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Abstract. We consider here a certain class of groupoids obtained via an equivalence
relation (the so-called subgroupoids of pair groupoids). We generalize to Haar systems
in these groupoids some results related to entropy and pressure which are well known
in thermodynamic formalism. We introduce a transfer operator, where the equivalence
relation (which defines the groupoid) plays the role of the dynamics and the corresponding
transverse function plays the role of the a priori probability. We also introduce the concept
of invariant transverse probability and of entropy for an invariant transverse probability,
as well as of pressure for transverse functions. Moreover, we explore the relation
between quasi-invariant probabilities and transverse measures. Some of the general results
presented here are not for continuous modular functions but for the more general class of
measurable modular functions.
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1. Introduction
Our purpose here is to extend the concepts of invariant probability, entropy and pressure
from thermodynamic formalism to the setting of quasi-invariant probabilities, transverse
functions and transverse measures, which are naturally defined on groupoids and Haar
systems. The groupoids we consider here will be always obtained via an equivalence
relation (the so-called subgroupoids of the pair groupoid according to [37, §3]). Most of
our results are for the general class of measurable modular functions.

The results we obtain can be seen as similar to the classical results of thermodynamic
formalism. We refer the reader to [28, 36] for results on thermodynamic formalism and
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to [11, 18, 29] for results on Haar systems, groupoids and transverse measures (see also
[5, 8] for a strictly measure-theoretical perspective). But in any case we point out that the
present work is self-contained for readers familiar with thermodynamic formalism.

The classical Kolmogorov–Sinai entropy is defined for probabilities which are invariant
for a deterministic dynamical system. We point out that for a Haar system on a groupoid
there is (in general) no underlying dynamical system. To realize that entropy depends
on the a priori probability (as described in [23]) is the key issue for finding a suitable
procedure to extend this formalism (of thermodynamic formalism for Hölder potentials) to
Haar systems. When the alphabet is not countable (the so-called generalized XY models
as considered in [4, 23]) the definition of entropy via dynamical partitions is not suitable
anymore and an a priori probability is necessary.

In the dictionary to be used here the transverse function of a Haar system is the
mathematical object corresponding to the a priori probability and the equivalence relation
(the groupoid) plays the role of the dynamics. The role of the potential is played by the
modular function and, finally, the transverse measures and quasi-invariant probabilities in
Haar systems play the role of the measures in thermodynamic formalism.

In §2 we introduce the main notation and definitions concerning Haar systems,
including the concepts of transverse function, modular function, transverse measure and
quasi-invariant probability.

Theorem 54 in [8] shows that Dobrushin–Lanford–Ruelle probabilities (see [9] for
definition) are quasi-invariant probabilities for a certain class of Hölder modular functions
in the case where the alphabet is finite. In §3 below we show analogous results for the case
where the alphabet is a compact metric space. We consider as an example the generalized
XY model, as studied in [23], and we show that any eigenprobability for the dual Ruelle
operator is a quasi-invariant probability for the associated Haar system. We assume in this
section that the modular function is just of Hölder class.

The results in the following sections are for the general class of measurable modular
functions.

In §4 we consider particular modular functions and develop the main part of the paper
studying Haar systems from a thermodynamic formalism point of view. We introduce the
concepts of Haar invariant probabilities, Haar invariant transverse probabilities, entropy for
Haar invariant transverse probabilities and pressure for transverse functions. The relation
between transverse measures and quasi-invariant probabilities is presented in [11] (see also
[8, §5]). In §4.2 we prove an equivalence between Haar invariant probabilities and Haar
invariant transverse probabilities.

In §5 we exhibit examples and analyze the relations between the concepts introduced in
this work and the classical ones for thermodynamic formalism. In §5.2, which considers a
large class of dynamically defined groupoids and quasi-invariant probabilities, Rokhlin’s
disintegration theorem plays an important role.

We refer to [27, 34, 38] for classical results on measurable dynamics. The classical
references for Haar systems when the transverse function is the counting measure are
[15, 16, 18]. For the relation between quasi-invariant probabilities and Kubo–Martin–
Schwinger (KMS) states of C∗-algebras (and von Neumann algebras) see [2, 3, 6–
8, 17, 21, 22, 29, 31–33]. A different kind of relation between KMS states of C∗-algebras
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and thermodynamic formalism is described in [12–14]. We refer the reader to [8] for
an extensive presentation of Haar systems and non-commutative integration on groupoids
obtained via an equivalence relation (some results are for dynamically defined equivalence
relations).

2. Transverse functions and transverse measures
Consider a metric space � with metric d, and denote by B the Borel sigma-algebra on �.
We fix an equivalence relation R on �, and if two points x, y are related we write x ∼ y.
We denote by G ⊂�×� the associated groupoid

G = {(x, y) ∈�×� | x ∼ y}

and by [x] = {y ∈� | x ∼ y} the class of x .
This corresponds to subgroupoids of the pair groupoid (see [37, §3]). These are the only

kind of groupoids we will consider here.
Extreme examples of such groupoids are the cartesian product (pair groupoid)

G =�×� when [x] =�, for all x (where any two points are related) and the diagonal
G = {(x, x) | x ∈�}when [x] = {x}, for all x (where each point is related just with itself).

We consider over G the topology induced by the product topology on�×� and denote
also by B the Borel sigma-algebra induced on G.

Definition 1. We say that G is a measurable groupoid if the maps

s(x, y)= x, r(x, y)= y, h(x, y)= (y, x) and Z((x, s), (s, y))= (x, y),

are Borel measurable.

If G is a measurable groupoid, then, in particular, each class [x], x ∈�, is a measurable
set of �. In all this work we suppose that G is a measurable groupoid obtained from a
general equivalence relation.

Remark 2. For each pair of objects x and y, the concept of a set of morphisms γ : x→ y
appears in the general definition of groupoids (see [18, page 100]). In our work the objects
are the points of �, and, given two points a ∼ b in �, there exists a unique morphism γ :

a→ b which is represented by (a, b). It follows that s(γ ) and r(γ ) in [18] just correspond
to the projections s(x, y)= x and r(x, y)= y. The morphisms are not explicitly used in
our work.

Definition 3. A kernel λ on the measurable groupoid G is a map of � in the space of
measures on (�, B) such that:
(1) for all y ∈�, the measure λy has support on [y];
(2) for all A ∈ B, we have that λy(A), as a function of y, is measurable.

In some sense, the two above items correspond to items (i) and (ii) in [35,
Definition 5.14] (disintegration of a measure with respect to a partition). See also
Theorem 46 below.

There is a subtle point in item (1) in Definition 3. An alternative definition could be:
(1) for any y ∈�, we have that λy(�− [y])= 0. Some of the results we get here could be
obtained with this alternative condition (but we will not elaborate on that).
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Definition 4. A transverse function ν on the measurable groupoid G is a kernel satisfying
νx
= ν y , for any (x, y) ∈ G (that is, x ∼ y). We denote by E+ the set of transverse

functions.

The concept of transverse function is a natural generalization of the concept of
measurable non-negative functions f :�→ R (see Remark 28 below ).

We denote by E the set of signed transverse functions. More precisely, ν ∈ E if the
family of measures (ν y)+ and (ν y)− that form, for each y, the Hann–Jordan decomposition
of ν y are both transverse functions. An important example of a signed transverse function
is µy(dx) := f (x)ν y(dx). where f :�→ R is measurable and bounded and ν ∈ E+
satisfies

∫
1 ν y(dx)= 1, for all y.

Definition 5. The pair (G, ν̂), where G is a measurable groupoid and ν̂ is a transverse
function. will be called a Haar system.

The convolution operator defined on the set of measurable functions f : G→ C
(derived from the transverse function ν̂ of a Haar system) allows one to obtain in a natural
way a von Neumann algebra as described in [8].

Example 6. Take �= [0, 1] × [0, 1] and consider the groupoid G defined from the
equivalence relation x = (a1, a2)∼ y = (b1, b2) if a1 = b1. The classes can be identified
as vertical lines of the unit square. They are the local unstable leaves of a Baker map (see
[8] for a complete discussion).

Given a probability ν on [0, 1] and a measurable function ϕ :�→ [0,+∞), we can
interpret ϕ as a family of density functions ϕa1 : [a1, ·] → R, each one acting in a vertical
fiber, and define a transverse function ν̂ which coincides with ϕa1 dν in the fiber [a1, ·].
Then (G, ν̂) is a Haar system.

A kernel λ is characterized by the operator

λ( f )(y)=
∫

f (x, y) λy(dx),

acting over λ-integrable functions f : G→ R. Given a kernel λ and a λ-integrable function
g ≥ 0, we denote by gλ the kernel (gλ)y(dx)= g(x, y)λy(dx). In this way

(gλ)( f )(y)=
∫

f (x, y)g(x, y)λy(dx).

