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The trajectory tracking of Autonomous Underwater Vehicles (AUV) is an important research
topic. However, in the traditional research into AUV trajectory tracking control, the AUV often
follows human-set trajectories without obstacles, and trajectory planning and tracking are sepa-
rated. Focusing on this separation, a trajectory re-planning controller based on Model Predictive
Control (MPC) is designed and added into the trajectory tracking controller to form a new con-
trol system. Firstly, an obstacle avoidance function is set up for the design of an MPC trajectory
re-planning controller, so that the re-planned trajectory produced by the re-planning controller
can avoid obstacles. Then, the tracking controller in the MPC receives the re-planned trajectory
and obtains the optimal tracking control law after calculating the object function with a Sequen-
tial Quadratic Programming (SQP) optimisation algorithm. Lastly, in a backstepping algorithm,
the speed jump can be sharp while the MPC tracking controller can solve the speed jump prob-
lem. Simulation results of different obstacles and trajectories demonstrate the efficiency of the
proposed MPC trajectory re-planning tracking control algorithm for AUVs.
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1. INTRODUCTION. The trajectory tracking control of Autonomous Underwater
Vehicles (AUVs) infers that an AUV will follow a predefined reference trajectory under
the designed control law. It starts from a given initial state and achieves global uniform
asymptotic stability on the premise of meeting the requirements of position error (Fossen,
2002). The underwater environment is complex and changeable, and the study of trajectory
tracking control and AUV obstacle avoidance has been a research hotspot.

From earlier studies, it is known that sliding mode control can be used in the tracking
control system (Barth et al., 2016; Jia et al., 2012). Sliding mode control is essentially a
special class of nonlinear control, it is insensitive to parameter changes and does not need
to accurately model vehicle dynamics. For example, in Wu et al. (2017), a novel adaptive

https://doi.org/10.1017/S0373463318000668 Published online by Cambridge University Press

mailto:zdq367@aliyun.com
https://doi.org/10.1017/S0373463318000668


322 ZHEN HU AND OTHERS VOL. 72

terminal sliding mode controller with a strictly lower convex function is proposed for the
longitudinal dynamics of a Hypersonic Flight Vehicle (HFV), and the controller exhibits
an excellent robustness and disturbance rejection performance. Work has been done on
tracking control for AUVs (Bessa et al., 2008; Bagheri and Moghaddam, 2009; Serdar et al.,
2008), but the ‘chattering’ problem still exists. Frequent buffeting will cause significant
loss of electric power and excessive wear of actuator mechanisms, which will have a great
influence on the precision equipment of an AUV. The neural network algorithm has been
studied for tracking control of robots (Ye, 2014; Hoseini et al., 2008). Pan et al. (2013)
proposed a single-layer neural network structure for tracking control. In Miao et al. (2013),
an adaptive neural network controller was reported, and a Radial Basis Function (RBF)
neural network was used to calculate the tracking error and achieved stable tracking. Neural
network control does not need a precise dynamics model, and it has strong adaptability
and learning ability. It is suitable for uncertain or highly nonlinear control objects like an
AUV. However, because of the complex and changeable underwater conditions, the training
sample is difficult to collect and the learning process lags behind.

Backstepping control is widely used in the field of trajectory tracking control for ground
mobile robots (Tsai et al., 2004; Yang and Luo, 2004; Luo et al., 2008). In recent years,
backstepping control has been further applied to trajectory tracking control of underwater
vehicles. For example, in Sun et al. (2014), the backstepping method was integrated with
a bio-inspired model and a control approach was designed for three-dimensional track-
ing control of Unmanned Underwater Vehicles (UUV). Xiang et al. (2015) designed a
nonlinear controller based on Lyapunov theory and the backstepping technique for an
under-actuated and fully-actuated AUV, and smooth control transition between fully/under-
actuated configurations was enabled using this control system, but for the traditional
backstepping algorithm, it will have a speed jump problem if the tracking error is large or a
tracking inflection point exists. As the required thrust in AUV trajectory tracking increases
with the increase of the velocity hopping variable, once the speed jump is too large, track-
ing and planning accuracy will be affected, and the AUV will not be able to maintain the
desired trajectory due to the constraint of limited thrust. Thus, a sharp speed jump should
be avoided in the real motion of an AUV.

The above reported works do not address the internal constraints, including actuator
saturation, velocity increment, and acceleration constraints of the AUV. To include these
constraints in the controller designs, Model Predictive Control (MPC) is an ideal tool,
because it can handle constraints through optimisation procedures. Some work on the track-
ing of AUV and ground robots using MPC has been done in recent years (Li et al., 2016;
Bahadorian et al., 2012). MPC can conduct online optimisation of an objective function
through an input–output predictive model over a finite future horizon of sample times. In
Shen et al. (2016), an objective function based on the current controlled variables can be
optimally computed at each step by a Sequential Quadratic Programming (SQP) algorithm.
In the next horizon sampling interval, the optimisation is re-conducted with updated corre-
sponding variables. Then, a sequence of control inputs can be obtained at each step. MPC
consists of control and planning.

