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The second-law analysis of convective pattern
change in a rectangular cavity
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Natural convection in a rectangular cavity is examined, utilizing the second law
of thermodynamics. Through an application of the second law the rate of entropy
generation associated with the convective pattern changes is evaluated for the onset
of natural convection in a cavity with free boundaries, for which an exact solution
is sought, as well as with rigid boundaries which is studied numerically. Entropy to
be generated from the perturbed temperature and velocity fields is shown to depend
on AR (aspect ratio of the cavity), Rac (the critical Rayleigh number) and a non-
dimensional parameter, Ω, which is related to the ratio of entropy generation by
viscous friction to that by thermal transport. The convective pattern change is related
to a change in the spatial distributions of the rate of entropy generation due to heat
transfer and due to dissipation, demonstrating that an application of the second law
helps examine convective pattern changes quantitatively by dealing with temperature
and velocity fields in a unified manner.

1. Introduction
The effects of buoyancy-induced flow have been studied extensively in the past be-

cause of its various scientific and engineering applications (Turner 1973; Gebhart et al.
1988). In many engineering fields an understanding of the details of flow and thermal
structures is increasingly becoming important due to more stringent requirements in
optimal design of equipment as well as in new processing technology. Also, analyses
of simpler systems are useful to understand some important features of complex
pattern forming processes in various fields including physics, chemistry, biology and
social systems. Because of the relative ease with which quantitative comparisons may
be made between theory and experiment, thermal convection has been investigated
widely to gain insights into processes of pattern (organized structures) formation
(Zimmermann 1991).

The engineering utilization of the second law, known as availability (exergy)
analysis, had been a major part of thermodynamic analysis of industrial equip-
ment, particularly in power industries. More recently the second-law analysis focusing
on entropy generation and its minimization has been applied to transport processes
to optimize thermal insulation and heat transfer augmentation systems as well as
heat exchangers. The second law has also been used to understand the structural
development of turbulence (Bejan 1982).

The linear stability of the onset of natural convection in a cavity heated at the
bottom and cooled at the top with adiabatic sidewalls has been studied (Kurzweg
1965; Davis 1967). Unlike the case of a fluid layer between two horizontal boundaries
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the presence of vertical boundaries not only increases the critical Rayleigh number for
the onset of convective motion, but also causes changes in the number of convective
rolls that develop as the width of the cavity is varied. For example, for a two-
dimensional cavity with rigid boundaries Kurzweg showed the transitions in the
number of convective rolls to occur at the following aspect ratios AR (width/height
of the cavity): 1.6 for one to two rolls, 2.7 for two to three rolls, 3.7 for three to four
rolls.

In this report a linear stability analysis which predicts transitions in the number of
convective rolls that develop at the critical conditions is combined with the second
law of thermodynamics to study convective pattern changes in a low aspect ratio
cavity in terms of the entropy generation. After a general theoretical development
of entropy generation due to natural convection in a rectangular cavity the paper
discusses the stability of a fluid in a two-dimensional rectangular cavity heated at the
bottom with the free (impermeable, zero shear) boundary condition imposed at the
four boundaries. The study of a more realistic non-slip (rigid) boundary condition,
reported in § 4, involves a more complex mathematical analysis requiring a numerical
approach.

2. General formulation of entropy generation due to natural convection in
a cavity

Consider a rectangular cavity of width W and height H with the origin of a coor-
dinate system x and y located at the centre of the cavity, and the direction of gravity,
g, in the negative y-direction. Temperatures at the bottom and the top are kept at T1

and T2(< T1) respectively with ∆T = T1−T2; the side boundaries are adiabatic. For
a steady, incompressible natural convective flow, employing the Boussinesq approxi-
mation with a linearized equation of state, non-dimensional governing equations with
constant thermophysical properties may be written as

AR

Pr

D

Dt
(∇2Ψ ) = ∇4Ψ −

(
AR

2

)4

Ra
∂θ

∂x
, (1a)

AR
Dθ

Dt
= ∇2θ − ∂Ψ

∂x
, (1b)

where AR (aspect ratio) = W/H , Pr (Prandtl number) = ν/DT , Ra (Rayleigh number)
= gα∆T H3/ν DT ,D/Dt = u ∂ /∂ x + v ∂ /∂ y, ∇2 = ∂2/∂ x2 + AR2 ∂2/∂ y2 with ν the
kinematic viscosity, DT the thermal diffusivity, α the thermal expansion coefficient.
Dimensional coordinates, (x′, y′), velocity (u′, v′) and temperature, T , are related to
the corresponding non-dimensional variables as

