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We report on direct numerical simulations of the effect of electrostatic charges on
particle-laden duct flows. The corresponding electrostatic forces are known to affect
the particle dynamics at small scales and the associated turbophoretic drift. Our
simulations, however, predicted that electrostatic forces also dominate the vortical
motion of the particles, induced by the secondary flows of Prandtl’s second kind of
the carrier fluid. Herein, we treated flows at two frictional Reynolds numbers (Reτ =
300 and 600), two particle-to-gas density ratios (ρp/ρ = 1000 and 7500) and three
Coulombic-to-gravitational force ratios (Fel/Fg = 0, 0.004 and 0.026). In flows with a
high density ratio at Reτ = 600 and Fel/Fg = 0.004, the particles tend to accumulate at
the walls. On the other hand, at a lower density ratio, respectively a higher Fel/Fg of 0.026,
the charged particles still follow the secondary flow structures that are developed in the
duct. However, even in this case, the electrostatic forces counteract the particles’ inward
flux from the wall and, as a result, their vortical motion in these secondary structures
is significantly attenuated. This change in the flow pattern results in an increase of the
particle number density at the bisectors of the walls by a factor of five compared with
the corresponding flow with uncharged particles. Finally, at Reτ = 300, ρp/ρ = 1000 and
Fel/Fg = 0.026 the electrostatic forces dominate over the aerodynamic forces and gravity
and, consequently, the particles no longer follow the streamlines of the carrier gas.

Key words: particle/fluid flow, turbulence simulation

1. Introduction

The preferential concentration of solid particles in wall-bounded turbulent flows is
of primary importance in a wide range of technological applications. For this reason,
it has been the subject of numerous experimental and numerical studies over the
years. In general, particle accumulation results from the complex interplay between the
forces acting on the particles: aerodynamic, inertial, collisional and gravitational forces.
In practice, however, in confined flows particles usually acquire a certain amount of
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electrostatic charge through triboelectric effects, i.e. via collisions of particles with the
walls or with other pre-charged particles. In some applications, such as powder coating
(Yang et al. 2016), electrostatic precipitation (Horender, Schaub & Sommerfeld 2014),
triboelectric separation (Labair et al. 2017) and spray painting (Böttner & Sommerfeld
2002), particle charging takes place deliberately to control the particles’ trajectories.
However, in some other powder-handling facilities, such as fluidized beds, it occurs
incidentally and leads to operational problems (Fotovat, Bi & Grace 2017, 2018). For
example, due to particle–wall adhesion the charged particles can coat vessel walls,
which requires frequent cleaning (Sippola et al. 2018). Also, the dynamics of fluidized
beds is greatly influenced by electrostatic interactions (Jalalinejad, Bi & Grace 2012,
2015). In pharmaceutical devices, e.g. dry powder inhalers, electrostatic effects deteriorate
the effectiveness of the final product (Wong, Kwok & Chan 2015). During pneumatic
conveying, where the emerging charge levels are particularly high (Klinzing 2018),
high concentrations of charged particles may lead to spark discharges, with devastating
consequences. In the past, spark discharges have caused numerous dust explosions in
chemical and process industries (Eckhoff 2003). Thus far, the effect of triboelectric
charging and the ensuing electrostatic forces on particle concentrations has not been
investigated in detail. Therefore, many questions on this topic still remain open.

Uncharged solid particles are well known to distribute non-uniformly in wall-bounded
turbulent flows. This is related to their turbophoretic drift, i.e. the tendency of particles
to migrate towards regions of reduced turbulent kinetic energy (Caporaloni et al. 1975;
Reeks 1983). The design of advanced flow solvers and the ever-increasing power of
modern computer has made possible to study the phenomenon of turbophoresis via direct
numerical simulations (DNS). For example, one of the earliest DNS on this topic was
that of McLaughlin (1989). Turbophoresis was further explored by Marchioli & Soldati
(2002) who performed DNS of particle-laden flow over a smooth flat plate. Therein,
they reported that, as the characteristic particle response time scale becomes shorter, the
particles congregate faster and closer to the flat wall. In the same study, the authors also
identified the coherent structures that are responsible for the entrapment of particles in the
near-wall region. More recently, the study of Wang (2010) on turbophoresis in channel
flows elucidated the preferential location for particles of different inertia and number
density.

On the other hand, the properties of duct flows are quite different to those of flows over
a flat plate or even channel flows. This is due to the absence of a homogeneous direction
which results in the development of secondary flow structures. More specifically, as shown
schematically in figure 1, duct flows are characterized by the formation of Prandtl’s
secondary flows of the second kind (Prandtl 1927; Bradshaw 1987; Nezu 2005). These
secondary flows are formed due to turbulence-driven gradients of the Reynolds stress and
are related to the variations of the probability distribution of the coherent flow structures
(Uhlmann et al. 2007; Pinelli et al. 2010; Kawahara, Uhlmann & VanVeen 2012).

Although these secondary flows involve only small-amplitude fluid motion, they have a
significant effect on the overall momentum and mass transport. For example, in a duct with
square cross-section, the mean secondary flow follows the well-known 8-vortex pattern,
as can be observed in figure 1. The intensity of the spanwise motion inside these vortices
is between 1 % and 2 % of the bulk fluid velocity (Pirozzoli et al. 2018). Nonetheless, the
role of these vortices is important because they transport high-momentum fluid from the
duct core towards the corners.

It is also important to mention that the turbulence modelling of such secondary flows
is particularly challenging because the eddy viscosity can no longer be assumed to be
isotropic. Standard turbulence models, however, are based on the assumption of isotropy
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FIGURE 1. Symmetry planes of the duct and streamlines of induced Prandtl’s secondary flow
of the second kind. The arrows indicate the direction of the possible particle motion in the
cross-section following the gas phase.

and, therefore, cannot satisfactorily handle secondary flows induced by Reynolds-stress
gradients (Speziale 1982; Mani et al. 2013).

In the case of particle-laden flows, these secondary motions of the second type have a
strong effect on the local concentration of particles. Actually, particle-laden flows in ducts
have been the subject of several numerical studies that have appeared in the literature,
albeit they are not as much investigated as single-phase duct flows. For example, Wang,
Zhao & Yao (2019) studied an open duct flow confined by three walls of the Reynolds
number Re = 83 000. Therein, it was demonstrated that relatively light particles, of Stokes
number St between 3.2 and 96.6, tend to move diagonally in the direction indicated by the
arrow A in figure 1 and to accumulate in the corners. Wang et al. (2019) also showed that,
on the other hand, heavy particles (St > 323) are much less affected by secondary flows
and are more likely to concentrate in the bulk of the duct. Further, Yao & Fairweather
(2010) performed large-eddy simulations (LES) to study particle resuspension in a duct
flow at Re = 250 000. In that study, the authors demonstrated that secondary flows enable
the displacement of particles from the wall region back into the bulk of the duct, which
has a significant impact on the local particle concentration. In the same study, it was
also explained that lift forces counteract gravitation and support the transport of particles
parallel to the horizontal walls and in the direction pointed by the arrow B in figure 1.