In addition, most of the research into trajectory tracking of AUVs does not take into
account obstacles, and tracks a human-set trajectory to test the tracking efficiency. Tra-
jectory tracking and planning are separated. In the real underwater environment, an AUV
needs to track an online planned trajectory to avoid obstacles (Zhu et al., 2018). Some
research on this problem for unmanned robots has been done in recent years (Kim et al.,
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2002; Cui et al., 2012). However, the study of tracking a planned trajectory with obstacle
avoidance for an AUV is rare.

Building from previous research, this paper focuses on the problem of speed jump and
separation of tracking and planning. Inspired by the guidance and control thought in Xiang
et al. (2018), a trajectory re-planning controller and a trajectory tracking controller based
on a Model Predictive Control (MPC) algorithm are presented in this paper. Using the AUV
states, the global reference trajectory and the obstacle information from sensors, the MPC
trajectory re-planning controller plans a local reference trajectory (re-planned trajectory)
and provides it to the MPC trajectory tracking controller for guiding the AUV to avoid
obstacles. Because of the initial error, an MPC tracking controller is designed so that it can
make sure the AUV tracks along the re-planned trajectory. The tracking controller deals
with the re-planned trajectory and states information and calculates an optimal control law
after solving an objective function with AUV system constraints by a SQP optimisation
method. Finally, under the two-layer control frame synthesising the planning and track-
ing, the AUV overcomes the initial state error and executes the re-planned trajectory to
avoid obstacles until it reaches the target position. Compared to backstepping control in
different trajectories with different types of obstacles, it can be seen from simulation results
on MATLAB that backstepping control has a sharp speed jump problem, while because
the MPC can deal with models of constraints, the MPC controller can solve the speed jump
problem and stably track the re-planned trajectory to avoid obstacles by taking into account
the input velocity constraints, and the tracking error converges to zero.

The main contribution of this paper is two-fold: First, a MPC trajectory re-planning
tracking control algorithm is proposed to solve the AUV trajectory tracking control prob-
lem. With the proposed MPC, the performance of the tracking control can be significantly
improved. Besides which, the speed jump problem can be simultaneously addressed within
the controller design. Secondly, a MPC re-planning controller is designed and added to the
tracking controller, and the AUV can avoid obstacles in real-time by following a re-planned
trajectory when tracking under the tracking controller.

In this paper, the kinematic model of an AUV is described in Section 2. Then in
Section 3, the algorithm of tracking and re-planning based on MPC is proposed. Simulation
results are given in Section 4 and discussed. The work is summarised in Section 5.

2. THE MULTI-AUV SYSTEM PROBLEM. An underwater vehicle has six degrees of
freedom of motion in space. The kinematics problem is described by setting up a coordinate
system.

2.1. The coordinate system. In order to make the motion analysis of the vehicle
clearer and simpler, this paper uses two coordinate systems to describe the kinematics
problems of an underwater vehicle, an inertial coordinate system and a vehicle coordi-
nate system. Figure 1 depicts the coordinate systems (Sun et al., 2016). Inertial coordinate
system E − ξηζ is also called the Earth coordinate system or fixed coordinate system, and
its origin is a certain point on Earth. Vehicle coordinate system O–xyz is fixed on the AUV
and moves with the AUV.

The vector η = [ x y z φ θ ψ ]T is used to describe the position and attitude of the AUV
in inertial coordinates, and the vector ν = [ u v w p q r ]T describes the linear and angular
velocity of the AUV in the vehicle coordinates. The symbols x, y, z represent the position
of the AUV respectively in inertial coordinates; φ, θ ,ψ represent the attitude of the AUV;
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Figure 1. The coordinate system.

roll angle, pitch angle and yaw angle in inertial coordinates. The symbols u, v, w represent
the three components of the AUV’s linear velocity vector in vehicle coordinates and p , q, r
represent the three components of the AUV’s angular velocity vector in vehicle coordinates.

2.2. Simplified kinematic model. The separate description of the coordinate systems
can reduce the difficulty of understanding to a great extent. The method of combining two
coordinate systems has a coordinate transformation relationship when the kinematic model
is established, and the kinematics equation is obtained as follows:

η̇ = J (η)ν (1)

The matrix J (η) is the posture transformation matrix between inertial coordinates and the
vehicle coordinates. We call it the Jacobi transform matrix.

