the Hadoop
MapReduce framework. They used two parameters as heuristics: the priority of slave nodes, and the
distance between the master and compute node. The amount of total data to be processed by the job can be
calculated as,

S=
Xn

j= 1
AvgTaskSizej �WeightValuej (16)

where S is the total amount of data to be processed, AvgTaskSizej is the average size of a task in the job j,
andWeightValuej indicates the number of tasks based on job weights. The performance evaluation shows
that the improved scheduler based on priority minimizes data transfer in the Hadoop cluster, and the
response time of jobs.

4.2.7 Energy-aware schedulers
Energy consumption is one of the most important issues in big data and modern world data centers. To
handle this issue, certain researchers developed scheduling systems or cluster management systems which
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take energy consumption into account. Energy-aware scheduling (EAS) techniques are those which take
energy consumption of the cluster into account while allocating tasks to different nodes or making sche-
duling decisions. Several researchers developed energy-aware schedulers for Hadoop MapReduce fra-
meworks, including EA-MapReduce (Li et al., 2011), MT-MapRed (Althebyan et al., 2014), and EAS
(Liang et al., 2013). EA-MapReduce (Li et al., 2011) is an energy-aware scheduler which predicts the
energy consumption of MapReduce workloads in the Hadoop cluster. Li et al., (2011) used a multivariate
linear regression model to analyze the results of the benchmark traces after execution. They used number
of instructions, map or reduce tasks written, bytes, etc., and introduced a linear prediction model based on
these metrics. Using Word Count and Sort workload with various input data sizes, their evaluation results
claim that their prediction model shows an approximately 0.15% inaccuracy in comparison to observed
energy consumption.

Liang et al. (2013) introduced EAS, an energy-aware vibrant scheduling algorithm that aims at mini-
mizing communication energy utilization through clustering those tasks whose executions depend on each
other. The current static schedulers may cause an increase in energy consumption owing to task waiting
time, as an estimation of the task’s execution time is difficult. The EAS dynamic scheduling technique
tunes the clustering group on the basis of an energy consumption threshold.

4.2.8 Load/fairness-aware schedulers
Load-awareness is the property of the scheduling algorithm which takes the load of the nodes into account
while making scheduling decisions in the cluster. Fairness-awareness is the property of schedulers to make
scheduling decisions on the basis of Fairness among nodes throughout the cluster or users. Fairness and
load-balancing are very important issues in Hadoop scheduling. There are various efforts to optimize
Hadoop scheduling while solving these issues. Chintapalli (2014) introduced CRBalancer, a mechanism
which distributes input data splits to heterogeneous nodes in the Hadoop cluster according to their com-
puting power capabilities. The main objective is to profile all the nodes in the cluster to identify their
computing capabilities, and then balance the load in each node according to their resource capabilities. The
balancer first obtains the network topological information and determines the over-utilized and under-
utilized nodes to perform load-balancing among them.

In the Hadoop system, by default data blocks are replicated in three different nodes. In this situation,
when the data blocks can be found in more than one location in the cluster, a challenging issue is
determining which node is assigned the task. To solve this problem, Chen et al., (2013) introduced
Locality-Aware Scheduling Algorithm (LaSA), a method that assigns weight to data which is input to the
specified task and computes the node weight for data interference accordingly to estimate the weight of
data in the specified node. Next, it sorts the nodes in ascending order and schedules the task to the first node
in the list to minimize data transmission time for performance optimization. They produced two works for
optimizing the default Hadoop scheduler: (a) they introduced a mathematical model of data interference
weight in the Hadoop scheduler and (b) they designed and implemented the LaSA algorithm to exploit the
weight of data interference to afford data locality-aware resource scheduling in the Hadoop system.

