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Topological transition and helicity conversion of vortex torus knots and links are studied
using direct numerical simulations of the incompressible Navier–Stokes equations. We
find three topological transitional routes (viz. merging, reconnection and transition to
turbulence) in the evolution of vortex knots and links over a range of torus aspect ratios
and winding numbers. The topological transition depends not only on the initial topology
but also on the initial geometry of knots/links. For small torus aspect ratios, the initially
knotted or linked vortex tube rapidly merges into a vortex ring with a complete helicity
conversion from the writhe and link components to the twist. For large torus aspect ratios,
the vortex knot or link is untied into upper and lower coiled loops via the first vortex
reconnection, with a helicity fluctuation including loss of writhe and link, and generation
of twist. Then, the relatively unstable lower loop can undergo a secondary reconnection
to split into multiple small vortices with a similar helicity fluctuation. Surprisingly, for
moderate torus aspect ratios, the incomplete reconnection of tangled vortex loops together
with strong vortex interactions triggers transition to turbulence, in which the topological
helicity decomposition fails due to the breakdown of vortex core lines.

Key words: topological fluid dynamics, vortex dynamics

1. Introduction

Knots and links, as basic topological structural units (Adams 1994), play a fundamental
and important role in various physical systems, such as hydrodynamics (Moffatt &
Tsinober 1992; Kleckner & Irvine 2013; Moffatt 2021), plasma (Cirtain et al. 2013; Hao
& Yang 2021), liquid crystal (Tkalec et al. 2011; Martinez et al. 2014), light field (Irvine
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& Bouwmeester 2008; Dennis et al. 2010) and DNA molecules (Wasserman & Cozzarelli
1986; Klotz, Soh & Doyle 2018).

In fluid systems knotted and linked vortex tubes are typical coherent structures (Ricca
& Berger 1996), covering most scales in nature, from superfluid vortices at nanoscales
(Barenghi 2007; Kleckner, Kauffman & Irvine 2016) to magnetic flux tubes at cosmic
scales (Cirtain et al. 2013). In particular, the conceptual knotted and linked vortex
tubes with complex topologies and geometries can be described as the ‘sinews’ of
turbulence (Moffatt, Kida & Ohkitani 1994); tangled vortex tubes in homogeneous
isotropic turbulence are analysed in Xiong & Yang (2019b).

The evolutionary topology and geometry of vortex knots and links can shed light on
laminar-turbulent transition and energy cascade in turbulence (see Yao, Yang & Hussain
2021). The topological and geometric features are partly characterized by the helicity
(Moreau 1961; Moffatt 1969) – an important conserved quantity in ideal flows. The
detailed helicity dynamics is analysed using the conversion between writhing, linking and
twisting helicity components (e.g. Kleckner & Irvine 2013; Scheeler et al. 2017; Yao et al.
2021).

The study of vortex knots and links started in ideal flows (Thomson 1878). Under the
local induction approximation (LIA) (Hama 1962; Kida 1981), the self-induced motion of
a vortex filament in an ideal flow can be characterized by the curve dynamics governed
by the nonlinear Schrödinger equation (Betchov 1965; Hasimoto 1972). The LIA-based
studies on vortex knots found the possible steady state (Kida 1981) and the topological
preservation under periodic motion (Keener 1990).

The Biot–Savart (BS) law can achieve better long-term evolution estimates of vortex
knots than the LIA (Ricca, Samuels & Barenghi 1999; Fuentes 2010). Ricca et al. (1999)
used numerical simulations with the BS law to show that vortex torus knots either translate
maintaining their shape or unfold immediately. Barenghi, Hänninen & Tsubota (2006)
numerically solved the BS equation for coiled vortex loops with finite-amplitude Kelvin
waves (Maxworthy 1977), and found that the loops remain stable and their forward speed
can be reduced or even reversed at large torus aspect ratios. This finding is supported by
the theoretical study of Oberti & Ricca (2019) and extended to various torus knots by
incorporating the Moore–Saffman desingularization into the BS law.

In viscous flows vortex tubes can undergo topological transformation, such as
reconnection (Melander & Hussain 1988; Kida, Takaoka & Hussain 1991; Kida & Takaoka
1994; Yao & Hussain 2020a, 2022) and merging (Griffiths & Hopfinger 1987; Melander,
Zabusky & McWilliams 1988; Le Dizes & Verga 2002), which cannot be captured by the
LIA or BS law.

Using direct numerical simulation (DNS) of the Navier–Stokes (NS) equations, Kida &
Takaoka (1988, 1987) found that the trefoil vortex knots in viscous flows are untied into
unknotted vortex loops via the ‘bridging’ reconnection, and the total helicity fluctuates
after reconnection. Aref & Zawadzki (1991) demonstrated that two initially separated
vortex loops could be linked in during evolution, indicating that the linking and writhing
helicities can be converted into each other through reconnection.

Kleckner & Irvine (2013) experimentally created thin knotted and linked vortex tubes
in a water tank, and found that the untying of vortex knots/links is associated with
cross-scale helicity conversion from knotting and linking to coiling structures. Scheeler
et al. (2014, 2017) analysed the writhing-to-twisting helicity conversion in the stretching
and compression of coiled vortex loops. These experiments showed the preservation of the
writhing helicity and the decay of the twisting helicity.

In recent numerical simulations, Kerr (2018b) investigated the topology and helicity
transformation of interacting coiled loops, and Kerr (2018c) found that the helicity of a
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disturbed trefoil vortex knot is initially conserved and decays after reconnection. Xiong
& Yang (2019a, 2020) developed a method for constructing knotted/linked vortex tubes
with arbitrary geometry and tunable twist. They found that the cinquefoil and septafoil
vortex knots undergo secondary vortex reconnection and then evolve into a turbulent-like
state, and their helicities decay rapidly during the breakup and coaxial interactions of
pinched-off vortex rings. Zhao et al. (2021) found a helicity jump during the reconnection
of trefoil knotted vortices at large Reynolds numbers. Zhao & Scalo (2021) further
quantified the relation between the helicity growth and circulation transfer using the
reconnection model of two infinitesimal antiparallel vortex filaments. Yao et al. (2021)
revealed that large positive and negative twist helicities are simultaneously generated
before and during the asymmetric vortex reconnection, and then both components decay at
different rates, causing the transient growth of the total helicity at large Reynolds numbers.
Kivotides & Leonard (2021) showed the conversion of the linking to writhing helicity
in the reconnection of Hopf vortex links with the vortex filament method. In addition,
numerical simulations of superfluid vortex knots (Proment, Onorato & Barenghi 2012;
Kleckner et al. 2016) and links (Zuccher & Ricca 2017) also showed the unknotting process
via reconnections.

On the other hand, most of the extensive studies on vortex knots and links are restricted
to simple initial configurations, such as the trefoil knot and Hopf link, and limited helicity
conversion mechanisms through reconnection and stretching/compression of vortex tubes.
To explore possible elementary structures and simple model vortices in turbulence, we
study the evolution of various vortex torus knots and links over a range of winding numbers
and torus aspect ratios using the DNS in viscous flows. This provides a full scope of the
knot/link evolution by searching all possible topological transition routes, and explores
new mechanisms of helicity conversion. In particular, the feasible initial construction
method of knotted/linked vortex tubes (Xiong & Yang 2020) facilitates this investigation.

The outline of this paper is as follows. The topological helicity decomposition,
especially into coherent knotted fields is outlined in § 2. The initial configuration and
numerical simulation set-up of knotted and linked vortex tubes are described in § 3. The
stability of coiled vortex loops is studied in § 4, and the vortex and helicity dynamics of
vortex torus knots and links is investigated in § 5. Some conclusions are drawn in § 6.

2. Helicity decomposition

2.1. Closed vortex tubes
The helicity

H =
∫∫∫

h dV (2.1)

is the integral of the helicity density h = u · ω, the dot product of the fluid velocity u and
the vorticity ω = ∇ × u, over a domain bounded by a vortex surface (Moffatt 1969). We
first consider a closed vortex tube whose centreline is a smooth closed curve. Moffatt &
Ricca (1992) derives the relation

H = ncΓ
2 = Γ 2(Wr(C) + Tw(R)) (2.2)

between H and the Călugăreanu–White invariant nc, where Γ denotes the strength of
the vorticity flux along the centreline or vortex axis C, and nc is a basic invariant of
mathematical ribbons. By placing a ribbon R of edges C and C∗ in the tube (see figure 1),
nc can be further decomposed into two geometric quantities, i.e. the writhing number
Wr and the twist number Tw. Here, Wr = Wr(C) is related only to the geometry of C,
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Ns C

C∗ R

Figure 1. Schematic of a twisted vortex tube with finite twisting helicity. The dashed curve C represents the
centreline of the vortex tube, and the solid curve line C∗ denotes a twisted vortex line on the vortex tube, N s
denotes the radial unit vector from C to C∗ and R denotes a ribbon with edges C and C∗.

representing the contribution of bending or knotting of C to H, while Tw = Tw(R) is the
geometrical quantity of the virtual ribbon placed in the tube (see Fuller 1971), representing
the contribution of twisting of the vorticity field to H.