J (η) =
[

J 1 03×3
03×3 J 2

]
(2)

J 1(η) =

⎡
⎣cosψ cos θ cosψ sin θ sinϕ − sinψ cosϕ cosψ sin θ sinϕ + sinψ sinϕ

sinψ cos θ sinψ sin θ sinϕ + cosψ cosϕ sinψ sin θ cosϕ − cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ

⎤
⎦

J 2(η) =

⎡
⎣1 tan θ sinϕ cosϕ tan θ

0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

⎤
⎦

Since the trajectory tracking we research in this paper is Two-Dimensional (2D), the
rolling, pitching and heaving can be overlooked. Usually, we only consider the trajectory
tracking control problem under the three most common degrees of freedom: surge, sway
and yaw. We can use z = θ = ϕ = 0 and w = p = q = 0 to simplify Equation (1). The mutual
relationship between η = [ x y ψ ]T and ν = [ u v r ]T is as follows:

η̇ =

⎡
⎣ ẋ

ẏ
ψ̇

⎤
⎦ = J (η)ν =

⎡
⎣cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦

⎡
⎣u
v

r

⎤
⎦ (3)

https://doi.org/10.1017/S0373463318000668 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000668


NO. 2 AUV TRAJECTORY TRACKING AND RE-PLANNING 325

Figure 2. Trajectory tracking control system combined with planning layer.

Figure 3. Sketch map of re-planning and tracking.

When the velocity is obtained, the state of the AUV can be obtained by solving differential
equations.

2.3. Description of the trajectory tracking of an AUV. Here we consider the trajectory
tracking problem. This means that we want to find a control law so that the AUV can
track the re-planned reference path. The re-planned reference position of the AUV can be
described as ηd(t) = [ xd(t) yd(t) ψd(t) ], and η(t) = [ x(t) y(t) ψ(t) ] is the actual position. The so-
called kinematic trajectory tracking control of an AUV is through the control of actual
surge speed u(t), sway speed v(t), and yaw speed r(t), so that the AUV can follow the
desired trajectory ηd, which has been given, and ultimately making the error between the
actual trajectory η and desired trajectory gradually converge to zero. That is:

lim
t→∞ eη(t) = lim

t→∞(ηd(t) − η(t)) = 0 (4)

When time t tends to be infinite, the posture error of the AUV approaches to zero.

3. TRACKING AND RE-PLANNING USING MPC. The trajectory re-planning con-
troller is added to the tracking controller and forms a new control system, as shown in
Figure 2. If there is no obstacle in the way, the AUV will track the global reference tra-
jectory under the instructions of the tracking controller, shown as Figure 3(a). When the
AUV encounters an obstacle, the trajectory re-planning controller generates an optimised
trajectory ηd(t) with obstacle avoidance as shown in Figure 3(b), and then the optimised
trajectory is sent to the tracking controller which navigates the AUV to avoid the obstacle.

The inputs of the MPC re-planning controller include the goal point, the deviation of
global reference position, the AUV’s real state η and the obstacle information. The re-
planned trajectory in the prediction horizon with obstacle avoidance can be obtained after
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Figure 4. Model predictive control algorithm.

solving a cost function with obstacles and speed constraints by using the MPC algorithm
and SQP optimisation method. The input of the MPC tracking controller is the deviation of
the re-planned trajectory (in a prediction horizon) and the AUV’s real state η. The tracking
controller based on MPC calculates a tracking control sequence for tracking the re-planned
trajectory by optimising the object function with SQP. Notice that the system constraints,
especially the speed constraints, are added in the object function. Finally, the tracking con-
troller outputs the control signal v (the first item in the optimised control sequence) to the
AUV, and under the control signal, the AUV will return to track the global reference tra-
jectory after avoiding the obstacles. More detailed design information of the controllers is
discussed in Sections 3.2 and 3.3.

3.1. The MPC algorithm. Model predictive control consists of three basic principles,
predictive model, receding horizon optimisation and feedback correction. Based on these
principles, the theory of MPC can be expressed in Figure 4. Np represents the time length of
the predicted output, that is, the prediction horizon. In Figure 4, curve 1 represents a desired
trajectory that always exists. At every time step k, the future system output is predicted for a
pre-determined Np steps ahead of the controller, as shown in curve 2. The predicted outputs
are a function of measurements of current and past inputs and outputs in conjunction with
a future control input. By solving the optimisation problem by minimising a cost function
subject to constraints on the system, a control sequence can be obtained in the control
horizon [k, k + Nc], as shown in curve 4. The first item of the control sequence is the actual
control signal working on the controlled object. When the next moment k + 1 comes, the
above process is repeated to achieve continuous control of the controlled object.

The stages of implementing the MPC algorithm on the tracking control process are
shown in Figure 5. The MPC controller is mainly composed of a predictive model, sys-
tem constraints and an objective function. The predictive model describes the tracking
control system and it is also the basis for building the control algorithm. System con-
straints include physical constraints of the AUV, control constraints, obstacles and so on.
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Figure 5. Stages of MPC algorithm.