The convolution of two kernels λ1 and λ2 is the kernel λ1 ∗ λ2 satisfying

(λ1 ∗ λ2)( f )(y)=
∫

f (x, y) (λ1 ∗ λ2)
y(dx)=

∫ ∫
f (s, y)λx

2(ds)λy
1(dx), (1)

for any λx
2(ds)λy

1(dx)-integrable function f .

Definition 7. A modular function over the groupoid G is a measurable function δ : G→ R
such that, for any x ∈� and any pair y, z ∈ [x], we have that δ(x, y) δ(y, z)= δ(x, z).

Definition 8. A transverse measure 3 for the groupoid G and the modular function δ is
a linear (this means 3(aν + bµ)= a3(ν)+ b3(µ) for any µ, ν ∈ E+ and a, b ∈ R such
that (aν + bµ) ∈ E+) function3 : E+→ R+, which satisfies the property: for each kernel
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λ such that for any y we have λy(1)= 1, if ν1 and ν2 are transverse functions satisfying
ν1 ∗ (δλ)= ν2, it will be required that

3(ν1)=3(ν2). (2)

The action of a transverse measure 3 on E+ can be linearly extended to E (this can be
done by writing each ν as a sum of a negative function ν− and a positive function ν+).

As we will see later, the concept of transverse measure (acting on transverse functions)
is a natural generalization of the classical concept of measure (acting by integration on
functions) for the setting of Haar systems (see Remark 28 and Example 50).

Definition 9. Given a modular function δ, a groupoid G and a fixed transverse function ν̂,
which is a probability for any y, we say that a probability M on � is quasi-invariant for
the Haar system (G, ν̂) if, for any bounded measurable function f : G→ R,∫ ∫

f (y, x) ν̂ y(dx) d M(y)=
∫ ∫

f (x, y)δ(x, y)−1ν̂ y(dx) d M(y).

In the Theorem 31 we exhibit, under certain hypotheses, a relation between transverse
measures and quasi-invariant probabilities for modular functions in the particular form
δ(x, y)= eV (y)−V (x).

There are different (analogous) definitions of quasi-invariant probability. For example
in [25, 26] there is no mention of transverse functions and the concept is defined via Borel
injections (considered as the concept of δ-invariant probability). For the existence of quasi-
invariant probabilities in the measurable dynamics setting see the appendix to [30] or [19,
20, 27, 34].

An interesting class of groupoids is described by [24, Definitions 1.9 and 1.10]. The
authors called a continuous (or Lipschitz) groupoid one defined by an equivalence relation
on the symbolic space X = {1, 2, . . . , d}N, where, given two close elements x, y ∈ X ,
there is a continuous (or Lipschitz) correspondence such that one can associate elements
on each of the finite classes [x] and [y] (which have same cardinality). In this case a
kind of Ruelle operator (the Haar–Ruelle operator) can be defined and stronger properties
(compare to the measurable setting we consider here) can be obtained.

Here the transverse function ν̂ (defining a Haar system) plays an important role. Note,
however, that in the definition of transverse measure a fixed Haar system is not mentioned.

Given an equivalence relation defining a groupoid G, suppose that [x] is a finite set for
any x ∈�. The saturation of a measurable set B ⊂� is the subset of G given by

S[B] =
⋃
x∈B

[x].

Consider the Haar system where the transverse function is the counting measure. In
[5, §4.2] (or in [15]) it is shown that a probability M is quasi-invariant for some modular
measurable function δ if and only if it satisfies the condition

M(B)= 0 implies that M(S[B])= 0 for all Borel sets B ∈�. (3)

This is a classical result.
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Example 10. Consider the example of a Haar system where�= [0, 1] × [0, 1], each class
is a vertical line and ν̂a is the Lebesgue measure on each line. The classes are the local
unstable leaves of a nonlinear Baker map (see [8] for a precise definition) F :�→� given
by

F(a1, a2)= (H(a1, a2), T (a2)),

where T : [0, 1] → [0, 1] is a C1+α expanding transformation (F is a simplified version
of an Anosov transformation). There is an interesting relation between the Sinai–Bowen–
Ruelle probability for F and the quasi-invariant probability M (see [8]) for the modular
function δ given by

δ((a1, y1), (a1, y2))=
V (a1, y1)

V (a1, y2)
=5∞n=1

T ′(bn(a1, y1))

T ′(bn(a1, y2))
,

where for each n ≥ 0, the points bn(a1, y1) and bn(a1, y2) are, respectively, the successive
n-preimages of (a1, y1) and (a1, y2) which are close together on the same vertical line
(locally unstable).

3. The inspiring model
The purpose of this section is to present a preliminary example which can help the reader
to understand why the reasoning we will pursue on the following sections is natural.

In this section we fix a compact metric space K and the associated Bernoulli space†
�= KN. Points x ∈� are denoted by x = (x1, x2, . . . , xn, . . .). This is called the
generalized XY model studied in [23] (see also [1, 10]).

The groupoid G ⊂�×� is defined from the equivalence relation x = (x1, x2,

x3, . . .)∼ y = (y1, y2, y3, . . .) if x j = y j , for all j ≥ 2. Observe that x ∼ y means that
x = (a, y2, y3, . . .) for some a ∈ K , which is equivalent to σ(x)= σ(y), where σ is the
shift map. We say that a groupoid G defined in such a way is dynamically defined. We
will consider a more general class of dynamically defined groupoids in §5.2.

We denote by m a fixed a priori probability on K (with support equal to K ). Consider
the transverse function ν̂ such that, for each y ∈� and continuous function f : [y] → R,
we have ∫

f (x)ν̂ y(dx)=
∫

f (a, y2, y3, . . .) dm(a).

In the case where K = {1, 2, . . . , d} it is natural to take the probability m such that
each point in K has m-mass equal to 1/d , but by no means does this have to be the only
choice. Similarly, when K = S1 it is also natural to consider the Lebesgue probability da
as the a priori probability (see [4]).

Given a Hölder function V :�→ R, the associated Ruelle operator (acting on
continuous functions) is defined by

f → LV ( f )(x)=
∫

eV (a,x1,x2,...) f (a, x1, x2, . . .) dm(a).

Consider a Hölder function V :�→ R and take as modular function δ(x, y)=
eV (y)−V (x).Denote by c the eigenvalue and by ϕ the eigenfunction for the transfer (Ruelle)

† This describes the statistical mechanics system where the fiber of spins is the metric space K (which mat or
may not be finite) and each site of the lattice is in N.
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operator LV . We denote by ρ the eigenprobability for L∗V , which satisfies L∗V (ρ)= cρ. In
this way, if

∫
ϕ dρ = 1, the probability µ := ϕ ρ is the equilibrium probability for V (see

[28]). We denote by U the normalized Hölder potential

U = V + log ϕ − log(ϕ ◦ σ)− log(c).

Given k0 ∈ K , consider fixed the point z0 = (k0)
∞
= (k0, k0, . . .) ∈�. Since, for any

continuous function g :�→ R,∫
g(x) dµ(x)= lim

n→∞
Ln

U (g) (z0),

it follows that, for any continuous function h,∫
h(x) dρ(x)=

∫
h(x)
ϕ(x)

dµ(x)= lim
n→∞

Ln
U

(
h
ϕ

)
(z0)= lim

n→∞

1
cnϕ(z0)

Ln
V (h) (z0).

Consequently, ∫
h(x) dρ(x)= lim

n→∞

Ln
V (h) (z0)

Ln
V (1) (z0)

.

This kind of expression appears in [9]. The next result is a generalization of a similar one
in [8, §4].

PROPOSITION 11. Under above hypotheses and notation, the eigenprobability ρ for the
dual Ruelle operator L∗V is quasi-invariant for the modular function δ(x, y)= eV (y)−V (x),
that is, for all continuous function f : G→ R, we have∫ ∫

f (y, x) ν̂ y(dx) dρ(y)=
∫ ∫

f (x, y)δ(x, y)−1ν̂ y(dx) dρ(y).

Proof. In this proof we denote dm(a1) dm(a2) . . . dm(an) by dm(a1, . . . , an). We write
y = (y1, y2, y3, . . .), and for x ∈ [y] we write x = (a, y2, y3, . . .). Let us define two
auxiliary functions

g1(y) :=
∫

f ((a, y2, y3, . . .), (y1, y2, y3, . . .))eV (a,y2,y3,...) dm(a)

and
g2(y) :=

∫
f ((y1, y2, y3, . . .), (a, y2, y3, . . .)) dm(a).