In another study, Sharma & Phares (2006) highlighted the importance of secondary
flows for particle dispersion in ducts with square cross-sections. They revealed that passive
tracers and low-inertia particles are subject to a lateral advective transport that is absent
in pipe and channel flows. In this manner, the particles tend to circulate between the core
and the boundary of the duct, i.e. following arrows A, B and C that are shown in figure 1.
On the other hand, high-inertia particles follow mainly follow the directions of arrows A
and B and tend to accumulate close to the wall.

With regard to electrostatics, as mentioned above, particles usually carry a certain
amount of electric charge. The emerging electric field significantly modifies the flow
patterns of the particulate phase due to electrostatic forces between particles (Dhodapkar
1991). In some cases, these forces have a counterintuitive effect; for example, they may
cause particles to move upstream and against the fluid flow (Myler 1987). At present,
numerical studies on triboelectric charging in particle-laden duct flows are particularly
scarce. This may be attributed to the complexity of the system of governing equations
which consists of the Navier–Stokes equations for the fluid, the electric field equation, plus
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the equations of motion of the particulate phase suitably modified so as to take into account
the particle–fluid and particle–electric field interactions. As a result, our understanding of
this type of flows remains rudimentary.

Recently, Yao, Li & Zhao (2020) studied via LES the effect of the electrostatic field on a
particle-laden pipe flow at Re = 44 000, by assuming one-way coupling between particles
and carrier fluid. According to these simulations, the electrostatic forces on particles
dominate over aerodynamic forces and gravity in the near-wall region. This resulted in
higher particle concentrations close to the wall and lower ones in the bulk of the pipe, the
latter one been defined as up to 95 % of the pipe’s radius. DNS of triboelectric powder
charging were performed by Grosshans & Papalexandris (2017a); however, that study
treated channel flows and was limited to the initial states of charging. For this reason,
the electrostatic charges had a minor impact on the flow patterns.

To our knowledge, the only available studies on the effect of electrostatic forces on
particle-laden duct flows are the LES reported by Grosshans (2018) and Grosshans et al.
(2019). Those studies, which considered flows at Re = 10 000 and high-inertia particles,
revealed that increasing the electrostatic charge results in (i) higher particle concentration
in the corners of the duct, and (ii) more uniform particle concentrations away from them.
However, the underlying physical mechanism of this behaviour was not explored in those
simulations. It is also worth mentioning that reciprocal investigations, i.e. studies on the
influence of different flow parameters (such as Re or St) on the electrostatic field in duct
flows are also currently unavailable.

In summary, the two-way interaction between electrostatic field and particle-laden
flows in ducts remains largely unexplored. The present work aimed at providing new
insight on this interaction by means of DNS. To this end, we employed our newly
developed computational tool pafiX (2019); its name stands for particle flow simulation
in explosion protection. This tool is available as freeware and is developed specifically for
the study of powder and fluid flows under conditions involving a hazard to operational
safety. In our study, we considered particle-laden flows at two different density ratios,
ρp/ρ = 1000 and 7500, and two different frictional Reynolds numbers, Reτ = 300
and 600.

The paper is structured as follows. Section 2 provides an overview of the governing
equations and the algorithms that are implemented in pafiX for their numerical treatment.
In § 3 we first provide the validation tests of these algorithms and subsequently we present
and discuss the results of our DNS study. Finally, § 4 concludes.

2. Mathematical model and numerical method

In this section we outline the mathematical model and the numerical method for
its solution. The system of governing equations consists of three strongly coupled
parts, namely (i) the Navier–Stokes equations that describe the flow of the carrier gas,
(ii) Gauss’s law for the electrostatic field and (iii) Newton’s law of motion of the solid
particles.

For a constant-density, particle-laden flow, the Navier–Stokes equations read

∇ · u = 0, (2.1a)

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + ν∇2u + F s + F f . (2.1b)

Using standard notation, u, ρ and p stand for the fluid velocity, density and dynamic
pressure respectively. Also, ν is the kinematic viscosity of the fluid. Further, F s is the
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source term accounting for the momentum transfer between the solid particles and the
carrier gas. More specifically, its integral over a control volume, e.g. a computational cell,
is equal to the opposite of the sum of the aerodynamic forces that act on the particles that
are located inside the control volume. Finally, F f represents an externally applied forcing
that balances the momentum loss of the fluid due to wall friction.

As is well known, the dynamic pressure enters the constant-density Navier–Stokes
equations via its gradient and, therefore, its role is to constrain the fluid motion so that
mass continuity (2.1a) is satisfied. In other words, the role of the dynamic pressure is to
limit the fluid to isochoric motions. In the proposed algorithm, this constraint is satisfied
by coupling the continuity and momentum equations through the distributed Gauss–Seidel
scheme originally proposed by Brandt & Dinar (1978). Herein, this algorithm is extended
to three-dimensional domains and non-uniform grids. The underlying idea of this scheme
is to diminish the error in the continuity equation by iteratively adjusting the velocity
field. Afterward, the pressure field is modified accordingly so that the residuals of the
momentum equation at all points remain unchanged. Distributive relaxation represents
an efficient and intuitive alternative to popular velocity–pressure schemes such as
semi-implicit method for pressure-linked equations (SIMPLE) or pressure-implicit with
splitting of operators (PISO) (Ferziger & Peric 2002).

As mentioned previously, the electric field strength E follows Gauss’s law. In the
electrostatic approximation, E is defined in terms of the electric potential ϕel,

E = −∇ϕel, (2.2)

so that Gauss’s law reduces to
∇2ϕel = −ρel

ε
, (2.3)

which is a Poisson equation. In this equation, ρel is the electric charge density. If no
external electric field is present, the electric charge density results directly from the
positions of the individual particles and their individual charge. The electric permittivity
of the solid–gas mixture, ε, can be approximated by the value of the free space either if
the permittivity of the particles is low or if the solid volume fraction is very small (Rivas
& Iglesias 2007; Rokkam, Fox & Muhle 2010) which is the case in our simulations. Thus,
we apply a value of ε = 8.85 × 10−12 F m−1.

The numerical solution of the above equations requires the discretization of the spatial
derivatives of u, p and ϕel. The convective term of the Navier–Stokes equations is
approximated by a fifth-order accurate weighted essentially non-oscillatory scheme (Jang
& Shu 1996). The pressure gradient and viscous terms in (2.1b), as well as the velocity
derivatives of (2.1a), are discretized via fourth-order central differences. Further, the
left-hand side of Gauss’s law (2.3) is discretized via second-order central differences. Then
the discretization of the Poisson equation results in a linear system that can be solved by
standard linear solvers.

In order to keep the high-order discretization schemes simple, the spatial derivatives of
the convective terms are transformed via stretching of the spatial coordinates. For a generic
flow quantity φ, this transformation is performed with the application of the chain rule as
follows,

dφ

dx
= 1

x ′(ξ)

dφ

dξ
, (2.4)

where the prime symbol denotes the derivative of the x variable with respect to the
stretched ξ variable. Thus, the non-uniform grid in the physical x direction is mapped
to the uniform grid in the ξ direction on which the derivatives are then discretized.
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Further, in order to reduce the required memory and computing time, the
deferred-correction method is applied. According to it, the numerical approximation of
a quantity φ is expressed by

φ = φl + (
φh − φl

)old
, (2.5)

where the superscript ‘l’ denotes an approximation by a low-order scheme and ‘h’
an approximation by a high-order scheme. The terms indicated by ‘old’ are computed
explicitly using values from the previous outer iteration. For the computational cells in the
vicinity of a solid boundary there are not a sufficient number of points available to form
a five-point stencil for the high-order discretization of the spatial derivatives. In those
computational cells, only the low-order schemes are retained.