The writhing number is calculated by

Wr = 1
4π

∮
C

∮
C

(x − x∗) · dx × dx∗

|x − x∗|3 , (2.3)

where x and x∗ denote two points on C. The twisting number is calculated by

Tw = 1
2π

∮
C

(
N s × N ′

s
) · T ds, (2.4)

where N s denotes a radial unit vector from C to C∗ on R, N ′
s = dN s/ds, T denotes the

unit tangent vector of C and s is the arc-length parameter.
The twisting number Tw = Tt + Ti can be further geometrically decomposed into the

total torsion

Tt(C) = 1
2π

∮
C

τ(s) ds, (2.5)

which is only related to the centreline, and the intrinsic twist (Moffatt & Ricca 1992)

Ti(R) = [θ ]R
2π

= 1
2π

∮
C

ξ(s) ds, (2.6)

which is determined by the azimuthal variation [θ ]R of a vortex line. Here, τ is the
torsion of the curve C, and ξ is the intrinsic rate of the azimuth change along C. When
the centreline passes through an inflection point where the curvature vanishes, Tt(C) and
Ti(R) jump discontinuously through ±1 and ∓1, respectively (Moffatt & Ricca 1992).
Since the generation and elimination of the inflection point are common in the continuous
deformation of C during the evolution of vortex tubes, it appears to be more suitable to use
Tw rather than Tt to describe the internal twist of vortex lines within the vortex tube.

When multiple closed vortex tubes are linked to each other in the flow field, the
topological decomposition of H further introduces the Gauss linking number

Lk,ij = Lk(Ci, Cj) = 1
4π

∮
Ci

∮
Cj

(
xi − xj

) · dxi × dxj∣∣xi − xj
∣∣3 (2.7)

between vortex tubes i and j, where xi and xj denote points on Ci and Cj, respectively. Thus,
the full helicity decomposition (e.g. Berger & Field 1984; Scheeler et al. 2014) reads as

H =
∑
i /= j

ΓiΓjLk,ij +
∑

i

Γ 2
i (Wr,i + Tw,i), (2.8)

where Γi, Wr,i and Tw,i are the circulation, writhing number and twisting number of vortex
tube i, respectively.
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Bridge
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Figure 2. Schematics of vortex lines (black solid lines) integrated from the vorticity field with (a) no null
point or (b) one null point on vortex surfaces. (c) Schematic for the generation of the generalized twist number
during the bridging vortex reconnection, which is illustrated by a virtual surgery.

2.2. Coherent knotted fields
The above discussion is based on the ideal closed vortex tube constituting vortex lines lying
on nested torus vortex surfaces. When the vortex tubes reconnect or merge, the helicity
decomposition (2.8) may break down due to the significant topological change.

Take the viscous vortex reconnection of a trefoil knotted vortex tube for example (e.g.
Kleckner & Irvine 2013; Yao et al. 2021; Zhao et al. 2021). In topology, the genus gv of
the closed orientable surface that wraps the vortex changes from gv = 1 for the initial
trefoil knot to gv = 4 for the interconnected structure during reconnection. After the
reconnection is completed, the major vortical structure becomes two loops with gv = 1.
For a vortical structure with gv > 1, the vorticity field must have one or more null points
on the closed vortex surface based on the Poincaré–Hopf theorem (Milnor & Weaver
1997). As illustrated in figure 2(a,b), vortex lines originate or annihilate at the null point.
Furthermore, the reconnection triggers scale cascade to produce small-scale structures
such as bridges and threads. The convoluted structures above do not satisfy an important
assumption in the decomposition of (2.8) – all vortex lines lie on a family of surfaces
nested around the central closed curve (Chui & Moffatt 1995).

Thus, the exact helicity decomposition (2.8) is not applicable during the vortex
reconnection, but a generalized helicity decomposition can still be useful to characterize
geometric features of a coherent knotted field in which the vortex cores can be identified.
After reconnection or merging of vortex tubes with the same circulation Γ , the vorticity
is still concentrated in a large-scale tube-like structure. This coherent vortex structure can
still be regarded as closed tubes, and each loop has a closed and smooth centreline and
nearly constant circulation. The contribution of Wr determined by the centreline to H can
be evaluated by (2.3). The remainder of the normalized total helicity can be defined as a
generalized twist number (Yao et al. 2021)

T̃w = H
Γ 2 −

∑
i

Wr,i −
∑
i /= j

Lk,ij. (2.9)

We demonstrate that T̃w has a certain connection with Tw. As sketched on the left of
figure 2(c), we consider a vortical structure with gv = 2 formed in reconnection. Between
the two large-scale vortex rings at the top and bottom, some vortex lines are wound from
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one ring to the other through small-scale vortex tubes. We perform a virtual surgery on the
vorticity field by cutting off the junction part and then adding two pairs of opposite vortex
tubes. As sketched on the right of figure 2(c), the original structure is equivalent to two
isolated vortex rings and an attached structure connecting the two rings and consisting of
small-scale vortex tubes (e.g. threads). Therefore, the generalized twisting number can be
re-expressed by

T̃w =
∑

i

Tw,i + T ′
w, (2.10)

where
∑

i Tw,i is the sum of twisting contributions of the virtual large-scale vortex rings,
and T ′

w represents the twisting contribution from all small structures attached to the main
vortex tube. This generalized twisting number characterizes the degree of entanglement of
the vorticity field. By replacing Tw by T̃w, the helicity decomposition (2.8) becomes

H = Γ 2

⎡
⎣∑

i /= j

Lk,ij +
∑

i

(Wr,i + Tw,i) + T ′
w

⎤
⎦ . (2.11)

3. Simulation overview

3.1. Torus knots and links
In the present study the centreline C of vortex tubes is a torus unknot, knot or link Tp,q. It
is a discrete rotationally symmetric closed curve embedded on a two-dimensional torus Π

in R
3. Namely, it has q-fold symmetry about the rotational symmetry axis of Π . The curve

C characterized by the integer pair ( p, q) winds q times around a circle in the interior of
Π , and p times around its axis of rotational symmetry. The ratio w = |q/p| is the winding
number, a measure of the knot and link topology (Oberti & Ricca 2016). Each Tp,q is
specified by a pair of integers p and q. If p and q are co-prime, Tp,q is an isolated torus
knot. If |p| � 1 or |q| � 1, Tp,q is an unknot which is ambient isotopic to a standard circle
in topology. If p and q are not relatively prime, Tp,q is a torus link with n components
Tp/n,q/n, where n is the greatest common divisor of p and q.

The parametric equation c(ζ ) = (cx(ζ ), cy(ζ ), cz(ζ )) of torus knots or unknots is

cx(ζ ) = Rt (1 + λ cos(qζ )) cos( pζ ),

cy(ζ ) = Rt (1 + λ cos(qζ )) sin( pζ ),

cz(ζ ) = −Rtλ sin(qζ ),

ζ ∈ [0, 2π),

⎫⎪⎬
⎪⎭ (3.1)

where λ = rt/Rt ∈ [0, 1) denotes the torus aspect ratio, and Rt and rt are the major and
minor radii of Π , respectively. Figure 3 illustrates three T1,6 embedded on Π with different
λ. The winding amplitude of C grows with λ and vanishes for a standard circle with λ = 0.

Each component Tp/n,q/n of a torus link is a torus knot or unknot. Its parametric equation
is

cx(ζ ) = Rt (1 + λ cos(qζ/n)) cos( pζ/n),

cy(ζ ) = Rt (1 + λ cos(qζ/n)) sin( pζ/n),

cz(ζ ) = −Rtλ sin(qζ/n).

ζ ∈ [0, 2π),

⎫⎪⎬
⎪⎭ (3.2)

The rest of the link components are determined by rotating the curve (3.2) clockwise
around the axis of rotational symmetry by 2π/q. Figure 4 depicts the torus unknot T1,3,
torus knot T2,3 and torus link T2,4 embedded on the same Π of λ = 0.5. In this study
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(a) (b) (c)

rt

Rt

Figure 3. Diagram of torus unknot T1,6 with (a) λ = 0.1, (b) λ = 0.3 and (c) λ = 0.5. Black curves denote
different torus unknots C, and blue surfaces denote the torus Π with the same Rt and different λ.

(a) (b) (c)

Figure 4. Diagram of torus (a) unknot T1,3, (b) knot T2,3 and (c) link T2,4. Black curves denote different
torus unknots C, and blue surfaces denote the torus Π with the same Rt and different λ.

we consider positive integer pairs ( p, q), and set constant Rt = √
2/2. This choice of

Rt is to avoid the vortex touching the boundary at late times for large Rt and to have
self-intersection at early times for small Rt. Note that Tp,−q is the mirror image of Tp,q.
Thus, the topology and geometry of Tp,q are characterized by three parameters p, q and λ.

3.2. Initial configuration of vortex tubes
Based on the parametric equation (3.1) or (3.2) of the vortex centerline and the curved
cylindrical coordinate system (s, ρ, θ ), we specify the vorticity of the vortex tube as (see
Xiong & Yang 2020)

ω(s, ρ, θ) = Γ f (ρ)

[
es + ρη

1 − κρ cos θ
eθ

]
, (3.3)

where the circulation Γ of the initial vortex tube is set to be Γ0 = 1, the vorticity
distribution

f (ρ) = 1
2πσ 2 exp

(
− ρ2

2σ 2

)
(3.4)

is a Gaussian function with the standard deviation σ = σ0 = 1/(16
√

2π) ≈ 0.025, where
es and eθ are the axial and azimuthal unit vectors, respectively, κ is the curvature of C and
η(s) = τ(s) + ξ(s) = (N s × N ′

s) · T denotes the local twist rate of the vortex tube.
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Numerical simulations rc/R̄ L/R̄

Present DNS 0.071 8.89
Kerr (2018a) 0.1, 0.2 6.28
Kerr (2018b) 0.18, 0.3 3.77, 6.28
Xiong & Yang (2019a) 0.1 6.28
Zhao et al. (2021) 0.059 13.33, 6.67
Zhao & Scalo (2021) 0.059, 0.119, 0.178, 0.237 13.04
Yao et al. (2021) 0.05 6.28

Table 1. Comparison of vortex tube thicknesses and simulation box sizes in the present and recent numerical
simulations.