(x, y) =

(
x′

W/2
,

y′

H/2

)
, Ψ (stream function) = Ψ ′/DT ,

V = uî + vĵ =
2DT
H

∂Ψ

∂y
î − 2DT

W

∂Ψ

∂x
ĵ , θ =

T − T0(y)
1
2
AR ∆T

,

with T0(y) = (T1+T2)/2−∆T y/2 the temperature distribution of the base conduction
state. The boundary conditions are: if the boundaries are free

Ψ =
∂2Ψ

∂x2
=
∂θ

∂x
= 0 at x = ±1, Ψ =

∂2Ψ

∂y2
= θ = 0 at y = ±1; (2a)
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if the boundaries are rigid

Ψ =
∂Ψ

∂x
=
∂θ

∂x
= 0 at x = ±1, Ψ =

∂Ψ

∂y
= θ = 0 at y = ±1. (2b)

The local volumetric rate of entropy generation, S ′′′G [W m−3 K−1], based on the
second law of thermodynamics, is

S ′′′G =
k

T 2

((
∂T

∂x′

)2

+

(
∂T

∂y′

)2
)

+
µ

T

(
2

((
∂u′

∂x′

)2

+

(
∂v′

∂y′

)2
)

+

(
∂u′

∂y′
+
∂v′

∂x′

)2
)
, (3a)

where k is thermal conductivity, µ is viscosity (Bejan). The first term on the right-
hand side is due to heat transfer (= S ′′′GH ) and the second term is due to viscous
dissipation (= S ′′′GV ). It is well known that the viscous dissipation in the first law of
thermodynamics is negligible in many applications. The ratio, S ′′′GV / S ′′′GH, becomes
(TR/∆TR)RI where RI is the ratio of viscous dissipation to conduction in the first law
with TR and ∆TR indicating the characteristic scales. Hence, even if the dissipation
is negligible in the first law (which is the case in the present study), it may be
important in the second law due to the presence of the factor, (TR/∆TR). In terms of
non-dimensional variables (3a) may be expressed as

S ′′′G = S ′′′GH + S ′′′GV , (3b)

where

S ′′′GH = k

(
∆T

H T

)2
((

∂θ

∂x

)2

+

(
AR

∂θ

∂y
− 1

)2
)
,

S ′′′GV =
µ

T

(
4DT
W 2

)2
(

4AR2

(
∂2Ψ

∂x∂y

)2

+

(
AR2 ∂

2Ψ

∂y2
− ∂2Ψ

∂x2

)2
)
.

To find the total rate of entropy generation, S ′G [W m−1 K−1], (3b) is integrated over
the cavity, yielding

S ′G =

∫ H/2

−H/2

∫ W/2

−W/2

S ′′′G dx′ dy′ = S ′GB + S ′GD

= k

(
∆T

T

)2

AR +
k

4

(
∆T

T

)2

AR

(
1 + Ra

T

∆T

µ(DT/H)2

k∆T

)〈
θ

(
− ∂Ψ
∂x

)〉
, (4a)

with 〈 f 〉 =
∫ 1

−1

∫ 1

−1
f dx dy.

Or, by eliminating ∆T in favour of Ra,

SG = Ra2 AR + 1
4
(Ra2 + Ω Ra)AR

〈
θ

(
−∂Ψ
∂x

)〉
, (4b)

where

SG =
S ′G
Γ
, Γ = k

(
νDT

αgT H3

)2

, Ω =
ρ(αgH2)2 T

νk
.

In (4a) and (4b), the first term SGB is due to base conduction. Since ∆T is directly
related to Ra, SGB increases linearly with the width W and with Ra2 for a given
fluid and a fixed value of height H . On the other hand, the second term, SGD,
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due to perturbed thermofluid fields consists of contributions from heat transfer and
viscous friction with the factor Ra (T/∆T )[µ(DT/H)2/(k∆T )] (or Ω/Ra) indicating the
relative contributions of the two. This corresponds to the irreversibility distribution
ratio (Bejan), defined for the perturbation field in the present context. As stated
earlier, (4a) shows that even if the ratio of viscous dissipation to thermal diffusion,
µ(DT/H)2/(k∆T ), is negligible in the conservation of energy the presence of the
additional factor, T/∆T in Ω/Ra, makes it necessary to include the irreversibility
associated with the viscous friction in our consideration of the second law, and
that the first-order perturbation fields, Ψ and θ, linearized in the conservations of
momentum and energy, appear as a product, θ(−∂Ψ/∂x), in the second law with
〈θ(−∂Ψ/∂x)〉 representing the net vertical advection of thermal energy.

It should be emphasized here that all equations presented above are applicable for
natural convection in a rectangular cavity with either free or rigid boundaries.