Time integration of (2.1b) is performed via an implicit second-order scheme using a
variable time step, i.e.

∂u
∂t

≈
(
1 + τ n+1/2

)
un+1 − (

1 + τ n+1/2 + τ n−1/2
)

un + (
τ n−1/2

)
un−1

τ n+1/2
tn+1
, (2.6)

with

τ n+1/2 = 
tn+1


tn+1 + 
tn
and τ n−1/2 = 
tn


tn + 
tn−1
. (2.7a,b)

In the above equations, the superscript n is a label for the current time instance, tn , i.e.
the most advanced time at which the solution has been computed. Also, 
tn+1 is the
time step used to advance the solution from the nth time level to the next one. The time
step is determined via the Courant–Friedrichs–Lewy (CFL) condition. For example, in the
simulations presented herein, the maximum Courant number was set equal to 0.2.

The above algorithm has been implemented in staggered grids which are not prone
to the well-known odd–even decoupling between the pressure and velocity fields. More
specifically, the variables p, E and ρel are computed at the cell centres whereas
the velocity vector u and the source term F s are calculated at the centre of the cell
faces. The resulting linear system of equations is solved using the Jacobi method which
facilitates the straightforward parallelization of the code. At each time step, (2.1a), (2.1b)
and (2.3) are relaxed until the L2 norm of the error of each variable drops by three orders
of magnitude from its initial value.

The position of the particles is calculated in the Lagrangian frame of reference. More
specifically, Newton’s second law of motion is solved separately for each particle,

dup

dt
= f fl + f coll + f el + f g. (2.8)

In this equation, f fl represents the acceleration due to the force exerted by the surrounding
fluid on the particle (aerodynamic force), f coll represents the acceleration due to
particle–particle or wall–particle collisions and f el is the acceleration due to electrostatic
forces. Finally, f g stands for the gravitational acceleration.

The acceleration due to the aerodynamic force is computed by the following expression
(Crowe et al. 2012),

f fl = − 3ρ

8ρpr
Cd|urel|urel, (2.9)

where ρp is the particle density, Cd is the particle drag coefficient and urel the particle
velocity relative to the fluid, urel = up − u. The particle drag coefficient, Cd, is computed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.956


Effect of electrostatic charges on particle-laden duct flows 909 A21-7

as a function of the particle Reynolds number, Rep = 2|urel|r/ν, according to the relation
provided by Schiller & Naumann (1933),

Cd =

⎧⎪⎨
⎪⎩

4
Rep

(
6 + Re2/3

p

)
, for Rep ≤ 1000,

0.424, for Rep > 1000.

(2.10)

In addition, the acceleration due to the net effect of gravity on the particle reads

f g =
(

1 − ρ

ρp

)
g, (2.11)

where g is the gravitational acceleration.
As regards the modelling of particle–particle collisions, common methodologies

include the hard-sphere approach of Campbell & Brennen (1985) and the soft-sphere
approach of Cundall & Strack (1979). According to the hard-sphere approach, each particle
is propagated to the next collision, so that the time increment is adaptive and independent
of the time step used to integrate the Navier–Stokes equations, cf. (2.6). Consequently, if
the particulate phase is dense and the collision frequency between particles is high, then
the time increment is reduced significantly and the computation of the particle trajectories
becomes computationally expensive.

On the other hand, the soft-sphere approach allows the volumes of different particles to
occupy at the same time the same space. At each instance, the resulting collisional particle
acceleration is computed and deduced from the amount of overlap of their volumes. The
advantage of this approach is that it allows for a constant time step. However, to obtain
physically realistic results, the particle overlap has to be as limited as possible, which in
turn implies that the computational time step has to be kept small.

In our computational tool pafiX, we implemented a variant of the hard-sphere approach,
namely, the ray casting method. It was proposed by Roth (1982) in the field of computer
graphics to solve a variety of intersection problems and was subsequently extended to
collision detection by Schroeder (2001). For our purposes, we adapted this approach to
detect collisions between spherical particles which allows the use of larger time steps.
More specifically, the time step can be the same as the time step 
t for the Navier–Stokes
equations.

Due to the size of the time step, two particles may not be in contact with each other in the
next two time instances, say at tn+1 and tn+2, even if they collide at some intermediate time
instance (between tn and tn+2). According to our implementation of the ray casting method,
collisions between two particles (see figure 2) are anticipated when a number of criteria
are fulfilled. These criteria are the following, sorted in order of ascending computational
cost.

(i) Check whether the particles are in the same or a neighbouring computational cell.
This check involves the assumption that particles propagate with a velocity of the
order of the fluid phase and therefore do not transverse more than one computational
cell per time step.

(ii) Check whether the vector connecting both particle centroids, z12, and the relative
velocity v∗

1 = v1 − v2 form an acute angle. This test examines if the particles are
propagating towards each other, that is, if they are on a collision course.

(iii) Determine whether the particles will collide with each other if they propagate with
their current velocity, i.e. if they would collide at a later time instance.
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v∗
1

r2r1

v1
∗

z12

n

v∗
n,1

v∗
t,1

x1 x2

xc,1

FIGURE 2. Sketch of the parameters used in the ray casting collision detection approach in the
rest frame of particle 2.

(iv) Control if the particle collision anticipated by the previous condition takes place
during the following time increment, 
tn+1.

If any of these conditions is not fulfilled, then the subsequent conditions are not further
checked and, instead, the particles are propagated with f coll = 0.

If all criteria are fulfilled, a collision is anticipated to take place. In general, this will
be an oblique collision. The collision parameters are computed in the rest frame of one of
the colliding particles. For the collision depicted in figure 2, the particle velocities in the
rest frame of particle 2 are v∗

1 and v∗
2, with v∗

2 = 0. Then, particle 1 is propagated to the
fictitious point xc,1 so that it comes into contact with particle 2. The unit vector along the
line that connects the centres of the two particles is n = xc,1 − x2. Further, the particle
velocity can be decomposed into a component in the direction of n,

v∗
n,1 = n · v∗

1

|n|2 n, (2.12)

and a component that lies on the tangential plane of contact,

v∗
t,1 = v∗

1 − v∗
n,1. (2.13)

The latter component, v∗
t,1, does not change during collision.

The velocity of a particle after collision is given as the sum of the rest-frame velocity and
the post-collision velocity component in the direction of n. Accordingly, the post-collision
velocity of particle 1 reads

v′
1 = v2 + v∗

t,1 + r3
1 − er3

2

r3
1 + r3

2

v∗
n,1, (2.14)

whereas the post-collision velocity of particle 2 reads

v′
2 = v2 + (1 + e)

r3
1

r3
1 + r3

2

v∗
n,1, (2.15)

where r1 and r2 are the radii of the particles and e is the restitution ratio. For the derivation
of (2.14) and (2.15), it was assumed that the particles are made of the same material and,
therefore, the particle densities are equal. Also, for the derivation of (2.15) we took into
account the fact that in the rest frame of particle 2 the velocity of this particle is identically
zero.
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xH

L

z

y

(b)(a)

FIGURE 3. (a) Graphic representation and dimensions of the flow domain. The arrow points
in the direction of the flow. (b) Computational mesh in the cross-section, consisting of 60 × 60
cells.