The optimisation method is used to solve the objective function and then the optimised
control law is obtained.

3.2. Trajectory tracking controller with MPC. The MPC trajectory tracking con-
troller needs to meet two conditions: (1) The deviation between the actual trajectory and
the desired trajectory should be as small as possible. Here the reference trajectory is the
trajectory after re-planning. (2) The control data obtained should satisfy the restriction of
the AUV speed.

The AUV kinematic model in the horizontal plane has been given as Equation (3). The
input value of the AUV system is a speed vector ν = [ u v r ]T, and the states vector is ξ =
[ x y ψ ]T. For a nonlinear system, the discrete form of its general form is:

ξ (t + 1) = f (ξ (t), ν(t))

ξ (t) ∈ χ , ν(t) ∈ �
(5)

where f () is the state transfer function, and f (0, 0) = 0, that is, the origin of the state
space and input is an equilibrium point. χ denotes the state constraints, and � is the speed
constraints.

The control objective is to steer the state of the system Equation (5) to the origin ξe =
0, ve = 0. For arbitrary time horizon N ∈ Z+, consider the following cost function J N ():

J N (ξ (t), V(t)) =
t+N−1∑

k=t

l(ξ (k), ν(k)) + P(ξ (t + N )) (6)

where V(t) = [ ν(t) ... ν(t+N−1) ]T is the input control sequence over the time horizon and ξ (k)
for k = t, . . . , t + N is the real states trajectory after applying the control data V(t) to the
AUV, starting from the initial state ξ (t). In Equation (6), the first part l() is the stage cost,
and the second part P() is the terminal cost. We assume that Q0 and Q penalise the terminal
trajectory deviation and the running trajectory deviation respectively, and R penalises the
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large input value.

P(ξ (t + N )) = ξ (t + N )TQ0ξ (t + N ) (7)

l(ξ (k), ν(k)) = ξ̃ (k)TQξ̃ (k) + ν(k)TRν(k)

ξ̃ (k) = ξ (k) − ξref, plan(k)
(8)

At each sampling time t we solve the following finite time optimisation problem:

min
Vt,ξt+1,...,ξt+N

J N (ξt, Vt) (9a)

s.t. ξk+t,t = f (ξk,t, νk,t), k = t, . . . , N − 1 (9b)

ξk,t ∈ χ k = t + 1, . . . , t + N − 1 (9c)

νk,t ∈ � k = t, . . . , t + N − 1 (9d)

ξt,t = ξ (t) (9e)

ξN ,t ∈ χfin (9f)

where Equation (9f) is the final state constraint and χfin is a polytope.
Optimal control sequence V∗

t = [ ν∗
t,t ... ν∗

t+N−1,t ] can be obtained after solving Equations
(9) at time t by the SQP optimisation method. Denote by ξ ∗

k,t for k = t, . . . , t + N the opti-
mal state trajectory obtained by applying the optimal input sequence V∗

t to Equation (9b).
According to the basic principles of model predictive control, only the first element of the
sequence is applied to the plant:

v(ξ (t)) = v∗
t,t (10)

At the next sampling time, the optimisation problem Equations (9) are solved over a shifted
horizon. For more information, see Falcone (2007).

Remark: In the formulation of the constrained finite-time optimal control Equation (9),
we distinguish between the state ξ (t) and input control V(t) of the system Equation (5) and
the variables ξk,t and vk,t of the optimisation Equation (9).

3.3. Trajectory re-planning controller with MPC. According to the actual situation,
in order to improve the accuracy and reduce the error, the trajectory re-planning and track-
ing controller based on MPC needs to meet certain conditions: (1) The deviation between
the re-planning trajectory and the given global reference trajectory information should be
as small as possible. (2) The planned trajectory must satisfy the kinematic constraints of
the AUV. (3) The planned trajectory can successfully avoid obstacles and meet the safety
requirements (Xiang et al., 2017).

3.3.1. Select the reference point. Trajectory re-planning requires the calculation of
the deviation between the reference trajectory and the predicted trajectory: η − ηref . The
method developed by Yoon et al. (2009) is used for basic obstacle avoidance. In order to
avoid the phenomenon that the reference point has been re-selected as a new reference
point, it is necessary to add the target point information in the selection process of the
reference trajectory point.

In the inertial coordinate system, two lines from the AUV parallel to the X and Y axes
intersect with the global reference trajectory, and these lines produce two intersection points
on the reference trajectory, shown in Figure 6. Point ηk represents the AUV’s position at
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Figure 6. Method for trajectory error calculation.

k time; two intersection points are found on the reference line corresponding to this point,
ηd,k,1 and ηd,k,2. Calculate the distance between the goal point and the two intersection
points respectively and select the intersection point that is closer to the goal point as the
real reference starting point. So, in this case, ηd,k,2 is chosen to be the reference point. When
the next time k + 1 comes, the AUV comes to point ηk+1, ηd,k+1,4 will be the real desired
point due to its proximity to the goal point. Thus, the reference trajectory criterion has
considered the approach to the goal point rather than just following the trajectory in any
direction (Abbas et al., 2017).

