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Abstract. The MHD analogue of the Brunt–Väisälä frequency, NB, in a magne-
tized, ideally conducting plasma is obtained, with the vertical component of the
magnetic field, Br, taken into account. The magnetic field vector (Br, Bθ, Bϕ) is
assumed to satisfy the condition B ·∇B ≈ Br dB/dr, which holds in many cases
of interest. The frequency NB happens to depend, generally speaking, on the mag-
netic field orientation relative to the direction of gravity. However, for an isentropic
gas, the convective instability criterion is governed by the magnetic field strength
(rather than by the orientation of B). In general, the magnetic field has a stabi-
lizing (destabilizing) effect if B/ρ grows (decreases) along the vertical axis r. This
conclusion seems not to depend on the specific magnetic field configuration.

1. Introduction
A vertically stratified atmosphere is known to be stable if N 2 > 0, where

N 2 = −g
(

1
ρ

dρ

dr
+
g

c2
s

)
; (1.1)

N is the Brunt–Väisälä frequency (hereinafter BVF: Väisälä 1925; Brunt 1927).
Here g is the gravitational acceleration, and ρ and cs are respectively the density
and the adiabatic sound velocity in hydrostatic equilibrium. It is easy to show
that the stability condition N 2 > 0 coincides with the condition that convection
is absent: ds/dr > 0 (where s is the entropy), which reduces to the well-known
condition on the temperature gradient dT/dr (see e.g. Landau and Lifshitz 1959).
For instance, for a perfect gas, it becomes

dT

dr
>

(
dT

dr

)
ad
, (1.2)

where (dT/dr)ad = −g/cp is the adiabatic temperature gradient, (cp is the specific
heat). The stability condition (1.2) is called the Schwarzschild criterion (Schwarz-
schild 1906). These stability conditions are usually obtained from buoyancy-type
arguments, which are confirmed by linear perturbation theory (see e.g. Eckart 1960;
Lighthill 1978; Priest 1982; Gombosi 1998).

Taking into account the magnetic field in a magnetized plasma is of great interest
for solar physics, the physics of magnetospheres (both planetary and stellar), and
the physics of the ionosphere. The effect of horizontal magnetic field (normal to the
r axis) was considered by Gilman (1970), Chen and Lykoudis (1972), Acheson (1979),
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Priest (1982), Ershkovich et al. (1989), McKenzie et al. (1990), and Ershkovich and
Israelevich (1993).

However, in many interesting cases, the magnetic field in equilibrium is mainly
vertical. This is the situation in the polar ionosphere of the Earth and other mag-
netized planets, in the polar regions of stellar magnetospheres (including pulsars),
and in some regions of induced cometary magnetospheres. For instance, in the po-
lar caps of a magnetic dipole, the angle between B and the local vertical does not
exceed 10◦ up to a magnetic latitude of 70◦. Therefore, in this paper, we shall derive
the MHD analogue of the BVF for a magnetized, ideally conducting plasma, taking
into account the vertical component of the magnetic field in equilibrium.

2. Stability analysis
The static MHD momentum balance is

−∇p + FL + ρg + ρνVn = 0, (2.1)

where p is the gas pressure, FL = (∇× B)×B/4π is the Lorentz body force, ρ is the
plasma density, Vn is the neutral-particle velocity, and ν is the ion–neutral collision
frequency. The last term in (2.1) describes the interaction between the static plasma
and a neutral gas flow, such as the polar wind in planetary magnetospheres or the
neutral wind escaping from a cometary nucleus (in the latter case, the gravitational
acceleration g = 0). The force FL may be represented in the form

FL = − 1
8π
∇B2 +

1
4π

(B ·∇) B

= − 1
8π
∇B2 +

1
4π

(B ·∇B)
B
B

+
B2

4πRc
n, (2.2)

where n is the unit vector of the principal normal to the magnetic field line (directed
towards its centre of curvature) and Rc is the radius of curvature of the field line.
In a spherical coordinate system (r, θ, ϕ),

B ·∇B = Br
∂B

∂r
+

1
r
Bθ

∂B

∂θ
+

1
r sin θ

Bϕ
∂B

∂ϕ
. (2.3)

We assume that B ·∇B ≈ Br dB/dr. This approximation holds if the magnetic
field strength B depends mainly on the radial (i.e. vertical) coordinate r. It also
holds in the important case of the polar caps in the magnetic dipole field, where
Bϕ = 0, and the ratio (Br ∂B/∂r)/(r−1Bθ ∂B/∂θ) = 2(1 + 3 cos2 θ)/ sin2 θ → ∞ on
approaching the magnetic pole, θ → 0. This ratio equals 10 for θ = 45◦. Using (2.3),
the vertical component of the Lorentz body force becomes