With regard to wall–particle collisions, we remark that when a particle impacts a wall,
the wall-normal velocity component changes according to

v′ · n = ev · n, (2.16)

with n being in this case the unit vector normal to the wall. On the other hand, the
tangential velocity component of the particle remains constant.

Finally, the last term in (2.8) describes the electrostatic force acting on a given particle
and is given by

f el = QE
mp

, (2.17)

where Q and mp are, respectively, the charge and the mass of the particle. This force
is calculated by superposing the Coulomb interactions between the particle and its
neighbouring particles (say, the particles that at a given time instance reside in the
same computational cell) according to the hybrid method proposed by Grosshans &
Papalexandris (2017b) which is similar to that of Kolehmainen et al. (2016). This approach
is more suitable for wall-bounded flows as compared with Ewald summation and the
particle–particle–particle–mesh (P3M) method (Yao & Capacelatro 2016).

Finally, it is worth mentioning that the entire algorithm is implemented in pafiX in a
Fortran 90 computer code parallelized via the message passing interface protocol (MPI).
As described in appendix A, the algorithm scales excellently on up to 256 processors.

3. Results and discussion

3.1. Numerical set-up
We consider gravity-driven, particle-laden flows in a duct with square cross-section, as
depicted in figure 3(a). The direction of the flow is along the x-axis and aligned with the
gravity vector. In other words, the gravity vector is given by g = (9.81, 0, 0) m s−2. In order
to mimic a very long duct, periodic boundary conditions are applied in the streamwise
x-direction, whereas solid walls are assumed in the y- and z-directions. Also, the duct is
assumed to be grounded and fully conductive, i.e. zero-Dirichlet boundary conditions are
prescribed for the electric potential ϕel at the walls.

The grid is refined close to the solid walls since the near-wall regions are the ones
with the highest velocity gradients. The distribution of grid points in both wall-normal
directions (y- and z-directions) is performed in a fashion similar to that employed by Kim,
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Reτ ρp/ρ St Q ρN Stel Fel/Fg

600 1000 31.5 0.0 pC 108 m−3 0.0 0
600 1000 31.5 0.1 pC 108 m−3 0.1 0.026
300 1000 7.9 0.0 pC 108 m−3 0.0 0
300 1000 7.9 0.1 pC 108 m−3 0.1 0.026
600 7500 197.1 0.0 pC 108 m−3 0.0 0
600 7500 197.1 0.1 pC 108 m−3 0.3 0.004

TABLE 1. Parameters of the numerical simulations.

Moin & Moser (1987) for grid refinement in the wall-normal direction in channel flows.
Thus, the grid points in the y-direction are located at yj =cos θj with θj =( j − 1)π/(N−1)

and j = 1, . . . , N where N is equal to the total number of points in the y-direction. The
number of points, N, and the grid-point distribution in the z-direction are the same as in
the y-direction. The resulting grid for N = 60 is depicted in figure 3(b). On the other hand,
the mesh is uniform in the streamwise x-direction. The DNS presented in this paper have
been performed on the grid consisting of 180 × 120 × 120 cells.

The length of the domain, L, equals six times the duct height, H, which ensures the
statistical independence of the flow quantities in the streamwise direction, i.e. the flow
quantities at L/2 are not correlated to the flow quantities at the periodic boundaries.
Therefore, our results are independent of the size of the chosen computational domain.
In the simulations presented herein, the dimensions of the duct were H = 4 cm and
L = 24 cm.

The flow parameters in our numerical simulations are presented in table 1. The friction
Reynolds number is defined as Reτ = uτ H/ν, where uτ = √

τw/ρ is the friction velocity
and τw is the stress at the wall. The Stokes number is defined as the ratio of the particle
response time scale to the flow time scale, i.e. St = τp/τf . The particle response time scale
is given by τp = 2ρpr2/(9ρν) with ρp being the particle density. The flow time scale is
based on the friction velocity, namely τf = ν/u2

τ . Finally, Q and ρN stand, respectively,
for the electrostatic charge and number density of the particles. These quantities are
expressed in a dimensionless form by the electrostatic Stokes number that we define
similar to Boutsikakis et al. (2020) as the ratio of the particle response time scale to a
time scale characterizing the Coulombic particle interaction, i.e. Stel = τp/τel. Therein, τel

was derived as 2(πεmp/(ρNQ2))1/2. Alternatively, Q and ρN can be non-dimensionalized
as the ratio of the Coulombic to gravitational forces (Kolehmainen et al. 2018), Fel/Fg =
Q2ρ

2/3
N /(4πεmpg). In the definition of Stel and Fel/Fg the reference length scale is the

distance between the centres of two particles assuming a uniform distribution in the
domain.

According to table 1, we investigate the effect of electrical forces for three different
flow conditions: First, a flow of Reτ = 600 and ρp/ρ = 1000 is simulated. Further, Reτ

is reduced to 300 and, finally, ρp/ρ is increased to 7500. For these three cases, the flow
and particle dynamics is studied for uncharged particles. Then, we investigate how these
flows are affected if each particle carries an electrostatic charge of Q = 0.1 pC. More
specifically, the particle number density in all cases is 108 m−3. This implies that the
particulate phase inside the computational domain consists of 38 400 particles. Also, the
particles are monodisperse and spherical, with a radius r = 25 μm. It is worth mentioning
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that we assume there is no charge exchange during particle–particle or wall–particle
collisions.

The validation of the flow solver is presented in appendix B. In addition to the
parameters in table 1, we explored the effect of higher charges on the particles. These
results are briefly discussed in appendix C.

3.2. Particle concentrations and dynamics
In this subsection, we present results for the particle concentration and particle dynamics
for the six cases mentioned in table 1. For each case, we started the simulation without
particles, until the flow turbulence becomes fully developed. Subsequently, we seeded
particles at random locations and with velocities equal to those of the fluid in the same
locations. In order to save computing time and since particles tend to migrate from high
to low turbulence-intensity regions due to turbophoretic drift, the injection was such that
the initial particle concentrations were higher close to the walls of the duct. It is noted,
however, that the predicted properties of statistically stationary particle-laden flows are
totally independent of the initial location of particles. The charge was assigned to the
particles instantly when they were embedded in the flow. Accordingly, electrostatic forces
between particles modify the dynamics of the particulate phase from the beginning.

First, we examined the temporal evolution of the particle concentrations in the near-wall
regions. The results for all six cases are presented in figure 4. In these plots, the time is
non-dimensionalized in terms of the frictional velocity, i.e. t+ = tu2

τ /ν. Also, the distance
from a wall is given in terms of wall units, i.e. y+ and z+. For each flow case, the three
curves shown in the figure represent the normalized number density C of the particles
residing within three different distances from the walls of the duct. The number density C
is normalized with the overall number density of the particles in the duct ρN . For example,
for flows at Reτ = 600, the black solid lines depict the normalized number density C of the
particles confined within a very thin layer at the walls. The thickness of this layer is equal
to one viscous length scale. Also, the blue dashed curves show the temporal evolution of
the particles located within the viscous sublayer, i.e. less than five viscous length scales
from the wall; inside this layer viscous stresses dominate over Reynolds stresses. Further,
the green dotted lines show the normalized number density of the particles located in the
viscous wall region which extends to 50 viscous length scales, where both Reynolds and
viscous stresses are significant.