3. Onset of instability in a cavity with free boundaries
In a linear stability analysis the advective terms on the left-hand side of (1) may

be neglected as second-order terms. Two possible solutions to the formulation: one
for the onset of an odd number of convective rolls (to be referred to as the ‘odd’
solution), and the other for the onset of an even number of convective rolls (to be
referred to as the ‘even’ solution) may be directly written as follows:
For the odd solution,

Ψ = Ao cos ( 1
2
π k̂x) cos

(
1
2
πy
)
, θ = Bo sin( 1

2
π k̂x) cos ( 1

2
πy), (5a)

For the even solution,

Ψ = Ae sin( 1
2
πl̂x) cos

(
1
2
πy
)
, θ = Be cos ( 1

2
π l̂x) cos

(
1
2
πy
)
, (5b)

where k̂ and l̂ are the number of rolls present in the cavity, i.e. k̂ = 1, 3, 5, . . . , l̂ =
2, 4, 6, . . . .

Then the critical Rayleigh number Rac as well as a relationship between Ao(e) and
Bo(e) may be obtained as

Rac =
( π

AR

)4 (M̂2 + AR2)3

M̂2
, (6a)

Ao =
π

2

k̂2 + AR2

k̂
Bo, Ae = −π

2

l̂2 + AR2

l̂
Be, (6b)

where M̂ = k̂ for the odd solution and l̂ for the even solution. Equation (6a) is plotted
in figure 1 as Rac versus AR. Of the two values of Rac at a specified value of AR, the
lower of the two is the true Rac. Minima of Rac, Rac,min, occur at

ARmin = AR (Rac = RAc,min) =
√

2 M̂. (7)

At ARmin the critical horizontal wavenumber is
√

2H and Rac,min is equal to
27 π4/4 (∼ 657.5); the same conditions as the onset of convective rolls between
two horizontal boundaries (the Rayleigh–Bénard convection with free boundaries)
(Turner). As AR increases the magnitude of Rac becomes insensitive to AR, rapidly
approaching the value of 27 π4/4. The aspect ratio, ARtran, where changes in the
number of convective rolls (from even (odd) to odd (even)) occur, may be obtained
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1000

657.5

500
1 2 3 4 5

AR

Ra

1 2 3

Figure 1. Linear stability in a cavity with free boundaries. Numbers above the curve represent the
number of rolls in the cavity.

from (6a) as

k̂2 + AR2
tran =

(
k̂

l̂

)2/3

(l̂ 2 + AR2
tran). (8)

These transitions occur at ARtran ≈ 2.027 (from one to two rolls), ∼ 3.480 (from two
to three), ∼ 4.910 (from three to four) and ∼ 9.006 (from four to five). Since the
free, adiabatic side boundaries provide the same conditions as those at the interface
between two neighbouring rolls, convective rolls at any given value of AR are identical
in size to each other.

Based on (5), the total rate of entropy generation per depth, SG, in (4b) may be
readily evaluated to yield

SG = Ra2
c AR + 1

4
(Ra2

c + Ω Rac)ARΦ, (9)

with

Φ =


1
2
πAo Bo k̂ =

(
1
2
π
)2

(k̂2 + AR2)B2
o for odd solutions

− 1
2
πAe Be l̂ =

(
1
2
π
)2

(l̂ 2 + AR2)B2
e for even solutions.

Equation (6b) is used to derive the second expression of Φ. The coefficients, Bo, Be, in
Φ remain indeterminate as a solution to the characteristic equation constructed from
conservation of momentum (or the vorticity equation) and conservation of energy.
However, in order to compare the magnitudes of the rate of entropy generation
between the odd and the even solutions, a relationship between the two coefficients
must be specified with respect to the second law. The required condition is that at the
transition between an odd and an even number of rolls (i.e. at Rac (odd) = Rac (even)),

the magnitude of SG, as a measure of irreversibility associated with both heat transfer
and viscous dissipation, is the same between the two solutions so that the selection
between the two convective pattern is equally likely. The condition also implies that a
net vertical advection of perturbed thermal energy is the same between the odd and
the even solutions for quantitative comparisons. Furthermore, as has been mentioned
earlier in relation to (7), convective rolls at ARmin are identical to the ones between
two horizontal boundaries (without side boundaries); therefore, at ARmin =

√
2 M̂, the

rate of entropy generation per roll must be constant, independent of the number of
rolls, M̂. This is also satisfied by the imposed condition, as shown below.
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Figure 2. SGD (solid) and SGD per roll (dotted) vs. AR for Ω = 100 (free boundaries). Numbers
above the curve represent the number of rolls in the cavity.