3.3.2. Obstacle avoidance function. The basic idea of a penalty function is to adjust
the function value according to the deviation range between the obstacle point and the
object point, and the smaller the range, the greater the function value. Obstacle avoidance is
incorporated into the controller as a constraint, by including a point-wise repulsive potential
function J obs,i into the cost:

J obs,i =
Sobsvi

(xi − x0)2 + (yi − y0)2 + ζ
(11)

where Sobs is the weight coefficient, vi = v2
x + v2

y , (xi, yi) is the current location of the AUV
and (x0, y0) is the location of the obstacle to be avoided. ζ is a small positive number that
prevents the denominator from going to zero. In order to make the trajectory planning
feasible, it is necessary to expand the obstacle according to the size of the AUV. This paper
uses the radius of the inner tangent circle and the outer circle of the moving centre of the
AUV as the dimension for the expansion of the obstacle. When the size of the obstacle
is large, it is necessary to segment the obstacles according to a certain resolution so as to
prevent the AUV from passing through the obstacle.
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The goal of trajectory re-planning is to minimise the deviation from the global reference
trajectory when avoiding obstacles. R and Q are positive-definite matrices, ηplan and ηref
denote the re-planned trajectory and the global reference trajectory respectively and U is
the control input of the re-planning controller. The MPC re-planning controller is designed
using the following cost function:

min
Vt

Np∑
i=1

∥∥ηplan(t + i|t) − ηref (t + i|t)∥∥2
Q + ‖Ui‖2

R +
Nobs∑
j =0

J obs,i,j (12)

s.t. Umin ≤ Ut ≤ Umax

The cost function Equation (12) has been generalised to include as many obstacles as
desired. Any obstacle shape can be generalised by this simple point obstacle method J obs,i
if the nearest point on that obstacle is determinable. For example, if a linear object is to
be avoided, an appropriate method can be used to find the nearest point on the obstacle’s
surface and then we treat this point as J obs,i. The case with circular obstacles is similar.

According to the AUV kinematic model given by Equation (3), we generalise differential
Equation (3) as η̇ = f (t, η). By making the function discrete and using the one-step Euler
method, the iterative equation can be obtained:

ηn+1 = ηn + hf (tn, ηn) (13)

where f () denotes the transfer function, h is the iterative step size, and ηn+1 is the predicted
output. In this part, the optimised control input in control horizon U∗

t = [ u∗
t+i ... u∗

t+Nc−1 ] can
be obtained after solving the optimisation problem by the SQP method. The last control
input, u∗

t+Nc−1, is held constant until the end of the prediction horizon Np . Only the first
optimal control input calculated in the control sequence is implemented on the plant. Then
the process starts over. The objective is to get the predicted output ηplan(t + i) to avoid the
obstacles and reduce the planning error of the predicted trajectory ηplan(t + i) (re-planned
trajectory) and global reference trajectory ηref (t + i) by utilising the proposed inputs u∗

t+i
during the prediction horizon Np .

The re-planned trajectory ηplan(t + i) will be sent to the tracking controller (designed
in Section 3.2) and the relationship between the trajectory re-planning controller and the
AUV tracking control is: the trajectory re-planning controller guides the AUV to avoid
obstacles during the tracking control process. After avoiding obstacles, the AUV can revert
to following the global reference trajectory, until it reaches the goal point.

4. SIMULATION RESULTS. In order to verify the effectiveness of trajectory tracking
and re-planning with the MPC algorithm, simulation results on MATLAB are outlined
in this Section. The simulation conditions consist of different kinds of trajectories and
obstacles. We compare the algorithm’s performance with the backstepping tracking control
method, observe and record the results.

4.1. Circular re-planning and tracking. The original circle trajectory is defined as
follows: ⎧⎪⎨

⎪⎩
xd = 10 ∗ sin(0·5 ∗ t)
yd = −10 ∗ cos(0·5 ∗ t)
ψd = 0·5 ∗ t
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Figure 7. Re-planned trajectory.

We put linear and point obstacles into this circle path, and set the simulation condition.
For normal situations, the actual initial position of the AUV is not on the reference tra-
jectory. Here the initial reference position is ηd = [ xd yd ψd ]T = [ 0 −10 0 ]T, and the actual
initial state of the AUV is set as η = [ 0 −5 π/4 ]T. There are 300 sampling points on the ref-
erence trajectory, and the sampling time T = 0.05s, prediction horizon Np = 9 and control
horizon Nc = 2. The linear speed limit is −8 m/s ≤ ulinear ≤ 8 m/s and yaw speed limit is
−1 rad/s ≤ r ≤ 1 rad/s. The weighting coefficient is Sobs = 200. The backstepping control
parameter is k1 = k2 = 12.

