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Volume and Volatility in a Common-Factor
Mixture of Distributions Model

Xiaojun He and Raja Velu*

Abstract

This paper develops a multi-asset mixture distribution hypothesis model to investigate
commonality in stock returns and trading volume. The model makes two main predic-
tions: First, the factor structures of returns and trading volume are independent although
they stem from the same valuation fundamentals and jointly depend on a latent informa-
tion flow; second, cross-sectional positive volatility-volume relations arise solely from the
dynamic features of the information flow. Empirical analyses at the market level support
these predictions. Furthermore, the results indicate that removing the information flow sig-
nificantly reduces the return volatility persistence and the extent of the reduction exhibits
a size pattern.

I. Introduction

The objective of this study is to provide theory as well as empirical evidence
on commonality in stock returns, measured by price changes, and trading volume.
To that end, we develop a common-factor mixture distribution hypothesis (MDH)
model to explore common cross-firm variations in stock returns and trading
volume.

Our study is inspired by other research in modern portfolio theory and mar-
ket microstructure theory. Although a sizable body of research investigates return-
volume relations, studies of the cross-sectional behavior of stock returns have long
been separate from work on equity trading volume.! Hasbrouck and Seppi (2001)
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!Gallant, Rossi, and Tauchen (1992), (1993) provide a comprehensive investigation on price-
volume relations. For studies on stock returns, see, for example, Markowitz (1952), Ross (1978),
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suggest that cross-firm commonalities may arise from the factor structure of as-
set valuation fundamentals and thus conduct an empirical study to examine joint
return-volume cross-sectional patterns.

These studies motivate our construction of a theoretical model to unify these
lines of research. The model is a multi-asset version of the standard MDH model.
Following Clark (1973) and Epps and Epps (1976), Tauchen and Pitts (1983) de-
rive a dynamic heterogeneous-information equilibrium model of price changes
and trading volume for a single asset in the context of a large economy with
perfect competition. In their so-called MDH model, price changes and trading
volume are equilibrium outcomes of information impact and are jointly related to
an unobservable dynamic information flow variable. However, many studies show
evidence unfavorable to the standard MDH model (e.g., see Heimstra and Jones
(1994), Lamoureux and Lastrapes (1994), Richardson and Smith (1994), and
Andersen (1996), among others). We conjecture that the standard MDH model is
not wholly successful, probably because it treats securities in multi-asset financial
markets as isolated from each other. To investigate possible interactions among
securities, we generalize the standard MDH model by separating a cross-asset
component arising from the impact of announcements with common effects (e.g.,
monetary policies, tax regimes, political events) from the variance-component
decomposition of Tauchen and Pitts. We call the model with distinct asset inter-
actions a common-factor MDH model.

The model retains all the properties of the standard MDH model for a sin-
gle asset. In addition, two cross-asset implications emerge from the model. First,
the return factor structure results from the expected factor structure of valuation
fundamentals, while the volume factor structure stems from the unexpected fac-
tor structure of valuation fundamentals. Therefore, the return factor structure is
independent of the factor structure of trading volume. Recently, Bernhardt and
Taub (2008) report developing a static equilibrium model in line with Admati
(1985) and Caballe and Krishnan (1994), in which investors’ order flows also
have a forecast error structure. Their model predicts that the correlation structures
of prices and order flows are driven separately by the correlation structures of as-
set value fundamentals and liquidity trade, respectively. Because our model does
not include liquidity trading, we view their prediction as complementary. Second,
the return variance of each stock is positively related not only to its own volume
but also to the volume of other stocks. The cross-sectional positive relations result
solely from the dynamic features of the latent information flow variable.

For empirical analysis, we use half-hour intraday data for the stocks in the
Dow Jones Industrial Average (DJIA) over a sample period from April through
June 2007. The results are generally consistent with our predictions. The Pearson
correlation test result suggests the existence of factor structures in both returns
and trading volume because all the sample stocks show significant return-return
and volume-volume correlations across firms. The estimation results indicate that
factor structures are indeed present in our sample. However, only 13% of return-
volume correlations are statistically significant, implying independence between

and Brenner, Pasquariello, and Subrahmanyam (2009). For work on trading volume, see, for example,
Lo and Wang (2000) and Tookes (2008).
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the factor structures. The canonical redundancy results further suggest that re-
turn and volume canonical variables are not good overall predictors of each
other.