Then,∫ ∫
f (x, y)δ(x, y)−1ν̂ y(dx) dρ(y)=

∫ ∫
f (x, y)eV (x)−V (y)ν̂ y(dx) dρ(y)

=

∫ ∫
f ((a, y2, y3, . . .), (y1, y2, y3, . . .))eV (a,y2,y3,...) dm(a)e−V (y1,y2,y3,...)dρ(y)

=

∫
g1(y)e−V (y) dρ(y)= lim

n→∞

Ln
V (g1 · e−V ) (z0)

Ln
V (1) (z0)

= lim
n→∞

∫
eSn (V )(a1,...,an ,z0)g1(a1, . . . , an, z0)e−V (a1,...,an ,z0) dm(a1, . . . , an)

Ln
V (1) (z0)

= lim
n→∞

∫
eSn−1(V )(a2,...,an ,z0)g1(a1, . . . , an, z0) dm(a1, . . . , an)

Ln
V (1) (z0)
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= lim
n→∞

∫∫
eSn (V )(a,a2,...,an ,z0) f ((a, a2, . . . , an, z0), (a1, . . . , an, z0)) dm(a) dm(a1, . . . , an)

Ln
V (1) (z0)

= lim
n→∞

∫∫
eSn (V )(a1,a2,...,an ,z0) f ((a1, a2, . . . , an, z0), (a, a2, . . . , an, z0)) dm(a) dm(a1, . . . , an)

Ln
V (1) (z0)

= lim
n→∞

∫
eSn (V )(a1,a2,...,an ,z0)g2(a1, a2, . . . , an, z0) dm(a1, . . . , an)

Ln
V (1) (z0)

.

=

∫
g2(y) dρ(y)=

∫ ∫
f ((y1, y2, y3, . . .), (a, y2, y3 . . .)) dm(a) dρ(y)

=

∫
f (y, x)ν̂ y(dx) dρ(y). �

We point out that the above probability ρ is not the unique quasi-stationary probability
for such δ (see [8, end of §4]).

4. A thermodynamic formalism point of view for Haar systems
We now return to the analysis of general Haar systems (not necessarily as the previous
generalized XY model). We consider a metric space � with the Borel sigma-algebra B
and a measurable groupoid G. Throughout this section we fix a Haar system (G, ν̂) where
the transverse function ν̂ (see Definition 4) satisfies

∫
1 ν̂ y(dx)= 1, for all y.

In the present setting the dynamical action is replaced by the equivalence relation which
is described by the groupoid G. The transverse function ν̂ will play here the role of the
a priori probability in the thermodynamic formalism for the generalized XY model.

4.1. A transfer operator for Haar systems. We will consider modular functions of the
form δ(x, y)= eV (y)−V (x), where V :�→ R is a bounded and measurable function. Then
a probability M on � is quasi-invariant for the Haar system (G, ν̂) and V if it satisfies the
property ∫ ∫

f (y, x) ν̂ y(dx) d M(y)=
∫ ∫

f (x, y)eV (x)−V (y)ν̂ y(dx) d M(y),

for all measurable and bounded functions f (see Definition 9).

Definition 12. A bounded and measurable function V :�→ R is Haar normalized for the
Haar system (G, ν̂) (or simply ν̂-normalized) if it satisfies∫

eV (x) ν̂ y(dx)= 1 for all y ∈�.

The above property corresponds in classical thermodynamic formalism to the concept
of normalized potential for the Ruelle operator. Note that we do not assume that V is of
Hölder class.

Definition 13. A Haar invariant probability for the Haar system (G, ν̂) will be a
probability M on � such that, for some Haar normalized function V :�→ R,∫ ∫

f (y, x) ν̂ y(dx) d M(y)=
∫ ∫

f (x, y)eV (x)−V (y)ν̂ y(dx) d M(y),

for all measurable bounded functions f .
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Remark 14. Any Haar invariant measure is quasi-invariant.

Remark 15. In Proposition 11 the probability ρ, which is an eigenprobability for L∗V ,
is also quasi-invariant. It is necessary to assume that V is a normalized potential (for the
Ruelle operator) in order to exhibit the case where the probability ρ is an invariant measure
for the shift map. In this case such normalized potential V is also Haar normalized and ρ
is also a Haar invariant measure for the Haar system (G, ν̂).

A probability M is Haar invariant and associated to the normalized function V if and
only if, for any test function f , we have∫ ∫

f (y, x)eV (x) ν̂ y(dx) d M(y)=
∫ ∫

f (x, y)eV (x) ν̂ y(dx) d M(y). (4)

Furthermore, if M is Haar invariant and associated to the normalized function V then,
considering the particular case where f (z, w)= f (w), we obtain from (4) that∫ ∫

f (x)eV (x)ν̂ y(dx) d M(y)=
∫

f (y) d M(y). (5)

It follows that M is a fixed point for the operator H∗V , defined below.

Definition 16. Given a measurable and bounded function U :�→ R, we define the
operator HU acting on measurable and bounded functions by

HU ( f )(y)=
∫

eU (x) f (x)ν̂ y(dx). (6)

If V is Haar normalized, the dual operator H∗V restricted to the convex set of probabilities
on � satisfies, for any measurable and bounded function f ,∫

f d H∗V (M1) :=

∫
eV (x) f (x) ν̂ y(dx) d M1(y)=

∫
HV ( f ) d M1. (7)

The above operator HV is not the Ruelle operator when one considers the particular
setting of §3. If LV is the Ruelle operator, then

HV ( f )(y)= LV ( f )(σ (y)),

where σ is the shift map. We remark also that HV is not the Haar–Ruelle operator studied
in [24].

PROPOSITION 17. M is Haar invariant for (G, ν̂) if and only if there exists a Haar
normalized (measurable) function V such that M is a fixed point for the operator H∗V
defined in (7). We will call eV a Haar Jacobian of M.

Proof. It was shown above that any Haar invariant measure is a fixed point for the operator
H∗V . We now suppose that a probability M satisfies, for any measurable and bounded
function F , ∫ ∫

eV (z)F(z)ν̂ y(dz) d M(y)=
∫

F(y) d M(y),
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where V is Haar normalized. In this way we want to prove that M is Haar invariant, that
is, it satisfies (4).

We begin by analyzing the left-hand side of (4). We fix a test function f and let F(y) :=∫
f (y, x)eV (x) ν̂ y(dx). Then∫ ∫

f (y, x)eV (x) ν̂ y(dx) d M(y)=
∫

F(y) d M(y)

hypothesis
=

∫ ∫
F(z)eV (z)ν̂ y(dz) d M(y)

=

∫ ∫ ∫
f (z, x)eV (x) ν̂z(dx)eV (z)ν̂ y(dz) d M(y)

ν̂z
=ν̂ y
=

∫ ∫ ∫
f (z, x)eV (x) ν̂ y(dx)eV (z)ν̂ y(dz) d M(y)

=

∫ ∫ ∫
f (z, x)eV (x)+V (z) ν̂ y(dx)ν̂ y(dz) d M(y).

We now apply similar computations on the right-hand side of (4):∫ ∫
f (x, y)eV (x) ν̂ y(dx) d M(y)=

∫ ∫ ∫
f (x, z)eV (x)ν̂z(dx)eV (z)ν̂ y(dz) d M(y)

=

∫ ∫ ∫
f (x, z)eV (x)+V (z) ν̂ y(dx)ν̂ y(dz) d M(y)

x↔z
=

∫ ∫ ∫
f (z, x)eV (x)+V (z) ν̂ y(dz)ν̂ y(dx) d M(y).

It follows from Fubini’s theorem that the two sides of (4) are equal. �

In the present setting—where there is no dynamics—the above result shows us that
there is a natural way to obtain the analogous concept of invariant measure via a transfer
operator (which is analogous to the Ruelle operator in symbolic dynamics). We observe
that in this setting the operator is defined from an a priori measure that depends on the
point y, which is the transverse function ν̂.

In the sequel in this section we describe some properties of the operators HU and H∗V .

PROPOSITION 18. For any given measurable and bounded function U, consider the
operator HU as defined in (6) and the function Ũ (y)=

∫
eU (x)ν̂ y(dx), which is constant

on classes.
(1) If f is constant on classes then

HU ( f )(y)= Ũ (y) f (y).

(2) The function V :=U − log(Ũ ) is Haar normalized.
(3) If there exists some positive eigenfunction g (for a certain eigenvalue) for the

operator HU , then Ũ must be constant. This constant value Ũ is the corresponding
eigenvalue (it is also positive).

(4) If Ũ is constant and λ := Ũ (y), for all y, then a (measurable) function g is an
eigenfunction for HU if and only if g is constant on classes. In this case HU (g)= λg.
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Proof. We have

HU ( f )(y)=
∫

eU (x) f (x)ν̂ y(dx)=
∫

eU (x) f (y)ν̂ y(dx)

=

[∫
eU (x)ν̂ y(dx)

]
f (y)= Ũ (y) f (y).

This proves (1).
We have ∫

eU (x)−log(Ũ (x)) ν̂ y(dx)= HU

(
1

Ũ

)
(y)

item (1)
=

Ũ (y)

Ũ (y)
= 1.

This proves (2).
To prove (3), suppose that, for some measurable and bounded function g > 0 and real

number λ, we have that HU (g)= λg. As HU (g) is constant on classes and HU (g)= λg,
the function g is necessarily constant on classes too. It follows from (1) that HU (g)= Ũ g
and therefore λg = Ũ g. As g is positive, we obtain Ũ = λ. It follows from the definition
of Ũ that λ > 0.