Based on the situations above, the MPC trajectory re-planning controller produces a
new reference trajectory to navigate the AUV to avoid obstacles when tracking the trajec-
tory. This new reference trajectory is called the re-planned trajectory in this paper, which
is shown in Figure 7. Obstacle 1 is close to the original trajectory, obstacles 2 and 4 are on
it, and obstacle 3 is far away from it. It is clear in Figure 7 that the re-planned trajectory
successfully avoids the obstacles and maintains a safe distance. So, the MPC re-planning
controller is working. The tracking controller makes the AUV follow the re-planned tra-
jectory, and the tracking results of backstepping and MPC control are shown in Figure 8.
The AUV resumes tracking the circle reference trajectory after successfully avoiding the
obstacles.

The red dotted line in Figure 8 represents backstepping tracking results, and the blue
dotted line represents the MPC tracking results, while the black solid line represents the
reference trajectory (re-planned trajectory). As can be seen in Figure 8, when the AUV
reaches the re-planned trajectory and begins to track steadily, the three lines almost coincide
and the trajectory tracking errors are close to zero. This means the tracking controllers
based on both the backstepping and MPC methods ultimately allow the AUV to overcome
the initial error and track the predetermined path successfully. However, the backstepping
control result in Figure 8 is obtained without considering the AUV control constraints (for
example, thruster and power); here it assumes that control can be realised unconditionally,
and it is a simulation result, while in the actual use of backstepping tracking, the control
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Figure 8. Re-planned trajectory tracking control.

Table 1. Normalised velocity comparison of circular tracking.

u v r

Controller C D C D C D

Backstepping −5·80 2·99 −6·18 −2·28 2·95 −0·98
MPC −0·9 −0·65 −0·88 −0·88 0·13 0·13

signal given by the simulation result here is often beyond the permissible limit. So, in
reality the AUV cannot track the re-planned trajectory as calculated under the backstepping
control, while the result of the MPC method is obtained with due consideration of the AUV
system constraints, and has a higher practical value. More analysis can be seen below.

In order to make a comparative analysis of the simulation results more intuitive and
accurate, a normalised method is adopted to process the boundary conditions of the veloci-
ties. Here the maximum velocity of the AUV is 8 m/s, and the minimum is −8 m/s. With the
normalisation of AUV velocities, the acceptable normalised value for an AUV is limited to
the range [−1, 1]. The normalised velocity curve and speed jump of these two controllers
are shown in Figures 9 and 10 in which it is obvious that the two lines almost coincide and
remain stable to the end, which means a successful tracking. However, at the beginning,
the normalised velocity values of backstepping are much bigger than those of MPC. For
example, the difference between these two methods is obvious at time 0·05 s and 0·1 s, cor-
responding to points C and D in Figure 9, and the time interval between them is 0·05 s (a
sampling step).

Table 1 shows the normalised velocity at points C and D. The MPC controller takes into
account the speed constraints, and the speed change is limited, so that in this small time
interval, all normalised velocities of the MPC controller are within the limits [−1, 1]. What
is more, the value changes slowly and the sign of the value keeps steady. However, for the
backstepping tracking controller, from C to D, the linear velocity u changes from a negative
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Figure 9. Comparison of normalised velocity.

Figure 10. Comparison of normalised speed jump.

value −5·80 to a positive value 2·99, v changes from −6·18 to −2·28, and r changes from
2·95 to −0·98. They all exceed the limit [−1, 1] and their sign changes over a sampling
step. Due to the hardware constraints of a real AUV, a large value change is impossible to
realise. The sign of the value represents the directions of motion, and in real conditions,
sign changes over a short period will easily damage the thrusters of an AUV.

Table 2 shows the maximum normalised speed jumps of the AUV at the beginning and at
the obstacle’s position. It can be seen in the table that at the beginning, for the backstepping
algorithm, the maximum linear speed jump 
uc and 
vc are 8·78 > 1 and −6·18 < −1,
and the yawing speed jump 
rc is −3·91 < −1, and all exceed the range [−1, 1]. The
maximum speed jumps 
uc, 
vc and 
rc of the MPC algorithm are −0·9, −0·65 and
−0·88 at the beginning, and clearly all of them are within the limit range [−1, 1]. Also,
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Table 2. Maximum normalised speed jump of circular tracking.

Beginning Obs2 Obs4

Controller 
uc 
vc 
rc 
uc 
vc 
rc 
uc 
vc 
rc

Backstepping 8·78 −6·18 −3·91 0.19 −0·25 −0·07 0·42 −0·42 −0·21
MPC 0·35 0·18 −0·25 0·11 −0·19 −0·01 0·23 0·40 0·13

Figure 11. Computation time per controller step.

the values in Table 2 show that the speed jump of the MPC around the obstacles is smaller
than the backstepping control and are within the constraint [−1, 1], meaning that trajectory
tracking and obstacle avoidance are more achievable using the MPC algorithm.

