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Abstract

We investigate the role of manipulation in boundedly rational opinion dynamics. Agents

are subject to persuasion bias and repeatedly communicate with their neighbors in a social

network. They can exert effort to manipulate trust in the opinions of others in their favor and

update their opinions about some issue of common interest by taking weighted averages of

neighbors’ opinions. We show that manipulation can connect a segregated society and thus

lead to mutual consensus. Second, we show that manipulation fosters opinion leadership; and

surprisingly agents with low trust in their own opinion might get more influential even by

being manipulated. Finally, comparative simulations reveal that manipulation is beneficial to

information aggregation when preferences and abilities for manipulation are homogeneous,

but detrimental in case abilities are concentrated at few powerful agents.

Keywords: social networks, trust, manipulation, persuasion bias, opinion leadership, consensus,

misinformation

1 Introduction

Individuals often rely on social connections (friends, neighbors, and coworkers, as

well as political actors and news sources) to form beliefs or opinions on various

economic, political, or social issues. Every day individuals make decisions on the

basis of these beliefs and moreover, it is often desirable that others hold similar

beliefs as this would make them taking similar decisions. The latter is important

if individuals need the support of others to enforce their interests. In politics,

majorities are needed to pass laws, and in organizations, decisions might be taken by

a hierarchical superior or in a decentralized fashion. Hence, it may be advantageous

for individuals to increase their influence on others by manipulating the way they

form their beliefs.

This paper studies a model of opinion formation where agents are subject to

persuasion bias, i.e. fail to adjust for possible repetitions of information they receive

and instead treat all information as new, and can exert effort to manipulate trust

in the opinions of others in their favor.1 We can see persuasion bias “as a simple,

1 In this light, we also model the incentives for manipulation in a boundedly rational way, meaning
that agents have a limited understanding of its consequences.

https://doi.org/10.1017/nws.2015.34 Published online by Cambridge University Press

http://orcid.org/0000-0003-4503-352X
https://doi.org/10.1017/nws.2015.34


Trust and manipulation in social networks 217

boundedly rational heuristic for dealing with a very complicated inference problem.”

(DeMarzo et al., 2003) Correctly adjusting for repetitions of information would

become extremely complicated when individuals interact repeatedly on complex

social networks.2

To give some concrete examples for this setup, consider an organization where

decision making is decentralized, but decisions may have spillovers on other divisions.

If this is the case, then opinions of other division leaders on issues related to the

decisions are of importance as they will influence their decisions. And thus, leaders

have incentives to manipulate the way the others form these opinions in their

favor. Second, consider a network of policy-makers and lobbyists that hold opinions

on some policy issue and assume that the social network reflects the (subjective)

precisions of each agent’s initial information as in DeMarzo et al. (2003).3 Lobbyists

then have incentives to manipulate the social network of policy-makers to make the

latter implement policies in their favor, e.g. by convincing them of their (alleged)

expertise or by providing (alleged) credible arguments for their opinion; in this

context, we can view manipulation as persuasive or informational lobbying.4 And

more generally, we model manipulation as a persuasive activity that changes the

persuasion bias of the manipulated agent in favor of the manipulator.5

Our setup is based on the model developed by DeGroot (1974). Agents hold

opinions about some issue of common interest, are organized in a weighted social

network and repeatedly meet and communicate with their neighbors in the network.

We refer to the weighted and directed links from some agent to her neighbors as

her social trust. At each discrete time instance, first one pair of agents is selected

by a stochastic process such that one of them has the opportunity to manipulate

the other one. The former can then decide whether or not to exert costly effort

to manipulate the social trust of the other agent. If she decides to do so, this

increases the social trust of the manipulated agent in the manipulator, with the

magnitude of the increase depending on the manipulator’s ability to manipulate. The

manipulator’s decision depends on her preferences for manipulation. She faces a

trade-off between her personal gain from manipulation and its cost. Our model

covers a large class of possible reward functions to measure the personal gain from

manipulation of an agent, ranging from functions that depend only on current

opinions and the agent’s effort to functions where agents can foresee how opinions

will change in the short-term. These are two possible extensions of persuasion

bias to manipulation: one where agents do not need to know the network (apart

from their own social trust), and one where agents do know the network, but are

nevertheless unable to adjust for repetitions of information.6 Agents might also have

2 We refer to DeMarzo et al. (2003) for a detailed discussion of this assumption, including references on
psychological evidence; for experimental evidence, see Choi et al. (2012); Chandrasekhar et al. (2012).

3 A lobbyist would be an agent that has high ability to manipulate policy-makers, while these would
have low (or no) ability to manipulate others.

4 Potters & Van Winden (1992) define persuasive or informational lobbying as “the use by interest
groups of their (alleged) expertise or private information on matters of importance for policy-makers
in an attempt to persuade them to implement particular policies.”

5 Notice that agents are not compensated for being manipulated. This means that, for instance, the
effort of a lobbyist is understood as being related to providing, e.g. (alleged) credible arguments for
his opinion.