The common-factor MDH model, like the standard MDH model, imposes
an explicit relation between the latent information flow and stock returns, and it
is well-known that returns exhibit autoregressive conditional heteroskedasticity
(ARCH) (generalized ARCH (GARCH)) dynamics. To examine these aspects,
we employ the conditional moment method in Lamoureux and Lastrapes (1994)
to extract the underlying information flow, and then we compare the dynamic
characteristics of return series before and after conditioning it on the extracted
information flow.> We find that 13 stocks in our sample display ARCH (GARCH)
patterns, and these patterns all become statistically insignificant after we control
for the impact of the information flow. This result is consistent with the model
specification.

To investigate our model’s market-wide applicability, we also apply the
model to daily data for the Standard & Poor’s (S&P) Composite 1500 stocks from
Jan. 1, 2004, through Dec. 31, 2006. The S&P Composite 1500 is formed by the
S&P LargeCap 500, S&P MidCap 400, and S&P SmallCap 600. The daily data
are from the Center for Research in Security Prices (CRSP) database. The results
are similar to those of the intraday Dow Jones stocks. Moreover, the market-wide
analysis on volatility persistence reduction indicates that our model performs bet-
ter for stocks with large market capitalization and small trading volume.

The role of common cross-equity variation in short-term trade related vari-
ables is of interest in financial economics. The factors that influence the prices,
order flows, and liquidity are likely to be common among stocks that are
exposed to the same risk characteristics. Basic studies that explore the common-
ality are important both for institutional trading practices such as portfolio re-
balancing and, in general, for a better understanding of microstructure theory.
Focusing on individual stocks in isolation will not help much in this endeavor.
We provide a model-based approach to account for the common variation in the
returns and volume of multiple stocks. If return of a stock is found to be related
to other stocks’ returns and volume, this has implications for pricing of the stock.
Empirical results presented in this paper will also aid regulators, exchanges, and
other participants in improving market design, especially in episodes of domes-
tic and international financial turmoil. On the other hand, our model is unable
to differentiate the informational effect from the impact of uninformed traders’
behavior on the cross-equity variation. Our empirical results indicate that there is
variation in stock returns that cannot be fully explained by the information flow.
This may be explored in future research.

The rest of the paper is organized as follows: Section II describes the multi-
asset economy and trading model in more detail. We also analyze the properties of
the model in this section. Section III presents data analysis. Section IV provides a
brief summary.

2The Lamoureux and Lastrapes (1994) extracting method is based upon the property of the stan-
dard MDH model that the level of volume and squared returns are influenced by the same latent
information flow variable, as well as the property that returns and volume are independent.
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I[I. Common-Factor MDH Model

We develop an M-asset generalization of the single-security MDH model in
Tauchen and Pitts (1983). The economy contains J risk-averse speculators, who
choose their portfolio positions to maximize their expected constant absolute risk
aversion (CARA) utility function. The arrival of a set of information, including
asset-specific and common information, causes the movement from one equilib-
rium phase to the next. At each equilibrium phase i, it is well-known that each
trader j uses the information to formulate his or her investment decisions and that
his or her optimal demand function is as follows:

(D Q; = c(P;—Py),

where Q; = (Qj1, Qip, - - -, Qyjm) 1s a vector of trader j’s demand; ¢ is a con-
stant coefficient of absolute risk aversion; P = ( ;*jl, ;;2, . ,P;;M) is a vector
of trader j’s forecasts, based upon trader j’s interpretation of the information, on
assets’ future values; and P; = (P;1, Ppa, . . ., Piyr) is a vector of market prices.

Under the equilibrium condition that markets clear, the market price is
simply an average of all investors’ forecasts:

J

1 *

2) P, = jE P;.
=1

From equations (1) and (2), we can obtain the vectors of price changes and aggre-
gate trading volume between two consecutive equilibrium phases as follows:

J
3) AP; = ;ZAP;;,
j=1
c J
Vi = 5D |AP; - AP,
j=1

where AP =P} — P, is a vector of trader j’s incremental reservation prices
and AP; = P; — P;_; is a vector of the changes in market prices.

Tauchen and Pitts (1983) report conducting a variance-component analysis
on model (3) for the case of one asset. They decompose the change in trader j’s
reservation price into two components: one component common to all investors
and the other specific to agent j. Because our economy setting involves more
assets, to distinguish the information impact across assets from its impact on a
specific asset, we dissect each of their components further into an idiosyncratic
component and a common component. We now have a four-component model as
follows:

4) AP = v+ +vf +Pf.