For fixed values of Γ and Ω, (9) implies that the condition is satisfied if

(k̂2 + AR2)B2
o = (l̂ 2 + AR2)B2

e . (10)

From (6b) and (10), Ao (e) and Bo (e) become

Ao = C ′
(

1
2
π
) (k̂2 + AR2)1/2

k̂
, Bo =

C ′

(k̂2 + AR2)1/2
, (11a)

Ae = C ′
(

1
2
π
) (l̂2 + AR2)1/2

l̂
, Be =

C ′

(l̂ 2 + AR2)1/2
, (11b)

with C ′ = arbitrary constant. Then, we obtain the rate of entropy generation due to
perturbed thermofluid fields, SGD, as

SGD =

(
π2

16

)
C ′2 Γ (Ra2

c + Ω Rac)AR. (12)

Also,

SGB per roll at ARmin =
√

2C ′2 Γ Ra2
c , (13a)

SGD per roll at ARmin =

√
2 π2

16
C ′2 Γ (Ra2

c + Ω Rac). (13b)

It should be mentioned that (10) holds only at AR = ARtran; however, Ao (e) and
Bo (e), of (11) are valid for AR 6= ARtran.

Given fluid properties, the temperature level T (= (T1+T2)/2) and the cavity height,
H , the non-dimensional parameters Γ and Ω are fixed with the relative importance
of heat transfer and viscous friction being proportional to Ra2

c and Rac, respectively,
and with Ω/Rac indicating the ratio of entropy production due to viscous friction
to that due to heat transfer. If we select the temperature level, T ∼ 300 K and the
cavity height H ∼ 0.1 m, Ω has an order of magnitude of ∼ 100 with Ω/Rac ∼ 0.1 for
air as an ideal gas; on the other hand, for liquid water, Ω ∼ 500, Ω/Rac ∼ 0.5 with
Ωliquid/Ωgas ∼ 5, indicating that at the critical condition in a cavity with H ∼ 0.1 m,
the entropy generation for gases is mostly due to the perturbed temperature field.

In figure 2 a non-dimensional rate of entropy generation due to perturbed thermo-

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

55
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099005595


Convective pattern change in a rectangular cavity 367

fluid fields, SGD (solid), is plotted against AR for Ω = 100. SGD is defined as

SGD =
SGD

1
16
π2 C ′2 Γ (( 27

4
π4)2 + Ω( 27

4
π4))

=
Ra2

c + Ω Rac(
( 27

4
π4)2 + Ω( 27

4
π4)
)AR. (14)

The factor, (( 27
4
π4)2 + Ω( 27

4
π4)), corresponds to (Ra2

c + Ω Rac) evaluated for a fluid
between two horizontal boundaries as AR → ∞. Given the type of fluid, the temper-
ature level T and the cavity height H , the figure represents the increase in SGD as the
width of the cavity changes. It is similar to Rac versus AR of figure 1 because of a
direct relationship between Rac and SGD; however, it clearly shows that the convective
pattern selects a less irreversible path at each transition. Also plotted in figure 2 is a
variation in the non-dimensional rate of entropy production per roll, SGD/ M̂ (dotted),
with the aspect ratio, AR. Since the number of rolls increases by one as AR increases
across a transition point, ARtran, an abrupt drop in SGD/ M̂ occurs with the ratio of

entropy generation per roll before and after a transition being equal to ( 1 + 1/M̂ ).

It is also noted that SGD/ M̂ is approximately 1.3 immediately after a transition to a
higher number of rolls. It should be mentioned that the magnitudes of both SGD and
SGD/ M̂ are not affected significantly by a change in Ω.

The last quantity of interest useful for the present second-law analyses is the hori-
zontal distribution of the rate of entropy generation in a cavity, S ′G(x) [W m−1 K−1].
Integrating the volumetric rate of entropy generation, (3), across the cavity height, we
obtain

S ′G (x) =

∫ H/2

−H/2
S ′′′G dy′

(Γ/H)
= S ′GB(x) + S ′GH (x) + S ′GV (x) , (15)

where

S ′GB (x) (due to base conduction) = Ra2
c ,

S ′GH (x) = 1
8
π2 C ′2 [AR2 + (k̂2 − AR2) cos2( 1

2
πk̂x)]

Ra2
c

k̂2 + AR2
for odd solutions;

= 1
8
π2 C ′2 [AR2 + (l̂ 2 − AR2) sin2( 1

2
πl̂x)]

Ra2
c

l̂ 2 + AR2
for even solutions;

S ′GV (x) = 1
8
π6 C ′2 Ω (k̂2 + AR2)

(
4

AR2
+
k̂4 − 6k̂2AR2 + AR4

k̂2AR4
cos2( 1

2
πk̂x)

)
for odd solutions;

= 1
8
π6 C ′2 Ω (l̂ 2 + AR2)

(
4

AR2
+
l̂4 − 6l̂ 2AR2 + AR4

l̂ 2AR4
sin2( 1

2
πl̂x)

)
for even solutions.