6 Notice that indeed, inferring where current opinions come from requires much more computational
ability than simply computing how an opinion will change in the short-term.
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more sophisticated reward functions if they are less subject to persuasion bias and

not manipulable themselves. Second, all agents communicate with their neighbors

and update their opinions according to their (possibly manipulated) social trust, i.e.

an agent’s updated opinion is a weighted average of her neighbors’ opinions (and

possibly her own opinion) from the previous time instance. Without incentives to

manipulate our model reverts to the standard DeGroot model of opinion formation.

We first study segregated societies and show that manipulation can connect

segregated groups and thus make them reaching a consensus. In particular, an agent

outside these groups can serve as a mediator by manipulating members of both

groups, meaning that a mediator needs to have the ability to convince both groups

of his expertise or credibility on the issue. Second, we show that manipulation

fosters opinion leadership in the sense that the manipulating agent always increases

her influence on the long-run opinions and the emerging (partial) consensus. For

the other agents, the effect of manipulation is ambiguous and, depending on

the social network, they might either gain or lose. In particular, we find that,

surprisingly, agents with low trust in their own opinion might get more influential

even by being manipulated. To round off this part of the analysis, we establish

that under a weak minimum rationality requirement on the agents’ gain from

manipulation, manipulation eventually comes to an end. Finally, we investigate the

tension between information aggregation and spread of misinformation. We rely on

comparative simulations to obtain insights on the expected impact of manipulation

on information aggregation. The simulations reveal that manipulation is beneficial

to information aggregation when preferences and abilities for manipulation are

homogeneous. This result turns out to be very robust with respect to changes in the

initial opinions and the social network; and it even holds when agents manipulate

without knowing the social network, basing their decision only on current opinions

and their effort. The intuition for why this holds is that agents benefit more from

manipulation when the manipulated agent is influential as in this case they indirectly

get more influential on many other agents. And thus, as the average influence of

the other agents in the society decreases in the agent’s own influence, agents benefit

more from manipulation the lower their own influence. However, we also find

that manipulation is detrimental to information aggregation in case abilities are

concentrated at few powerful agents; such agents, e.g. lobby organizations, might

severely harm information aggregation and spread their (potentially) misleading

information. Agents with higher ability benefit more from manipulation and hence

increase their influence even if they were already rather influential before.

There is a large and growing literature on opinion formation in social networks,

either using a Bayesian perspective or some boundedly rational framework where

agents are subject to persuasion bias.7 We study a model of boundedly rational

opinion formation on a social network based on the seminal paper by DeGroot

(1974), see also DeMarzo et al. (2003), and Golub & Jackson (2010) for related

works. DeMarzo et al. (2003) show that persuasion bias implies the phenomena of

social influence and unidimensional opinions. Golub & Jackson (2010) study social

7 Acemoglu et al. (2011) develop a model of Bayesian learning on general social networks, and
Acemoglu & Ozdaglar (2011) provide an overview of recent research on opinion dynamics and
learning in social networks.
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learning under persuasion bias and find that all opinions in a large society converge

to the truth if and only if the influence of the most influential agent vanishes as the

society grows.

Buechel et al. (2015) develop a model of opinion formation under persuasion

bias where agents may state an opinion that differs from their true opinion

due to their preferences for conformity. They find that lower conformity fosters

opinion leadership. In addition, the society becomes wiser if agents who are

well informed are less conform, while uninformed agents conform more with

their neighbors. Friedkin & Johnsen (1990) propose a variation where agents are

subject to persuasion bias but can adhere to their initial beliefs to some degree.

This leads to persistent disagreement among the agents in the long-run. And

similar results hold when assuming some kind of homophily, see, e.g. Axelrod

(1997); Hegselmann & Krause (2002); Deffuant et al. (2000). Acemoglu et al. (2010)

is related to Section 5 of our work as they investigate the tension between information

aggregation and spread of misinformation in a related model. They characterize

how the presence of forceful agents affects information aggregation. Forceful agents

influence the beliefs of the other agents they meet, but only change very slowly

their own opinions. In our framework, these would be agents with very high trust in

their own opinion. They show that all beliefs converge to a stochastic consensus and

quantify the extent of misinformation by providing bounds on the gap between the

consensus value and the benchmark without forceful agents where there is efficient

information aggregation. Friedkin (1991) studies measures to identify opinion leaders

under persuasion bias.

Furthermore, Watts (2014) studies the influence of social networks on correct

voting. Agents have beliefs about each candidate’s favorite policy and update their

beliefs based on the favorite policies of their neighbors and on whom the latter

support. She finds that political agreement in an agent’s neighborhood facilitates

correct voting, i.e. voting for the candidate whose favorite policy is closest to his

own favorite policy. Our paper is also related to the literature on lobbying as

costly signaling, e.g. Austen-Smith & Wright (1994); Esteban & Ray (2006). These

papers do not consider networks and model lobbying as providing one-shot costly

signals to decision-makers in order to influence a policy decision.8 To the best of

our knowledge, we are the first allowing for the possibility to manipulate the social

network of other agents under persuasion bias.