The first two terms in model (4) refer to the asset-specific components. The
component v/ is common to all active speculators of a specific stock, and the

component lﬁé represents heterogeneous beliefs held by investors of that stock.
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Such belief heterogeneity may arise from the agents’ use of diverse sources to
learn about the valuation fundamentals affecting asset values. Similarly, the
cross-asset components, vF and ¥, U, represent each trader’s common and di-
verse responses to the cross-asset information impact, respectively. In our multi-
asset economy, we can merge the first two terms into one idiosyncratic vector,
denoted by ;= ((jj15 G2, - - - » Gijar ). Assume that this idiosyncratic vector is inde-
pendent for all i and j, and it follows a multivariate normal distribution with mean
vector 0 and a diagonal covariance matrix X¢. We can also meld the latter two
components into one common-factor vector, denoted by &; = (§;1, &2, - - - §ijm)-
Assume that it follows a multinormal distribution with mean vector 0 and a nondi-
agonal symmetric positive definite covariance matrix 25.3 We further assume that
the common-factor vector §;; is independent of the idiosyncratic vector {;; and is
mutually independent for all i and j.
Applying model (4) to model (3), we have

(5) AP; = (i+&;,
J
Vi = gj_zl|cl,+e,, (G+E)l.

where & = (1/7) 37, ¢y, and & = (1/7) 37, &

The distributional assumptions readily imply that i) the price change AP; is
an M-variate Gaussian with mean vector 0 and a nondiagonal covariance matrix
Yap, = (1/J) (Z¢ + X¢); ii) the price change AP; and trading volume V; are
stochastically independent because the component (; + &; is orthogonal to its de-
viation from the mean, which is (; + &;) — (¢; + &); and iii) because the volume
V, is a folded M-variate Gaussian, for high J, it is asymptotically and normally
distributed with a mean vector p and a nondiagonal covariance matrix X'y ,:

c A 2 J—1
1ze+ m )\/7 )y,
2(‘ c+2T) 7 J

> (%)2(2<+2§) <1—72T>J+0(J),

(6) 77

where | X + Y| is the determinant of Xy + Y.
When we aggregate the within-day price changes and trading volume and
standardize the notation, we have the following:

(7 AP = azVI+ 1]\[] ,
V = pul+ Bz +eV1,
where [ is the number of the within-day information flow; systematic macroeco-

nomic factor variables z; and z, are standard K-variate Gaussians; firm-specific
risk variables 1 and € are M-variate normally distributed with mean vectors 0 and

3For simplicity, we assume that although agents may disagree about how to interpret the informa-
tion affecting asset values, their forecasts have the same precision expressed by X¢ + X¢.
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diagonal variance matrices X'y, and X.; and z, 2, 17, € as well as / are all mutu-
ally independent.
From equations (6) and (7), the following equalities hold:

1 1
aa’ = 7% I = X,

T c\2 2 c\2 2

7 = (-2 n (-2

We call equation (7) a common-factor MDH model. It is straightforward that
both price changes and trading volume depend on three groups of mutually in-
dependent variables: idiosyncratic variables (1 and €), common-factor variables
(z; and z;), and the mixing variable (/). Note that the latent information flow vari-
able is positive and enters the factor loadings of both price changes and
volume. This amplifies the factor impacts on returns and volume, and makes them
dynamic.

Clearly, in the case of one asset, the common-factor MDH model is identical
to the single-asset MDH model in Tauchen and Pitts (1983); thus it retains all
the properties of the single-asset MDH model for one asset and extends these
properties to the multi-asset economy, as we can see in Propositions 1 and 2.

and,

Proposition 1. The price changes and trading volume are independent within
each firm as well as across firms because the factor structure of price changes is
uncorrelated with the factor structure of trading volume.

Proof of Proposition 1.
Cov{AP,V} = Cov {al%zl , ,Gl%zz} + Cov {nl%, sl%}

= E{all/zzl(ﬂll/zzz)T} —E{all/zzl} {E {ﬂ]l/zzzHT

E{IazlzgﬁT} = 0. O

Conditional on the mixing variable, the common-factor MDH model reduces to
the empirical factor model in Hasbrouck and Seppi (2001). However, Proposition
1 reflects the important difference between our model and theirs. Hasbrouck and
Seppi assume that the factor structure of price changes is related to the factor
structure of trading volume, which leads to the interdependence between price
changes and trading volume. We do not invoke this assumption. Instead, as shown
in Proposition 1, the variance-components scheme that we use allows us to derive
the relationship between factor structures of price changes and trading volume,
and hence the relationship between price changes and trading volume. It is clear
that price changes and trading volume are uncorrelated regardless of the presence
of common factors.