In the equation above the last two terms, S ′GH (x) and S ′GV (x), respectively represent
effects of heat transfer and dissipation by perturbations. At AR = 1.2, a single roll

(k̂ = 1) being present in the cavity, S ′GH (x) shows a relatively uniform horizontal

distribution. For AR > 1 the amplitude of cos2( 1
2
πk̂x) or sin2( 1

2
πl̂x) in S ′GH (x),

M̂2 − AR2 (M̂ = k̂ or l̂), is negative, implying that S ′GH (x) takes a maximum at
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1

0 1
x

(2, 3.480)

2

[S
′ G

H
]

(2, 2.027)

(no. of rolls, AR) = (1, 2.027)

(1, 1.6)

(1, 1.2)
(2, 3.0)

Figure 3. [S ′GH (x)] over a half-width for Ω = 103 (free boundaries). Solid lines are for
a single roll, dotted lines for two rolls in a cavity.

1

0 1
x

(1, 2.027)

2

[S
′ G

V
]

(2, 2.027)

(no. of rolls, AR) = (1, 1.2)

(2, 3.48)

(2, 3.0)

(1, 1.6)

Figure 4. As figure 3 but for [S ′GV (x)].

the boundaries between two neighbouring rolls (including the sidewalls). Across
a transition between an odd and an even number of rolls the amplitude of the
x-direction variations of S ′GH (x) falls sharply as an exchange in amplitude between

(k̂2−AR2) and (l̂ 2−AR2) occurs. On the other hand, the horizontal variations of S ′GV (x)

is more complex as the numerator of the amplitude of cos2( 1
2
πk̂x) and sin2( 1

2
πl̂x),

M̂4−6M̂2AR2 +AR4 (M̂ = k̂ or l̂), changes its sign at AR/M̂ = (1+
√

5/3)1/2 (≈ 1.32)

and (1 − √5/3)1/2 (≈ 0.50). The second root, AR/M̂ = (1 − √5/3)1/2, needs to be

accounted for only when k̂ = 1. Figure 3 and Figure 4 are presented to illustrate the
variations in the horizontal distributions of the rate of entropy generation over a half-
width in a cavity. To present these figures, both S ′GH (x) and S ′GV (x) of (15) are divided

by a characteristic value, which is defined as S ′GV (x) at ARc =
(
1 +

√
5/3
)1/2

M̂.
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At AR = ARc, S
′
GV (x) is constant.

The explicit forms of
[
S ′GH (x)

]
in figure 3 and

[
S ′GV (x)

]
in figure 4 are[

S ′GH (x)
]

=
AR2

c [AR2 + (M̂2 − AR2)F(x)]Ra2
c

4π4 Ω (M̂2 + AR2
c )(M̂

2 + AR2)
,

[
S ′GV (x)

]
=
AR2

c (M̂2 + AR2) [4M̂2AR2 + (M̂4 − 6M̂2AR2 + AR4)F(x)]

4 (M̂2 + AR2
c ) M̂

2AR4
,

with

F(x) =

{
cos2( 1

2
πM̂x) for a single roll

sin2( 1
2
πM̂x) for two rolls.

To present figure 3, Ω is set to 103 to make the magnitude of
[
S ′GH (x)

]
an order of 0.1.

At the transition from one to two rolls at AR = 2.027,
[
S ′GH (x)

]
of a single roll exhibits

a large variation; while, the corresponding profile of two rolls is nearly uniform as
shown in figure 3. On the other hand, the opposite is true for

[
S ′GV (x)

]
in figure 4.

Before a transition the profile variation of the perturbation temperature field (i.e.
S ′GH (x) is large, while after a transition the entropy production by the perturbation

velocity field (i.e. S ′GV (x)) varies greatly across the cavity since flow pattern changes
across the transition.

4. Onset of instability in a cavity with rigid boundaries
A solution for rigid boundaries was first obtained by Kurzweg (1965) numerically

through an application of the Galerkin method of weighted residuals. The trial
functions, used by Kurzweg and employed also in the present study, are

Ψ = Co(e)
M∑
m=1

N∑
n=1

Ao(e)mn F
o(e)
m (x)Go(e)n (y),

θ = Co(e)
M∑
m=1

N∑
n=1

Bo(e)mn f
o(e)
m (x)go(e)n (y),

 (16)

with o and e indicating an ‘odd’ and an ‘even’ solution respectively. The trial functions
for Ψ are taken as eigenfunctions of the following eigenvalue problem:

∂4Ψ

∂z4
= λ4 Ψ, ψ = ∂Ψ/∂z = 0 at z = ± 1;

the trial functions for θ, on the other hand, is chosen in terms of sine and cosine
functions. One of the advantages of the selection of the trial functions is that
they satisfy the orthogonality properties, which make the ensuing application of the
Galerkin method more effective. (For specific forms of Fo(e)m etc., see Kurzweg 1965.)