In figure 4 we readily observe that, in all cases, the concentrations in the viscous wall
region reach much faster their final values, i.e. their values when the flow of the mixture
has become statistically stationary. The particles are transported from the bulk of the
flow towards this region by the large eddies of the flow. Since these eddies have the
highest amounts of kinetic energy, the transportation of the particles into this region occurs
relatively fast. Once inside the viscous wall region, the particles adopt their preferential
locations but are driven by small-scale fluctuations; this is, therefore, a slower process.
For the interpretation of the plots shown in figure 4, it is worth recalling that the frictional
quantities of the flow of Reτ = 300 are different from those of Reτ = 600; this has an
impact on the normalization of all spatial coordinates and time.

In some cases there is an overshoot of C in the early stages of the evolution of the
particulate phase, as can be seen in figures 4(a), 4(b) and 4( f ). More specifically, the
particles are first accelerated from their initial locations towards a location very close
to the wall. Subsequently, they move away from the wall and settle at their preferential
location at a distance further from it. As mentioned above, the initial particle positions
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FIGURE 4. Temporal evolution of the normalized particle number density C near the walls:
(a) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0; (b) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.026;
(c) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0; (d) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.026;
(e) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0; ( f ) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0.004; (black
solid line) y+ or z+ < 1 for Reτ = 600 and y+ or z+ < 0.5 for Reτ = 300: (blue dashed line) y+
or z+ < 5 for Reτ = 600 and y+ or z+ < 2.5 for Reτ = 300; (green dotted line) y+ or z+ < 50
for Reτ = 600 and y+ or y+ < 50 for Reτ = 300.

are random and do not necessarily correspond to the actual dynamics of fully developed
turbulence. Therefore, this overshoot characterizes the transition of the particulate phase
from its initial state to the physically meaningful and statistically stationary state.

Further, the curves in the right column of figure 4 show that the effect of electrostatic
forces takes place gradually and not abruptly. Upon comparison with the left column it
can be deduced that, when the particles are charged, they assume their stationary-state
positions faster than when they do not carry any charge. This is particularly noticeable in
the comparison of figure 4(a) with 4(b) as well as in the comparison of figure 4(c) with
4(d). Further, this observation is in accordance with the finding of Grosshans (2018) that
charges of the same polarity dampen the particle velocity fluctuations.

Also, from figure 4, it is readily inferred that the particle concentrations at the
statistically stationary state vary significantly from one case to the other, depending on the
underlying turbulence dynamics and the charge they carry. In the following paragraphs, we
explore this phenomenon and examine the properties of the particle concentrations when
the flow has become statistically stationary. Statistics have been collected for a period of
t+ = 17 500. This time period is equivalent to 100 flow-through times, i.e. the ratio of the
length of the computational domain to the bulk velocity of the fluid.
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Instantaneous snapshots of the particle positions in the cross-section of the duct (y–z
plane) are presented in figure 5 for each case examined herein. These snapshots were taken
after the flow became statistically stationary. Also, for visualization purposes, only one in
every five particles is shown. These images are complemented with the snapshots of the
mean particle concentration 〈C〉 in figure 6. Therein, 〈C〉 is normalized by the maximum
local concentration for each case. The bin size for establishing these histograms is 30 × 30
viscous length scales for flows at Reτ = 600, and 15 × 15 for the flows at Reτ = 300.

As a first observation, these figures confirm that particles tend to accumulate close to
the walls, as mentioned in the Introduction. Nonetheless, despite this common trend, the
resulting particle distributions vary both quantitatively and qualitatively from one case to
another. According to the figures, concentration peaks appear at two different locations,
namely in the corners and in the bisectors (the symmetry lines of each wall) of the duct. For
the case of Reτ = 600 and ρp/ρ = 1000, particles accumulate preferably at the bisectors
whereas relatively few particles reside near the corners of the duct, as can be seen in
figures 5(a) and 6(a). Furthermore, when the particles are charged, figures 5(b) and 6(b),
the particle density close to the walls increases significantly, especially the peaks at the
bisectors.

In the cases of low frictional Reynolds number, Reτ = 300, the particle concentration
peaks at both locations, i.e. corners and wall bisectors. In particular, the snapshot in
figure 5(c) clearly illustrates the impact of secondary flows of the second kind on the
particle dynamics. Therein, one can identify a high-concentration region at each wall that
is stretching towards the centreline of the duct. These noticeable structures correspond to
the arrow C sketched in figure 1 and are induced by the vortical motion of the gas. Thus,
at these regions, the particles are ejected from the wall back towards the bulk flow. As
can be inferred from figure 5(c), the location of these ejection points is not exactly at the
bisectors. Instead, our simulations predicted that these ejection points move with a low
temporal frequency back and forth along the wall. When the particles carry electrostatic
charge, they are pushed against the wall and no longer follow the turbulent eddies to the
bulk of the flow. Consequently, as can be seen in figure 5(d), only a few particles are
airborne.

Finally, it is worth noting that, for the case with a high density ratio, figure 6(e), the
mean concentration 〈C〉 has peaks only in the corners and not at the walls. Furthermore,
the electrostatic charge carried by the particles, figures 5( f ) and 6( f ), does not appear to
alter this general flow pattern.

Further, with regard to the mean particle concentration, comparison of figures 6(a),
6(c) and 6(e) shows that the flow parameters employed in our study result in qualitatively
different concentration profiles. Further, the effect of electrostatic charge is distinctly
different for each case and depends on the underlying dynamics of the fluid flow. It is
conjectured that this difference is linked to the strength of the vortical structures of the
carrier gas (i.e. the turbulence intensity) and illustrates the sensitivity of the particles to
these structures.

In order to examine in more detail the influence of the electrostatic charge, in figure 7
we present plots of the particle concentrations in four different stations. As indicated in
the sketch of figure 1, a duct with square cross-section possesses eight symmetry planes.
Owing to this symmetry, we have plotted results for only one quadrant of the duct in
figure 7. The horizontal axes on these plots are scaled differently for Reτ = 300 and for
Reτ = 600 and in such a way that the physical coordinates of all cases are consistent with
each other. In this figure, the solid lines correspond to flows with uncharged particles,
whereas the dashed lines correspond to the equivalent flows with charged particles.
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(e)

(b)(a)

(c) (d )

( f )

FIGURE 5. Instantaneous particle positions in the cross-section of the duct (y–z plane),
recorded once the flow has become statistically stationary: (a) Reτ = 600, ρp/ρ = 1000,
Fel/Fg = 0; (b) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.026; (c) Reτ = 300, ρp/ρ = 1000,
Fel/Fg = 0; (d) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.026; (e) Reτ = 600, ρp/ρ = 7500,
Fel/Fg = 0; ( f ) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0.004. The colours indicate the streamwise
velocity of the particles; for each case, the red colour corresponds to the fastest and the blue
colour to the slowest particle. For visualization purposes the particle size is scaled up and only
one in every five particles is shown.
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FIGURE 6. Mean particle concentration in arbitrary units, 〈C〉, in the cross-section of the
duct: (a) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0; (b) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.026;
(c) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0; (d) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.026;
(e) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0; ( f ) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0.004. Note
that 〈C〉 is normalized by the maximum local concentration of each case, i.e. the vertical axes of
the figures are scaled differently.