By default, Hadoop does an All-Map-to-All-Reduce communication model in the Shue phase. This
strategy usually results in the saturation of network bandwidth while shuing intermediate data from
mappers to reducers, called Reducers Placement Problem (RPP). There are several research efforts to
improve the performance of Hadoop MapReduce by altering the data flow in transition between mappers
and reducers. The Locality-Aware Fairness-Aware Key partitioning (LEEN) (Ibrahim et al., 2010) algo-
rithm is a research effort to address the problem of efficiently partitioning the intermediate keys to
minimize the amount of shued data over the network. The accurate partitioning of intermediate data also
solves the issue of the RPP. LEEN attenuates the partitioning skew, minimizing data transfer by balancing
the data distribution among nodes in the cluster. It also improves the data locality of MapReduce execution
efficiency with the use of asynchronous Map and Reduce execution policy. It guarantees a fair distribution
of intermediate data throughout all the reducers in the cluster. It attains an approximately 40% improve-
ment on different workloads.
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The X-Flex (Wolf et al., 2014) is a cross-platform scheduler which is developed as an alternative to the
DRF (Ghodsi et al., 2011) scheduler currently part of both YARN (Douglas et al., n.d.) and Mesos
(Hindman et al., 2011). X-Flex screens instantaneous fairness to grasp the long-term view of the situation.
Unlike DRF, the packing of containers into processing nodes is done oine for the improvement of packing
quality. X-Flex takes into perspective that some frameworks have adequate structure to make sophisticated
scheduling decisions. Therefore, it allows this , and also gives platforms an inordinate amount of freedom
over the degree of sharing they will permit with other platforms. X-Flex has considerable qualitative and
quantitative advantages over DRF, including durable view of fairness, an apparently more appropriate
description of instantaneous fairness, an arithmetically refined off-line vector packing system to produce
containers and their owners, flexibility, work with framework-specific scheduling algorithm that can take
advantage of the inherent structure, and the ability of applications to share as much or as little as needed.

Optimal Task Selection (Suresh & Gopalan 2014) scheduling algorithm introduced an optimal task
selection method to assist the scheduler in the case of multiple local tasks availability for a node. The
authors select the task with the least number of replicas for execution to improve the probability percentage
of a local task being launched for a job in the future and maintain load balancing in the nodes throughout
the cluster. Node-Aware Locality-Aware and Fairness-Aware (NoLFA) (Hanif & Lee 2016), an efficient
key partitioning algorithm, is a recent variance of the LEEN (Ibrahim et al., 2010) algorithm which
considers the heterogeneity of the nodes throughout the cluster. NoLFA takes node capabilities as heur-
istics while making its scheduling decisions to obtain the best available trade-off between the locality and
fairness in the system. It achieves approximately a 29% improvement over the native Hadoop scheduler.

4.2.9 Hybrid schedulers
Hybrid schedulers are schedulers that cover both the job and tasks levels while taking the scheduling
decisions. These are the most powerful schedulers because they take both coarse-grain and fine-grain
scheduling metrics into account when scheduling tasks or jobs to different nodes in the cluster. The broad
adoption and universal usage of Hadoop has strained the initial design of Hadoop version 1.0 well beyond
its intended goal, uncovering two key limitations: (a) a tightly coupled mechanism of a specified pro-
gramming model with the resource management organization, compelling developers to abuse the
MapReduce programming model and (b) a consolidated handling of the job control flow resulting in
endless scalability concerns for the scheduler. YARN (Douglas et al., n.d.) is the new version of Hadoop
scheduler which decouples the resource manager from the job scheduler. In this new architecture, the
resources are management responsibilities which are given to Resource Manager while the scheduling
obligation is handled by the Application Manager which handles all the running and ready applications in
the cluster. With the decoupling of the programming model from the resource management infrastructure,
YARN became a general-purpose resource management system for the cluster.