Note that η, the integrand in the definition of Tw in (2.4), is constant for a uniformly
twisted vortex tube, so that the twisting number can be tuned by varying

η = 2πTw

lc
, (3.5)

where lc denotes the length of C. In this study the initial vortex tubes have Tw = 0 by
setting η = 0 with ξ(s) = −τ(s), which ensures that all vortex lines are initially parallel
to C everywhere.

The vortex tube thickness can be characterized by σ in (3.4), the Lamb–Oseen core size
a or the vortex core radius rc, with the relation r2

c = 2a2 = 4σ 2 (Zhao & Scalo 2021). In
the present study the ratio between rc and the vortex average radius

R̄(t) = 1
lc

∮
C

R(s) ds (3.6)

is set to be rc/R̄ = 0.071, where R(s) is the distance between a point on C and the q-fold
rotational symmetry axis of Π . The corresponding vortex tube is relatively thin, compared
with those in recent numerical simulations in table 1.

In the numerical implementation, (3.3) is specified in a periodic box with dimensions
(2π)3 in terms of Cartesian coordinates via the numerical algorithm transforming x into
(s, ρ, θ) of Xiong & Yang (2020). This numerical construction has been demonstrated
to be very robust to generate a smooth vorticity field even for the thick vortex tube with
self-intersection (Xiong & Yang 2019a). The velocity is calculated from the vorticity via
the BS law in Fourier space

u = F−1
(

ik × ω̂

|k|2
)

, (3.7)

where F−1 denotes the inverse Fourier transform, k denotes the wavenumber in Fourier
space, and ω̂ = F(ω) denotes the Fourier coefficient of ω with the Fourier transform F .

3.3. Direct numerical simulation
We take the velocity fields of vortex torus knots/links as initial conditions and calculate
each evolution using DNS. The velocity field u(x, t) of an incompressible viscous flow
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Topology and helicity of vortex knots/links

p 1 1 1 1 1 2 2 2 2

q 1 ∼ 6 1 ∼ 6 1 ∼ 6 1 ∼ 6 12 3 1, 2, 4 ∼ 6 1 ∼ 6 3
λ 0.1 0.3 0.5 0.7 0.5 0.1 0.1 0.5 0.3
N 512 512 512 512 2048 1024 512 512 1024
kmaxηK 2.97 2.58 2.31 2.14 7.27 5.20 2.57 2.23 5.09

Table 2. Direct numerical simulation parameters: integers p and q for characterizing a torus knot/link, the
torus aspect ratio λ, the number of grid points N and the spatial resolution kmaxηK .

with constant unit density is governed by the NS equations

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u,

∇ · u = 0,

⎫⎬
⎭ (3.8)

where t denotes the time, p the pressure and ν the kinematic viscosity.
The DNS for (3.8) is performed in the periodic box of side L = 2π with N3 uniform

grid points using a standard pseudo-spectral method. Here, the DNS box size should be
much larger than the vortex average radius, i.e. L 
 R̄, to avoid numerical artifacts due to
periodic boundary conditions. Zhao et al. (2021) argued and validated that L/R̄ = 6.67 is
large enough. As listed in table 1, L/R̄ = 8.89 is used in the present study, which satisfies
the criterion suggested by Zhao et al. (2021) and is relatively large in the current studies.
Note that Zhao et al. (2021) and Zhao & Scalo (2021) utilized a compressible flow solver
with the block-structured adaptive mesh refinement and the high-order compact finite
difference scheme to achieve smaller rc/R̄ and larger L/R̄ in the simulation of vortex knots
than those in the present and other previous studies. The numerical solver removes aliasing
errors using the two-third truncation method with the maximum wavenumber kmax ≈ N/3.
The Fourier coefficient of u is advanced in time by a second-order Adams–Bashforth
scheme. The time step is chosen to ensure the Courant–Friedrichs–Lewy number is less
than 0.5 for numerical stability and accuracy. This numerical solver has been used and
validated in various applications (e.g. Yang, Pullin & Bermejo-Moreno 2010; Zheng, You
& Yang 2017; Xiong & Yang 2019a). A non-dimensionalized time t∗ = t/(R2

t /Γ0) is used
in post-processing.

We carry out a series of DNS at the vortex Reynolds number Re ≡ Γ0/ν = 2000 with
various p, q, λ and N, which are listed in table 2. To ensure that the grid resolution can
fully resolve the flow evolution, N is carefully chosen to be from 512 to 2048 for different
cases. A grid convergence test is detailed in Appendix A, including a typical reconnection
case of the trefoil knot and a transition case with highly intensive vortex interactions.
Considering that the flow evolutions in over a half of cases have bridging reconnections
or evolve into a turbulent-like state, we also list the lowest spatial resolution kmaxηK for
the DNS cases in the entire evolution in table 2 for reference, where ηK = (ν3/ε)1/4

denotes the Kolmogorov length scale, and kmaxηK is always greater than 2 in the temporal
evolution, satisfying the criterion kmaxηK � 1.5 (Pope 2000) for resolving the smallest
scales in turbulence.
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4. Evolution of coiled vortex loops T1,q

4.1. Effects of the torus aspect ratio
The evolution of a slender closed vortex tube with a specified thickness is generally
determined by its centreline geometry, which is fully characterized by the integer pair
( p, q) and torus aspect ratio λ in (3.1) or (3.2). Given the large parametric space of p, q
and λ, we first consider the vortex torus unknot T1,q with the winding number w = q. It is
a coiled vortex loop with different degrees of winding structure for different q and λ.

We take vortex T1,3 as an example to illustrate the effect of λ on the vortex centreline
geometry and evolution. Figure 5 shows the initial configuration and the temporal
evolution of T1,3 with λ = 0.1, 0.3, 0.5 and 0.7 using the isosurface of |ω| = 0.04ω0
colour-coded by the helicity density h, where ω0 denotes the maximum initial vorticity
magnitude.

Note that the isosurface of |ω| = 0.04ω0 contains 96 % of the circulation at the initial
time. Its isocontour threshold is selected after tuning to identify the major vortical
structures and distinguish signature stages in the temporal evolution of vortex loops,
because in general, very thin or weak threads are not captured for too large thresholds
(e.g. |ω| > 0.1ω0), and the fine structures are merged into a bulky one for too small
thresholds (e.g. |ω| < 0.01ω0). We find that most geometric and topological features of
vortical structures can be identified within a small range of isocontour values 0.01ω0 ≤
|ω| ≤ 0.1ω0 at t∗ ≤ 10.

The vortex shape remains almost unchanged for small λ = 0.1, and the vortex
deformation becomes notable with increasing λ. For λ = 0.3 and 0.5, three petal-like
branches form and then relax via self-induction to a state close to the original shape. In
addition to the overall movement along the z-axis as for ordinary vortex rings, these coiled
vortex loops rotate counterclockwise around the axis of discrete rotational symmetry from
the top view, and the rotational angular velocity grows with λ. For large λ = 0.7, the three
petals are stretched with time, and then their tips are pinched off via the viscous vortex
reconnection. Moreover, the evolution of coiled vortex loops can be affected by the vortex
tube thickness and the Reynolds number – discussed in Appendices B and C.

Figure 6 shows the perspective and the close-up top views of vortex T1,3 for
λ = 0.7 before and after the reconnection at t∗ = 6.5 and 7.5, respectively. Before
reconnection, a pair of vortex tubes near the ‘neck’ of each petal approach each other
into an antiparallel state. Then, the antiparallel parts are reconnected under the bridging
mechanism (Melander & Hussain 1988; Kida & Takaoka 1991), forming a structure with
complex topology and genus gv > 1. After the reconnection, a secondary vortex ring
pinches off from each petal, and the central main part returns to a vortex loop of T1,3
with a smaller λ. Moreover, some small-scale threads connecting the central vortex loop
and the three small secondary rings are stretched and gradually dissipated.

By comparing the evolution of vortices T1,3 with λ = 0.5 and 0.7, a minimum critical
torus aspect ratio λc seems to exist for triggering the vortex reconnection. In the
approximation of the vortex filament, the motion of a vortex tube is determined by the BS
law and the geometry of the vortex core line. We use the method based on the normalized
helicity density (Levy, Degani & Seginer 1990) to extract the vortex core line C(t) from
DNS data. This method was also applied to study the dynamics of a trefoil vortex knot
(Yao et al. 2021).

Figure 7 depicts different temporal evolutions of the location and velocity of C(t) for
λ = 0.5 and 0.7, where the arrow length is proportional to the local speed. For vortex
T1,3 with λ = 0.5, the induction velocity on the core line stretches the petal-like branch at
early times. The approaching speed of branch sides gradually decreases due to the reduced
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Figure 5. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T1,3 with (a) λ = 0.1, (b) λ = 0.3, (c) λ = 0.5
and (d) λ = 0.7 at t∗ = 0, 2.5, 5, 7.5 and 10 (from left to right). Surfaces are colour-coded by the helicity density.
For vortex T1,3 with λ = 0.7 at t∗ = 10, the central loop has |ω|max = 34.35 and Γ = 1.00, and the secondary
loop has |ω|max = 45.70 and Γ = 1.06.

curvature in LIA-induced stretching, and then local vortex tubes repel each other as a
relaxation process at late times. For λ = 0.7, by contrast, the local vortex tubes on two
sides of the branch keep approaching each other to trigger the antiparallel reconnection.