FL,r = −B
2

4π
1
B

dB

dr
+
B2
r

4π
1
B

dB

dr
+

B2

4πRc
nr

= −V 2
A⊥

ρ

B

dB

dr
+ ρ

V 2
A

Rc
nr (2.4)

where B2
⊥ = B2 − B2

r (so that B⊥ = (0, Bθ, Bϕ) is the horizontal component of the
magnetic field), VA = B/(4πρ)1/2 is the Alfvén velocity, and VA⊥ = B⊥/(4πρ)1/2.
Hence the r component of the momentum balance (2.1) is

dp

dr
= −ρg∗ − V 2

A⊥
ρ

B

dB

dr
, (2.5)
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where the effective gravitational acceleration is

g∗ = g − V 2
A

Rc
nr − νVn,r, (2.6)

and we have taken into account that gr = −g.
Uniform rotation of a star or planet, with constant angular velocity ω, may be

easily taken into account by working in the frame of reference rotating with the
astrophysical object under consideration. In this frame of reference, statics holds
(v = 0, ∂v/∂t = 0), but the centrifugal force ρω × (r × ω) has to be added to
the left-hand-side of (2.1). The vertical component of the centrifugal force reduces
the gravitational force, so that inside the rigidly co-rotating plasmasphere, the
gravitation acceleration g in (2.6) is to be replaced by g − rω2 sin2 α, where α is
the angle between the axis of rotation and the local vertical. Thus rotation has a
stabilizing effect (Gilman 1970; Acheson 1978).

Suppose now that a plasma element having been at the level r, is displaced
sporadically (and adiabatically) to the level r + dr = r + ξ. Its pressure adjusts to
the new altitude instantaneously, and the change of the density inside the plasma
element is obtained from (2.5):

δp =
(
dp

dρ

)
s

δρin = c2
s δρin = −ρg∗ξ − V 2

A⊥
ρ

B

dB

dr
ξ . (2.7)

We assume that the plasma is ideally conducting (despite possible ion–neutral
collisions). For example, this is the case in a cometary ionosphere (Ershkovich
and Israelevich 1996), although the neutral number density there is much higher
than that of the plasma. In this case, the magnetic field is frozen into the plasma,
and (d/dt)(B/ρ) = [(B/ρ)∇]v = 0. Thus B/ρ is conserved in the displaced plasma
element. Then the last term on the right-hand side of (2.7) becomes −V 2

A⊥(δρ)in.
Thus the density change inside the displaced element, according to (2.7), is

(δρ)in = − ρg∗ξ
c2
s + V 2

A⊥
, (2.8)

whereas, outside this element,

(δρ)out =
dρ

dz
ξ. (2.9)

The buoyancy (Archimedean) force equals g∗(δρout−δρin), whence, by using (2.8)–
(2.9), we arrive at the equation of motion of the sporadically displaced plasma
element in the form

ξ̈ +N 2
Bξ = 0, (2.10)

with the solution ξ ∝ exp(±iNBt). The MHD analogue of the BVF is determined
by

N 2
B = −g∗

(
1
ρ

dρ

dr
+

g∗

c2
s + V 2

A⊥

)
; (2.11)

the instability growth rate, naturally, equals |NB |. For horizontal and rectilinear
magnetic field lines (and Vn = 0), g∗ = g and VA⊥ = VA, and (2.11) reduces to
the expression obtained by Chen and Lykoudis (1972). For example, in a magnetic
dipole field, the ratio (VA⊥/VA)2 = 3.2 × 10−2 and 7.7 × 10−2 at the magnetic
latitudes of 70◦ and 60◦, respectively. Hence the BVF NB may depend critically
on the magnetic field inclination, unless c2

s� V 2
A.
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The BVF NB happens to depend differently on the horizontal and vertical com-
ponents of the magnetic field. The effective gravitational acceleration g∗ depends
on the magnetic field strength B through the magnetic curvature term V 2

Anr/Rc.
This term may be dominant, for instance, in a pulsar magnetosphere.