Figure 7(a) shows the profile of the mean normalized number density 〈C〉 in a slice
very close to the wall of the duct. As noted earlier, for the case with Reτ = 600 and
ρp/ρ = 1000, 〈C〉 does not exhibit a peak in the corners of the duct. Instead, according to
figure 7(a), 〈C〉 peaks at the bisectors of the wall. Moreover, the peak value is significantly
increased, by a factor of 2.6, when the particles are electrostatically charged. By contrast,
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FIGURE 7. Mean normalized particle number density, 〈C〉, in four different slices: (a) 2.5 <
z+ < 5 for Reτ = 300 and 5 < z+ < 10 for Reτ = 600; (b) 10 < z+ < 12.5 for Reτ = 300 and
20 < z+ < 25 for Reτ = 600; (c) 27.5 < z+ < 30 Reτ = 300 and 55 < z+ < 60 for Reτ =
600; (d) 147.5 < z+ < 150 for Reτ = 300 and 295 < z+ < 300 for Reτ = 600. For visibility
purposes, in (a) the horizontal axis is linear, whereas in (b)–(d) it is logarithmic. In each
figure, the top horizontal axis corresponds to the flows at Reτ = 300 and the lower one to flows
Reτ = 600; (black solid line) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0; (black dashed line) Reτ =
600, ρp/ρ = 1000, Fel/Fg = 0.026; (red solid line) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0; (red
dashed line) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.026; (blue solid line) Reτ = 600, ρp/ρ =
7500, Fel/Fg = 0; (blue dashed line) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0.004.

the particle concentration in the corners is not significantly affected by the electrostatic
charge.

The case of Reτ = 300 and ρp/ρ = 1000 is characterized by higher concentration
peaks in the corners and the walls compared with the other cases. Also, for this specific
case, the particle concentration across the other slices, shown in figures 7(b)–7(d),
exhibits the highest gradients among all cases examined herein. Thus, in this case, the
particle concentration is most influenced by the turbulence dynamics. This implies that
the particles are most sensitive to variations of the attacking forces. Accordingly, the
presence of electrostatic forces can dramatically influence the particle concentrations.
More precisely, the repelling forces push the particles towards the walls of the duct where
they accumulate.

By comparison, in the flow at Reτ = 600 and ρp/ρ = 7500, the particle concentration
is only slightly affected, as can be seen in figure 7(a). The importance of inertial forces is
also indicated by the relatively high Fel/Fg of 0.026. The electrostatic charge results in an
increase in the local concentration of approximately 30 % along the wall. The same can be
inferred from figures 7(b) and 7(c) where the concentration in the bulk of the flow is not
affected by the electrostatic charges. In fact, in this region the normalized particle number
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density is close to unity. However, the peak close to the wall, y+ < 30, increases by as
much as 30 %. The effect of electrostatic charge in the case Reτ = 600 and ρp/ρ = 1000
and in the region of the slices examined in figures 7(b) and 7(c) is similar. When the
particles are charged, the particle concentration increases close to the walls but is only
slightly modified in the bulk of the flow.

The most drastic effect of the electrostatic forces can be observed in the slice
which characterizes the centre plane of the duct, as shown in figure 7(d). The highest
concentration of particles occurs in the case with Reτ = 300 and ρp/ρ = 1000 and
uncharged particles. The particle concentration decreases with the distance from the
wall until it reaches a minimum at y+ ≈ 75. In the corresponding case with electrostatic
charging, the particles migrate towards the wall (due to the scaling of the axis, this case
is not visible in figures 7d). For the flow at Reτ = 600 and ρp/ρ = 7500 the effect of the
electrostatic charges is still significant albeit less pronounced. The particle concentration
at the walls is increased by 54 % and the peak in the bulk of the duct is reduced by
27 %. The influence of electrostatic charges in the case with Reτ = 600 and ρp/ρ = 1000
is also very significant. More specifically, without electrostatic charge the concentration
peak is located at y+ = 18, whereas when the particles are charged, the peak is located
right next to the wall. Additionally, this peak is increased by a factor of five. Further,
the concentration at the centre is reduced by 31 % and the corresponding peak nearly
completely diminishes.

In figure 8 we present plots of the mean particle velocities. These plots clearly
substantiate the effect of secondary flows on the particle dynamics. As before, by virtue
of the symmetries of the flow domain, we present results for one wall-normal velocity
component and in one quadrant of the duct. In general, the flows at low frictional Reynolds
number, Reτ = 300, exhibit the highest wall-normal velocities (in absolute terms). On
the other hand, the flows at high density ratio, ρp/ρ = 7500, exhibit the lowest ones.
These trends are directly related to the difference in the particles’ Stokes number which
measures the sensitivity of the particles to the velocity fluctuations of the surrounding
fluid.

The positive velocities in figure 8(a) at distances larger than y+ ≈ 50 are due to particles
moving in the direction of the arrow B of figure 1. In other words, the particles move away
from the corner of the duct and towards the bisectors of the walls. As can be inferred
from the plots shown in figure 8(a), this particle motion is substantially subdued when
the particles carry electrostatic charge. As a matter of fact, for the case at Reτ = 300
and ρp/ρ = 1000, the dominance of the electrostatic forces over the aerodynamic ones
completely inhibits the vortical motion of particles. For this reason, the velocity profiles
for this case have not been included in figure 8(a).

The particle velocities in the region y+ < 50 relate to the tail of the structure of particles
that are transported from the duct’s centreline to the corners in the direction of the
arrow A of figure 1. A more detailed perspective of this outward flux is provided in
figures 8(b) and 8(c); therein, this outward flux is represented by the peaks of the
wall-normal velocity amplitudes at y+ ≈ 60 and y+ ≈ 90, respectively. Interestingly, this
part of the vortical motion of the particles is not affected by the electrostatic field; instead,
the motion of charged particles is very similar to that of uncharged ones.