We quantify the global geometry of C(t) by the average radius R̄(t), average torus aspect
ratio

λ̄(t) = Rmax − Rmin

2R̄
(4.1)
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Figure 6. Close-up view of the isosurface of |ω| = 0.04ω0 for vortex T1,3 with λ = 0.7 at (a) t∗ = 6.5 and
(b) t∗ = 7.5. The surfaces are colour-coded by the helicity density. The black arrow indicates the direction of
the vorticity of the large-scale vortex tube.

Stretching

Relaxation

t∗ = 2 t∗ = 4 t∗ = 6 t∗ = 7

Stretching

Reconnection

(a)

(b)

y

xz

Figure 7. Local velocity on the vortex core line for vortex T1,3 with (a) λ = 0.5 and (b) λ = 0.7 at
t∗ = 2, 4, 6 and 7. The arrow length is proportional to the local speed.

and average z-coordinate

z̄(t) = 1
lc

∮
C

z(s) ds. (4.2)

As illustrated in figure 8, Rmax and Rmin are the maximum and minimum values of R(s),
respectively. Figure 9 plots the time evolution of λ̄(t), z̄(t) and R̄(t) of vortex T1,3 with
λ = 0.1, 0.3, 0.5 and 0.7, where the error bars denote the range between maximum and
minimum values of R(t) or z(t) at a particular time; the λ = 0.7 case only considers the
central secondary ring after reconnection for t∗ > 7.

The evolution of R̄(t) in figure 9(a) shows that the average radius for λ = 0.1 remains
unchanged with the preservation of the geometric shape. For λ = 0.3 and 0.5, R̄ first
increases and then decreases, corresponding to the stretching and relaxation processes
in the x–y plane in figure 7, respectively. For λ = 0.7, the branches are highly stretched,
and R̄ grows faster than that in lower λ cases under self-induced motion. Then, the vortex
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Figure 8. Illustration of Rmax, Rmin and R̄ of vortex T1,3 with λ = 0.5 at t∗ = 7.5.
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Figure 9. Evolution of (a) R̄(t), (b) λ̄(t) and (c) z̄(t) of vortex T1,3 with λ = 0.1, 0.3, 0.5 and 0.7, where the
λ = 0.7 case only considers the central ring after reconnection for t > 7. Error bars denote the range between
minimum and maximum values.

reconnection occurs, leaving a central secondary loop with a smaller R̄, so the growth R̄ is
suddenly terminated.

The evolution of λ̄ in figure 9(b) characterizes the winding amplitude of vortex loops
(also see figure 3). For vortex loops with small initial λ (= 0.1, 0.3 and 0.5), the variation
of λ̄ is generally small and quasi-periodic, so their evolution is stable. Here, the (Lyapunov)
‘stability’ of a vortex structure is defined in Ricca et al. (1999). If the vortex conserves
topology, geometric signature (e.g. p, q and λ̄) and vortex coherency after travelling a
considerable distance (much larger than their typical size) for some finite time, it is ‘stable’.
If the vortex breaks up or unfolds in a short time (compared with the typical time scale), it
is ‘unstable’. For λ = 0.7, λ̄(t) experiences large fluctuations in the early stage, and then it
drops after the reconnection, because the central part of T1,3 becomes a vortex loop with
a smaller λ ≈ 0.2 (also see figure 5d).

The dominant motion of vortex loops is moving along the z-axis. The evolution of z̄ in
figure 9(c) shows the position and speed of T1,3 moving forward. The vortex loops without
reconnection for λ = 0.1, 0.3 and 0.5 move at a constant speed, and the forward speed
decreases with the increase of λ (Barenghi et al. 2006; Oberti & Ricca 2019). For λ = 0.7,
the vortex forward motion accelerates after the reconnection around t∗ = 7, because the
central loop is converted into the secondary one with a lower λ̄, which has a faster forward
speed. The range of z̄ decreases before the reconnection, implying that the vortex tubes are
approaching each other.
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Figure 10. Evolution of (a) the mean dissipation rate and (b) total helicity for vortex T1,3 with λ = 0.1, 0.3,
0.5 and 0.7.

The results above suggest that the unstable vortex torus unknot with a larger initial torus
aspect ratio tends to be transformed into a more stable one with a lower torus aspect ratio
through the vortex reconnection.

In addition, the maximum vorticity magnitude |ω|max of the central parent loop or
secondary offspring loops for T1,3 with λ = 0.7 at t∗ = 10 are calculated in a subdomain
surrounding each of them. As listed in the caption of figure 5, |ω|max of the central and
secondary loops are different. The non-uniform |ω| along the vortex axis during and after
reconnection is caused by deformation of the local vortex core and twisting of vortex tubes.
The circulations of the central and secondary loops are calculated in the x–z plane at y = π
and the x–y plane at z = z̄(t∗ = 10), respectively. The circulation is almost conserved
during the reconnection, which is consistent with the finding in Zhao & Scalo (2021)
and supports the helicity decomposition in (2.9).

4.2. Flow statistics and helicity analysis
The geometric and topological changes of vortex loops alter the main flow statistics.
Due to the viscous dissipation, the total energy Etot = ∑

k |û|2/2 of all cases decreases
monotonically (not shown). In general, the mean dissipation rate ε = ν

∑
k(|k| |û|)2

decays and the total helicity H is almost conserved for λ = 0.1, 0.3 and 0.5 in figure 10.
By contrast, we observe a bump of ε and a transient growth of H around t∗ = 7 due to the
vortex reconnection in the case of λ = 0.7, similar to the observations during reconnection
of other vortex knots in (e.g. Xiong & Yang 2019a). The notable variations of ε and H are
expected to be more significant for larger Re (see Yao et al. 2021; Zhao et al. 2021).

In order to elucidate the large helicity fluctuation during the bridging reconnection
sketched in figure 2(c), we apply the positive–negative helicity decomposition H± =∫
V h± dV with

h+ =
{

h, if h � 0,

0, otherwise, (4.3)

and h− = h − h+, and the topological decomposition (2.11) to the case of λ = 0.7.
In figure 11(a) both |H+| and |H−| surge at t∗ = 6 ∼ 8, and the growth of |H+| is

slightly larger than |H−| due to the asymmetric configuration during reconnection. The
uneven growths cause the transient growth of H, which is also reported in Yao et al. (2021).
After the reconnection, we simplify (2.11) by summing Wr = ∑

i Wr,i and neglecting the
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Figure 11. (a) Positive–negative and (b) topological decompositions of the total helicity of vortex T1,3 with
λ = 0.7.

total Gauss linking number as Lk = 0, so the generalized twisting number becomes

T̃w = H/Γ 2 − Wr. (4.4)

Figure 11(b) shows Wr and T̃w are almost conserved before reconnection. The
conservation of Wr for the evolution of vortex tubes without self-intersection is discussed
in Appendix D. Then, Wr is converted into T̃w during the reconnection, consistent with the
finding for trefoil vortex knots (Yao et al. 2021; Zhao et al. 2021).

4.3. Stability diagram of coiled vortex loops
This subsection presents a systematic study on the effect of the torus aspect ratio on the
stability (Ricca et al. 1999) of coiled vortex loops T1,q, extending the investigation in § 4.1.
Note that T1,q has been found as an intermediate or final topological state in the evolution
of complex vortex knots (Scheeler et al. 2014; Kleckner et al. 2016; Xiong & Yang 2019a;
Liu, Ricca & Li 2020).

For the coiled vortex loops T1,q, q and λ constitute the full geometric parameter space.
We carried out DNS for 24 vortex torus unknots T1,q with q = 1 ∼ 6 and λ = 0.1, 0.3,
0.5 and 0.7. These coiled loops at t∗ = 0 and 10 are visualized in figures 12(a) and 12(b),
respectively. In the vortex evolution, we find that the coiled loops remain stable for smaller
q and λ, but break up into a central loop and q small secondary loops for large q and λ.

The deformation velocity of the vortex core line depends on the curvature according
to the LIA (Hama 1962; Kida 1981). With the increase of q and λ, the vortex loop
becomes more coiled and experiences more severe deformation in the evolution. The
vortex reconnection occurs as the initial λ of vortex T1,q exceeds a critical value λc(q).
The critical λc(q) decreases with the increase of q; e.g. we observe λc > 0.5 for q ≤ 3 and
0.3 < λ < 0.5 for 4 ≤ q ≤ 6 from reconnection events of T1,q in figure 12(b).

Next, we focus on the cases of λ = 0.3 and 0.5 and q = 4, 5 and 6 close to the borderline
cases with or without reconnection. For λ = 0.3, a cycle of stretching and relaxation
processes maintains the relative stability of vortices T1,4 and T1,6 in figure 13(a,b). For
λ = 0.5, the persistent stretching causes the reconnection of a pair of local vortex tubes
with antiparallel vorticity directions for T1,4 and T1,6 in figure 13(c,d). The initial loop
splits into q small secondary loops moving outwards and leaving a coiled loop in the
centre with smaller λ. The vortex reconnection for λ = 0.5 can be further quantified by
the transient growth of ε and H observed in figure 14. The reconnection occurs earlier
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Figure 12. Coiled vortex loops T1,q with q = 1 ∼ 6 and λ = 0.1, 0.3, 0.5 and 0.7 at (a) t∗ = 0 and
(b) t∗ = 10. Each vortex is visualized by the isosurface of |ω| = 0.04ω0 colour-coded by the helicity density.

and the dissipation peak is higher for the loops with larger q, because their initial coils are
closer to each other and more reconnections occur at the same time. This trend is projected
that λc and the vortex reconnection time decrease with the further increase of q.