The solution obtained through an application of the Galerkin method with M =
N = 5 (which results in a 50 × 50 determinant) is shown in figure 5. The present
analysis shows an excellent agreement with the original analysis by Kurzweg (in which
an 18× 18 determinant is solved), predicting the transition in the number of rolls
being at ARtran = 1.63 (for 1 to 2 cells), 2.69 (2 to 3), 3.72 (3 to 4) and 4.76 (4 to 5).

The present analysis also predicts correctly a slow, consistent decrease of Rac with
an increase in AR toward the limiting value of 1707.8 as AR → ∞. Furthermore,
an examination of the incipient rolls shows that the solution with M = N = 5 is
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3000

5

AR

2

Ra

4

4321

2000

1707.8

1
SG

SG0

2

1

3

Figure 5. Linear stability in a cavity with rigid boundaries. Rac, SG/SG0 vs. AR with SG0 = SG of a
single roll in a cavity at AR = ARtran = 1.63. Small dots are for an odd number of rolls, large dots
for an even number of rolls. Numbers above the curve represent the number of rolls in the cavity.

different from the corresponding solution with M = N = 3 by less than 0.5% in
terms of the magnitude of Ψ at the horizontal midplane over the range of the present
investigation (∼ 1 < AR . 6), indicating that the double-series expansion of (16) is
effective in yielding a converged solution. Substantial differences in ARtran between the
case of the free and the rigid boundaries are due to the magnitude of the minimum
horizontal wavenumber for the marginal stability. For a cavity with a large aspect
ratio (or the Rayleigh–Bénard convection between two rigid horizontal boundaries)
the width of a convective cell is equal to the distance between the two horizontal
boundaries, forming a square cell. For the present case of a low aspect ratio cavity,
the constraint imposed by the rigid sidewalls causes a difference in the horizontal size
between the cells adjacent to and away from the sidewalls.

Substitution of θ and Ψ of (16) into the integral, 〈θ(−∂Ψ/∂x)〉, which appears in
(4), yields〈

θ

(
− ∂Ψ
∂x

)〉
= C2

o (e)

M∑
m=1

N∑
n=1

M∑
i=1

N∑
j=1

Ao (e)
mn B

o (e)
ij Îo (e)(i)Fo (e) (m, Îo (e))G(n, Ĵ ), (17)

where

Îo(i) =
2 i− 1

2
π , Îe(i) = −i π , Ĵ(j) =

2 j − 1

2
π,

Fo(m, Îo(i)) =

∫ 1

−1

[cosh (λmx) cos (Îox) + qm cos (λmx) cos (Îox)] dx,

Fe(m, Îe(i)) =

∫ 1

−1

[sinh(τmx) sin(− Î ex) + rm sin(τmx) sin(− Î ex)] dx,

G(n, Ĵ(j)) =

∫ 1

−1

[cosh (λny) cos (Ĵy) + qn cos (λny) cos (Ĵy)] dy.
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The integrals in the above equation may be readily obtained in explicit forms. The
rate of entropy generation, SG, due to the perturbation fields is also plotted in figure
5. Compared to the case of free boundaries the rigid boundaries have a greater effect
on the onset of instability as seen in the substantial variations both in the critical
Rayleigh number and SG.

Finally the horizontal distribution of the rate of entropy generation in a cavity,
S ′G(x) [W m−1 K−1] may be expressed as,

S ′G (x) =

∫ H/2

−H/2
S ′′′G dy′

(Γ/H)

= S ′GB(x) (due to base conduction) + S ′GH (x) (perturbed temperature effect)

+S ′GV (x) (perturbed velocity effect), (18)

where

S ′GB (x) = Ra2
c ,

S ′GH (x) =
C2
o (e) Ra

2
c

2

M∑
m=1

N∑
n=1

M∑
i=1

N∑
j=1

Bo (e)
mn B

o (e)
ij

[
dHo (e)

m

dx

dHo (e)
i

dx

+AR2 Ho (e)
m H

o (e)
i

(
2 n− 1

2
π

)(
2 j − 1

2
π

)]
δnj ,

S ′GV (x) =
C2
o (e) Ω

2

(
2

AR

)4 M∑
m=1

N∑
n=1

M∑
i=1

N∑
j=1

Ao (e)
mn A

o (e)
ij

×
[
4AR2 dFo (e)

m

dx

dFio (e)

dx

〈〈
dGn
dy

dGj
dy

〉〉
+ AR4 Fo (e)

m F
o (e)
i

〈〈
d2Gn

dy2

d2Gj

dy2

〉〉
− 2AR2 d2Fo (e)

m

dx2
F
o (e)
i

〈〈
Gn

d2Gj

dy2

〉〉
+

d2Fo (e)
m

dx2

d2F
o (e)
i

dx2
〈〈GnGj 〉〉

]
,

with 〈〈 f (y) 〉〉 =
∫ 1

−1
f(y) dy, δnj = the Kronecker delta,

Fop (p= m or i) = cosh (λp x) + qp cos (λp x), Fep (p= m or i) = sinh (τp x) + rp cos (τp x),

Gp (p = n or j) = cosh (λp y) + qp cos (λp y) , Hp (p = m or i) = sin

(
2 p− 1

2
π x

)
.