Figure 11 shows the calculation times per controller step in circle trajectory tracking, and
the green broken line represents the computation time of the MPC re-planning controller
(minimising the deviation from the global reference trajectory when avoiding obstacles),
and the blue line shows the calculation time of the MPC trajectory tracking controller. From
the results it can be seen that if there is an obstacle in range or the vehicle is away from
the desired trajectory, the computation time per controller step increases, and most of the
controller processing is completed within one controller time step, which tells us that the
proposed method is suitable for online application. It is worth mentioning here that these
time measurements are highly variable, depending on factors such as the processor speed
and programming environment, and are presented here for reference purposes only.

An AUV has hardware constraints and driving force limits. The condition of sharp speed
jump (outside the range of [−1, 1]) and sign changes over a short period cannot be realised
in actual use. So, in reality, the backstepping method cannot track the re-planned trajectory
as per the simulation results. The model predictive control method has no sharp speed jump
or fast sign changes because it operates within the constraints, so the MPC control process
is easier to achieve in real life.
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Figure 12. Re-planned trajectory.

4.2. Polyline re-planning and tracking. In order to verify the universality of the re-
planning and tracking algorithm, a polyline test is made. The original polyline trajectory is
defined as follows:

When 0 ≤ t ≤ 5 s,

⎧⎪⎨
⎪⎩

xd(t) = 0·8 ∗ t + 3
yd(t) = 0·8 ∗ t
ψd(t) = π/4

,

When 5 s ≤ t ≤ 10 s,

⎧⎪⎨
⎪⎩

xd(t) = 0·8 ∗ (t − 1) + 3·8
yd(t) = 4
ψd(t) = 0

,

When 10 s ≤ t ≤ 15 s,

⎧⎪⎨
⎪⎩

xd(t) = 0·8 ∗ (t − 2) + 4·6
yd(t) = 0·8 ∗ (t − 2) − 2·4
ψd(t) = π/4

.

The sampling time T is 0·05s, prediction horizon Np = 8, control horizon Nc = 2.
The linear speed and yaw speed limit are −3 m/s ≤ ulinear ≤ 3 m/s and −1 rad/s ≤ r ≤
1 rad/s. There are 300 sampling points on the reference trajectory, and the backstepping
control parameters are k1 = k2 = 12. The weighting coefficient is Sobs = 10. Point and linear
obstacles are put on the original polyline path. The MPC re-planning controller will then
produce a re-planned trajectory to avoid the obstacles. This re-planned trajectory is shown
in Figure 12. ‘B’ in Figure 12 is the initial reference position ηd = [ xd yd ψd ]T = [ 3 0 π/4 ]T

and the goal point is ηdg = [ 15 8 π/4 ]T. It is clear in Figure 12 that the re-planned trajectory
can successfully avoid the linear and point obstacles. The actual initial state of the AUV is
η = [ 1 1 π/4 ]T, and is not on the reference trajectory. The AUV tracks the re-planned trajec-
tory to reach the target instead of the original circle trajectory so as to avoid the obstacles.
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Figure 13. Re-planned trajectory tracking control.

The re-planned trajectory tracking results of backstepping and MPC tracking controllers
are shown in Figure 13.

The red dotted line represents backstepping tracking results, and the blue dotted line
represents the MPC tracking results, while the black solid line represents the reference
trajectory (re-planned trajectory). It can be seen from Figure 13 that these two methods
overcome the same initial trajectory error. After the AUV reaches the desired trajectory
and begins to track stably, the three lines almost coincide. This means the tracking con-
trollers based on both backstepping and MPC methods successfully make the AUV track
the trajectory as desired.

As introduced before, Figure 13 is a simulation result and the control is thought to
be realised unconditionally. Due to the real-world AUV constraints, the control data pro-
duced by the backstepping method is difficult to realise. Thus, in reality, the backstepping
controller cannot track a re-planned trajectory such as the result shown in Figure 13.

In this part, the maximum velocity of the AUV is 3 m/s, and the minimum is −3 m/s.
Only a normalised velocity value in the range of [−1, 1] is acceptable for the AUV. The
normalised velocity curve and speed jump of these two controllers are shown in Figures 14
and 15, and it is obvious that the two normalised velocity lines almost coincide as time
progresses. However, at the beginning, in Figure 14, the velocity values of the backstep-
ping algorithm changes quickly. Table 3 shows the normalised velocity of points C and
D, corresponding to times 0·05 s and 0·1 s, and the time interval between them is 0·05 s (a
sampling step).

