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Abstract

The paper proposes a scenario of origin and emerging of intelligent life in Universe based
upon the mathematical discovery of a new class of dynamical systems described by ordinary
differential equation (ODE) coupled with their Liouville equation. These systems called self-
controlled since the role of actuators is played by the probability produced by the Liouville
equation. Following the Madelung equation that belongs to this class, non-Newtonian and
quantum-like properties such as randomness, entanglement and probability interference typ-
ical for quantum systems have been described. At the same time, these systems expose prop-
erties of livings: decomposition into motor and mental dynamics, the capability of self-
identification and self-awareness, as well as self-supervision. But the most surprising discovery
is the existence of a special sub-class, in which the dynamical systems can violate the second
law of thermodynamics, and that makes them different from both Newtonian and quantum
physics. This sub-class should be associated with intelligent livings due to capability to move
from disorder to order without external help. Based upon the mathematical discovery
described above, one can assume that there are good chances that similar dynamical systems
representing intelligent livings exist in real physical world. This provides a reason for a
‘rehabilitation’ of the Maxwell demon and put it into physics of intelligent systems. Indeed,
the Maxwell demon is implemented by the feedback from the Liouville equation to the ori-
ginal ODE, while this feedback is capable to rearrange the probability distribution against
the second law of thermodynamics. In addition to that, the same feedback removes the
entropy paradox by explaining high order in our surrounding by ‘intelligent life support’.
Two-steps transition: from the Newtonian physics to the linear model of life, and from the
latter to the model of intelligent life are analysed. The first transition is triggered by the
Hadamard instability of the Newtonian physics with respect to small random disturbances
in linear terms of the Liouville feedback. The second transition is triggered by instability of
linear model of life with respect to small random disturbances of non-linear terms of
Liouville feedback. This transition could be implemented by such physical phenomena as
shock waves or negative diffusion in probability space. Both transitions can be associated
with catastrophe theory, in which sudden shifts in behaviour arises from small changes in
parameters of the model. In view of the proposed model, possible competition between arti-
ficial and human intelligence are discussed.

Introduction

The idea of this paper is originated from the concept of structural instability, when the quali-
tative behaviour of a mathematical model is sharply changed by small perturbations of its
parameters. We start with the model of Newtonian physics.

In Newtonian physics, the concept of probability ρ for a moving particle is introduced via
the Liouville equation

∂r

∂t
+∇ · (rF) = 0,

∫1
−1

rdv = 1 (1)

generated by the three-dimensional (3D) vector ODE (ordinary differential equation)

dv
dt

= F(v), (2)

where v is velocity vector, and F is a Newtonian force per unit mass.
It describes the conservation of the probability density flow originated by the error distri-

bution at t = 0

r0 = r0(V), where r ≥ 0, and
∫1
−1

r0dV = 1. (3)
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Remark 1. Here and below we make distinction between the
random variable v(t) and its values V in probability space.

Remark 2. In general, the force F can depend upon velocity v
and position r of the particle. Then one has to replace equation
(2) by the 6D system

dv
dt

= F(v), dr
dt

= v. (4)

The criterion (1) is formally the same if one introduces an
extended ‘force’ Fe = F, v and consider the operation div in the
corresponding 6D space.