Conventionally, each organization has its own isolated cluster that has a satisfactory capacity to meet
the organization’s SLA under near peak conditions, which leads to poor utilization of resources. In
contrast, sharing a cluster among organizations is a cost-effective policy for running large Hadoop clusters.
However, organizations are concerned about the sharing policies of resources so that other organizations
should not use their SLA-critical resources at a pivotal time. An engineering group of Yahoo! Researchers
proposed Capacity Scheduler (Apache! 2015a), a pluggable Hadoop MapReduce scheduler for multi-
tenant sharing clusters where resources are provisioned to applications in a timely manner under the
allocated capabilities constraints. The main objective is that the available resources of the cluster should be
partitioned among multiple organizations or tenants. The excess capacity can be utilized by a needy
organization which is elasticity in a cost-effective manner. It supports multiple job queues, and each has an
allocated fraction of the cluster’s resources. Administrators can configure soft and hard limits on the
capacity allocated to each queue. It supports job priorities within the queue which is disabled by default
and users can enable it optionally. Users can submit jobs to individual queues following strict ACLs for
each queue. To ensure the security of users’ jobs, they use safeguards so that users cannot view or modify
each other’s jobs.
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Facebook developers introduced a new scheduling algorithm called Fair Scheduler, which is part of
both Hadoop version 1.0 and YARN version 2.0. Fair Scheduler (Apache! 2015b) aims to provide a fair
share of resources to every job throughout the runtime. The system has different pools of a guaranteed
minimum number of slots which accepts jobs from the users. Free superfluous slots in a pool are shared
among jobs while the idle pool’s resources are shared among other pools. In case of an under-capacity pool
needing its share back, the over-capacity pool been preempted to maintain the minimum share among the
pools. A job utilizes all the cluster in the case of solo execution, while the resources are divided fairly
among the jobs in case of the arrival of new job submissions by users. Fair scheduler allows the short jobs
to run within a reasonable period of time and simultaneously, and do not allow the long jobs to starve
(Bincy & Binu 2013). It supports priority scheduling, and the administrator has been given the power of
priority enforcement on certain pools. In the case of priority scheduling enabled, the tasks scheduling
changes to an interleaved policy of execution based on their assigned priority within the specified pool
considering the allocated and minimum share of cluster resources to the specified pool. Fair scheduler
keeps track of the ratio of the amount of time resources actually used by a job to the ideal fair allocation of
resources to the job. The job with the highest ratio tasks is scheduled accordingly, which ensures fair
resource utilization.

Phan et al. (2010) introduced real-time scheduler, a formal model for capturing real-time Hadoop
MapReduce applications in Hadoop clusters. It focused on task scheduling optimization in a hetero-
geneous Hadoop cluster by transforming the problem as a Constraints Satisfaction Problem through
identifying key factors affecting real-time scheduling, including data placement, master scheduling
overhead, and concurrent users. Heterogeneity-Aware Resource Allocation Scheduler (HARAS ) (Lee
et al., 2011) proves that some resource may have poor job performance with high availability and other
resources may have high job performance with low availability. For better performance, the resources
should be scheduled on different and separate resources to ensure that each job receives a fair share of
resources. The architectural design is to provision resources to a data analytic cluster in the cloud and
suggest a metric of share in a heterogeneous cluster to comprehend a scheduling scheme that attains high
performance and fairness.

There are numerous unique challenges at Facebook, including scalability (the largest cluster has more
than 100 PB of data), processing needs (more than 60,000 Hive queries per day), and their data warehouse
has grown by a factor of 2500-times in the last 5–6 years (growth is expected through increasing the user
base and the ongoing addition of new features to the site). By early 2011, they began reaching the limits of
the Hadoop MapReduce system; therefore, they developed Facebook-CM (Corona) (Facebook! 2015)
which is a new scheduling framework that separates cluster resource management from job coordination.
Corona proposed a cluster manager that keeps track of the amount of free resources and total working
nodes in the cluster. Each job has a committed job tracker which can either run in the same process as the
client (for small jobs) or as an isolated process in the cluster (for long jobs). Corona uses push-based
scheduling, i.e., cluster manager pushes back the resource allowances to the job tracker upon receiving the
resource request. The scheduling in Corona does not involve any periodic heartbeat messages leading to a
reduced scheduling latency. The Corona cluster manager has its own fair-share scheduler which considers
a full snapshot of clusters and jobs while making its scheduling decisions, which leads to better fairness. It
supports pool groups to group scheduling pools in a multi-tenant environment. Only the team which is
assigned to that pool group is allowed to manage the pools within their group. This gives every team fine-
grained control over their allotted resources.

4.3 Cloud-based schedulers

Cloud-based schedulers are those schedulers that take advantage of the running environment, such as
virtualized cluster, cloud-based infrastructure, and grid-based execution environments. Modern Hadoop
clusters are mostly provisioned over a cloud-based system such as Amazon’s EC2 (Amazon! 2016d).
Some researchers made efforts in this area by introducing different Hadoop schedulers, including Cloud
MapReduce (Liu 2011), VM-H Scheduler (Jiang & Sheng 2012), Cloud-HDFS (Ko & Cho 2009), and
many others. We will be discussing some of them in this section of the paper.
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The use of distributed storage services presented by different cloud provider organizations (such as
Amazon S3 (Amazon! 2016c), Elastic Block Storage (Amazon! 2016a), and Relational Database Service
(Amazon! 2016b)) is a simple way to avoid data loss in the case of cloud-based computing clusters;
however, storing all intermediate data in them rather than local disk is absurdly inefficient. Cloud
MapReduce (Liu 2011) introduced MapReduce implementation capable of taking advantage of the spot
market. Spot Cloud MapReduce can progress the computation regardless of the termination of an enor-
mous number of nodes on a regular basis. The main objective is to process tasks using spot instances and
send the intermediate data stored in a temporary staged buffer to the reduce queues asynchronously. Jiang
and Sheng (2012) proposed VM-H Scheduler, a graph-based task scheduling algorithm to attain the
minimum cost in a hybrid cloud environment. Their algorithm takes both public and private cloud
resources into account to attain a minimum cost.