The inward particle flux from the wall bisectors towards the centreline of the duct
follows the direction of the arrow C in figure 1 and can be observed in figure 8(d). Similarly
to the flux along the wall, the particle velocity in this direction is strongly reduced in
the case of charged particles. For both types of motions, the extent of the influence of
electrostatic forces on the particle velocity is stronger for the cases with ρp/ρ = 1000 than
for the cases with ρp/ρ = 7500.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.956


909 A21-18 H. Grosshans and others

–0.08

–0.04

0

0.04

0.08

0.12

0.16

0 100 200 300

0 50 100 150

–0.16

–0.08

0

0.08

0.16

0.24

0 100 200 300

0 50 100 150

–0.24

–0.16

–0.08

0

0.08

0 100 200 300

0 50 100 150

〈v+
p〉

〈v+
p〉

y+ y+

–0.05

0

0.05

0.10

0.15

0.20

0.25

0 100 200 300

0 50 100 150

(b)(a)

(c) (d )

FIGURE 8. Normalized mean particle velocity in a wall-normal direction in four different
slices: (a) 2.5 < z+ < 5 for Reτ = 300 and 5 < z+ < 10 for Reτ = 600; (b) 22.5 < z+ <
25 for Reτ = 300 and 45 < z+ < 50 for Reτ = 600; (c) 35 < z+ < 37.5 for Reτ = 300 and
70 < z+ < 75 for Reτ = 600; (d) 147.5 < z+ < 150 for Reτ = 300 and 295 < z+ < 300 for
Reτ = 600. In each panel, the top horizontal axis corresponds to the flows at Reτ = 300 and the
lower one to the flows at Reτ = 600: (black solid line) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0;
(black dashed line) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.026; (red solid line) Reτ = 300,
ρp/ρ = 1000, Fel/Fg = 0; (red dashed line) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.026; (blue
solid line) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0; (blue dashed line) Reτ = 600, ρp/ρ = 7500,
Fel/Fg = 0.004.

In summary, both the particle flux along the walls and the inward motion from the
wall towards the bulk of the duct are significantly reduced when the particles carry
electrostatic charge. On the other hand, the particle transport from the duct’s centreline
towards the corners is not affected by the electrostatic forces. This finding explains
the particle concentration profiles shown in figure 7. In particular, due to electrostatic
charges, the particles are driven with roughly the same velocity towards the walls but
are slowly ejected back to the centre. As a result, the particle concentration increases
at the walls and especially in the corners. Consequently, the notable difference in the
particles’ wall-normal velocity between charged and uncharged particles when Reτ = 600,
ρp/ρ = 1000 substantiates the strong increase of the particle concentration in the vicinity
of walls.

To illustrate the direction of the arising electrostatic forces, instantaneous snapshots
of the electric potential ϕel are presented in figure 9. We recall that the electric field
strength E is equal to −∇ϕel. Accordingly, one can deduce from these plots that the
particle encounters a higher electrostatic force when moving from the bisectors of the
walls towards the centreline of the duct than when moving along the diagonal from the
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ϕel /V
12

0

(b)(a) (c)

FIGURE 9. Instantaneous snapshots of the electric potential across the cross-section of the
duct, induced by charges carried by the particles: (a) Reτ = 600, ρp/ρ = 1000; (b) Reτ = 300,
ρp/ρ = 1000; (c) Reτ = 600, ρp/ρ = 7500.

centreline to the corner. This implies that, the emerging electric field significantly reduces
particle circulation due to secondary flows of a second kind.

Next, we investigate the influence of electrostatic charges on the streamwise velocity
of the particles. Plots of the particle mean streamwise velocity component are provided
in figure 10. Since particles follow to a certain extent the gaseous phase, the particle
streamwise velocities close to the walls are lower than those in the bulk of the duct.
Moreover, as mentioned previously, in ducts with square cross-section, secondary flows
play an important role in the transport of particles in the wall-normal directions. In turn,
the streamwise momentum of particles is also transported with them along the y- or z-axis.
More specifically, the vortical flow structures transport fast-moving particles towards the
near-wall region and slow-moving ones back to the bulk of the duct. Once the slow-moving
particles enter the bulk of the duct, they begin to accelerate. This momentum transport
contributes to a more uniform streamwise velocity distribution as can be inferred from
figure 10(d). In the slice shown in this figure, which corresponds to particle displacement
along the arrow C of figure 1 the particles in the near-wall region (y+ < 5 or y+ < 20,
depending on the case), are faster than their surrounding fluid owing to the momentum
they received when they were in the bulk of the duct. When moving towards the centreline,
beyond y+ < 5, respectively y+ < 20, the surrounding gas is faster than the particles
which, therefore, experience an acceleration in the x-direction. Then, once they reach the
centreline, their streamwise velocity is maximized. The fact that the maximum particle
velocity differs from one case to another and is not equal to the maximum gas velocity is
due to the interplay between gravity and the aerodynamic forces acting on the particles.

Finally, we examine the effect of the electrostatic field on the particles moving close to
the wall and in the direction of the arrow B of figure 10(a). Comparison of the computed
streamwise velocities corroborates the fact that when the particles carry no charge they
move significantly faster. Indeed, as can be observed in figure 8(a), the charged particles
are slowed down in the wall-normal direction by the electrostatic forces and remain close
to the walls for a long time. Due to longer residence times, more streamwise momentum is
exchanged between particles and gas, which results in the slowing down of the particles.

In contrast, the electrostatic forces do not influence the velocity of particles moving
outward diagonally, in the direction of the arrow A. With regard to this type of motion,
charged and uncharged particles move at the same wall-normal velocity, which in
turn implies that they exchange a similar amount of streamwise momentum with their
surrounding gas. As a result, their streamwise velocities are also similar, as can be inferred
from figures 10(b) and 10(c) beyond y+ ≈ 30. These figures also confirm that the particles
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FIGURE 10. Normalized mean particle velocity in the streamwise direction in four different
slices as a function of the distance to the duct’s wall: (a) 2.5 < z+ < 5 for Reτ = 300 and 5 <
z+ < 10 for Reτ = 600; (b) 22.5 < z+ < 25 for Reτ = 300 and 45 < z+ < 50 for Reτ = 600;
(c) 35 < z+ < 37.5 for Reτ = 300 and 70 < z+ < 75 for Reτ = 600; (d) 147.5 < z+ < 150 for
Reτ = 300 and 295 < z+ < 300 for Reτ = 600. For visibility purposes, in (a) the horizontal
axis is linear, whereas in (b–d) it is logarithmic. The upper axis in each figure relates to the
cases of Reτ = 300 and the lower axis to the cases of Reτ = 600. In addition, in (d) the mean
velocity of the undisturbed gaseous phase is displayed. (black solid line) Reτ = 600, ρp/ρ =
1000, Fel/Fg = 0; (black dashed line) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.026; (red solid line)
Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0; (red dashed line) Reτ = 300, ρp/ρ = 1000, Fel/Fg =
0.026; (blue solid line) Reτ = 600, ρp/ρ = 7500, Fel/Fg = 0; (blue dashed line) Reτ = 600,
ρp/ρ = 7500, Fel/Fg = 0.004.

in the region y+ < 30, i.e. those moving in the direction of the arrow B, are transported
slower in the x direction.

On the basis of these observations, we conclude that electric charges not only attenuate
particle motion induced by secondary flows but they also substantially reduce the
streamwise momentum transfer between particles and carrier gas over the cross-section
of the duct.