Figure 15 compares initial vortex loops and central loops left after reconnection for
T1,4 and T1,6 with λ = 0.5 and λ = 0.7. We find that the vortices with larger λ(t∗ = 0) in
figure 15(c,d) than those in figure 15(a,b) are converted to more stable central secondary
loops with smaller λ(t∗ = 0). This relation is quantified by the average torus aspect ratio in
(4.1) of the central secondary loop for all the reconnection cases at time t∗ = 10 in table 3.
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Figure 13. Evolution of the isosurface of |ω| = 0.04ω0 for vortices (a,c) T1,4 and (b,d) T1,6 with (a,b) λ =
0.3 and (c,d) λ = 0.5. The surfaces are colour-coded by the helicity density. For vortex T1,4 with λ = 0.5 at
t∗ = 7.5, the central loop has |ω|max = 68.92 and Γ = 1.02, and the secondary loop has |ω|max = 81.71 and
Γ = 1.09. For vortex T1,6 with λ = 0.5 at t∗ = 7.5, the central loop has |ω|max = 52.86 and Γ = 0.995, and
the secondary loop has |ω|max = 53.78 and Γ = 1.00.
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Figure 14. Evolution of (a) the mean dissipation rate and (b) total helicity for vortices T1,4, T1,5 and T1,6
with λ = 0.5 and 0.7.
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Figure 15. Geometric transformation of vortices (a,b) T1,4 and (c,d) T1,6 with (a,c) λ = 0.5 and (b,d) λ = 0.7
from the initial vortex loop to the central secondary loop via vortex reconnection. Each vortex is visualized by
the isosurface of |ω| = 0.04ω0 colour-coded by the helicity density.

Torus unknot type T1,3 T1,4 T1,4 T1,5 T1,5 T1,6 T1,6

Initial λ 0.7 0.5 0.7 0.5 0.7 0.5 0.7
λ̄ at t∗ = 10 0.227 0.228 0.150 0.229 0.099 0.174 0.036

Table 3. Average torus aspect ratio for central vortex loops after the first vortex reconnection.

Since the thickness of vortex tubes grows with time due to viscous diffusion, a vortex
loop must have local reconnection or self-intersection eventually. Before a finite time,
e.g. t∗ = 10 in figure 12(b), we observe a quasi-cycle of stretching and relaxation for small
λ and q and clear reconnection events for large λ and q. Based on this observation, we plot
a stability diagram in figure 16 for the 24 vortex torus unknots with initial configurations
shown in figure 12(a). The stable and unstable cases are marked by different symbols, and
they are divided by a critical curve as an approximation of λc in terms of q.

The transition route from the coiled vortex loop to the secondary loop via reconnection
is marked by the arrows in figure 16, where the drop of λ is according to the quantitative
results in table 3. Again, we show the trend that a more unstable vortex loop can be
reconnected into a more stable secondary loop, which appears to maintain the simple
vortex topology and reduce the helicity variation of T1,q.

4.4. Transition to turbulence for large winding numbers
For large winding numbers q, the coiled loops in the unstable regime in figure 16 can have
a transition to turbulence (or a turbulent-like state) after vortex reconnection. For example,
the evolution of vortex T1,12 with λ = 0.5 and q = 12 in figure 17 differs from the bridging
reconnections with q = 4 and 6 in figure 13(c,d). At the initial time, the coils are very close
to each other, particularly on the inner side. The adjacent vortex tubes on the inner side
are nearly parallel, and they undergo strong vortex interactions at t∗ = 2.5 in the early
stages. The tubular structure breaks up into a hierarchy of small-scale vortical structures at
t∗ = 5, triggering sudden transition to turbulence from the inner to outer sides. At t∗ = 10,
the thread-like vortex tubes are intertwined with each other, similar to the tangle of vortex
tubes identified in turbulence (Xiong & Yang 2019b).
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Figure 16. Stability diagram of coiled vortex loops, corresponding to the visualization in figure 12. The dashed
line denotes the critical curve to demarcate stable and unstable regimes, and the arrows denote the geometric
transformation illustrated in figure 15 via the vortex reconnection.
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Figure 17. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T1,12 with λ = 0.5. Surfaces are
colour-coded by the helicity density.
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Figure 18. Evolution of (a) the total helicity with the positive–negative decomposition and (b) the energy
spectrum of vortex T1,12 with λ = 0.5.

The time evolution of H, H+ and H− of this vortex T1,12 in figure 18(a) shows that
the total helicity generally decays in the early stage, and then undergoes a notable jump
during the transition at t∗ = 2.5 ∼ 5. Both |H+| and |H−| surge before the transition due
to the emergence of oppositely polarized helicity structures (Yao et al. 2021), and then
decay after the transition due to viscous dissipation as in decaying turbulence. The time
evolution of the energy spectrum in figure 18(b) shows the migration of E(k) from low
wavenumbers k ≤ 50 to high wavenumbers k ≥ 100 during the transition, and a part of
E(k) is close to the −5/3 scaling at late times. The evolution of E(k) is consistent with
the flow visualization in figure 17, where large-scale tubular structures gradually break up
into small-scale ones.

This case demonstrates that even a single vortex loop with the trivial topology can
undergo transition to turbulence and indicates that the geometry is more important than
the topology for vortex evolution in viscous flows. Additionally in the stability diagram in
figure 16, there is a sub-region for the transition in the unstable regime at large q, which is
different from the simple reconnection sub-region at small q.

5. Evolution of vortex torus knots and links T2,q

5.1. Vortex merging for small torus aspect ratios
The vortex Tp,q with p � 2 has the initial configuration of a knot or link, and it can undergo
more complex topological transitions and helicity conversion than T1,q. In this section we
focus on T2,q with various torus aspect ratios.

We start from vortex T2,q with small λ = 0.1. The initial configuration of T2,q with
q = 1 ∼ 6 and λ = 0.1 is visualized in figure 19, where T2,1 is topologically trivial, T2,3
and T2,5 are trefoil and cinquefoil knots, respectively, and T2,2, T2,4 and T2,6 are links
containing two components. Table 4 lists the initial total writhing number Wr = ∑

i Wr,i
and linking number Lk = ∑

i /= j Lk,ij calculated by (2.3) and (2.7), respectively. From the
helicity density distribution in figure 19 and the helicity components in table 4, the total
helicity H = Wr + Lk increases with q.

For small λ, the cross-section of Tp,q has a pair of vortices which are close to each
other and have nearly the same vortex-axis direction. This type of vortex pairs can merge
together in viscous flows when the ratio of the Lamb–Oseen core size a to the distance b
of vortex cores satisfies a/b > 0.22 (Le Dizes & Verga 2002). The initial configuration of
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Torus knot/link T2,1 T2,2 T2,3 T2,4 T2,5 T2,6

Wr 0.996 1.5 × 10−4 3.019 0.060 5.127 0.230
Lk 0 2 0 4 0 6
Wr + Lk 0.996 2.000 3.019 4.060 5.127 6.230

Table 4. Initial writhing and linking numbers of vortex T2,q in figure 19.

(b)(a) (d)(c) (e) ( f )

h:y

xz

105–5–10

T2,1 T2,2 T2,3 T2,4 T2,5 T2,6

0

Figure 19. Initial configurations of vortex T2,q with q = 1 ∼ 6 and λ = 0.1. Each vortex is visualized by the
isosurface of |ω| = 0.04ω0 colour-coded by the helicity density.

T2,q with λ = 0.1 has a pair of adjacent vortex tubes, satisfying the merging criterion as

a
b

=
√

2σ0

2λRt
= 1

16
√

2πλ
= 0.249 > 0.22, (5.1)

where the estimation of a is consistent with the method in Le Dizes & Verga (2002), so
the adjacent vortex tubes merge in the early stage of evolution. This criterion also suggests
that the vortex merging for T2,q occurs for λ < 0.113.

Taking T2,3 for example, the time evolution of the trefoil vortex in figure 20 shows the
merging of adjacent vortex tubes at very early times. The knotted tube rapidly merges
into a vortex ring. Figure 21 plots the contour of |ω| on the y–z slice at x = π. A pair of
isolated and co-directional vortices at t∗ = 0 merge at t∗ = 0.5. This merging produces
spiral structures on the periphery of the merged vortex core with the emergence of large
opposite h, similar to the reconnections in figure 13 and in Yao et al. (2021). The vortex
merging is almost complete and the spiral arms are dissipated at t∗ = 2.5, leaving a simple
vortex ring with doubled circulation Γm = 2Γ0. Then, the vortex lines continue to be
coiled on the vortex ring after the merging in figure 20.

The rapid topological transition causes very fast helicity conversion. Figure 22 plots the
helicity topological decomposition of vortex T2,3 with λ = 0.1 at very early times t∗ ≤ 0.5
and during the entire evolution. At t∗ ≈ 0.35, the circulation of the vortex doubles, and the
falling Γ 2Wr and surging Γ 2T̃w imply that the writhe helicity is fully converted into the
generalized twist helicity. In the final stage of the merging, the interaction of the spiral
vortices causes H to increase via the growth of T̃w. The total helicity of the initial vortex
T2,q is H = Γ 2(Wr + Lk) with zero twist, while it becomes H = Γ 2T̃w dominated by the
twist after the vortex merging. This complete helicity conversion from Wr to Tw is much
faster than that due to the stretching and compression of coiled vortex loops (see Scheeler
et al. 2017).