One important challenge when using Hadoop in a cloud environment is to manage intermediate data
which are generated during dataflow computations, including MapReduce, Dryad, Pig, and Hive. They
proved experimentally that the existing local-write remote-read solution (such as HDFS) and support from
transport protocols (e.g., TCP-Nice) cannot guarantee both data availability and minimal interference. Ko
& Cho 2009 presented Cloud-HDFS, an Intermediate Storage System that considers intermediate data a
first-class citizen of dataflow programs. Their system considers a master-slave architecture with three
different replication schemes: (a) replication using spare bandwidth, (b) deadline-based replication, and (c)
cost model replication. In (Gulati et al., 2011), a group of researchers from VMWare Inc. elaborated on
some of the issues found in most VM management softwares including their own VMware DRS cluster,
Eucalyptus, and Microsoft PRO. The problems are scalability, heterogeneity, islands of resources caused
by network connectivity, storage, and a limited scale of storage resources. They suggested three different
scaling techniques to solve the above problems in VM management softwares: (a) Hierarchical Scaling,
(b) Flat-Scaling, and (c) Statistical Scaling.

Dynamic Resource Reconfiguration (DRR) (Park et al., 2012) provided an imperative contribution to
virtualization techniques in virtualized clusters. DRR was developed for distributed data-intensive fra-
meworks in a virtualized cloud-based Hadoop cluster. The dynamic reconfiguration of different VMs for
the enhancement of data locality in a virtualized Hadoop cluster improves the overall MapReduce job
throughput. To make it possible for a VM to run local tasks, DRR temporarily increases its number of
cores. It also makes its scheduling decisions based on locality and adjusts the computational power of
virtual nodes according to the load after accommodating the scheduled tasks. The central principle behind
the DRR is that ‘each node should have the ability to fine-tune according to the demanded resources from
that node so that different resource requirements by different tasks or jobs do not cause virtual node under-
utilization’.

Data locality in Hadoop system is a critical factor impacting on the performance of HadoopMapReduce
applications. Nonetheless, legacy improvements of data locality in virtualized Hadoop employ two levels
of distribution of data (VM level and physical node level) which is not effective. DSFvH (Sun et al., 2014)
presented a flexible virtualized Hadoop system in which storage and computing nodes are placed in their
respective VMs. The DSFvH task scheduling algorithm aims to improve data locality by migrating the
computing VMs to the physical node hosting the storage VM, which holds the data replica for the
scheduled task. The job profiler receives the information about the job in the job queue and passes that
information to the task profiler. The task profiler collects the data locality information through the data
locality detector and monitors the progress of the tasks through the task progress monitor module. The
Migration Controller selects a destination for the migrating VM which contains the required replica of
data. It outperforms the traditional virtualized Hadoop system by approximately 37% in terms of job
response time.

In recent years, interest in running the Hadoop MapReduce application over the Internet has increased.
However, the data distribution techniques used on the Internet to distribute the high volume of data as an
input to the MapReduce applications are deficient and need to be reconsidered. Bruno & Ferreira (2014)
proposed SCADAMAR, a BOINC compatible computing platform to enable the deployment of
MapReduce applications over the Internet. SCADMAR allows nodes to help distribute input datasets,
intermediate data, and final output data through BitTorrent protocol instead of point-to-point protocols
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(such as FTP and HTTP); applies the benefits of the nodes network bandwidth to distribute data; and
automatically replicates data to reduce the risk of intermediate data loss.