Rehabilitation of the Maxwell demon

All the previous attempts to develop models for so-called active
systems have been based upon the principles of Newtonian and
statistical mechanics (Mikhailov 1990). These models appear to
be so general that they predict not only physical, but also some
biological and economical, as well as social patterns of behaviour
exploiting such fundamental properties of non-linear dynamics as
attractors. Notwithstanding indisputable successes of that
approach (neural networks, distributed active systems, etc.)
there is still a fundamental limitation that characterizes these
models on a dynamical level of description: they propose no dif-
ference between a Solar System, a swarm of insects and a stock
market. Such a phenomenological reductionism is incompatible
with the first principle of progressive biological evolution asso-
ciated with Darwin (Prigogine 1980; Haken 1988). According to
this principle, the evolution of living systems is directed towards
the highest levels of complexity if the complexity is measured
by an irreducible number of different parts which interact in a
well-regulated manner. At the same time, the solutions to the
models based upon dissipative Newtonian dynamics eventually
approach attractors where the evolution stops while these attrac-
tors dwell on the subspaces of lower dimensionality, and there-
fore, of the lower complexity (until a ‘master’ reprogrammes the
model). Therefore, such models fail to provide an autonomous
progressive evolution of living systems (i.e. evolution leading to
increase of complexity). In addition to this limitation, there are
some problems, and even paradoxes with the second law of ther-
modynamics when it is applied to intelligent systems. One of the
paradoxes of the second law of thermodynamics that is still under
discussion is the following: We live in a world that should not be
possible. Indeed, the world around us is in a high order, although
given the age of the Universe, there is not ‘enough time’ to create
a non-vanishingly small probability for such complex world.
Ludwig Boltzmann reasoned that brains and other complex,
orderly objects on Earth were the result of random fluctuations.
But why, then, do we see billions of other complex, orderly objects
all around us? Just a short strand of DNA is so intricately con-
structed that the probability of it arising as a result of ‘random
fluctuations’ in physical material is unthinkably small. So how
is it that there are billions of base pairs in a single cell, trillions
of cells in a complex organism and millions of species on
Earth? So, we have another question. If the only requirement of
consciousness is a brain like the one in your head, why are you
not a Boltzmann brain? If you were assigned to experience a ran-
dom consciousness, you should almost certainly find yourself
alone in the depths of space rather than surrounded by similar
consciousness. The easy answers seem to all require a touch of
magic. But we will turn to mathematics instead, and replace the

Newtonian force F(V) in equations (2) and (3) with an informa-
tion force, (Zak 2017)

dv
dt

= F[r(v)],
∫1
−1

rdv = 1, (5)

∂r

∂t
+∇ · {rF[r(V)]} = 0. (6)

This is a fundamental step in our approach: in Newtonian
dynamics, the probability never explicitly enters the equation of
motion. In addition to that, the Liouville equation (6), in contrast
to equation (4), is non-linear with respect to the probability dens-
ity ρ, and therefore, the system (5), (6) departs from Newtonian
dynamics. However, although it has the same topology as quan-
tum mechanics (since now the equation of motion is coupled
with the equation of continuity of probability density), Zak
(2016a), it does not belong to it either. Indeed equation (5) is
more general than the Hamilton–Jacoby equation (2): it is not
necessarily conservative, and the feedback F is not necessarily
the quantum or classical potential although further we will
impose some restriction upon it that links F to the concept of
information. The relation of the system (5), (6) to Newtonian
and quantum physics is illustrated in Fig. 1.

Following Zak (2016a, 2017), we consider the force F that plays
the role of a feedback from the Liouville equation (6) to the equa-
tion of motion (5). Turning to 1D case, let us specify this feedback
as

F = c0 + 1
2
c1r− c2

r

∂r

∂v
+ c3

r

∂2r

∂v2
, (9)

c0 . 0, c1 . 0, c3 . 0. (10)

Then equation (9) can be reduced to the following:

v̇ = c0 + 1
2
c1r− c2

r

∂r

∂v
+ c3

r

∂2r

∂v2
, (11)

and the corresponding Liouville equation will turn into the non-

Fig. 1. Classic physics, quantum physics and physics of life.
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linear partial differential equations (PDE)

∂r

∂t
+ (c0 + c1r) ∂r

∂V
− c2

∂2r

∂V2
+ c3

∂3r

∂V3
= 0 (12)

(see the remark above).
This equation is known as KdV-Burgers (Korteweg-de

Vries-Burgers) PDE. The mathematical theory behind the KdV
equation became rich and interesting, and, in the broad sense,
it is a topic of active mathematical research. A homogeneous ver-
sion of this equation that illustrates its distinguished properties is
a non-linear PDE of parabolic type. But a fundamental difference
between the standard KdV-Bergers equation and equation (12) is
that equation (12) dwells in the probability space, and therefore, it
must satisfy the normalization constraint

∫1
−1

rdV = 1. (13)

However, as noticed in (Zak 2016a), this constraint is satisfied:
in physical space, it expresses conservation of mass, and it can be
easily scale-down to the constraint (13) in probability space. That
allows one to apply all the known results directly to equation (12).
However, it should be noticed that all the conservation invariants
have different physical meaning: they are not related to conserva-
tion of momentum and energy, but rather impose constraints
upon the Shannon information.