Turning, finally, to (4), if g is constant on classes, then from (1) we obtain that HU (g)=
Ũ g = λg. On the other hand, if g is an eigenfunction of HU , following the proof of (3),
we obtain that g is constant on classes and, furthermore, that HU (g)= λg. �

In the above result the function Ũ plays the role of the eigenvalue of the operator HU .
The normalization procedure (obtaining a Haar normalized V from the given U ) described
by item (2) in the above proposition is much more simpler that the corresponding one in
thermodynamic formalism (where one has to add a coboundary).

COROLLARY 19. Suppose that V is Haar normalized. Consider the operator HV defined
by (6). If f is constant on classes, then HV ( f )= f . In particular, HV ◦ HV = HV .

Proof. If V is normalized, then Ṽ = 1, and consequently, if f is constant on classes, then
HV ( f )= Ṽ f = f . Consequently, HV (HV (g))= HV (g) for any measurable and bounded
function g, because HV (g) is constant on classes. �

Example 20. If we consider the groupoid defined from the equivalence relation x ∼ y if
and only if x = y, then we have [y] = {y}, and, therefore ν̂ is trivial, that is, ν̂ y

= δy , over
the set {y}. In this case, the unique Haar normalized function is V ≡ 0. Furthermore, for
any function U we obtain that Ũ = eU and U − log(Ũ )= 0= V . In this model it is quite
simple to see that HV = Id and consequently any probability M is fixed for H∗V . Then we
have the following statements.
(1) The fixed probability of H∗V is not unique.
(2) If f is not constant, then Hn

V ( f ) := Hn−1
V ◦ HV ( f )= f does not converge to a

constant (it does not converge, for instance, to any possible given
∫

f d M).

Analyzing equation (5), the following reasoning is natural. This equation could be
solved independently for each class [y], and the solutions could then be combined (adding
class by class) in order to obtain a probability M over all the space �. Furthermore, the
weight that M has in each class seems to have no relevance in order to obtain a Haar
invariant measure. This remark is presented more formally in the next theorem.
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THEOREM 21. Let V be a Haar normalized function and µ be any probability measure
on�. There exists a unique Haar invariant probability M with Jacobian eV and such that,
for any bounded and measurable function g, constant on classes, we obtain∫

g d M =
∫

g dµ.

Proof. Let M = H∗V (µ). Then, for any integrable function f we have∫
f d M =

∫
HV ( f ) dµ.

In particular, as HV ◦ HV = HV we obtain, for any integrable function f ,∫
HV ( f ) d M =

∫
HV (HV ( f )) dµ=

∫
HV ( f ) dµ=

∫
f d M.

This shows (see Proposition 17) that M is Haar invariant with Jacobian eV . Furthermore,
for any g constant on classes, we have∫

g(y) d M(y)
M=H∗V (µ)
=

∫ ∫
eV (x)g(x) ν̂ y(dx) dµ(y)

g(x)=g(y)
=

∫
g(y)

∫
eV (x) ν̂ y(dx) dµ(y)=

∫
g(y) dµ(y).

Suppose now that M1 and M2 are Haar invariant measures with Jacobian eV satisfying∫
g d M1 =

∫
g dµ=

∫
g d M2,

for any bounded function g constant on classes. Since, for any bounded function f , the
function HV ( f ) is constant on classes, we obtain∫

f d M1 =

∫
HV ( f ) d M1 =

∫
HV ( f ) d M2 =

∫
f d M2. �

COROLLARY 22. Let V be a Haar normalized function and g be a measurable and
bounded function which is constant on classes. Then

sup
y∈�

g(y)= sup
{∫

g d M | M is probability Haar invariant
}

= sup
{∫

g d M | M is probability Haar invariant with Jacobian eV
}
.

Proof. Clearly,

sup
y∈�

g(y)≥ sup
{∫

g d M | M is probability Haar invariant with Jacobian eV
}
.

On the other hand, for any given ε > 0, let yε ∈� be such that g(yε)+ ε >
supy∈� g(y). Let µε = δyε . From above theorem there exists a probability Mε Haar
invariant, with Jacobian eV , such that∫

g d Mε =

∫
g dδyε = g(yε) >

(
sup
y∈�

g(y)
)
− ε.

Taking the supremum over Haar invariant probabilities with Jacobian eV and observing
that ε is arbitrary, we complete the proof. �
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4.2. Transverse measures and Haar invariant probabilities. General references on
transverse measures are [11, 18]. Recall that we consider fixed a certain Haar system
(G, ν̂) where the transverse function ν̂ satisfies

∫
1 ν̂ y(dx)= 1, for all y.

In this section we study in our setting the relation between a transverse measure 3 and
a Haar invariant probability M . We give a simpler and more direct discussion, under the
present setting, similar to that appearing in [8, §5] but with some new proofs. The goal
here is to prove Theorem 31 (which has a similar claim in [8, §5] but it will improved
here). We remark that in [8] Haar invariant probabilities are not considered. We start by
recalling the following result stated in [8].

PROPOSITION 23. Given a transverse function ν̂, a modular function δ(x, y) and a quasi-
invariant probability M, if ν̂ ∗ λ1 = ν̂ ∗ λ2, where λ1, λ2 are kernels, then∫

δ−1λ1(1) d M =
∫
δ−1λ2(1) d M.

This means that ∫ ∫
δ(y, x)λy

1(dx)M(y)=
∫ ∫

δ(y, x)λy
2(dx)M(y).

Proof. See [8, §5, Proposition 65]. �

As ν̂ y is a probability, for any transverse function ν we obtain∫
f (s, y) ν y(ds)=

∫
f (s, y)ν y(ds)ν̂ y(dx)

=

∫
f (s, y)νx (ds)ν̂ y(dx)

(1)
=

∫
f (s, y)(ν̂ ∗ ν)y(ds).

This shows that ν = ν̂ ∗ ν for any transverse function ν. Consequently, if λ is any kernel
such that ν = ν̂ ∗ λ, then ν̂ ∗ ν = ν̂ ∗ λ. Applying the above proposition, we obtain, for
any quasi-invariant probability M for ν̂ and δ, that

ν = ν̂ ∗ λ implies
∫ ∫

δ(y, x)λy(dx) d M(y)=
∫ ∫

δ(y, x)ν y(dx) d M(y).

Given the transverse function ν̂, a modular function δ(x, y) and an associated quasi-
invariant measure M , we define (see [8, §5, Theorem 66] or [11]) a transverse measure 3
as

3(ν)=

∫ ∫
δ(y, x)λy(dx)d M(y),

where λ is any kernel satisfying ν = ν̂ ∗ λ.
From now on we will consider a modular function δ(x, y)= eV (y)−V (x), where V is

ν̂-normalized, and a Haar invariant probability M with Jacobian eV . Furthermore, as in
the present setting ν̂ y is a probability, we can take λ= ν and define

3(ν)=

∫ ∫
eV (x)−V (y)ν y(dx) d M(y). (8)

The first result below provides an alternative expression for 3 in (8).
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PROPOSITION 24. Suppose that M is a Haar invariant probability associated to the
Jacobian eV . Then, for any transverse function ν,

3(ν) :=

∫ ∫
eV (x)−V (y)ν y(dx) d M(y)=

∫ ∫
eV (x)ν y(dx) d M(y). (9)

Proof. As M is Haar invariant (for the fixed transverse function ν̂) and associated to the
Jacobian eV , if we denote F(y)= e−V (y) ∫ eV (x)ν y(dx), then we obtain from (8) and
Proposition 17 that, for any transverse function ν,

3(ν)=

∫ ∫
eV (x)−V (y)ν y(dx) d M(y)=

∫
F(y) d M(y)

H∗V (M)=M
=

∫ ∫
eV (x)F(x) ν̂ y(dx) d M(y)

=

∫ ∫
eV (x)

[
e−V (x)

∫
eV (s)νx (ds)

]
ν̂ y(dx) d M(y)

=

∫ ∫ ∫
eV (s)νx (ds) ν̂ y(dx) d M(y)=

∫ ∫ ∫
eV (s)ν y(ds) ν̂ y(dx) d M(y)

=

∫ ∫
eV (s)ν y(ds) d M(y)=

∫ ∫
eV (x)ν y(dx) d M(y). �

Definition 25. We say that a transverse measure 3 is a Haar invariant transverse
probability if it has modulus δ(x, y)= eV (y)−V (x), where V is a Haar normalized function,
and, furthermore, 3(ν̂)= 1.

We denote by M(ν̂) the set of all Haar invariant transverse probabilities3 for the Haar
system (G, ν̂).

The next result corresponds to [8, Theorem 66].

PROPOSITION 26. Suppose that M is a Haar invariant probability associated to the
Jacobian eV . Then 3, as defined by expression (9), is a Haar invariant transverse
probability.