5 Discussion and analysis

This research effort discussed various scheduling algorithms and techniques proposed to optimize the
default scheduling mechanism of Hadoop MapReduce. There are numerous scheduling approaches used
in a distributed computing system which cannot be used in the Hadoop framework because of the unique
processing mechanism of moving computation to make use of data locality. The Hadoop MapReduce
scheduling system has special attributes, such as loosely coupled data nodes, and each node functions as an
independent data-intensive compute node, which attracted researchers from both academia and industry to
develop new schedulers for the framework. These research projects aim to optimize Hadoop scheduling at
the job level, task level, or a combination of the two. The issues addressed in job level optimizations
include proportional sharing of resources dynamically, better user experience with fair scheduling, and
constraints-based scheduling. There are different problems related to task scheduling such as data repli-
cation, data locality, network awareness, and heuristic-based scheduling which are dealt with by different
task level schedulers.

Scheduling is considered critical to the Hadoop framework performance. In this sense, selected papers
are explained and categorized on the basis of the issues they addressed. There are several research efforts,
e.g., (Tian et al., 2009) and (Althebyan et al., 2014), which propose multi-queue scheduling techniques
aimed at performance optimization. Other scientists use different approaches to achieve better perfor-
mance results, including (Zaharia, Borthakur, et al., 2010), (He et al., 2011), (Hammoud & Sakr 2011),
(Hammoud et al., 2012), and (Ibrahim et al., 2012), which take the optimal placement of Map and Reduce
tasks into account. Some tackle the problem using historical data from the cluster nodes which allow
diverse and unique techniques and methods, such as speculative execution of MapReduce tasks as in
(Zaharia et al., 2008), (Jung & Nakazato 2014), and (Yoo & Sim 2011). Some papers including (Ham-
moud et al., 2012), (Tang et al., 2012), and (Park et al., 2012) present solutions covering important
correlated areas, such as resource provisioning in cloud infrastructure, reflecting directly on Hadoop
performance in such environments. Thus, scheduling in heterogeneous environments is also an important
topic addressed by several research projects including (Tian et al., 2009), (Lee et al., 2011), (Anjos et al.,
2015), and (Xie et al., 2010). Issues addressed by different researchers from both academia and industry in

Figure 8 Taxonomy of scheduling techniques
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the Hadoop scheduling mechanism include: deadline constraints in (Teng et al., 2014), (Morton et al.,
2010), and (Kc & Anyanwu 2010), environment awareness in (Zaharia et al., 2008), (Chen et al., 2010),
(Jung & Nakazato 2014), (Sun et al., 2012), (Bortnikov et al., 2012), and (Ghodsi et al., 2011); locality
awareness in (Palanisamy et al., 2011), (Anjos et al., 2015), (Arslan et al., 2014) (Althebyan et al., 2014),
(Bezerra et al., 2013), (Gu et al., 2013), (Wei et al., 2015), and (Yu & Hong 2013); network awareness in
(Ahmad et al., 2014), (Kondikoppa et al., 2012), (Jin et al., 2011), (Tang et al., 2015), (Seo et al., 2009),
(Hammoud & Sakr 2011), and (Hammoud et al., 2012); priority consideration while scheduling tasks and
jobs in (Polo et al., 2010 and (Gu et al., 2014); and replication based optimization of the Hadoop sche-
dulers as in (Ibrahim et al., 2012), (Suresh & Gopalan 2014), and (Jin et al., 2012).

Approximately 100 out of more than 200 research studies were selected in the area of Hadoop sche-
duling; the analysis and taxonomy of those studies are shown in Figure 8. The taxonomy column in the
table shows the flexibility of the runtime of the algorithm to be adaptive or non-adaptive. An adaptive
scheduler uses any previous, current, and/or future values of parameters while making the scheduling
decision. Furthermore, a non-adaptive scheduler does not take any environmental changes into con-
sideration while scheduling tasks and jobs in the cluster. The operating environment is the atmosphere
considered by the algorithm while optimizing the native Hadoop scheduler. The situation awareness
column indicates whether the algorithm considers the situation at runtime. Specific constraints con-
siderations are presented in the constraints column. Best for situations or jobs column indicates the types of
jobs, situations, types of tasks, or any other specified situations where the said scheduler best perform and
favor the special tasks or jobs. Data locality and data replication columns show whether these issues are
considered. The scope column indicates the scope of the scheduling algorithm in terms of task/job level.