Figures 6, 7 and 8 summarize the horizontal distributions of the rate of entropy
generation as the number of convective rolls increases with AR. For AR 6 1.63, a
single roll occupies a cavity. (See figure 6.) As AR increases, S ′GH (x) becomes more

uniform across the cavity. The distribution of S ′GV (x) is fairly even at AR = 1 except

for a rise in its magnitude near the sidewall at x = 1. As AR increases S ′GV (x) decreases
near the sidewall, indicating a weakening perturbation velocity field near the solid
boundary. At AR = 1.60, slightly below the transition aspect ratio for the formation
of two rolls, S ′GV (x) at the vertical boundary is very small. After a transition from a

single roll to two rolls occupying the cavity at AR = 1.63, S ′GV (x) rises substantially
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1

x
10

1

S′GV

(c) (1, 1.6)

(b) (1, 1.4)
0

(a) (1, 1.2)

1

0

S′GH

Ψ

Figure 6. Profiles of Ψ at y = 0 (small dots), S ′GV (x) (large dots) and S ′GH (x) (broken) over a
half-width (a single roll in a cavity with rigid boundaries). (All normalized with respect to their
maximum values.) In the bracket (a, b), a = the number of rolls, b = AR.

near the sidewall; while S ′GH (x) decreases near x = 0 (the location of interface between
the rolls) as well as near the sidewall. (See figure 7.) As AR increases beyond the
transition aspect ratio of 1.63 S ′GH (x) increases near the cell boundary at x = 0, and

decreases near the solid boundary with S ′GV (x) becoming very small again as AR
approaches a transition to the formation of three rolls at AR = 2.69. Three rolls
appear in the cavity for AR between 2.69 and 3.72. (See figure 8.) When more than
two rolls occupy a cavity, the locations of the interface between rolls (i.e. the locations
where the streamfunction at the horizontal midplane becomes zero) change as AR
increases from a transition aspect ratio with the rolls in contact with the sidewalls
increasing their horizontal size. Both S ′GH (x) and S ′GV (x) in the roll in contact with
the vertical rigid boundary change their profiles with an increase in AR in a manner
similar to the case of two rolls with very low value of S ′GV (x) near the sidewall as AR

approaches the transition to four rolls at AR = 3.72. In the middle roll both S ′GH (x)

and S ′GV (x) increases with AR, showing a nearly uniform profile at AR = 3.70.

5. Numerical analysis of supercritical state
To understand the entropy generation of natural convection in a rectangular cavity,

numerical analyses are performed for natural convection in a rectangular cavity with
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1

x
10

1
(c) (2, 2.6)

(b) (2, 2.2)

0

(a) (2, 1.7)
1

0

Ψ

S′GH

S′GV

Figure 7. As figure 6 but showing two rolls in the cavity.

rigid boundaries and adiabatic sidewalls. Computational conditions are:

nitrogen gas as the fluid (assuming an ideal gas with its density changes being
directly related to temperature changes neglecting effects of small pressure changes
around the specified pressure condition of ∼ 1 atm), H = 1.58 cm (fixed), range of
AR = 1–2 (to examine the transition between one and two rolls), T2 = 300 K (fixed),
Rac < Ra . 5000 with the corresponding temperature difference, ∆T , of 5–15 K.

Thermophysical properties are evaluated at (T1 + T2)/2, and the computations are
performed over the full width of the cavities. To solve a full set of steady, two-
dimensional Navier–Stokes equations numerically along with the boundary conditions,
the calculation domain is divided into a number of finite control volumes, and the
conservation equations are integrated over each control volume. The set of discretized
equations thus generated is based on a staggered grid system in which presssure and
temperature are calculated at main grid points, while velocity components, u and v,
are evaluated at secondary grid points. The grid system is based on variable spacing
(min. 0.4 mm, max. 0.75 mm) with finer meshes near the boundaries. The convection–
diffusion fluxes are evaluated by employing the ‘hybrid’ scheme. The mometum
equations are solved using simpler algorithm (Patankar 1980). A solution to a set of
linear discretized equations is obtained by using the line-by-line TDMA (Tri-Diagonal
Matrix Algorithm), followed by the evaluation of the entropy production rate through
numerical integrations of velocity and temperature fields over the rectangular cross-
section.