In physical space, equation (12) has many applications from
shallow waves to shock waves and solitons. However, application
of solutions of the same equations in probability space is funda-
mentally different. Analysis of equations (11)–(13) performed in
(Zak 2016a) discovered non-Newtonian properties of their solu-
tions such as randomness, entanglement and probability interfer-
ence typical for quantum systems. But the most surprising
property of these equations that may have fundamental philo-
sophical implications was a capability of their solutions to violate
the second law of thermodynamics, and we will demonstrate it
below. For that purpose consider the simplest case of the system
(11)–(13) assuming that

c0 = 0, c2 = 0, c3 = 0, c1 . 0. (14)

The closed form analytical solution can be presented in the
following implicit form (Whitham 1974)

r(V, t) = r0(V − jrt), r0 = rt=0. (15)

The process of violation of the second law of thermodynamics
is illustrated in Fig. 2: the higher values of ρ propagate faster than
lower ones. As a result, the moving front becomes steeper and
steeper, and that leads to formation of solitons (c3 > 0), or
shock waves (c3 = 0) in probability space. This process is accom-
panied by decrease of entropy.

At the same time, the original system (11), (12) is isolated: it
has no external interactions. Indeed, the information force equa-
tion (9) is generated by the Liouville equation that, in turn, is gen-
erated by the equation of motion (11). In addition to that, the
particle described by ODE (11) is in equilibrium v̇ = 0 prior to
activation of the feedback (9). Therefore, the solution of equations
(11) and (12) can violate the second law of thermodynamics, and

that means that this class of dynamical systems does not belong to
physics as we know it.

It should be emphasized that despite the mathematical similar-
ity between equation (12) and the KdV-Bergers equation, the
physical interpretation of equation (12) is fundamentally differ-
ent: it is a part of the dynamical system (11), (12) in which equa-
tion (12) plays the role of the Liouville equation generated by
equation (11). As follows from equation (15), this system, being
isolated and being in equilibrium, has the capability to decrease
entropy, i.e. to move from disorder to order without external
resources. In addition to that, as shown in Zak (2016a), the system
displays transition from deterministic state to randomness.

This property represents departure from classical and quan-
tum physics, and, as shown in (Zak 2012), provides a link to
behaviour of livings. That suggests that this kind of dynamics
requires extension of modern physics to include physics of life.

A biological interpretation of the model presented by equa-
tions (11) and (12) (that can be associated with motor and mental
dynamics, respectively) has been described in (Zak 2012; 2017).
In addition to that, we will notice that the motor dynamics equa-
tion (11) is non-conservative and irreversible, while the mental
dynamics equation (12), (if c2 = 0), is conservative and reversible
as KdV equation is, (Whitham 1974). Since the mental dynamics
(12) can be considered independently from the motor dynamics
(11), this means that there is no arrow of time in mental dynam-
ics, i.e. mentally the activity of the livings can be directed from
present to future as well as from present to past (memories),
and this is another evidence of similarity between the proposed
model and behaviour of livings.

So far, the model equations (11) and (12) have been written for
a 1D case. It can be easily generalized to 3D case

v̇+ = c0 + 1
2
c1r− c2

r
∇r+ c3

r
Dr, (16)

∂r

∂t
+ ∇ · r c0 + 1

2
c1r− c2

r
∇r+ c3

r
Dr

( )[ ]
= 0. (17)

Finally, we will emphasize the rehabilitation of the conceit of
the Maxwell demon when it is applied to physics of livings.
Actually, the mental dynamics plays the role of the Maxwell sort-
ing demon: it rearranges the probability distribution by creating
the information force and converting it into a force that is applied
to the particle. One should notice that mental dynamics describes
evolution of the whole class of state variables (differed from each

Fig. 2. Formation of shock waves in probability space.
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other only by initial conditions), and that can be associated with
the ability to generalize that is a privilege of living systems.