At late times, the twisted vortex lines gradually become parallel to the vortex core
line under the viscous effect (see figure 20), which manifests in the decay of Tw
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h: 105–5–10 0y

xz
t∗ = 0 t∗ = 0.5t∗ = 0.1 t∗ = 2.5 t∗ = 20(a) (b) (c) (d) ( f )

Figure 20. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T2,3 with λ = 0.1 at t∗ = 0, 0.1, 0.5, 2.5
and 20 (from a–e). Surfaces are colour-coded by the helicity density. Some typical vortex lines are plotted at
t∗ = 2.5 and 20.

(b)

Merging

Spiral arm Dissipation

|ω|max

|ω|

(a) (c)

0
y

z x

(d )

Figure 21. Evolution of |ω| on the y–z slice (marked by the dashed line in figure 20) for vortex T2,3 with
λ = 0.1 at (a) t∗ = 0, (b) t∗ = 0.1, (c) t∗ = 0.5 and (d) t∗ = 2.5.

0
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4(b)(a)

H
H

t∗ t∗

Γ 2Wr
Γ 2T̃w

Figure 22. Evolution of the helicity and its topological decomposition of vortex T2,3 with λ = 0.1 (a) in the
early stage t∗ ≤ 0.5 and (b) during the entire evolution.

(Scheeler et al. 2017; Xiong & Yang 2020). Figure 23(a) plots the time evolution of H, H+
and H− of vortex T2,3 with λ = 0.1. All the helicity magnitudes surge during the incipient
vortex merging, then quickly peak and slowly decay. The decay of |H−| is faster than
|H+| so vortex lines gradually form a right-handed twisting structure. After the merging
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t∗m = 2.5
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1
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t∗m = 2.5H

H +

H –

Figure 23. (a) Evolution of H, H+ and H− of vortex T2,3 with λ = 0.1. (b) Comparison of the DNS results
(symbols) and model estimations (solid lines) from (E10) for vortex T2,q with q = 1 ∼ 6 and λ = 0.1. The
results of each case are represented in the same colour.

is complete around t∗m = 2.5, H+ and H− relax to H and zero, respectively; H for T2,q
with different q decays with time in a self-similar way, i.e. the curves of H(t∗)/H(t∗m) for
various vortex knots/links against t∗ collapse (not shown). In figure 23(b) this decay law
is well estimated by the model (E10) developed in Appendix E.

5.2. Topological degeneration for large torus aspect ratios
For relatively large torus aspect ratios, previous studies reported that the torus (Xiong &
Yang 2019a; Yao et al. 2021) or non-torus (Kida & Takaoka 1987; Kleckner & Irvine
2013; Zhao et al. 2021) trefoil vortex knot with λ = 0.5 is untied into coiled vortex loops
during the bridging reconnection. This unknotting process implies a possible route for
the topological degeneration of vortex knots/links, i.e. the decrease of the topological
complexity (Kleckner et al. 2016; Liu et al. 2020) or values of p and q of the vortex core
line in the evolution of Tp,q.

We illustrate the topological degeneration of vortex T2,q with q = 1 ∼ 6 and λ = 0.5
through vortex reconnection in figure 24. The vortex knots or links are untied into two
coiled vortex loops T1,q via the primary reconnection. Then, the upper vortex loop has a
smaller λ than that of the lower one, so it is more stable in the further evolution as implied
by the stability diagram in figure 16.

The lower loop T1,q with large q, as discussed in § 4, can reconnect again and split into
q small vortex loops. In figure 24 the lower loop of T2,4 after unknotting has the secondary
reconnection at t∗ = 20. At the same time, the secondary reconnection of T2,5 and T2,6
have been completed, and the lower vortex loops break up into small-scale, turbulent-like
structures which are then gradually dissipated. We remark that the vortex breakup is also
related to the vortex tube radius at very large Re, as suggested in Appendix B. The lower
loops tend to be more stable for thinner vortex tubes.

The vortex reconnection event coincides with the occurrence of the large helicity
fluctuation and the peak of the dissipation rate (see Xiong & Yang 2019a). Figure 25 shows
the time evolution of H and ε of vortex T2,q with q = 1 ∼ 6 and λ = 0.5. For T2,1, T2,2 and
T2,3 with single reconnection during the evolution, H is almost conserved except for the
fluctuation at the reconnection time. By contrast, H of T2,5 and T2,6 decays shortly after the
first reconnection due to vortex breakup, and the decay rate is mitigated when H is low at
late times. This indicates that the helicity stored in the lower loops is reduced in the vortex
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Figure 24. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T2,q with q = 1 ∼ 6 and λ = 0.5 at t∗ = 0,
7, 13 and 20. Surfaces are colour-coded by the helicity density.

breakup, while the helicity for the stable upper loop is conserved. The number and time
of peaks of ε indicate that the evolution of T2,5 or T2,6 has two significant reconnections,
and the first reconnection time of T2,q decreases with the increase of q.

5.3. Transition to turbulence for moderate torus aspect ratios
Distinct from the vortex merging for small λ and the topological degeneration for large
λ, vortex T2,q with moderate λ can directly break up into turbulence via the first vortex
reconnection. Figure 26 plots the time evolution of vortex T2,3 with λ = 0.3. In the early
stage, the vortex tubes approach each other and begin to reconnect, similar to the cases
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Figure 25. Evolution of (a) the total helicity and (b) dissipation rate of vortex T2,q with q = 1 ∼ 6 and
λ = 0.5.
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Figure 26. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T2,3 with λ = 0.3 at t∗ = 0, 2.5, 5, 7.5, 10,
12.5, 15, 17.5 and 20. Surfaces are colour-coded by the helicity density. Black solid lines at t∗ = 7.5 and 10
sketch the topology of vortex core lines.

for large λ. Then, the vortex knot tends to separate into two loops with similar shapes at
t∗ = 7.5.

The subsequent evolution and interaction of the two coaxial vortex loops depend on
their z-direction forward velocity. Recall that the forward velocity of an isolated vortex
ring with the constant circulation and thickness is inversely proportional to Rt. In addition,
the forward velocity also decreases with the average torus aspect ratio λ̄ for the same
average radius R̄ in figure 9(c). For vortex T2,q with large λ (see figure 24a–c), λ̄ and R̄ of
the upper loop are much smaller than those of the lower loop. This geometric difference
causes a large difference in the forward velocity between the upper and lower loops, i.e. the
separation of the two loops after reconnection.

In contrast, the two vortex loops with similar λ̄ and R̄ after the first reconnection of
Tp,q at t∗ = 5 have comparable forward velocities, so they cannot be fully separated after
reconnection. During the incomplete separation, they can even reversely evolve into the
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Figure 27. Energy spectra of vortex T2,3 with λ = 0.3 at t∗ = 0, 10 and 20.
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Figure 28. Evolution of the helicity with the (a) positive–negative and (b) topological decompositions for
vortex T2,3 with λ = 0.3.

former trefoil structure at t∗ = 10 in figure 26. The large-scale oscillating motion causes
the strong interaction of coaxial upper and lower loops to trigger vortex breakup and
transition to turbulence. In figure 27 the energy spectrum is broadened at high wavenumber
region k ≥ 100 in the time evolution, consistent with the generation of small-scale vortical
structures in figure 26, and decays at small and moderate k. At t∗ = 20, the scaling of E(k)
is close to −5/3.

Figure 28(a) plots the time evolution of positive, negative and total helicities. In general,
H decays, and |H+| and |H−| grow with time. For comparison, |H−| decays to zero in the
vortex merging case in figure 23(a). The statistically symmetric growths of |H+| and |H−|
are consistent with the emergence of small-scale vortical structures, as statistically even
generations of h+ and h− in isotropic turbulence.

Figure 28(b) shows the evolution of helicity components in (4.4). Before the
reconnection, Wr drops and T̃w rises as in the coiled loop in figure 11 and the trefoil vortex
knot in figures 10 and 16 in Yao et al. (2021). Subsequently, the incomplete reconnection
and the transition to turbulence pose a great challenge to identify the vortex core line,
so that the topological decomposition of helicity in (4.4) becomes invalid after t∗ = 5.
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T2,q

T1,q with λ ∈ [λc(q),1)

T1,q with λ ∈ (0, λc(q))

T1,q 

T1,q with λ = 0

Figure 29. Evolutionary route map of vortex T2,q.

It can be expected that twisting and winding of vortex lines are further intensified in the
transition, which needs a new method to characterize in future work.

5.4. Route map of topological transitions
Vortex knots and links can serve as simplified model vortices for complex flows. We
demonstrate that the evolution of even the simple vortex T2,q with different torus aspect
ratios has three independent topological transition routes: merging, reconnection and
transition to turbulence. The evolutionary route map of T2,q is sketched in figure 29.

(i) For small λ, vortex merging occurs at very early times. This rapid process transforms
a knot or link, as T2,q with λ→ 0, into a vortex ring, and converts all the initial
writhe and link helicities into the generalized twist helicity.

(ii) For large λ, the vortex knot or link is untied into upper and lower coiled loops T1,q
during the primary vortex reconnection, along with a partial conversion of the writhe
and link helicities to generalized twist helicity. Then, the upper one with small λ
tends to be stable, while the lower one with large λ ∈ [λc(q), 1) in the unstable
regime in figure 16 has the secondary reconnection to split into more stable vortex
loops with λ ∈ (0, λc(q), 1). In addition, the lower loop with a very large q can have
transition to a turbulent-like state.