Proof. Clearly 3(ν̂)= 1. We want to show that 3 satisfies Definition 8 with δ(x, y)=
eV (y)−V (x). From (9),3 is linear over transverse functions. Furthermore, if ν1 ∗ (δλ)= ν2,
with λy(1)= 1 for all y, and δ(x, y)= eV (y)−V (x), then

3(ν2)=

∫ ∫
eV (x) ν

y
2 (dx) d M(y)=

∫ ∫ ∫
eV (s)δ(s, x) λx (ds)ν y

1 (dx) d M(y)

=

∫ ∫ ∫
eV (s)eV (x)−V (s) λx (ds)ν y

1 (dx) d M(y)=
∫ ∫ ∫

eV (x) λx (ds)ν y
1 (dx) d M(y)

=

∫ ∫ ∫
1 λx (ds)eV (x)ν

y
1 (dx) d M(y)=

∫ ∫
eV (x) ν

y
1 (dx) d M(y)=3(ν1). �

The next two results complete the study of the relation between the Haar invariant
transverse probability 3 and the Haar invariant probability M .

PROPOSITION 27. Suppose that M is Haar invariant and associated to the Jacobian eV .
Let 3 be the transverse measure as defined by expression (9). Consider the transverse
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function ν y(dx)= F(x)ν̂ y(dx), where F is measurable and bounded. Then

3(ν)=

∫
F(x) d M(x).

Proof. Since M is quasi-invariant (see Remark 14), we have

3(ν) :=

∫ ∫
eV (x)−V (y)ν y(dx) d M(y)=

∫ ∫
eV (x)−V (y)F(x) ν̂ y(dx) d M(y)

=

∫ ∫
F(y) ν̂ y(dx) d M(y)=

∫
F(y)

∫
1 ν̂ y(dx) d M(y)=

∫
F(y) d M(y). �

Remark 28. The above theorem says that the transverse function ν is a more general
concept than a function F and the transverse measure 3 is a more general concept than
a measure M . Note that if any class of the equivalence relation is finite, then, given any
transverse function ν, there exists a function F such that ν y(dx)= F(x)ν̂ y(dx).

Remark 29. If we consider a more general density ν y(dx)= F(x, y)ν̂ y(dx), then ν y(dx)
is a kernel but not a transverse function, except if F(x, y)= F(x, z) for any z ∈ [y]. But
in this case, since x ∈ [y], we obtain that F(x, y)= F(x, x), that is, F depends only on x
as in the above theorem.

The next result shows us that any Haar invariant transverse probability of modulus
δ(x, y)= eV (y)−V (x) is of the form (9).

PROPOSITION 30. Let 3 be a Haar invariant transverse probability for the modular
function δ(x, y)= eV (y)−V (x), where V is Haar normalized. Let us define a probability M
on � which satisfies, for any measurable and bounded function F :�→ R,∫

F(y) d M(y) :=3(F(x)ν̂ y(dx)).

Then M is a Haar invariant probability with Jacobian eV . Furthermore, for any transverse
function ν, we have

3(ν)=

∫ ∫
eV (x)ν y(dx) d M(y).

Proof. Let λy(dx) := eV (x)ν̂ y(dx). Then, since V is normalized, λy(1)= 1, for all y.
Claim. (ν ∗ (δλ))y(dz)= C(z)ν̂ y(dz), where

C(z) :=
∫

eV (x)νz(dx)=
∫

eV (x)ν y(dx)= C(y)

is a constant function on the class of y.
To prove the claim we consider any test function f (x, y). Then, for each fixed y,∫

f (x, y)[ν ∗ (δλ)]y(dx)=
∫ ∫

f (s, y)δ(s, x)λx (ds)ν y(dx)

=

∫ ∫
f (s, y)eV (x)−V (s)eV (s)ν̂x (ds)ν y(dx)=

∫ ∫
f (s, y)eV (x)ν̂x (ds)ν y(dx)

=

∫ [∫
f (s, y)ν̂x (ds)

]
eV (x)ν y(dx)=

∫ [∫
f (s, y)ν̂ y(ds)

]
eV (x)ν y(dx)
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=

[∫
f (s, y)ν̂ y(ds)

][∫
eV (x)ν y(dx)

]
=

[∫
f (s, y)ν̂ y(ds)

]
[C(y)]

=

∫
f (s, y)C(y)ν̂ y(ds)=

∫
f (x, y)C(y)ν̂ y(dx).

This proves the claim.
Let M be defined by ∫

F(y) d M(y) :=3(F(x)ν̂ y(dx)),

for any measurable and bounded function F . Since 3 is linear and 3(ν̂)= 1, we obtain
that M is a probability on �.

As 3 is a transverse measure it follows from the claim (see Definition 8) that

3(ν)=3(C(z)ν̂ y(dz))=
∫

C(y) d M(y)=
∫ ∫

eV (x)ν y(dx) d M(y).

It remains to prove that M is Haar invariant with Jacobian eV . Let f :�→ [0,+∞)
be a measurable and bounded function and define ν y(dx)= f (x)ν̂ y(dx). It follows from
the above claim that

(ν ∗ (δλ))y(dz)=
∫

eV (x) f (x)ν̂z(dx)ν̂ y(dz),

and then, as 3 is a transverse measure, we obtain

3( f (x)ν̂ y(dx))=3(ν)=3(ν ∗ (δλ))=3
( ∫

eV (x) f (x)ν̂z(dx)ν̂ y(dz)
)
.

Therefore, by definition of M , we finally obtain∫
f (x) d M(x)=

∫ ∫
eV (x) f (x)ν̂z(dx) d M(z),

which, by linearity, can extend the claim for any measurable and bounded function f . This
shows that M is Haar invariant with Jacobian eV . �

We summarize the results of this section in the following theorem.

THEOREM 31. Let V be a Haar normalized function. There is an invertible map that
associates, for each Haar invariant probability M over �, with Jacobian eV , a Haar
invariant transverse probability 3 of modulus δ(x, y)= eV (y)−V (x). For any given M the
associated 3 obtained by this map satisfies

3(ν) :=

∫ ∫
eV (x)ν y(dx) d M(y), ν ∈ E+.

On the other hand, given 3, the associated M by the inverse map satisfies∫
F(y) d M(y) :=3(F(x)ν̂ y(dx)) for any F measurable and bounded.
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4.3. Entropy of transverse measures. In this section we continue to fix a Haar system
(G, ν̂) where the transverse function ν̂ satisfies

∫
1 ν̂ y(dx)= 1, for all y. We use the

notation and hypotheses of Theorem 31. Recall that we denote by M(ν̂) the set of
Haar invariant transverse probabilities 3 for the Haar system (G, ν̂). In some sense (see
Theorem 31) the set M(ν̂) corresponds in thermodynamic formalism (ergodic theory) to
the set of invariant probabilities.

We will be able to extend some concepts in ergodic theory concerning entropy to
the Haar system formalism. The transverse function ν̂ will play the role of the a priori
probability in [23] (where one can find the motivation for the definition below).

Our concept of invariant probability does not necessarily coincide with that in classical
measurable dynamics.

Definition 32. We define the entropy of a Haar invariant transverse probability 3 relative
to ν̂ (or relative to (G, ν̂)) as

hν̂(3)=−sup{3(F(x)ν̂ y(dx)) | F is Haar normalized}.

If 3 has modulus δ(x, y)= eV (y)−V (x), where V is Haar normalized, and M is the
corresponding Haar invariant probability given in Theorem 31, then we obtain

hν̂(3)=−sup
{∫

F(x) d M(x) | F is Haar normalized
}
.

Since we define entropy just for transverse measures in the set M(ν̂), it follows from
Theorem 31 that we are defining entropy similarly for any Haar invariant probabilities.

THEOREM 33. Suppose3 ∈M(ν̂) has modulus δ(x, y)= eV (y)−V (x), where V is a Haar
normalized function. Then

hν̂(3)=−
∫

V (x) d M(x)=−3(V ν̂), (10)

where M is defined in Theorem 31.

Proof. This proof follows ideas from [23]. By construction, M is Haar invariant with
Jacobian eV . The second equality in expression (10) is a consequence of Theorem 31. In
order to prove the first equality, we consider a general Haar normalized function U , and
then we claim that ∫

U (x) d M(x)≤
∫

V (x) d M(x). (11)

From this inequality we obtain

sup
{∫

F(x) d M(x) | F is Haar normalized
}
=

∫
V (x) d M(x),

which proves that

hν̂(3)=−
∫

V (x) d M(x).

In order to prove (11), we again consider the operator

HV ( f )(y)=
∫

eV (x) f (x) d ν̂ y(dx).

The probability M satisfies H∗V (M)= M according to Proposition 17.
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Let u = eU−V . Then ueV−U
= 1 and, moreover, HV (u)(y)= 1, for any y. It follows

that

0= log(1/1)= log
(

HV (u)
ueV−U

)
= log(HV (u))− log(u)+U − V

and
0=

∫
log(HV (u)) d M −

∫
log(u) d M +

∫
U d M −

∫
V d M.