The MPC controller considers the speed constraints of the AUV, so at points C and D in
Table 3, it can be seen that all normalised velocities of the MPC controller are in the range
[−1, 1] and the sign of the velocity stays steady over this small time step. However from
C to D, the linear velocity u of the backstepping algorithm changes from a positive value
3·65 to a negative value −2·61, v changes from −9·32 to 2·33 and yawing speed r changes
from −3·86 to 2·20. It is clear that u, v and r are outside the range [−1, 1]. Also, in a
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Figure 14. Comparison of normalised velocity.

Figure 15. Comparison of normalised speed jump.

sampling step, the sign changes too quickly and the speed jump is sharp. In real conditions,
as mentioned before, because of the constraints of the AUV, a big speed jump is difficult to
achieve and the fast sign change should be avoided.

Since the polyline is not a continuous trajectory, it is not differentiable at the turning
point. The main problem of trajectory tracking is the speed jump caused by the initial posi-
tion and the error of the turning point position. Table 4 shows the maximum normalised
speed jump of the AUV at the beginning, the obstacle positions and the turning point.
At the beginning, for the backstepping algorithm, the linear speed jump 
uc and 
vc
are −6·26 < −1 and 11·64 > 1, the yawing speed jump is 6·60 > 1, and they all exceed
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Table 3. The normalised velocity comparison of polyline tracking.

u v r

Controller C D C D C D

Backstepping 3·65 −2·61 −9·32 2·33 −3·86 2·20
MPC 1·00 1·00 −0·83 −0·83 −0·50 −0·45

Figure 16. Enlarged view of angular speed jump.

Table 4. The maximum normalised speed jump of polyline tracking.

Turning point

Beginning Obs1 Obs2 
rc

Controller 
uc 
vc 
rc 
uc 
vc 
rc 
uc 
vc 
rc E F

Backstepping −6·25 11·64 6·06 0·26 0·29 −0·60 0·35 0·33 0·60 −0·60 0·60
MPC 0·16 0·20 0·79 0·20 0·45 0·60 0·29 −0·33 −0·52 0·04 0·034

the limit [−1, 1]. The normalised value of the linear and yawing velocities of the MPC
algorithm at the beginning are small and all inside the limit [−1, 1]. At the turning point,
the main speed jump is caused by the angular velocity and the linear speed jump is not
obvious. So here, the angular speed jump is the focus. Points E and F in Figure 15 repre-
sent the angular speed jump of the backstepping method (with enlarged view in Figure 16).
The normalised value at points E and F are −0·6 and 0·6, which are shown in Table 4.
At the same place, the angular speed jumps of the MPC controller are 0·04 and −0·032.
The speed jump of backstepping control is almost 15 times bigger than the MPC con-
trol method. When the AUV encounters the obstacles, the maximum speed jump is in
the acceptable range [−1, 1], which means that with this method trajectory tracking and
avoidance motion can be realised.

Figure 17 shows the calculation times per controller step in polyline trajectory tracking.
Similar to the computation time analysis of circle tracking mentioned above, if there is an
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Figure 17. Computation time per controller step.

obstacle in range or the vehicle is away from the desired trajectory, the computation time
per controller step increases, and most of the controller processing is completed within one
controller time step, showing that the proposed method is suitable for online application.
Notice that computation time is presented here for reference purposes only, because these
time measurements are highly variable depending on factors such as the processor speed
and programming environment.

As introduced in Section 4.1, sharp speed jumps and fast sign changes will not work
in reality. So, the backstepping method cannot track a re-planned trajectory such as in our
simulation results. The MPC algorithm, because of its own constraints, is more achievable
in real life.

From the two simulation results above, it can be seen that the MPC re-planning method
can successfully plan a trajectory to avoid the obstacles. Model predictive control can
accomplish a certain function in meeting the constraint conditions, and the trajectory track-
ing based on MPC can help the AUV solve the speed jump problem effectively compared
to the trajectory tracking of the backstepping algorithm.

5. CONCLUSIONS. Based on the model predictive control algorithm, the trajectory
re-planning and tracking problem of an autonomous underwater vehicle has been studied.
In this paper, on the one hand, the reference trajectory is a re-planned one based on an
MPC algorithm with obstacle avoidance, and it is not a simple human-set trajectory with-
out considering obstacles. On the other hand, through the simulation results, it can be seen
that both the backstepping controller and the MPC tracking controller can make an AUV
track along the re-planned trajectory to avoid obstacles. In comparison with the backstep-
ping algorithm, the MPC algorithm is more feasible in solving the speed jump problem
in re-planned trajectory tracking control of an AUV, because of its own constraint ability.
However, in order to make it easier to understand and calculate, at present only a kinematic
control problem is studied in this paper. The control problem of a dynamics model will
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be studied in the following work. The study of kinematics will lay a foundation for the
expansion of dynamics.
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