Remark 1. Maxwell’s demon is an imaginary creature that the
mathematician James Clerk Maxwell created to contradict the
second law of thermodynamics. The demon is trying to create
more useful energy from the system than there was originally.
Equivalently he was decreasing the randomness of the system
(by ordering the molecules according to a certain rule), which
is decreasing the entropy. No such violation of the second law
of thermodynamics has ever been found in physics.

Structural instability of Newtonian physics

In this section, we demonstrate that the Second Newton Law is
structurally unstable with respect to perturbations coming from
the Liouville feedback. For this purpose, we discuss transition
from determinism to randomness in ODE that coupled with
their Liouville PDE. Let us turn to equations (11) and (12).

Without the Liouville feedback, i.e. when

c0 = 0, c1 = 0, c2 = 0, c3 = 0 (18)

they represent the Second Newton’s Law and the conservation of
probability, respectively.

Let us assume now that

c3 . 0. (19)

In order to complete the solution of the system (11), (12), one
has to substitute the solution of equation (12):

r = r(V, t) at V = v (20)

into equation (11). Since the transition from determinism to ran-
domness occurs at t→ 0, let us turn to equation (12) with sharp
initial condition

r0(V) = d(V) at t = 0, (21)

Then applying one of the standard analytical approximations
of the δ-function, one obtains the asymptotic solution

r = 1
t

��
p

√ e−(V2/t2) at t � 0. (22)

Substitution of this solution into equation (11) shows that

v̇ = 4c3v2

t4
at t � 0, v = 0. (23)

Equation (23) has the following solution (see Fig. 2)

v = t3

4c3 + Ct3
at t � 0, v = 0, (24)

where C is an arbitrary constant.
This solution has the following property: the Lipchitz condi-

tion at t→ 0 fails

∂v̇
∂v

= 8c3v
t4

= 8c3t3

t4(4c3 + Ct3) � 1 at t � 0, v = 0, (25)

and as a result of that, the uniqueness of the solution is lost.
Indeed, as follows from equation (24), for any value of the arbi-
trary constant C, the solutions are different, but they satisfy the
same initial condition

v � 0 at t � 0. (26)

Due to violation of the Lipchitz condition (25), the solution
becomes unstable. That kind of instability when infinitesimal
errors lead to finite deviations from basic motion (the Lipchitz
instability) has been discussed in (Zak 1992). This instability
leads to unpredictable shift of solution from one value of C to
another. It means that appearance of any specified solution out
of the whole family is random, and that randomness is controlled
by the feedback (9) from the Liouville equation (12). Indeed, if the
solution (21) runs independently many times with the same ini-
tial conditions, and the statistics is collected, the probability dens-
ity will satisfy the Liouville equation (12) (Fig. 3).

But here we will be interested in another property of this solu-
tion – its structural instability. Indeed, when

C3 = 0, (27)

we have an inertial motion of a particle, and with initial condition
(26), the particle is in the state of rest. However, any small, even
infinitesimal, but positive perturbation of the parameter

c3 . 0 (28)

shifts the solution to random non-inertial motion. It can be
shown (Zak 2016a) that similar qualitative shift occurs when
instead of c3 we consider other parameters in equation (11).
Therefore, the solution to equation (11) is structurally unstable
since its qualitative behaviour is sharply changed by small pertur-
bations of its parameters.

This suggests the following mathematical scenario of origin
and emerging of life: if we postulate the model of Newtonian
physics, then due to its structural instability with respect to a cer-
tain kind of perturbations of parameters of possible Liouville
feedback, the model of the Newtonian physics shifts to the
model of life. The appearance of these perturbations could be ran-
dom, and from physics viewpoint, special conditions of such
appearance have to be satisfied. Obviously, these conditions are
beyond the mathematical scenario that is under consideration.