Figures 9–11 summarize the numerical results. In figure 9, in which temperature
variations at the horizontal midplane are shown across the cavity width, a single roll
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–1

x
10

1

(c) (3, 3.7)

(b) (3, 3.2)

0

(a) (3, 2.8)

1

0

ψ

S′GH

S′GV

–1

–1

1

0

Figure 8. As figure 6 but showing three rolls in the cavity.

is present at AR = 1.57 for both cases of Ra = 2800 and 3780 as the flow circulating
counterclockwise heats up the region near the right wall and cools the region near
the left wall; while, both at AR = 1.66, Ra = 2800 and AR = 1.59, Ra = 3780,
two counter-rotating rolls are present as the temperature profiles become nearly

symmetric with respect to the vertical midplane. Shown in figure 10 is Ŝ ′G, (ratio of
entropy generation by natural convection to that by the corresponding theoretical
pure conduction at the same values of AR and ∆T ), vs. AR for two Rayleigh numbers.
The lower curve indicates a transition value of AR for Ra = 2430 close to the one
predicted by stability analyses (figure 5) of ARtran = 1.63 with Rac = 2416. On the
other hand, at Ra = 3780 (upper curve) the transition (where an inflection occurs in
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(1.57, 2800)0
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(1.59, 3780)
(AR, Ra) = (1.57, 3780)

(1.66, 2800)

Figure 9. Temperature profiles at the horizontal midplane across the cavity.

AR

1.9

2

1

Ra = 2430

1.71.51.3

Ra = 3780

S′G

Figure 10. Rate of entropy generation (non-dimensional) in a cavity plotted against AR.

the curve) is at AR ≈ 1.58, implying that the transition aspect ratio decereases with
an increase in the Rayleigh number above Rac.

Figure 11 shows the development of the non-dimensional rate of entropy generation,

Ŝ ′G, as Ra is increased. Noting again that the stability analysis yields the transition
between one and two rolls at AR = 1.63 with Rac = 2416, the two curves with slightly
different values of AR of 1.57 (one roll) and 1.66 (two rolls) merge to conduction
states close to each other, indirectly supporting the imposed condition in our stability
analyses that at the transition the magnitude of the entropy generation rate is the
same for the odd solution and the even solution.

6. Summary and conclusion
The second law of thermodynamics is applied to natural convection in a rectangular

cavity heated at the bottom and cooled at the top isothermally to obtain a general
equation for the rate of entropy generation, which may be decomposed into two parts:
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Figure 11. Increase in the rate of entropy generation (non-dimensional) in a cavity with Ra.

one due to thermal conduction and the other due to the net vertical advection of
thermal energy. The conduction component is proportional to Ra2, while the advection
component is proportional to ( 1 + Ω/Ra )Ra2 with the ratio, Ω/Ra, indicating the
relative importance of viscous friction and heat transfer in entropy generation. The
result is then used to examine the linear stability for the onset of convective motion
in a rectangular cavity, confirming the aspect ratio, ARtran, where a transition in the
number of convective rolls occurs, to be the state in which the incipient convective
motion shifts to a different, less irreversible pattern. For the case of free boundaries
the ratio of the entropy generation per roll across a transition aspect ratio is equal
to ( 1 + 1/M̂ ) when the number of rolls increases from M̂ to (M̂ + 1), and the
rate of entropy generation per roll immediately after a transition is approximately
constant and independent of the number of rolls present in the cavity. Distributions
of entropy production rate between the part due to temperature perturbation and the
part due to velocity perturbation are found to change drastically before and after a
transition in the number of convective rolls. In contrast to the case of free boundaries,
in which the thermofluid structure of a roll as well as the spatial distributions of
the rate of entropy generation are the same among the rolls in a cavity, the rigid
boundaries affect the entropy distributions between rolls substantially. The present
analysis shows that a transition into a higher number of convective rolls is associated
with an abrupt change in the rate of entropy generation by the perturbation velocity
field near the vertical rigid boundaries. Also, a substantial profile change (both in
S ′GH (x) and S ′GV (x)) across a roll in contact with a sidewall implies that a transition
in the convective pattern is closely related to the thermofluid structure of the rolls in
contact with vertical boundaries.

In many scientific and engineering problems such as heat transfer by natural
convection in a cavity and mixed (combined forced and natural) convection in a duct
or in a chamber for chemical vapour deposition processes, thermal (temperature)
and hydrodynamic (velocity) fields need to be examined carefully to understand the
overall transport process. The present study suggests an advantage of employing
the second-law analysis as both temperature and velocity fields may be examined
simultaneously in terms of the entropy generation.
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