Proposition 2. The return variance is positively related to trading volume within
each firm and across firms as long as the mixing variable shows variation.
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Proof of Proposition 2.
Cov{arv} = E{(AP)V}} - E{AP}E(V)

- {[ ZK: (o)? }E{Iz} E*{1}]

k=1

oot

k=1

uj}Var {I} > Oaslongas Var{I} # 0.

Subscripts i and j are index stocks. O

Our principal innovation is the distinction between information cross-asset
impact and its asset-specific impact. This enables us to inspect the cross-asset
aspects overlooked by the standard MDH model. We state these properties in
Propositions 3 and 4.

Proposition 3. The price changes are correlated across firms if and only if
common factors exist because the variance-covariance matrix of price changes
is nondiagonal as long as factor loadings a # 0.

Proof of Proposition 3.

Sap E{APAP'} —E{AP}E {AP"}

E { (a1%> e (all/z)T} + ¥,E{I}
= (aa"+X,)E{l}. O

Proposition 4. The trading volume is correlated across firms if and only if com-
mon factors exist because the variance-covariance matrix of trading volume is
nondiagonal as long as factor loadings 3 # 0.

Proof of Proposition 4.
v

E{VV"} —E{V}E{VT}

{(,@1/’) 2,2 (ﬁl/’) } + S.E{I}
= (BB"+X.)E{l}. ©

The nondiagonal elements in the matrices aa™ and 337 give us the cross-firm
variations in returns and trading volume, respectively. It is worth mentioning
that whereas the cross-firm interactions result from common factors, the cross-
sectional positive volatility-volume relations arise solely from the latent infor-
mation flow variable. We can see that Proposition 2 still holds in the absence of
common factors (i.e., « =0 and 3 =0).

lll. Data Analysis

In Section III.A, we describe how we form our sample. In Section III.B,
we carry out Pearson correlation and canonical correlation analyses to test the
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model’s implications. In Sections III.C and II.D, we explore the role of the
information flow in generating volatility persistence. Section IIL.E provides a
robustness check.

A. Data

The sample includes 28 stocks in the DJIA from April 1 through June 30,
2007. Microsoft and Intel do not trade on the New York Stock Exchange (NYSE),
so we exclude them from our sample. Similar to Hasbrouck and Seppi (2001),
this study focuses on the Dow Jones stocks in order to increase the possibility
of detecting common factors and to mitigate the nonconcurrent problem.

The transaction data are from the NYSE Trade and Quote (TAQ) database.
Each trading day from 9:30AM to 4:00PM Eastern Standard Time is evenly divided
into 13 half-hour intervals. We use midquotes at the beginning and at the end of
each interval to compute the log return for each stock at that interval. Volume
is in dollars. To avoid potential stale quotes at the market opening, we delete
transaction data for the first 3 minutes of trading. We also eliminate observations
with zero price changes and observations with overnight price changes and trading
volume. This leaves a final sample of 369 half-hour observations for each stock.

Table 1 provides the means and standard deviations of returns and volume
for each stock over the entire sample period. General Motors has the highest mean

TABLE 1
Descriptive Statistics of Returns and of Trading Volume

The study sample includes half-hour intraday data on the 28 Dow Jones stocks from April 1 through June 30, 2007. The
means and standard deviations of returns and trading volume are calculated over the entire sample period.