In order to make our argumentation more transparent, we will
deviate from the main target that is physics of life, and turn to

Fig. 3. Family of random solutions describing transition.
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quantum mechanics described by the Madelung equation
(Madelung 1926) representing the hydrodynamic version of the
Schrödinger equation

∂r

∂t
+ ∇ r

m
∇S

( )
= 0, (29)

∂S
∂t

+ (∇S)2 + F − h− 2∇2 ��
r

√
2m

��
r

√ = 0. (30)

Here ρ and S are the components of the wave function
c = ��

r
√

eiS/h� , and h− is the Planck constant divided by 2π. The
last term in equation (30) is known as quantum potential and F
represents a classical potential. From the viewpoint of
Newtonian mechanics, equation (29) expresses continuity of the
flow of probability density, and it can be associated with the
Liouville equation, while equation (30) is the Hamilton–Jacobi
equation for the action S of the particle of mass m, and it can
be associated with the Second Newton’s Law. Actually, the quan-
tum potential in equation (30), as a feedback from equation (29)
to (30), represents the difference between the Newtonian and
quantum mechanics, and therefore, it is solely responsible for fun-
damental quantum properties. Choosing the Planck constant as a
parameter, one finds the similarity between h− and c3 in equation
(23): the Newtonian model is structurally unstable with respect to
perturbations of the quantum potential since we have the model
of Newtonian physics as long as h− = 0, and this model shifts to
quantum model at h− > 0. The scenario of this transition has
been described in (Zak 2016b), see Fig. 4

This scenario is qualitatively similar to that of transition to the
model of life in Fig. 3.

Structural instability of physics of life

In this section, we investigate the structural instability of physics
of life model described by equations (11) and (12). We will
start with the linear version of this model by setting

c1 = 0, c2 = 0, (31)

v̇ = c0 + c3
r

∂2r

∂v2
, (32)

∂r

∂t
+ c0

∂r

∂V
+ c3

∂3r

∂V3
= 0. (33)

The first applications of linear (parabolic) version of KdV
equation (1.2) appear in models of shallow water waves. The
equation is conservative, and its solution is represented by a
train of traveling waves

r(v, t) = Aeikv−vt, (34)

where ω is the frequency, and k is the wave number. For KdV
equation, these two constants are connected by the following dis-
persion relation

c3 . 0, c0 . 0, c1 . 0. (35)

If the initial profile ρ = u(v, 0) is represented as a sum of the
Fourier harmonics, then each of this harmonic will propagate
with the phase speed

C = v/k. (36)

Fig. 4. Family of random trajectories and particle velocities after transition from the deterministic state.
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Comparing equations (35) and (36), one can see that each
Fourier harmonics will propagate with different phase speed
that depends upon its wave number k. Therefore, any initial pro-
file eventually is dispersed over the whole positive subspace
(Fig. 5).

Two important properties of the linear version of the KdV
equation should be emphasized. Firstly, its solutions depend on
the initial conditions for all times, and secondly, they do not vio-
late the second law of thermodynamics. The latter property pro-
vides a reason to attribute the linear model equations (32) and
(33) to physics of non-intelligent life.

Let us turn to the feedback (9) at

c2 = 0 (37)

and modify equation (11) as

v̇ = c0 + 1
2
c1r+ c3

r

∂2r

∂v2
, (38)

c3 . 0, c0 . 0, c1 . 0.

Then the corresponding Liouville equation will turn into the
following non-linear PDE

∂r

∂t
+ (c0 + c1r) ∂r

∂V
+ c3

∂3r

∂V3
= 0 (39)

that is a celebrated KdV equation.
However, a fundamental difference between the standard KdV

equation and equation (39) is that equation (39) dwells in the
probability space, as well as the KdV-Burgers equation (12), and
therefore, it must satisfy the normalization constraint

∫1
−1

rdV = 1. (40)

But since the KdV equation has the conservation invariants,
(Whitham 1974)

∫1
−1

rdV = Const., (41)

∫1
−1

r2dV = Const., etc. (42)

the constraint (40) becomes a particular case of the invariant (41);
consequently, if the normalization constraint is satisfied at t = 0, it
is satisfied all the time. That allows one to apply all the known
result directly to equation (39). However, it should be noticed
that the conservation invariants (41) and (42) have different phys-
ical meaning: they are not related to conservation of momentum
and energy, but rather impose constraints upon the Shannon
information.