(iii) For moderate λ, the vortex reconnection is incomplete. The two interconnected
vortex loops with similar geometries have strong interaction to trigger the transition
to turbulence and make the topological decomposition of H invalid.
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6. Conclusions

We study the evolution of vortex torus knots and links in viscous flows. In particular, we
focus on the transition between different topological states and the conversion between
writhe and generalized twist helicity components of the knots and links during the vortex
interaction. A series of DNS cases are carried out for vortices Tp,q of different topologies
and geometries with p = 1, 2, q = 1 ∼ 12 and λ = 0.1 ∼ 0.7. The initial knots and links
have Tw = 0.

For coiled vortex loops T1,q, the torus aspect ratio λ and the winding number q
impact the evolutionary topology and geometry. For small λ, T1,q shows a quasi-periodic
stretching-relaxation evolution with nearly conserved Wr and vanishing T̃w, so the total
helicity is generally conserved. As λ is larger than a critical value λc(q) that decreases
with q, the loop reconnects under self-induction and breaks up into a central coiled loop
with smaller λ surrounded by q small secondary loops. The vortex reconnection leads
to helicity conversion from Wr to T̃w and the transient growth of H. This is consistent
with the result in Yao et al. (2021) and Zhao & Scalo (2021) for trefoil vortex knots,
indicating the similarity of the helicity dynamics in the reconnection of knotted vortex
tubes. For very large q, the initially adjacent coils can undergo strong interactions to trigger
sudden transition to turbulence. The stability diagram of vortex T1,q in terms of q and λ is
presented in figure 16.

For vortex torus knots and links with p = 2, there are three topological transition
routes of the vortex evolution: merging, reconnection and transition to turbulence. The
topological transition depends not only on the initial topology but also on the initial
geometry of T2,q. For small λ, vortex T2,q rapidly merges into a vortex ring with complete
helicity conversion from writhe and link to twist. For large λ, the vortex knot or link
is untied into upper and lower coiled loops via the first reconnection, with a partial
conversion from writhe and link to twist. Then, the lower loop with large λ in the unstable
regime in figure 16 can undergo secondary reconnection to split into q small loops, and
this loop with very large q can break up into turbulence. For moderate λ, the incomplete
reconnection of tangled vortex loops with strong vortex interactions triggers transition to
turbulence, and the topological decomposition of H becomes invalid. The evolutionary
route map of T2,q is presented in figure 29.

The present study can be extended to more complex vortex knots and links with
p ≥ 3 having much more complex pathways of the topological transition and conversion
mechanisms of helicity components. The topological evolution and helicity dynamics of
vortex knots and links can shed light on the evolution of tangled vortex tubes in turbulence,
but whether the turbulence can be modelled by an ensemble of vortex knots and links is
an open problem.
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Figure 30. Grid convergence tests of the mean dissipation rate, total helicity and energy spectrum for (a–c)
vortex T2,3 and (d–f ) vortex T1,12 with λ = 0.5 and Re = 2000. The dotted and dashed lines in (e) denote H+
and H−, respectively. The energy spectra are at t∗ = 4.2 in (c) and t∗ = 5 in ( f ) when the mean dissipation
rate reaches the last peak.

Appendix A. Grid convergence test

The grid convergence test for the mean dissipation rate, total helicity, energy spectrum
and helicity budget is presented for two representative cases with Re = 2000. First, the
case of the trefoil vortex knot T2,3 with λ = 0.5 has the typical bridging reconnection.
Figure 30(a,b) plots the time evolution of the mean dissipation rate and the total helicity
with different grid resolutions of N3 = 3843, 5123 and 7683, and both the quantities
converge for N3 = 7683 in the entire evolution. Figure 30(c) shows that all energy spectra
with different resolutions at the reconnection time converge.

Second, vortex T1,12 with λ = 0.5 has the most intensive vortex interaction in the
present study. Due to the strong local velocity gradient in the transition, three finer meshes
with N3 = 10243, 15363 and 20483 are used. In figure 30(d) the time evolution of the
mean dissipation rate is well converged from N3 = 10243 to 20483. In figure 30(e) the
time evolution of the total helicity with the positive–negative decomposition also fairly
converges for 20483. Although the total helicities for N3 = 15363 and 20483 are slightly
different around t∗ = 5, the evolutions of H+ or H− for both grids are almost identical. In
figure 30( f ) the energy spectra for the three grids at t∗ = 5 also collapse.

Moreover, the helicity budget

dH
dt

= −2ν

∫∫∫
ω · (∇ × ω) dV (A1)

is checked to be close, further validating the simulation accuracy (Zhao et al. 2021), where
ω · (∇ × ω) is the super-helicity density (Brissaud et al. 1973; Hide 1989). We compare
the helicity production term on the right-hand side of (A1) obtained by integrating the
super-helicity density and dH/dt on the left-hand side of (A1) obtained by differentiating
the time series of H(t). Figure 31 shows excellent agreement of the two terms for vortex
T2,3 on N3 = 5123 and T1,12 on N3 = 20483.
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Figure 31. Helicity budget of (a) vortex T2,3 with λ = 0.5 on N3 = 5123 and (b) T1,12 with λ = 0.5 on N3 =
20483. The circles denote the helicity production term on the right-hand side of (A1) obtained by integrating
the super-helicity density, and the solid lines denote dH/dt in (A1) obtained by differentiating the time series
of H(t).

Appendix B. Effects of the vortex tube thickness

For a coiled vortex loop, the tube thickness σ affects its self-induced velocity and, hence,
its evolution. In addition, σ also plays an important role in the reconnection process, i.e. the
reconnection time and rate. Therefore, we examine the effect of the vortex tube thickness
on the topological transition of the coiled vortex loop, in particular, on the critical torus
aspect ratio λc.

Due to the spatial requirement for resolving the vortex core and small scales generated
during reconnection, it is rather challenging to employ DNS for studying the evolution
of coiled vortex loops with very small σ . Hence, instead, we employ the vortex filament
method (VFM) – a widely used and powerful tool for studying the interaction of vortex
filaments and quantized vortices (Ricca et al. 1999; Hänninen & Baggaley 2014; Kimura
& Moffatt 2017).

Within the VFM, the velocity at a point r induced by a vortex filament s with circulation
Γ is given by the BS law (Schwarz 1985)

us(r, t) = Γ

4π

∫
(s1 − r) × ds1

|s1 − r|3 , (B1)

where s1 refers to a particular point on s. The integral (B1) becomes singular when
evaluating the velocity at a particular point on the vortex. This issue can be resolved by
considering the finite vortex tube thickness and very large Re (Schwarz 1985; Hänninen &
Baggaley 2014), and then (B1) becomes

us(s, t) = Γ

4π
s′ × s′′ ln

(
2
√

l+l−
e1/2rv

)
+ Γ

4π

∫
s1 /= s

(s1 − s) × ds1

|s1 − s|3 , (B2)

where rv is an effective vortex tube radius, l± are the lengths of the line segments
connected to s after discretization, and s′ and s′′ are unit tangent and normal vectors at point
s, respectively. The first term on the right-hand side represents the LIA and typically gives
the major contribution to us. The vortex filament moves according to the total induced
velocity ds/dt = us(s, t). Note that the vorticity distribution is assumed to be uniform
within the tube radius, which is different from the Gaussian distribution in (3.4).

The VFM simulation is performed using the code QVORT developed by Hänninen
& Baggaley (2014), where the finite difference scheme is employed for the spatial
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t∗ = 2 t∗ = 4 t∗ = 6 t∗ = 8

y

z x

(b)

(a)

Figure 32. Evolution of the vortex core line calculated using the VFM for vortex T1,3 with λ = 0.7 and
(a) rv = 0.025 and (b) 0.05.

discretization, and the vortex filament is discretized by 1200 points. The third-order
Adams–Bashforth method is used for time advance. Note that the VFM cannot handle
vortex reconnection directly, so a ‘cut and paste’ algorithm is used to model the
reconnection when the two vortices become too close to each other (Takaki & Hussain
1988; Baggaley 2012).

Figure 32(a,b) compares the evolutions of the vortex core line for vortex T1,3 with
rv = 0.025 and 0.05, where rv is set in the VFM simulation and λ is chosen to be 0.7
for both cases. For rv = 0.05, the tips of the petals are pinched off via reconnection,
which is quite similar to that observed in figure 5(d) in DNS. In contrast, the vortex for
rv = 0.025 develops three petal-like branches under self-induction and then relaxes to a
state close to the original shape. This difference suggests that the tube thickness can alter
the stability of coiled vortex loops. The coiled loop tends to be more stable as the tube
thickness decreases, i.e. λc increases with decreasing rv or σ .

Note that as discussed in previous studies (Brenner, Hormoz & Pumir 2016; Yao &
Hussain 2020b), the VFM has several limitations for studying vortex reconnection in
viscous flows, especially for the characterization of the deformation of initially circular
vortex cores and the treatment of vortex reconnection with bridging and threading
processes. Therefore, an extensive study on the effect of the vortex tube thickness should
be conducted using the DNS.

Appendix C. Effects of the Reynolds number

Since the vortex tube thickness generally grows in viscous decaying flows, the Reynolds
number can influence the torus aspect ratio. We further explore the effects of Re on the
critical torus aspect ratio λc of vortex T1,q by conducting a series of DNS cases with
Re = 4000, σ0 = 1/(16

√
2π) and various λ on N3 = 10243 grid points.