Returns (%) Volume ($)
Ticker Name Mean Std. Dev. Mean Std. Dev.
AA Alcoa Incorporated 0.008 0.455 403,281 396,894
AlG American International Group, Inc. -0.012 0.195 414,760 234,542
AXP American Express Company 0.000 0.290 238,669 154,571
BA Boeing Company -0.010 0.275 187,629 106,685
C Citigroup Incorporated -0.015 0.300 720,347 435,264
CAT Caterpillar Incorporated -0.002 0.346 234,245 151,744
DD DuPont -0.015 0.305 230,200 149,527
DIS Walt Disney Company 0.001 0.294 375,479 208,295
GE General Electric Company 0.008 0.291 1,315,054 776,955
GM General Motors Corporation 0.037 0.456 475,619 372,010
HD Home Depot -0.014 0.312 503,293 427,210
HON Honeywell International Inc. 0.005 0.315 272,203 217,163
HPQ Hewlett-Packard Company 0.019 0.304 505,981 256,465
IBM International Business Machines 0.008 0.267 326,019 299,917
JINJ Johnson & Johnson -0.013 0.214 449,686 254,764
JPM JPMorgan Chase & Company -0.027 0.313 529,567 313,201
KO Coca-Cola Company 0.000 0.219 360,966 200,005
MCD McDonald's Corporation -0.003 0.319 305,497 177,436
MMM 3M Company 0.013 0.273 403,787 242735
MO Altria Group Incorporated -0.024 0.239 180,852 150,207
MRK Merck & Company, Incorporated 0.008 0.326 457,424 337,455
PFE Pfizer Incorporated -0.015 0.266 1,235,878 661,629
PG Procter & Gamble Company -0.007 0.200 787,030 442,186
T AT&T Incorporated -0.005 0.312 444,908 258,826
uTXx United Technologies Corporation 0.007 0.255 189,547 100,528
\74 Verizon Communications Inc. 0.006 0.286 486,536 324,010
WMT Wal-Mart Stores Incorporated -0.011 0.271 595,420 449,108

XOM Exxon Mobil Corporation 0.011 0.296 840,262 362,339
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return, 0.037%, while JPMorgan has the lowest mean return, —0.027%. Dollar
volume means range from $180,852 (Altria Group Incorporated) to $1,315,054
(General Electric).

B. Preliminary Analyses

Our model indicates that returns and volume are independent, while returns
are related across assets and so is volume. We undertake a simple Pearson corre-
lation test to examine these implications. With 28 stocks in the sample, we have
784 pairwise return-return correlations, volume-volume correlations, and return-
volume correlations. Only 103 pairs show significant return-volume correlations,
but all 784 return-return and volume-volume correlations are statistically signif-
icant (not tabulated here). The canonical redundancy analysis results in Table 2
also support the prediction of Proposition 1. The proportions of variance in
returns explained by trading volume are all below 0.02, and vice versa, indicating
that neither of the return and volume canonical variables are good overall predic-
tors of the opposite set of variables.

TABLE 2
Canonical Redundancy Analysis Results for Return and Trading Volume

The second column of Table 2 reports for each of the 28 Dow Jones stocks in the study the proportion of total variation
in returns explained by trading volume. The third column presents the proportion of total variation in volume explained by
return.

Return Variance Volume Variance
Ticker Explained by Volume Explained by Return
1 0.0102 0.0137
2 0.0154 0.0120
3 0.0117 0.0138
4 0.0117 0.0092
5 0.0087 0.0039
6 0.0070 0.0073
7 0.0034 0.0070
8 0.0056 0.0080
9 0.0047 0.0099
10 0.0029 0.0025
11 0.0052 0.0075
12 0.0023 0.0038
13 0.0032 0.0024
14 0.0032 0.0019
15 0.0014 0.0021
16 0.0067 0.0015
17 0.0014 0.0017
18 0.0017 0.0005
19 0.0008 0.0008
20 0.0006 0.0005
21 0.0006 0.0005
22 0.0002 0.0005
23 0.0002 0.0006
24 0.0005 0.0002
25 0.0001 0.0001
26 0.0001 0.0001
27 0.0000 0.0000
28 0.0000 0.0000

Next, we perform a canonical correlation analysis to examine the relation be-
tween return volatility and trading volume. Canonical correlation analysis seeks
to identify and quantify associations between two sets of variables. The aim is
to summarize the associations between two sets of variables via a few carefully
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chosen pairs of canonical variables (canonical common factors). Through canon-
ical correlation analysis, we can determine whether the positive relation between
return volatility and trading volume holds across firms. We can also determine
whether common factors underlie the relation.

In our case, for example, if the return volatility of each sample stock is
only positively correlated with its own volume but is uncorrelated with other
stocks’ volume, all the canonical correlations should be 1.0. Moreover, if the
28-dimension volatility-volume relations cannot be concentrated into a few pairs
of canonical variables, the positive correlations between return volatility and trad-
ing volume may not arise from the common factors.

Table 3 presents the canonical correlation analysis results. Half of the canon-
ical correlations are statistically significant, positive, and less than 1.0. This result
is consistent with the prediction of Proposition 2.

TABLE 3
Canonical Correlation Analysis Results for Return Volatility and Trading Volume

The second column of Table 3 reports canonical correlations for each of the Dow Jones 28 stocks in the study. The third
and fourth columns provide results for testing the significance of the canonical correlations.