Since closed form solution of equation (39) is not available, we
will continue with the solution for large time. The rationale for
that is the assumption that eventually the solution tends to a sta-
tionary shape as a result of a balance between dispersion and
shock wave formation. Therefore, we will seek the solution in
the form of a stationary motion

r(v, t) = f (v − Ut) = u(z) at t � 1. (43)

Substituting (43) into (39) one obtains

− U
∂r

∂z
+ (c0 + c1r) ∂r

∂z
+ c3

∂3r

∂z3
= 0. (44)

Integrating this equation with respect to ζand setting the arbi-
trary constant to zero, one arrives at the ODE in its final form

c3
∂2r

∂z2
+ (c0 − U)r+ c1

2
r2 = 0. (45)

The solution of this equation is a soliton moving with the
speed U

r = a Sech2
����
c1a

√
�����
12c3

√ (v − Ut)
[ ]

, (46)

where

U = c0 + 1
3
c1a, (47)

see Fig. 6. It should be emphasized that the soliton (46) does not
depend upon initial conditions, and consequently it can be con-
sidered as a static attractor in probability space. This means that

Fig. 5. Linear dispersion of initial profile. Fig. 6. Soliton as an attractor of KdV solution.
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in physical space, a solution of equation (38) eventually approach
a stochastic attractor.

Comparing the solutions (45) and (34) one notice that any
small, even infinitesimal, but positive perturbation of the param-
eter c1 > 0 shifts the solution (34) from dispersive waves that
depend upon initial conditions, to a dynamical attractor soliton
in the probability space, while this attractor does not depend
upon initial conditions. Therefore, the solution to equation (34)
is structurally unstable since its qualitative behaviour is sharply
changed by small perturbations of its parameters.

It should be noticed that the solution equation (46) illustrates
the failure of the second law of thermodynamics. Indeed, since it
does not depend upon initial condition, one can choose the high
entropy initial conditions, for instance, the Brownian motion, and
regardless of that, this solution, eventually, will be attracted to the
lower entropy soliton equation (46) (Fig. 6).

Now we can complete the mathematical scenario of origin and
emerging of intelligent life: if we postulate the model of
Newtonian physics, then due to its structural instability with
respect to a certain kind of perturbations of parameters of pos-
sible Liouville feedback, the model of the Newtonian physics
shifts to the model of non-intelligent life, i.e. to the model
described by equations (32) and (33). Then due to structural
instability of the latter with respect to different kind of perturb-
ation of the Liuoville feedback, the model of non-intelligent life
equations (32) and (33) shifts to the model of intelligent life
described by equations (38) and (39). As was noticed above, the
appearance of these perturbations could be random, and special
conditions for their appearance should be satisfied while these
conditions are beyond the mathematical scenario considered
above.

Remark 2. The concept of structural stability/instability is a
subject of the mathematical theory of catastrophe that is a branch
of bifurcation theory in the study of dynamical systems. It has
been originated by Rene Thom and advanced by Arnold (1992).
Small changes in certain parameters of a non-linear system can
cause equilibria to appear or disappear, or to change from attract-
ing to repelling and vice versa, leading to large and sudden
changes of the behaviour of the system. That what actually hap-
pens in the scenario of transition from Newtonian dynamics to
intelligent life introduced above.

Formation of collective brains

The model of intelligent life introduced above (see equations (38)
and (39)) allows one to advance into a model of collective brain
that amplifies intellectual capabilities of individual brains. For
illustration, let us introduce the following two brains coupled by
the joint probability density <grdel>

v̇1 = c(1)1 r, (48)

v̇2 = c(2)1 r. (49)

Each of these equations is a simplified version of equation (38)
when c0 = 0, c2 = 0, c3 = 0.

The corresponding analogue of the Liouville equation (39) is

∂r

∂t
+ c(1)1 r

∂r

∂V1
+ c(2)2 r

∂r

∂V2
= 0. (50)

As follows from this equation, the capability to decrease
entropy of the joint probability ρ is amplified, and that is the
first step in the formation of collective brain. Projecting this result
from the model to real life, one can explain the concentration of
talents in Gottingen (Einstein, Gauss, Hilbert) or Princeton,
(Godel, Hadamard) therefore removing the entropy paradox.