6 Conclusion

The Apache Hadoop has become a de facto framework for huge distributed data-insensitive applications
and has been adopted by both research communities and industry. One proof of this is the number of
publications about the framework in recent years. Development and improvement in the area of Hadoop
scheduling is a key research issue because of the static configuration-based current implementation of
native Hadoop. We categorized the optimizations to the Hadoop system and created a taxonomy to help
researchers observe the well-explored and more recently addressed issues. The issues related to the area of
scheduling in Apache Hadoop framework have been explored and explained to assist users in under-
standing how to solve these issues. The classification is conducted based on the issues that were addressed,
including heterogeneity, replication, data locality, resource provisioning, and availability. This review was
conducted to assist in selecting promising areas for research in the Hadoop MapReduce framework. The
storage or distributed file system, cloud, and distributed computing areas have outpaced the number of
publications and optimization efforts in the last decade. Main-stream contributions are made in data flow
tuning, tasks scheduling, jobs scheduling, and resource provisioning management.

Appendix

Key Terminologies

∙ JobTracker: It is the service within Hadoop that farms out MapReduce tasks to specific nodes in the
cluster.

∙ JobTracker Port: Port where you can access the JobTracker. The default port might be different for
each distribution.

∙ NameNode: It is the core of the HDFS file system. It maintains a record of all files stored on the Hadoop
cluster.

∙ Mapper Size: The memory allocated to each mapper task that will launch on each of the
Hadoop Nodes.

∙ Parse: The parse operation converts an in-memory raw data set (in CSV format, for example) into a
HEX format data set. The parse operation takes a data set named by a Key as input, and produces a HEX
format (Key, Value) output.
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∙ YARN: A resource-management platform responsible for managing compute resources in clusters and
using them for scheduling of user’s applications.

∙ Hadoop Common: Usually only referred to by programmers, it is a common utilities library that
contains code to support some of the other modules within the Hadoop ecosystem. When Hive and
HBase want to access HDFS, for example, they do so using JARs (Java archives), which are libraries of
Java code stored in Hadoop Common.

∙ HBase: An open-source, distributed, versioned, non-relational database modeled after Google’s
Bigtable (Distributed Storage System for Structured Data).

∙ Hive: It is a data warehouse infrastructure built on top of Hadoop for providing data summarization,
query, and analysis. It allows user to query data using a SQL-like language called HiveQL (HQL).

∙ HiveQL (HQL): It is a SQL like query language for Hadoop, used to execute MapReduce jobs
on HDFS.

∙ NoSQL:NoSQL or ‘not only SQL’ is a broad class of database management systems identified by non-
adherence to the widely used relational database management system model. NoSQL databases are not
built primarily on tables, and generally do not use SQL for data manipulation.

∙ NewSQL: It is an elegant, well-defined database system that is easier to learn and better than SQL. It is
even newer than NoSQL.

∙ Impala: It is an SQL query engine with massive parallel processing power, running natively on the
Hadoop framework. It shares the same flexible file system (HDFS), metadata, resource management,
and security frameworks as used by other Hadoop ecosystem components.

∙ Oozie: It is a workflow engine for Hadoop.
∙ Pig: It is a high level programming language for creating MapReduce programs used within Hadoop.
∙ Sqoop: It is a tool designed to transfer data between Hadoop and relational databases.
∙ Whirr: It is a set of libraries for running cloud services. It’s ideal for running temporary Hadoop clusters
to carry out a proof of concept, or to run a few one-time jobs.

∙ HUE: It is a browser-based desktop interface for interacting with Hadoop.
∙ ZooKeeper: It allows Hadoop administrators to track and coordinate distributed applications.
∙ HCatalog: It is a centralized metadata management and sharing service for Apache Hadoop. It allows
for a unified view of all data in Hadoop clusters and allows diverse tools, including Pig and Hive, to
process any data elements without needing to know physically where in the cluster the data is stored.

∙ Latency: Any delay in a response or delivery of data from one point to another.
∙ Load balancing: The process of distributing workload across a network or cluster to optimize
performance.

∙ Failover: The automatic switching to another virtual machine or node in case of a failure.
∙ Network analysis: Viewing relationships among the nodes in terms of the network or graph theory,
meaning analyzing connections between nodes in a network and the strength of the ties.

∙ Scalability: The ability of a system or process to maintain acceptable performance levels as workload or
scope increases.
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