Test Results
Order Number Canonical Correlations F-Value p-Value
1 0.819632 3.26 <0.0001
2 0.722151 2.86 <0.0001
3 0.691312 2.64 <0.0001
4 0.677421 2.45 <0.0001
5 0.638792 2.25 <0.0001
6 0.604625 2.07 <0.0001
7 0.549741 1.91 <0.0001
8 0.529986 1.80 <0.0001
9 0.474032 1.68 <0.0001
10 0.467845 1.61 <0.0001
11 0.440106 1.53 <0.0001
12 0.436730 1.45 <0.0001
13 0.406848 1.34 0.0003
14 0.381699 1.25 0.0086
15 0.334325 1.15 0.0751
16 0.326688 1.10 0.1901
17 0.316317 1.02 0.4230
18 0.279081 0.91 0.7348
19 0.241810 0.83 0.8854
20 0.224843 0.77 0.9321
21 0.214603 0.70 0.9632
22 0.202325 0.59 0.9886
23 0.148921 0.42 0.9992
24 0.106878 0.30 0.9997
25 0.087954 0.22 0.9995
26 0.045166 0.10 0.9996
27 0.026584 0.06 0.9930
28 0.004225 0.01 0.9379

C. Estimation of the Model

Given the encouraging results in Section III.B, we now proceed to estimate
the model. Two major empirical issues arise in using the maximum likelihood
estimation (MLE) method. First, the joint distribution of returns and volume
is not a multivariate normal distribution but mixtures of independent multivari-
ate normals with the mixing variable /. Second, factor and mixing variables are
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both unobservable. To tackle these issues, we follow a natural iterative three-step
estimation strategy by integrating the expectation-maximization (EM) algorithm
and the conditional moment method in Lamoureux and Lastrapes (1994).4

In the first step (information flow (INF)-step), we apply the Lamoureux and
Lastrapes (1994) conditional moment method to find the time-series values of the
unobserved information flow variable given AP, V, and 6 (6 =[a 3 p ) €]). We
can obtain the conditional moment criterion for each period ¢, which is the sum
of the standardized squared deviations of squared returns and volume from their
conditional means, by the following formula:

M
®) L = Y (emZ,'e,)
m=1
2 2 K 2
AP, — |+ D> oy ) 2
S 2P (s et )1 (V2 )
. - g o 7
m=1 2 [(n% + kz_:l afnk> I,} (5%1 + kgl IBmk) L
where
o [elm,} B (AP,%”E(AP?m |1t,o)>
" em | Vo —E (Vo |1, 0)

is the forecast error of return volatility and volume conditional on the current
value of the parameter @ for each stock m at time ¢, and X,,; = E(e,el |,,0)
is the conditional variance-covariance matrix of e,,. Minimizing this criterion
with respect to /; can give us the value of I;.

Then we eliminate the effect of the information flow for each period ¢ from
the observed return and volume series by the following formulas:

) ap; = 27,
Vi
(10) v o= Yo ml

VI

With the normalized return and volume series, AP’ and V', model (7)
becomes the multivariate normal factor model; hence we can use the standard EM
algorithm for factor analysis to estimate the model parameters. Our second and
third steps are just the expectation step (E-step) and maximization step (M-step)
of the EM algorithm. That is, in the E-step, we calculate the expectation of unob-
served factor variables z; and z, with the current value of the parameter 8, and in
the M-step, we obtain the next value of the parameter by maximizing the expected
log likelihood given the normalized return and volume data and the computed
factor data. Using the new value of the parameter, we compute the next INF-step

4See, for example, Dempster, Laird, and Rubin (1977), Louis (1982), Rubin and Thayer (1982),
Meng and Rubin (1991), and Van Dyk, Meng, and Rubin (1995).
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and E-step and continue until the expected log likelihood difference between two
successive iterations is sufficiently small.

We use the Akaike information criterion (AIC) to choose the number of fac-
tors. The criterion favors models with low AIC values.’ Our computed AIC values
indicate the existence of factor structures.’

D. Information Flow and Volatility Persistence

The underlying information flow plays an important role in generating price
changes, so we further explore its characteristics using the extracted informa-
tion flow, f,. Specifically, we examine whether the information flow accounts
for the serial dependence in returns. Given the extracted information series, f,,
we adjust the observed return series for the information flow by equation (9). If,
as our model implies, the underlying information drives stock returns, the serial
dependence of the adjusted return series should become insignificant. We estimate
a GARCH(1, 1) model for raw and adjusted return series for each sample stock,
respectively. The GARCH(1, 1) model is as follows:

(11) Y+ = ap+agy—1+és,
€t ~ N(O, h[),
he = Yo+ve_; +Yhi—1,

where y; is the observed stock return at time .