Therefore, ∫
V d M −

∫
U d M =

∫
log(HV (u)) d M −

∫
log(u) d M

=

∫
log(HV (u)) d M −

∫
HV (log(u)) d M ≥ 0,

because for any y we can consider the probability eV (x)ν̂ y(dx) and apply Jensen’s
inequality in the following way:

log(HV (u))= log
( ∫

u(x)eV (x)ν̂ y(dx)
)
≥

∫
log(u)(x)eV (x)ν̂ y(dx)=HV (log(u)). �

PROPOSITION 34. The entropy defined above has the following properties:
(1) hν̂(3)≤ 0 for any 3 ∈M(ν̂);
(2) hν̂(·) is concave;
(3) hν̂(·) is upper semicontinuous. More precisely, if 3n(ν)→3(ν), for any transverse

function ν, then
lim sup

n
hν̂(3n)≤ hν̂(3).

Proof. To prove (1), just take V = 0 ,which is Haar normalized.
Turning to (2), suppose that 3= a131 + a232, where 31 and 32 are Haar invariant

transverse probabilities, a1, a2 ≥ 0 and a1 + a2 = 1. Then

hν̂(3)=−sup{3(F ν̂) | F normalized}

= inf{3(−F ν̂) | F normalized}

= inf{a131(−F ν̂)+ a232(−F ν̂) | F normalized}

≥ a1 inf{31(−F ν̂) | F normalized} + a2 inf{32(−F ν̂) | F normalized}

= a1hν̂(31)+ a2hν̂(31).

Finally, to prove (3), let V be a Haar normalized function such that 3 has modulus
eV (y)−V (x). Given any ε > 0, we have that 3n(−V ν̂)≤3(−V ν̂)+ ε = hν̂(3)+ ε, for
sufficiently large n. Then, for sufficiently large n, we obtain

hν̂(3n)= inf{3n(−F ν̂) | F normalized} ≤3n(−V ν̂)≤ hν̂(3)+ ε. �
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4.4. Pressure of transverse functions. In this section we continue to fix a Haar system
(G, ν̂) where the transverse function ν̂ satisfies

∫
ν̂ y(dr)= 1, for all y.

Definition 35. We define the ν̂-pressure of the transverse function ν by

Pν̂(ν)= sup
3 ∈M(ν̂)

{3(ν)+ hν̂(3)}. (12)

A transverse measure3 ∈M(ν̂)which attains the supremum on the above expression will
be called an equilibrium transverse measure for the transverse function ν.

In the following we denote by MV a Haar invariant probability with Jacobian eV . Recall
from Theorem 21 that there are several such associated probabilities.

It follows from Theorems 31 and 33 that

Pν̂(ν)= sup
V ν̂-normalized

sup
MV

[∫
eV (x)ν y(dx) d MV (y)−

∫
V (y) d MV (y)

]
,

which, from Proposition 17, can be rewritten as

Pν̂(ν)= sup
V ν̂-normalized

sup
MV

[∫
eV (x)ν y(dx) d MV (y)−

∫
eV (x)V (x)ν̂ y(dx) d MV (y)

]
.

The cases where ν is of the form ν =U (x) ν̂ y(dx) are studied below. In these particular
cases it is natural to interpret ν as the function U :�→ R and, using Theorem 31, to
interpret 3 as the associated probability M on �.

PROPOSITION 36. Suppose that U is ν̂-normalized. Consider the transverse function ν =
U (x) ν̂ y(dx). Then Pν̂(ν)= 0. If MU is any Haar invariant probability with Jacobian eU

and3U is the associated transverse measure from Theorem 31, then3U is an equilibrium
for ν.

Proof. We have

Pν̂(ν) = sup
V ν̂-normalized

sup
MV

[∫
eV (x)U (x)ν̂ y(dx) d MV (y)

−

∫
eV (x)V (x)ν̂ y(dx) d MV (y)

]
H∗V (MV )=MV
= sup

V ν̂-normalized
sup
MV

[∫
U (y) d MV (y)−

∫
V (y) d MV (y)

]
.

From (11) the last expression is non-positive and, on the other hand, taking V =U as a
particular V under the supremum, the last expression is equal to zero. Then the choices
V =U and any probability MU attain the supremum. �

For the next result we suggest that the reader recall the claim of Proposition 18.

PROPOSITION 37. Consider the transverse function ν =U (x)ν̂ y(dx), where U is
measurable and bounded, but not necessarily ν̂-normalized. Suppose that Ũ (y)=∫

eU (x) ν̂ y(dx) is a constant function, Ũ (y)= λ for all y. Then

Pν̂(ν)= log(λ).
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Proof. From Proposition 18, the function U − log(λ) is normalized. Then

Pν̂(ν)= sup
V ν̂-normalized

sup
MV

[∫
eV (x)U (x)ν̂ y(dx) d MV (y)

−

∫
eV (x)V (x)ν̂ y(dx) d MV (y)

]
= sup

V ν̂-normalized
sup
MV

[∫
U (y) d MV (y)−

∫
V (y) d MV (y)

]
= sup

V ν̂-normalized
sup
MV

[∫
[U − log(λ) d MV −

∫
V d MV + log(λ)

]
= log(λ),

where the last equality is a consequence of (11) together with the fact that we can take also
V =U − log(λ) under the supremum. �

We now consider the general case where Ũ is not constant.

PROPOSITION 38. Consider the transverse function ν =U (x)ν̂ y(dx) where U is bounded
and measurable, but not necessarily normalized. Let Ũ (y)=

∫
eU (x) ν̂ y(dx). Then

Pν̂(ν)= sup
y∈�
[log(Ũ (y))].

Proof. Note that

Pν̂(ν)= sup
V ν̂-normalized

sup
MV

[∫
U (y) d MV (y)−

∫
V (y) d MV (y)

]
= sup

V ν̂-normalized
sup
MV

[∫
[U − log(Ũ ) d MV −

∫
V d MV +

∫
log(Ũ ) d MV

]
.

On the one hand, from (11), as U − log(Ũ ) is normalized, we obtain

Pν̂(ν)≤ sup
V ν̂-normalized

sup
MV

[∫
log(Ũ ) d MV

]
= sup

M Haar invariant

∫
log(Ũ ) d M.

On the other hand, choosing V =U − log(Ũ ), we obtain

Pν̂(ν)≥ sup
MU−log Ũ

∫
log(Ũ ) d MU−log Ũ .

Since Ũ is constant on classes, we invoke Corollary 22 to conclude the proof. �

Remark 39. If there exists y0 ∈� satisfying supy∈� [log(Ũ (y))] = log(Ũ (y0)), then,
taking µ= δy0 and applying Theorem 21, there exists a Haar invariant probability
MU−log(Ũ ) satisfying

Pν̂(ν)=
∫

log(Ũ ) dδy0 =

∫
log(Ũ ) d MU−log(Ũ ).

In this case, if 3 is the transverse measure associated to MU−log(Ũ ) by Theorem 31, then
3 is an equilibrium for ν.

https://doi.org/10.1017/etds.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.24


Thermodynamic formalism for Haar systems 1855

We observe that Pν̂(·) plays the role of the Legendre transform of −hν̂(·). As −h is
convex it is natural to expect an involution, that is,

−hν̂(3)= sup
ν
[3(ν)− Pν̂(ν)]

or, equivalently,
hν̂(3)= inf

ν
[−3(ν)+ Pν̂(ν)].

PROPOSITION 40. The ν̂-pressure of the transverse function ν and the entropy of the Haar
invariant transverse probability 3 are related by the expression:

hν̂(3)= inf
ν
[−3(ν)+ Pν̂(ν)].

Proof. We observe that for any ν, by definition of pressure,

hν̂(3)≤ [−3(ν)+ Pν̂(ν)].

It follows that
hν̂(3)≤ inf

ν
[−3(ν)+ Pν̂(ν)].

On the other hand, if 3 has modulus eV (y)−V (x), where V is ν̂-normalized, then, taking
µy(dx)= V (x)ν̂ y(dx), we obtain from Theorem 33 and Proposition 36 that

hν̂(3)=−3(µ) and Pν̂(µ)= 0.

Therefore,
hν̂(3)=−3(µ)+ Pν̂(µ)≥ inf

ν
[−3(ν)+ Pν̂(ν)]. �

5. Examples
5.1. Entropy and pressure in the XY model. We consider the hypotheses and notation
of §3. In this case it is easy to see that

HV ( f )(y)= LV ( f )(σ (y)),

where LV is the classical Ruelle operator. We say that a bounded and measurable potential
V is normalized if it satisfies LV (1)= 1.

PROPOSITION 41. V is normalized if and only if V is Haar normalized.

Proof. If V is normalized then, for any y ∈�,∫
eV (x) ν̂ y(dx)= HV (1)(y)= LV (1)(σ (y))= 1,

which proves that V is Haar normalized.
If V is Haar normalized then, for any given y ∈�, we choose z ∈� such that σ(z)= y.