4. Conclusions

We studied, by means of DNS, the dynamics of particle-laden flows through a duct
of a square-shaped cross-section. According to our simulations, when the particles are
charged, the electrostatic forces dampen significantly the particles’ vortical motions that
are induced by the secondary flows of the carrier gas. The charged particles still migrate in
the diagonal direction from the centreline of the duct towards its corners. But on their way
back from the wall to the centre their velocity is reduced. This modification to the particle
dynamics results in significantly different characteristics of the particle number density.
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The reduction of the vortical motion of particles in the regions of secondary flows leads to
an increase of the particle concentration at the walls, especially at the bisectors of the walls
and the corners of the duct. Also, the streamwise momentum transfer in the cross-section,
which relies on the wall-normal motion of particles, is significantly attenuated. These
results demonstrate the fundamental influence of electric forces on the emerging pattern
of dispersed two-phase flows. Such an understanding of the underlying mechanisms opens
new perspectives for the control of the flow dynamics of powders. It would be interesting
to test this influence also for rectangular ducts of different aspect ratios and to elaborate
in detail on the dependence of the vortical particle motion on a successive increase of the
powder charge.
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Appendix A. Scalability

As a first test, we examined the scalability of pafiX. More specifically, we simulated
flows in a duct with square cross-section for which the computational domain, depicted
in figure 3(a), was discretized by 256 × 120 × 120 grid cells. In our tests, two different
cases were considered. The first one is single-phase flow, i.e. without solid particles, at
Reτ = 600. In this manner, only the scalability of the Navier–Stokes solved is accessed.
The second one is flow laden with 108 m−3 charged particles of Q = 0.1 pC; this is also
the second case given in table 1.

With regard to domain decomposition, the domain was decomposed in the x-direction.
For the geometry considered herein, this is the most efficient domain decomposition in
terms of load balance between processors. Evidently, this choice also poses an upper limit
to the number of processors that can be used. For the grid employed herein this limit is
256 processors. The speed-up factor of the simulation, Sk, is defined as the ratio of the run
time of the parallel code running on a single processor, T1, to the run time of the same
code running on k processors,

Sk = T1

Tk
. (A 1)

The resulting speed-up for both cases and for k = 2n (n = 0, 1, . . . , 8) is plotted in
figure 11. According to figure 11, the code scales very well in the range of number of
processors considered herein. Our tests confirmed that, as expected, the fraction of the
MPI communication time, i.e. the time needed to send and receive data packages from
one processor to the other, compared with the total computing time, increases with the
degree of domain decomposition. More specifically, for the case of single-phase flow, it
increases from 1.3 % for k = 2 to 54.5 % for k = 256. The fact that the speed-up is not
significantly reduced can be attributed to the non-optimized memory access procedure of
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FIGURE 11. Scalability of the fluid solver and the fluid plus the particle and electrostatic
solver. The straight dashed lone denotes the ideal linear scaling.

the code, which results in a rather expensive calculation when k is small and the variable
matrices are large.

Moreover, a particularly long computing time was recorded for the simulation of the
second test case (particle-laden flow with charged particles) on only one processor. Upon
detailed inspection, it was revealed that this is directly related to the criterion (i) of
the collision algorithm described in § 2. In fact, the computational cost of this criterion
scales with O(N2

p) where Np is the number of points per subdomain and scales with
1/k. Accordingly, the computational expense of the solver for the particulate phase is
significantly reduced if k > 1.

It is also worth mentioning that, for each case, the results of these simulations were
identical, i.e. independent of k. In summary, the proposed algorithm scales very well for
k > 1. The numerical simulations reported in the following were performed each on 32
processors.

Appendix B. Code validation

For validation purposes of the Navier–Stokes solver, we performed DNS of duct flows
without particles and compared them with earlier DNS that appeared in the literature.
For flow at Reτ = 600, we used five different meshes, ranging from 60 × 60 × 60 to
200 × 140 × 140 cells in the x-, y- and z-directions, respectively. In figure 12(a) we show
plots of the mean streamwise velocity profile at the centre plane of the duct, y = H/2,
as functions of the distance from the wall measured in wall units, y+. For comparison
purposes, the DNS data of Huser & Biringen (1993) are also plotted in this figure.
It can be readily inferred that the velocity profiles converge as the grid resolution is
increased. In particular, the results obtained on the two finer grids, 180 × 120 × 120 and
200 × 140 × 140 cells respectively, are identical and match the DNS data of Huser &
Biringen (1993).

Moreover, we performed a simulation of a flow at Reτ = 300 on a grid consisting of
180 × 120 × 120 cells. Our numerical predictions for the mean streamwise velocity at the
centre plane are shown in figure 12(b). As can be seen, our predictions match those of
Sharma & Phares (2006).

Further, the root-mean-square (r.m.s.) values of the velocity components are presented
in figure 13. From the results for the flow at Reτ = 600 (figures 13a–13c) we can infer once
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FIGURE 12. DNS of flow in a duct without particles: (a) Reτ = 600; (b) Reτ = 300.
Comparison of the mean streamwise velocity at the centre plane of the duct with the DNS data of
Huser & Biringen (1993) and Sharma & Phares (2006). The profiles for Reτ = 600 are computed
on five different grid resolutions, as shown in the legend of the figure.
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FIGURE 13. DNS of flow in a duct without particles: (a) Reτ = 600; (b) Reτ = 600;
(c) Reτ = 600; (d) Reτ = 300; (e) Reτ = 300; ( f ) Reτ = 300. Comparison of the r.m.s. velocity
components with the DNS data of Huser & Biringen (1993), Zhu, Yang & Chen (2009) and
Sharma & Phares (2006). The profiles for Reτ = 600 are computed on five different grid
resolutions, as shown in the legend of the figure. Note that Sharma & Phares (2006) did not
provide data for v+

rms.
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FIGURE 14. Mean normalized particle number density, 〈C〉, replotted from figures 7(b) and
7(d) with additional cases considering a higher charge level: (a) 10 < z+ < 12.5 for Reτ =
300 and 20 < z+ < 25 for Reτ = 600; (b) 147.5 < z+ < 150 for Reτ = 300 and 295 < z+ <
300 for Reτ = 600; (black dotted line) Reτ = 600, ρp/ρ = 1000, Fel/Fg = 0.104; (red dotted
line) Reτ = 300, ρp/ρ = 1000, Fel/Fg = 0.104; (blue dotted line) Reτ = 600, ρp/ρ = 7500,
Fel/Fg = 0.017.

again that numerical grid convergence is attained with grid refinement. For the fine grid
resolutions, only slight discrepancies are observed between our predictions for the r.m.s. of
the wall-normal velocity components, vrms and wrms and those of Huser & Biringen (1993)
and Zhu et al. (2009).

The r.m.s. of the velocity components for the flow at Reτ = 300 are plotted in
figures 13(d)–13( f ). In general, our results compare favourably with the DNS data Sharma
& Phares (2006) (note that Sharma & Phares (2006) did not provide the fluctuations of
the velocity component v). The most noticeable difference is in the urms profile far from
the wall for which the predictions of Sharma & Phares (2006) are 10 %–20 % lower than
ours.

On the basis of these tests and the favorable comparison with earlier results, the
DNS presented below have been performed on the grid consisting of 180 × 120 ×
120 cells.

Appendix C. Higher charge levels

Exemplary results of an exploratory study considering a higher charge level of 0.2 pC
on each particle are presented in figure 14. In this figure, we replotted figures 7(b) and 7(d)
and added the mean particle concentration profiles of the additional cases. For this new
charge level qualitatively the same phenomena occur as for the lower particle charge. The
vortical motion of the particles in the cross-section is even more retarded by the arising
electrostatic forces. Consequently, even more particles accumulate close to the walls.

For clarity of the presentation, we focus on the main results section of this paper on one
charge level per flow condition.
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