Table 4 displays the estimation results (reporting only those with signifi-
cant GARCH persistence). The third column reports the estimates of the
GARCH(1, 1) model for the raw return series. We find that 13 out of the 28 stocks
present persistence in variance. None of the 13 stocks shows significant persis-
tence in return variance after we control for the information effect. The estimates
of the GARCH(1, 1) model for the adjusted return series are all insignificant.

E. Robustness Check

To investigate the model’s market-wide applicability, we run a robustness
check on the constituents of the S&P Composite 1500 using daily data from
Jan. 1, 2004, through Dec. 31, 2006.

The matrix structure inherent in multi-asset settings and the slow conver-
gence rate of the EM algorithm raise technical difficulties that prevent us from
estimating the model on a broad cross section of stocks simultaneously. To re-
solve this technical issue without sacrificing generality, we divide the stocks in
each S&P index respectively into six categories according to market capitaliza-
tion and trading volume. Specifically, in each S&P index, we select 40 stocks
with the largest (smallest, closest to category average) market capitalization and

SFor example, see Tanner (1993).
The point estimate of the parameter, § (8 = [& B [ 17 €]),inthe 1-factor MDH model
is statistically significant at the 5% level (not reported).
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TABLE 4
Estimates of GARCH(1, 1) for Dow Jones Stocks

Table 4 reports estimates for only those Dow Jones stocks that display significant GARCH persistence. The third column
provides results of the original return series. None of the estimates is significant when the information effect is controlled.

Ticker Parameter Estimate
AIG 1 0.1480
AXP Y1 0.1455

2 0.5978
o] 1 0.1592
DD v 0.1942
GE 1 0.1084

Yo 0.7057
HD 1 0.1045
HON Y1 0.1891

Yo 0.5242
INJ Y2 9.9997 x 107
KO Y1 0.2622
MMM 1 0.1822
MRK Y1 0.0706

o 0.8337
T o 0.9753
WMT o 0.4553

40 stocks with the largest (smallest, closest to category average) trading volume.
Therefore, the sample includes 720 stocks that trade on the NYSE, and each of
the 18 categories contains 40 stocks.

The results from the Pearson correlation and canonical analyses are similar
to those for the Dow Jones stocks (not reported), which support the predictions
of Propositions 1-4. The model estimation results indicate the general existence
of factor structures in stock returns and trading volume (see Table 5).

Table 6 reports the before- and after-adjustment GARCH comparison re-
sults. The third column displays the number of stocks with significant GARCH
persistence in each category before the information adjustment. The fourth col-
umn presents the GARCH reduction percentages after the adjustment. Generally,
half of the GARCH persistence becomes statistically insignificant. More inter-
estingly, the reduction percentage increases with market capitalization and de-
creases with trading volume. We conjecture that this is because stocks with small
market capitalizations and large trading volumes may have fewer participants and
more noise trades, which is inconsistent with our model’s normal-approximation
requirement for high J as well as no-liquidity-trade specification and may induce
more estimation errors.’

70ur model does not explicitly distinguish how uninformed investors’ behavior affects volatility
as well. However, many studies suggest that volatility in crises is magnified due to panic selling of
uninformed investors, implying an increasing role of uninformed investors in generating volatility
(see, e.g., Fleming, Kirby, and Ostdiek (1998), Kyle and Xiong (2001)). We carry out our empirical
analysis for the 2008 period. The GARCH persistence reduction percentages in all categories are
very low. Therefore, it is desirable to provide a theoretical model where the volatility effects of the
information flow and uninformed investors can be separated in empirical work.
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TABLE 5
Factor Structures of Returns and Trading Volume for S&P Index Stocks

Table 5 reports some estimation results of the common-factor MDH model for the S&P index stocks. We divide the con-
stituents of each of the three S&P indices into six categories according to market capitalization and trading volume. For
estimation convenience, each category contains 40 stocks. The third column provides the number of factors in returns and
volume selected by the AIC.