It follows that

LV (1)(y)= LV (1)(σ (z))= HV (1)(z)= 1 for all y ∈�. �

PROPOSITION 42. If a probability measure M on � satisfies L∗V (M)= M, for some
normalized Hölder function V , then it is Haar invariant.
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Proof. From Propositions 11 and 17 we conclude that M is Haar invariant with Jacobian
eV . �

The identification of σ -invariant probabilities and Haar invariant probabilities is, in
general, false. There exist Haar invariant probabilities which are not invariant for the shift
map and vice versa, as the next example shows.

Example 43. Let µ be any probability measure on �, such that the push-forward
probability ν defined from

∫
f dν :=

∫
f ◦ σ dµ is not invariant for the shift map†.

By Theorem 21, there exists a Haar invariant probability M such that
∫

f ◦ σ d M =∫
f ◦ σ dµ, for any measurable and bounded function f (because f ◦ σ is constant on

classes). If M were invariant for the shift map, then∫
f d M =

∫
f ◦ σ d M =

∫
f ◦ σ dµ=

∫
f dν,

which is a contradiction, because ν is not invariant.
On the other hand, there are shift-invariant probabilities which are not Haar invariant for

a fixed Haar system (G, ν̂). For instance, consider M = δ0∞ , where 0∞ = (0, 0, 0, . . .) ∈
KN
= [0, 1]N. In this case, supposing by contradiction that M is Haar invariant, where, for

each x , ν̂x is identified with the Lebesgue measure m on [0, 1], there must be a measurable
and bounded function V such that, for any measurable and bounded function f ,∫

f (a0∞)eV (a0∞) dm(a)= f (0∞).

This is impossible because, as functions of f , the value on the right-hand side can be easily
changed without affecting the mean of the left-hand side.

PROPOSITION 44. Let M be the equilibrium measure for a normalized function V . Let 3
be the transverse measure defined by (9). Then hν̂(3)=−

∫
V d M.

Proof. The claim easily follows from Theorem 33. �

The above proposition shows that the Haar entropy is a natural generalization for
Haar systems of the Kolmogorov–Sinai entropy. We refer to [23] for a discussion of
Kolmogorov–Sinai entropy and the concept of negative entropy for the generalized XY
model.

The concept of pressure is very different when considered the thermodynamic
formalism setting instead of Haar systems. As an example, note that in thermodynamic
formalism we have

Pσ ( f ◦ σ)= Pσ ( f )= sup
µ invariant

[∫
f dµ+ hm(µ)

]
,

for any continuous function f . On the other hand, in Haar systems, if we consider a
transverse function ν in the form ν =U ν̂, where U = f ◦ σ , then U is constant on classes.
It follows that log(Ũ )=U and, from Proposition 38, we obtain

Pν̂(( f ◦ σ)ν̂)= Pν̂(U ν̂)= sup
y∈�
[U (y)] = sup

y∈�
[ f (σ (y))] = sup

z∈�
[ f (z)].

† For instance, µ= δ(1,1,0,0,0,0...).
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But if we consider the transverse function f ν̂,

Pν̂( f ν̂)= sup
y∈�

[
log

∫
e f (x) ν̂ y(dx)

]
= sup

y∈�

[
log

∫
e f (a,y2,y3,...) dm(a)

]
.

The main reason for the difference between the two kinds of pressure is in some sense
described in Example 43. When we consider the Haar entropy for a different set of
probabilities and then consider the pressure, as a ‘Lengendre transform’ of −h (which
is defined over this different set), it is natural to get a different meaning for pressure.

5.2. Haar systems dynamically defined. Assume that � is a complete and separable
metric space and B denotes the Borel sigma-algebra on �. In this section we generalize
results from §3.

Suppose that T :�→� is a continuous map and consider the groupoid G defined by
the equivalence relation x ∼ y if and only if T (x)= T (y). In this way any class is closed
and any transverse function ν̂ (which is a probability on each class) can be identified as a
choice of a probability m y over the set T−1(y), for each y ∈�. For any measurable and
bounded function U :�→ R and transverse function ν̂, we define the generalized Ruelle
operator

LU ( f )(y)=
∫

T (x)=y
eU (x) f (x)νx (dx)=

∫
T (x)=y

eU (x) f (x) dm y(x),

where νx
= νz if and only if T (x)= T (z), that is, νx is a probability m y , if x ∈ T−1(y).

We say that a measurable and bounded function V is normalized if∫
T (x)=y

eV (x)νx (dx)= 1 for all y ∈�.

PROPOSITION 45. Under the above hypotheses and notation, suppose that an invariant
probability M for T satisfies L∗V (M)= M, for some normalized (measurable and
bounded) function V . Then H∗V (M)= M, that is, M is Haar invariant.

Proof. Observe that HV ( f )(y)= LV ( f )(T y). Then∫
HV ( f )(y) d M(y)=

∫
LV ( f )(T y) d M(y)

M is T invariant
=

∫
LV ( f )(y) d M(y)=

∫
f (y) d M(y). �

The definition of entropy hν̂ in this work can be applied to the case of any invariant
measure M satisfying L∗V (M)= M , for some V normalized. Such M is associated with a
transverse probability 3 by Theorem 31.

In §2 the a priori probability m y is a fixed probability m independent of y in a natural
way, because in that example the preimages of any point y are identified with a fixed
set K , where �= KN. Observe that for a general dynamic system there is not a natural
identification of preimages of different points, that is, the sets T−1(y) and T−1(z) can be
of quite distinct nature. One of the simplest examples of this are subshifts of finite type,
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where distinct points can have sets of preimages with different cardinalities. In the present
general case, in contrast with the XY model (described before), it is natural to take as an a
priori probability a general transverse function.

In contrast to Example 43, the next theorem shows that any T -invariant probability can
be seen as a Haar invariant probability. Items (1) and (2) of the theorem say that µx is some
kind of kernel, from the viewpoint of almost every point (M-a.e.) x ∈� (see Definition 3).
Item (3) says that this ‘kernel’ is a transverse function, and item (4) says that M is ‘Haar
invariant’ with Jacobian J = eV

= 1. In the proof we use Rokhlin’s disintegration theorem.
A reference for this topic is [35, Ch. 5].

THEOREM 46. Let � be a complete and separable metric space and T :�→� be a
continuous map. Consider the groupoid G defined by the equivalence relation x ∼ z if and
only if T (x)= T (z). Then, for any fixed T -invariant probability M on �, there exists a
family {µx

| x ∈�} of probabilities on � satisfying the following conditions:
(1) µx has support on [x] for M-a.e. x ∈�;
(2) for each measurable set E ⊆�, the map x→ µx (E) is measurable;
(3) µx

= µz for any x, z ∈� satisfying x ∼ z;
(4)

∫
f (x) d M(x)=

∫∫
f (z) µx (dz) d M(x) for any measurable and bounded function

f :�→ R.

Proof. Since � is a complete and separable metric space, there exists an enumerable
base of open sets A1, A2, A3, . . . . This means that, for each point x ∈� and open set
U containing x , there exists some Ai satisfying x ∈ Ai ⊆U . Let P be the partition of �
defined in the following way: x and z belong to the same element of the partition if and
only if χAi (T (x))= χAi (T (z)), for any i ∈ N. We observe that P is the partition of � in
the classes of G, that is, two points x and z are in the same element of the partition P if
and only if T (x)= T (z). Indeed, clearly x ∼ y implies that x and y belong to the same
element of the partition. Conversely, if T (x) 6= T (y), then there exists an open set U such
that T (x) ∈U and T (z) /∈U . It follows that, for some Ai , we have T (x) ∈ Ai ⊆U and
T (z) /∈ Ai , which proves that x and y belong to different elements of the partition.

We claim that P is a measurable partition. Indeed, we need only consider the partitions
Pn , n ∈ N, defined in the following way: two points x and z belong to the same element
of the partition Pn if and only if χAi (T (x))= χAi (T (z)), for any i ∈ {1, . . . , n}. Observe
that Pn has 2n elements,

P1 ≺ P2 ≺ P3 ≺ · · · ,

and P =
∨

n≥1 Pn . This proves the claim.
Recall that two points x and z are on the same element of the partition P if and

only if T (x)= T (z). We denote by Py the element of the partition P that contains the
preimages of y, that is, Py = {x ∈� | T (x)= y}. Observe that we can identify � with P
from y→ Py . We define π :�→ P by the following rule: π(x) is the element of the
partition P that contains x . In this way π(x)= Py if and only if T (x)= y. We say that
Q⊆ P is measurable if the set π−1(Q) is a measurable subset of �. For a given invariant
probability M on �, we associate a probability M̂ on P by

M̂(Q) := M(π−1(Q)),
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where Q⊆ P is measurable. Observe that, using the identification y→ Py , for any given
measurable subset Q ⊂� we can associate the measurable subset Q= {Py | y ∈ Q} of P .
Furthermore, since M is T -invariant,

M̂(Q)= M(π−1(Q))= M(π−1({Py | y ∈ Q})= M(T−1(Q))=M(Q).