For a coiled vortex loop, the flow evolution can have a major difference from the
quasi-periodic motion to reconnection within a small range of λ, but the precise value
of λc is hard to predict. Figure 33(a) shows the complex vortex dynamics for vortex T1,3
with Re = 2000 and λ = 0.56 – slightly less than λc = 0.565; λc is determined by several
numerical experiments. The outer edges of the vortex tube come into contact and then
separate, but, in the mean time, generates a number of threads with strong interactions.
This process is similar to the transition-like one caused by the incomplete reconnection for
T2,q at moderate λ (see figure 26).
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Figure 33. Evolution of the isosurface of |ω| = 0.04ω0 for vortex T1,3 with different λ and Re: (a) λ = 0.56
and Re = 2000, (b) λ = 0.565 and Re = 2000, (c) λ = 0.565 and Re = 4000, (d) λ = 0.605 and Re = 4000.
Surfaces are colour-coded by the helicity density.

Figure 33(b,c) compares evolutions of T1,3 with λ = 0.565 at Re = 2000 and 4000.
The vortex loop undergoes the bridging reconnection at Re = 2000 around λc with highly
distorted vortical structures and multiple threads, while the reconnection does not occur at
Re = 4000. Figure 33(d) suggests λc = 0.605 at Re = 4000. Since the growth of the tube
thickness is suppressed at higher Re, λc increases with Re, consistent with the conclusion
with the VFM (see figure 32).

Appendix D. On the conservation of the writhing number

D.1. Conservation of Wr for isolated vortex tubes
In general, the self-induced motion of vortex filaments can be approximated by the LIA, in
which the deformation velocity is proportional to the local curvature of the vortex filament.
Aldinger, Klapper & Tabor (1995) proved the conservation of Wr for the curve evolution
under the LIA. Note that the derivation based on the LIA does not consider the internal
vorticity distribution in a vortex tube with a finite thickness.

Starting from the explicit expression of the initial vorticity field, we derive the rate of
change of H in a viscous flow to demonstrate the conservation of Wr for a vortex tube
with Tw = 0 and a finite thickness. The initial vortex tube is constructed from a given
continuous and differentiable closed curve C : c(s). The Frenet–Serret formulas on C are

dT
ds

= κN,

dN
ds

= −κT + τB,

dB
ds

= −τN,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(D1)

943 A41-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.464


Topology and helicity of vortex knots/links

where T , N and B ≡ T × N denote the unit tangent, normal and binormal vectors,
respectively. The initial vorticity field with vanishing twist is constructed by (Xiong &
Yang 2019a)

ω(s, ρ, θ) = Γ f (ρ)T (s). (D2)

Its helicity H = Γ 2Wr is only proportional to the writhing number.
Curve C is considered as the central axis of the vortex tube by introducing the local polar

coordinate system (Chui & Moffatt 1995), so Cartesian coordinates x can be expressed as

x = c(s) + ρ cos θN + ρ sin θB. (D3)

From (D1) and (D3), we derive the Jacobian matrix

[(1 − κρ cos θ)T − τρ sin θN + τρ cos θB; cos θN + sin θB;−ρ sin θN + ρ cos θB]
(D4)

for the transformation between coordinate systems (s, ρ, θ) and (x, y, z).
The change rate of the total helicity in infinite space or in a periodic box is related

to the volume integral of the super-helicity density in (A1). Substituting (D2) into the
super-helicity term yields

ω · (∇ × ω) = Γ f (ρ)T (s) · [∇ × Γ f (ρ)T (s)]

= Γ 2f (ρ)T (s) ·
[

f (ρ)∇s × dT (s)
ds

+ df (ρ)

dρ
∇ρ × T (s)

]
. (D5)

Applying the inverse function theorem to (D4), we have

∇s = T
1 − κρ cos θ

, ∇ρ = cos θN + sin θB, ∇θ = −sin θ

ρ
N + cos θ

ρ
B. (D6a–c)

Substituting (D6) into (D5) yields

ω · (∇ × ω) = Γ 2f (ρ)T ·
[

κf (ρ)B
1 − κρ cos θ

+ df (ρ)

dρ
(sin θN − cos θB)

]
= 0, (D7)

and then we have dH/dt = 0 from (A1).
This result shows an ideal conservation of H = Γ 2Wr for a vortex tube with Tw = 0 in

a viscous flow, so Wr is almost conserved for Lamb–Oseen type vortices with negligible
variations of Γ during the time period of interest. On the other hand, when the vortex
tube is reconnected or self-intersected, the vorticity distribution of the self-intersecting
part does not satisfy (D2), so the total helicity has significant variations during vortex
reconnection or merging.

D.2. Variation of Wr during incomplete antiparallel reconnection
The type of a curve intersection is specified in the directed projection graph in figure 34(a).
If the minimum rotation angle from the arrow at the top to the one at the bottom
is counterclockwise, the intersection has the index +1; if the angle is clockwise, the
intersection index is −1. In addition to the integral definition (2.3), Wr of a flat space
curve close to a plane is approximated by the sum of the intersection indices in the curve
projection on the plane (Fuller 1971; Scheeler et al. 2014).

Figure 34(a,b) sketches the changes of Wr after the flat space curves with the initial
Wr ≈ 1 are reconnected at the antiparallel and the intersection points, respectively. By
counting the interaction indices, it is straightforward to find that Wr ≈ 1 maintains in
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++
(b)
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(a)

Figure 34. (a) The definition of positive and negative types of the curve intersection in the directed projection
graph. Comparison of the writhe number variations �Wr during the reconnection of a flat space curve with
initial Wr ≈ 1 at (b) the antiparallel point and (c) the intersection point.

the antiparallel reconnection, whereas Wr changes from 1 to 0 in the non-antiparallel
reconnection. Laing, Ricca & Sumners (2015) also proved that Wr is conserved during
the antiparallel reconnection of the closed polyline.

On the other hand, for vortex tubes with finite thickness in viscous flows, the incipient
antiparallel reconnection occurs from the periphery of vortex tubes where the approaching
vortex lines are not perfectly antiparallel. As illustrated in figure 34, this imperfect
antiparallel reconnection can cause the loss of Wr, so the writhe helicity is generally not
conserved during the viscous reconnection.

Appendix E. Decay of T̃w for twisted vortex tubes

We develop a model for the decay rate of Tw of a uniformly twisted vortex tube constructed
by the initial vorticity field (3.3) with constant η. In terms of the Frenet–Serret frame in
(D1), (3.3) is re-expressed as

ω(s, ρ, θ) = Γ f (ρ)

[
T (s) − ηρ sin θ

1 − κ(s)ρ cos θ
N(s) + ηρ cos θ

1 − κ(s)ρ cos θ
B(s)

]
. (E1)

We approximate the curved vortex tube or vortex loop by a straight tube, and then (E1)
becomes

ω(s, ρ, θ) = Γ f (ρ) [T − ηρ sin θN + ηρ cos θB] . (E2)

Taking the curl of the vorticity field in (E2), we have

∇ × ω = Γ
df
dρ

∇ρ × T − ηΓ

[
sin θ

(
f + ρ

df
dρ

)
∇ρ + ρf cos θ∇θ

]
× N

+ ηΓ

[
cos θ

(
f + ρ

df
dρ

)
∇ρ − ρf sin θ∇θ

]
× B. (E3)

Substituting (D6) into (E3) yields

∇ × ω = Γ
df
dρ

(sin θN − cos θB) + ηΓ

(
2f + ρ

df
dρ

)
T . (E4)
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Thus, the super-helicity is

ω · (∇ × ω) = 2ηΓ 2f 2(ρ). (E5)

By substituting (E5), (3.4) and (3.5) into (A1), the helicity change rate is

dH
dt

= −νηΓ 2

π2σ 4

∫∫∫
exp

(−ρ2

σ 2

)
ρ dρ dθ ds = −2νΓ 2Tw

σ 2 . (E6)

Here, the vortex tube thickness grows as σ =
√

σ 2
0 + 2ν(t − t0) in the viscous flow, where

σ0 denotes the initial vortex tube thickness and t0 the initial time, and the helicity H =
Γ 2Tw only contains the twist component. Assuming the circulation is constant in (E6), the
decay rate of the twisting number is

dTw

dt
= −2νTw

σ 2
0 + 2ν(t − t0)

. (E7)

Compared with Tw, the generalized twist formed in the viscous evolution, such as
vortex merging, is not uniformly distributed along the vortex axis (see the non-uniform
distribution of h at t∗ = 0.5 and 2.5 in figure 20). This modification is captured by a
constant coefficient kg in the modelling of the decay rate of T̃w as

dT̃w

dt
= −2νkgT̃w

σ 2
0 + 2ν(t − t0)

. (E8)

Thus, we estimate the generalized twist

T̃w(t) = T̃w(t0) exp

(∫ t

t0

−2νkg

σ 2
0 + 2ν(t − t0)

dt

)
(E9)

for a twisted vortex tube.
For the vortex merging case in § 5.1, we apply the helicity topological relationship H =

Γ 2T̃w = 4Γ 2
0 T̃w and the dimensionless time t∗ = t/(R2

t /Γ0) to (E9), and then obtain a
helicity model after the vortex merging event as

H(t∗) = H(t∗m) exp

(∫ t∗

t∗m

−2νkgR2
t

σ(t∗m)2Γ0 + 2νR2
t (t∗ − t∗m)

dt∗
)

, t∗ > t∗m, (E10)

where kg = 0.75 is fitted from the DNS result of H(t∗ > t∗m).
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