Factor Structures of
S&P Indices Categories Returns and Trading Volume

S&P 400 Smallest market cap
Average market cap
Largest market cap
Smallest volume
Average volume
Largest volume

S&P 500 Smallest market cap
Average market cap
Largest market cap
Smallest volume
Average volume
Largest volume

S&P 600 Smallest market cap
Average market cap
Largest market cap
Smallest volume
Average volume
Largest volume

A U P

TABLE 6
GARCH Comparison Results for S&P Index Stocks

The third column of Table 6 reports the number of stocks in each category whose original return series present GARCH
persistence. The fourth column provides the persistence reduction percentages of the information-adjusted return series in
each category. The fifth column provides the persistence reduction percentages of the VIX-adjusted return series in each
category. VIX is the predicted VIX from its regression on extracted information, /.

Original Information-Adjusted \7|3<-Ad}usted
S&P Indices Categories Return Series Return Series Return Series
S&P 400 Smallest market cap 27 70.37% 3.70%
Average market cap 28 64.29% 7.14%
Largest market cap 24 50.00% 4.17%
Smallest volume 28 75.00% 7.14%
Average volume 30 63.33% 0.00%
Largest volume 20 60.00% 10.00%
S&P 500 Smallest market cap 29 65.52% 3.45%
Average market cap 31 77.42% 0.00%
Largest market cap 31 74.19% 0.00%
Smallest volume 30 73.33% 0.00%
Average volume 29 68.97% 3.45%
Largest volume 30 60.00% 0.00%
S&P 600 Smallest market cap 31 29.03% 3.23%
Average market cap 30 53.33% 0.00%
Largest market cap 26 46.15% 3.85%
Smallest volume 32 62.50% 3.13%
Average volume 30 46.67% 3.33%
Largest volume 29 37.93% 6.90%

Because of the notion that the information flow generates return volatility,
the implied volatility index (VIX) is perceived as a good proxy for the information
flow.> However, the VIX is just an average of implied volatility; it is in fact a

8Empirical studies have been conducted to test whether the VIX is a superior informative variable
(see, e.g., Blair, Poon, and Taylor (2001), Degiannakis and Floros (2010)).
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jumble of many influences, and there is not much a priori reason to expect it to
rigorously capture informational events. We find that the time-varying features of
the VIX and the extracted information flows are quite different by observing their
time-series plots (see Figure 1). Graphs A and B present the time-series plots of
the estimated daily information flow and intraday information flow, respectively.
They appear to be more stationary than the daily VIX series, which shows some
trends over time (see Graph C).

FIGURE 1
Time-Series Plots of VIX and Estimated Information Flows

Graph A of Figure 1 displays daily information flow from Jan. 1, 2004, through Dec. 31, 2006; Graph B displays half-hour
intraday information flow from April 1 through June 30, 2007; and Graph C displays daily VIX from Jan. 1, 2004, through
Dec. 31, 2006.

Graph A. Daily Information Flow
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Graph B. Intraday Information Flow
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Graph C. Daily VIX
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0.0

1 101 20 301 401 501 601 701
Day

To examine directly the relation between the VIX and information flow, we
project the extracted information flow /; on the VIX by a simple linear regres-
sion model and use the predicted value (\75(, in the following equation) as the
informational content of the VIX.’

9The estimated value of by, the projection coefficient of I, on the VIX, is 0.00003863 and statisti-
cally significant at the 5% level.
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(12) VIX, = by+bil,.

We carry out a similar return adjustment for \75(, APyix = AP/V \713(, and
run GARCH model (11) on the Vﬁ(-adjusted return series for each stock. The fifth
column of Table 6 presents the results. Comparing the results for Vﬁ(-adjusted
returns with those for information-adjusted returns in Table 6, it is clear that the
VIX is an inadequate proxy for the information flow.'”

IV. Summary

We extend a single-asset MDH model in Tauchen and Pitts (1983) to a
multiple-asset setting. The model retains all the properties of the standard MDH
model. In addition, it explains commonality in stock returns and trading volume.
In our model, cross-firm variations result from information in two ways: through
its impact structure (e.g., an industry or size or market effect) and through its ar-
rival rate. The model yields a similar econometric specification to Hasbrouck and
Seppi’s (2001) factor model; however, our model predicts that factor structures of
returns and trading volume are independent.

Using intraday data for the Dow Jones stocks and daily data for the S&P
index constituents, the model seems to provide a useful framework that captures
the stylized facts of the data. The empirical results are generally consistent with
our model’s implications. Specifically, the estimated information flow appears to
capture the heteroskedasticity in stock returns.

Although the estimation result identifies the general existence of factor struc-
tures in both returns and volume, we find no patterns in the estimated factor
loadings. Therefore, the identity of the impact structure of information remains
unknown.
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