As the metric space � is complete and separable and the partition P is measurable,
by Rokhlin’s disintegration theorem (see [35]), any invariant probability M admits a
disintegration, which is a family of probabilities {m P | P ∈ P} on � satisfying, for any
measurable set E ⊂�:
(1) m P (P)= 1, for M̂-a.e. P ∈ P;
(2) P→ m P (E) is measurable;
(3) M(E)=

∫
m P (E) d M̂(P).

Using the identification y→ Py , we obtain a family of probabilities {m y | y ∈�} on �
satisfying, for any measurable set E ⊂�:
(1) m y(T−1(y))= 1 for M-a.e. y ∈�;
(2) y→ m y(E) is measurable;
(3) M(E)=

∫
m y(E) d M(y).

We define, for each x ∈�, the probability µx
:= mT (x), that is, µx

:= m y if x ∈
T−1(y). By construction, x ∼ z implies µx

= µz . As M is T -invariant, it follows from
(1) that µx ([x])= 1, for M-a.e. x ∈�. The sets [x] = T−1

{y} are closed, because T is
continuous, therefore µx has support on [x] for M-a.e. x ∈�. Furthermore, for a fixed
measurable set E , since x→ y = T (x) and y→ m y(E) are measurable maps, we obtain
that x→ µx (E) is measurable.

In order to conclude the proof it remains to prove item (4) of the theorem. For any
measurable and bounded function f :�→ R we have, from (3) and using the fact that M
is T -invariant,∫

f (x) d M(x)=
∫ ∫

f (z) dmx (z) d M(x)=
∫ ∫

f (z) dmT (x)(z) d M(x)

=

∫ ∫
f (z) µx (dz) d M(x). �

In the next corollary we suppose that any class is finite and we consider the transverse
function which is the counting measure on each class. We remark that it is a finite measure
but not a probability. In any case, an easy normalization is sufficient to obtain a probability,
that is, to replace

∑
T (x)=T (z) by (1/#[x])

∑
T (x)=T (z) and J (z) by J̃ (z) := (#[x]) · J (z).

COROLLARY 47. Suppose that M is a complete and separable metric space and suppose
that the continuous map T : M→ M is such that any point y has a finite number of
preimages. Then, for any T -invariant probability M, there exists a bounded function
J defined for M-a.e. x ∈� (a Haar Jacobian of M) satisfying, for M-a.e. x ∈�,∑

T (x)=T (z) J (z)= 1 and∫
f (x) d M(x)=

∫ ∑
T (x)=T (z)

J (z) f (z) d M(x).
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Proof. Using the notation of the proof of the above theorem, since for M-a.e. x the
probability µx has support in the finite set [x], there exists, for any such x , a function J x

defined over the class of x satisfying µx ({z})= J x (z), for any z ∼ x . We define a function
J almost everywhere by J (z)= J x (z) if x ∼ z, and µx ([x])= 1 otherwise. The images of
J belong to [0, 1], clearly

∑
T (x)=T (z) J (z)= 1 and, furthermore, from the above theorem

and the definition of J , it follows that∫
f (x) d M(x)=

∫ ∫
f (z) µx (dz) d M(x)=

∫ ∑
T (x)=T (z)

J (z) f (z) d M(x). �

Example 48. If �⊆ {1, . . . , d}N is a subshift of finite type, defined from an aperiodic
matrix, and M is an invariant probability for the shift map σ , then for M-a.e. x ∈�,
x = (x0, x1, x2, . . .), there exists

J (x)= lim
n→∞

M([x0, x1, . . . , xn])

M([x1, x2, . . . , xn])
.

In thermodynamic formalism this function J (called the Jacobian of the measure, or
sometimes the inverse of the Jacobian) is M-integrable, and for any measurable and
bounded function f :�→ R it satisfies∫

f (y) d M(y)=
∫ ∑

σ(z)=y

J (z) f (z) d M(y).

As M is σ -invariant, for any measurable and bounded function f ,∫
f (y) d M(y)=

∫ ∑
σ(z)=σ(y)

J (z) f (z) d M(y).

Therefore, M is also Haar invariant with Haar Jacobian J .
The Kolmogorov–Sinai entropy of M is given by

hσ (M)=−
∫

log(J ) d M,

which is compatible with the definition of Haar entropy of M , introduced in this work.

Note that in the case of the groupoid of §3 (taking V continuous and positive and
assuming that the equivalence classes are finite), if ρ is an eigenprobability for the operator
H∗V associated to the eigenvalue λ > 0, then condition (3) is true for any cylinder set B.
Indeed, λ

∫
IBdρ =

∫
LV (IB)(σ ) dρ.

5.3. Extremal cases. In this section we suppose that � is measurable and consider as
examples two extremal cases: (1) the case where [x] =�, for all x ∈�; and (2) the case
where [x] = {x}, for all x ∈�. We will explore in these examples the meaning of the
theoretical results we have obtained. In this procedure we will recover some classical
concepts which are well known in the literature. This shows that our reasoning is quite
justifiable.
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Example 49. Consider the case [x] =� for any x ∈�, that is, x ∼ y, for any x, y ∈�. In
this case, the transverse functions are the measures on � and we fix a probability m (that
plays the role of the transverse function ν̂ on �). The Haar system (G, m) will remain
fixed in this example.

A function V is Haar normalized if∫
eV (x) dm(x)= 1.

For any function f , we have that HU ( f ) is constant and equal to
∫

eU (x) f (x) dm(x). A
probability M is Haar invariant with Jacobian eV if and only if d M = eV dm, because
H∗V (M)= M means that∫

f (x)eV (x)dm(x)=
∫

f (y) d M(y) for all f.

For a fixed Haar invariant probability M with Jacobian eV , we associate the transverse
measure 3 acting on measures as

3(ν)=

∫
eV (x) dν(x) d M(y)=

∫
eV (x) dν(x).

In this way, it is more natural to consider that we associate to a Haar normalized function V
the above3, which is the unique transverse probability for the modular function δ(x, y)=
eV (y)−V (x).

The entropy of 3 associated to V is

hm(3)=−

∫
V (x) d M(x)=−

∫
V (x)eV (x) dm(x).

If we denote P(x)= eV (x), then

hm(3)=−

∫
P(x) log(P(x)) dm(x),

which is a classical expression for the entropy when there is no dynamics.
The pressure of a measure ν satisfies

Pm(ν)= sup
V normalized

[∫
eV (x) dν(x)−

∫
V (x)eV (x) dm(x)

]
.

Then

Pm(ν)= sup
P>0,

∫
P(x) dm(x)=1

[∫
P(x) dν(x)−

∫
P(x) log P(x) dm(x)

]
.

If dν =Udm, then

Pm(U m)= sup
P>0,

∫
P(x) dm(x)=1

[∫
U (x) P(x) dm(x)−

∫
log(P(x)) P(x) dm(x)

]
Proposition 38
= log

∫
eU (x) dm(x).

Note that
∫

eU (x) dm(x) (after normalization) is a classical expression for the Gibbs
probability for the potential U (when there is no dynamics).
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Example 50. Suppose that [x] = {x} for any x ∈�, that is, x ∼ y if and only if x = y. In
this case any transverse function is a function ν. Indeed, for each x , we associate the class
[x] = {x}, and then we assign to it a positive number ν(x). We fix as ν̂ y the Dirac delta
measure on {y}, for each y ∈�, that is, ν̂ is the constant function 1. We consider fixed the
Haar system (G, ν̂).

The unique Haar normalized function is V ≡ 0 and any probability M on � is
Haar invariant with Jacobian eV

= 1. For any function U , we have log(Ũ )=U and
U − log(Ũ )= 0= V .

For each probability M , we associate a transverse measure 3 by

3(ν)=

∫ ∫
eV (x)ν y(dx) d M(y)=

∫
ν(y) d M(y).

On the other hand, as [x] = {x}, the unique modular function is δ(x, x)= 1. Then any
transverse measure has the above form.

The entropy of any transverse probability 3 is equal to

hν̂(3)=−
∫

V (x) d M(x)= 0,

and the pressure of a transverse function ν is given by

Pµ(ν)= sup
3

[3(ν)+ hν̂(3)] = sup
M probability

∫
ν(y) d M(y)= sup

y
ν(y).

REFERENCES

[1] D. Aguiar, L. Cioletti and R. Ruviaro. A variational principle for the specific entropy for symbolic systems
with uncountable alphabets. Math. Nachr. 291(17–18) (2018), 2506–2515.

[2] C. Anatharaman-Delaroche. Ergodic theory and Von Neumann algebras: an introduction. Preprint,
Univ. d’Orleans (France).

[3] C. Anantharaman-Delaroche and J. Renault. Amenable groupoids. L’Enseignement Mathématique,
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