Comments to AI-human competition

Recent publications on artificial intelligence (AI) are abundant
with pessimistic predictions about potential superiority of robots
over humans. Based upon the proposed model, we express an
alternative view on that subject. In the previous sections, we pre-
sented a mathematical answer to the ancient philosophical ques-
tion ‘How mind is related to matter’. We proposed that in
mathematical world, the bridge from matter to mind requires
extension and modification of quantum physics. In this context,
we will comment on the recent statement made by Stephen
Hawking on 2 December 2014, in which he warns that AI
could end mankind. Based upon our work, part of which is pre-
sented in the previous sections, it can be stated that machines
composed only out of physical components and without any
digital devices being included, cannot, in principle, overperform
a human in creativity, regardless of the level of technology. But
what happens if a machine does include digital devices? The
answer to this question is the subject of Section 8 in reference
Zak (2016a). In these sections, we propose a quantum version
of recurrent neural nets (QRN) that, along with classical perform-
ance, possess the capability to move from disorder to order with-
out external recourses, and that makes their intelligence
comparable with that of a human. The QRN incorporate classical
feedback loops into conventional quantum networks. It is shown
that the dynamical evolution of such networks, which interleave
quantum evolution with measurement and reset operations, exhi-
bits novel dynamical properties. Moreover, decoherence in quan-
tum recurrent networks is less problematic than in conventional
quantum network architectures due to the modest phase coher-
ence times needed for network operation. It is proven that a hypo-
thetical quantum computer can implement an exponentially
larger number of the degrees of freedom within the same size.

Discussion and conclusion

This work is about studying reality via mathematical models.
Although models are not identical to reality (the picture of a cat
cannot harm the picture of a rat), nevertheless models are sup-
posed to extract the most fundamental features of reality.
Therefore, importance of models should not be underestimated.
Indeed, theoreticians studying reality via models make great dis-
coveries illuminating the way to proper experiments. The theoret-
ical leadership is especially crucial in astrobiology and cosmology
where experiment becomes more and more expensive if it is pos-
sible at all.

The most instructive is a story of discovery of quantum
entanglement: although the surprising correlation between quan-
tum particles was in apparent disagreement with ‘common sense’,
it follows from the Schrödinger equation, and despite the critique
by many scientists, including Einstein, those theoreticians, which
stood with mathematics, were appeared to be right. That is why
the results introduced in this work could be successfully projected
from models to reality.

International Journal of Astrobiology 257

https://doi.org/10.1017/S1473550417000489 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550417000489


The paper proposes a scenario of origin and emerging of intel-
ligent life in Universe based upon the mathematical discovery of a
new class of dynamical systems described by ODE coupled with
their Liouville equation. These systems called self-controlled
since the role of actuators is played by the probability produced
by the Liouville equation. Following the Madelung equation
that belongs to this class, non-Newtonian and quantum-like prop-
erties such as randomness, entanglement and probability interfer-
ence typical for quantum systems have been described. At the
same time, these systems expose properties of livings: decompos-
ition into motor and mental dynamics, the capability of self-
identification and self-awareness, as well as self-supervision. But
the most surprising discovery is the existence of a special sub-
class, in which the dynamical systems can violate the second
law of thermodynamics, and that makes them different from
both Newtonian and quantum physics. This sub-class should be
associated with intelligent livings due to the capability to move
from disorder to order without external help. Based upon the
mathematical discovery described above, on can assume that
there are good chances that similar dynamical systems represent-
ing intelligent livings exist in real physical world. This provides a
reason for a ‘rehabilitation’ of the Maxwell demon and put it into
physics of intelligent systems. Indeed, the Maxwell demon is
implemented by the feedback from the Liouville equation to the
original ODE while this feedback is capable to rearrange the prob-
ability distribution against the second law of thermodynamics. In
addition to that, the same feedback removes the entropy paradox
by explaining high order in our surrounding by ‘intelligent life
support’. Two-steps transition: from the Newtonian physics to
the linear model of life, and from the latter to the model of

intelligent life are analysed. The first transition is triggered by
the Hadamard instability of the Newtonian physics with respect
to small random disturbances in linear terms of the Liouville feed-
back. The second transition is triggered by instability of linear
model of life with respect to small random disturbances of non-
linear terms of Liouville feedback. This transition could be imple-
mented by such physical phenomena as shock waves or negative
diffusion in probability space. Both transitions can be associated
with catastrophe theory, in which sudden shifts in behaviour
arises from small changes in parameters of the model.
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