It should be kept in mind that this analysis is valid only if the plasma particle
motion is not quantized in Landau levels (Landau and Lifshitz 1977) – that is if
~ωB� kT , where ωB is the particle gyrofrequency, and 2π~ and k are respectively
the Planck and Boltzmann constants. This condition gives a limit of the magnetic
field strength: B � 104 T (K) ≈ 1010 − 1011 G with typical plasma temperature
T ≈ 106 − 107 K. Thus quantization of the electron motion is expected to arise in
the superstrong (of order 1012 G) magnetic fields near pulsars, and does not occur
near the magnetopause of accreting pulsars in binary systems, where the field B is
of order 105 G.

If, however, the gravity g prevails (g∗ ≈ g) then the vertical component of the
magnetic field, Br, naturally, does not affect the motion of the plasma element,
which remains vertical in the linear approximation. Of course, vorticity may change
this conclusion. However, vortices are known to arise as a result of the nonlinear
evolution of the convective instability, which is beyond the scope of this paper.

The BVF NB may be represented in an alternative form if g∗/(c2
s+V 2

A⊥) in (2.11)
is eliminated by means of (2.5), where dp/dr = c2

n dρ/dr for a polytropic gas (p ∝ ρn,
c2
n = np/ρ):

g∗

c2
s + V 2

A⊥
= −

[
c2
n

c2
s + V 2

A⊥

1
ρ

dρ

dr
+

V 2
A⊥

c2
s + V 2

A⊥

1
B

dB

dr

]
. (2.12)

Substituting (2.12) into (2.11) yields

N 2
B =

ρ

B

V 2
A⊥

c2
s + V 2

A⊥
g∗

d

dr

(
B

ρ

)
− g∗(c2

s − c2
n)

c2
s + V 2

A⊥

1
ρ

dρ

dr
. (2.13)

In general, the equation of state may be written in the form p = p(ρ, s), whence

dp

dr
= c2

s

dρ

dr
+
(
∂p

∂s

)
ρ

ds

dr
.

Then, instead of (2.13), one obtains

N 2
B =

ρ

B

V 2
A⊥

c2
s + V 2

A⊥
g∗

d

dr

(
B

ρ

)
− g∗

ρ(c2
s + V 2

A⊥)

(
∂T

∂V

)
s

ds

dr
, (2.14)

where, according to the Maxwell relation (∂T/∂V )s = −(∂p/∂s)ρ < 0, V = 1/ρ
is a specific volume. Naturally, for a polytropic gas, (2.14) reduces to (2.13). If
ds/dr = 0 (note that with B = 0, such a gas is always unstable) the convective
instability criterion is

g∗
d

dr

(
B

ρ

)
6 0. (2.15)

This condition depends on the magnetic field strength B (rather than on the B
components). The instability criterion in the form

d

dr

(
B

ρ

)
< 0 (2.16)

was obtained previously by Gilman and Cadez (1970) for long-wavelength pertur-
bations using linear perturbation theory and assuming that magnetic field lines
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in equilibrium are horizontal and rectilinear. The inequality (2.15) (obtained from
N 2
B 6 0) may sometimes become just the opposite to the inequality (2.16). For

instance, in cometary ionospheres, an effective gravity is created mainly because
of ion–neutral drag: g∗ ≈ −νVn. Then, instead of (2.16), the instability criterion
for an isentropic gas becomes

d

dr

(
B

ρ

)
> 0. (2.17)

It is noteworthy that the plasma stability is governed by the magnetic field
strength (rather than by the orientation vector B) also in the case when c2

s � V 2
A

(see (2.11)).
In general, the magnetic field, according to (2.13) and (2.14), has a stabilizing

(destabilizing) effect if B/ρ grows (decreases) with altitude r.

3. Conclusion
The Brunt–Väisälä frequency NB in a magnetized ideally conducting plasma has
been obtained using buoyancy-type arguments for the magnetic field, which satisfies
the condition B ·∇B ≈ Br dB/dr. This approximation holds, for example, if the
magnetic field strengthB depends mainly on the vertical coordinate r. In particular,
it holds in the important case of the polar caps in a magnetic dipole field (where
Bϕ = 0), up to a magnetic latitude of 45◦. In this approximation, the BVF NB (and
hence the instability growth rate |NB |), generally speaking, depend both on the
horizontal and vertical components of the magnetic field. However, the instability
criterion N 2

B 6 0, in the above approximation, is governed by the magnetic field
strength B (rather than by the orientation of the vector B), both with ds/dr = 0
and with c2

s � V 2
A. In general, the magnetic field has a stabilizing (destabilizing)

effect if B/ρ grows (respectively decreases) with altitude r. This conclusion seems
not to depend on the specific magnetic field configuration.
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