The paper is organized as follows. In Section 2, we introduce the model of opinion

formation. In Section 3, we study segregated societies. Section 4 looks at the long-run

effects of manipulation. In Section 5, we investigate how manipulation affects the

extent of misinformation in society. Section 6 concludes. The proofs are presented

in the appendix.

2 Model and notation

We consider a set N = {1, 2, . . . , n}, n � 2, of agents who repeatedly communicate

with their neighbors in a social network. Each agent i ∈ N has an initial opinion

8 Notice that we study how (repeated) manipulation and lobbying affect public opinion (and potentially
single decision-makers) in the long-run, but do not model explicitly any decision-making process.
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or belief xi(0) ∈ � about some issue of common interest and an initial vector of

social trust mi(0) = (mi1(0), mi2(0), . . . , min(0)), with 0 � mij(0) � 1 for all j ∈ N and∑
j∈N mij(0) = 1, that captures how much attention agent i initially pays to each

of the other agents. More precisely, mij(0) is the initial weight or trust that agent i

places on the current opinion of agent j in forming her updated belief. We assume

that mii(0) > 0 for all i ∈ N, which can be interpreted as each agent having some

trust in her own initial opinion.9 At time instance t = 0, 1, 2, . . ., the agents’ beliefs

are represented by the vector x(t) = (xi(t))i∈N and their social trust by the matrix

M(t) = (mij(t))i,j∈N. Furthermore, let αij � 0 denote agent i’s ability to manipulate

with respect to agent j.10

First, one agent is chosen randomly (probability 1/n for each agent) to meet and

to have the opportunity to manipulate another agent. If agent i ∈ N is chosen at

time t, she meets agent j ∈ N with probability αij/(
∑

k �=i αik) and can decide on

the effort α ∈ {0, αij} she would like to exert on j, and no meeting takes place if∑
k �=i αik = 0.11 We write Γ(t) = (i, j; α) when agent i is chosen to manipulate agent

j at time t and decides to exert effort α on j. The decision of agent i leads to the

following updated trust weights of agent j:

mjk(t + 1) =

{
mjk(t)/ (1 + α) if k �= i(
mjk(t) + α

)
/ (1 + α) if k = i

.

The trust of j in i is increasing in the effort of agent i and all trust weights of j are

normalized.12 Notice that this normalization implies that the trust of j in an agent

other than i decreases by the factor 1/(1 + α), i.e. the absolute decrease in trust is

proportional to its level. If i decides not to manipulate (α = 0), the trust matrix

does not change. To emphasize that the resulting updated trust matrix M(t + 1) is

derived by applying the manipulation decision Γ(t) = (i, j; α) to M(t), we also write

[M(t)](i, j; α) instead of M(t + 1). Agent i decides on whether or not to manipulate

agent j according to her utility function

ui
(
α | x(t),M(t), j

)
= vi

(
α | x(t),M(t), j

) − ci(α | j),
where vi

(
α | x(t),M(t), j

)
is the (relative) reward for her effort α ∈ {0, αij} and

ci(α | j) is its cost. We assume that for all j �= i, ci(αij | j) > ci(0 | j) = 0 such that

effort is costly. Notice that vi
(
αij | x(t),M(t), j

) − vi
(
0 | x(t),M(t), j

)
measures agent

i’s gain from manipulation. Second, all agents communicate with their neighbors and

update their opinions using the updated trust weights, reflecting that they are subject

to persuasion bias and fail to adjust for possible repetitions of information:

x(t + 1) = M(t + 1)x(t) = [M(t)](i, j; α)x(t).

9 We impose this weak assumption as it guarantees convergence to consensus if the social network is
strongly connected, i.e. if there is a directed path between any two agents. Notice, however, that it
would suffice to assume aperiodicity of the initial trust matrix.

10 Notice that we can fit the model to a situation of lobbying: take αij large for some i (the lobbyist)
and all j �= i (policy-makers), while αjk ≈ 0 for j �= i and all k �= j.

11 To keep things simple, we assume that the meeting probabilities are equal to the relative abilities to
manipulate of the agents. Notice that we do not assume that agents choose an optimal effort level
α∗ ∈ [0, αij ] as they are boundedly rational and as this would require high computational abilities
involving calculating derivatives.

12 This reflects that manipulation is a persuasive activity that changes the persuasion bias of the
manipulated agent in favor of the manipulator.
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We can rewrite this equation as x(t + 1) = M(t + 1)x(0), where M(t) := M(t)M(t −
1) · · ·M(1) denotes the overall trust matrix. Now, let us give some examples of reward

functions.

Example 1 (Reward functions)

Consider the function

i.

vi
(
α | x(t),M(t), j

)
= − 1

n − 1

∑
k �=i

(
xi(t) − xk(t + 1)

)2

,

where xk(t + 1) =
(
[M(t)](i, j; α)x(t)

)
k
. Agent i’s objective is to bring the other

agents’ updated opinions as close as possible to her current opinion, weighting

equally the other agents and disregarding that her own opinion will change as

well.13 The latter represents that she is subject to persuasion bias.

ii.

vi
(
α | x(t),M(t), j

)
= − ∑

k �=i

mik(t)
(
xi(t) − xk(t + 1)

)2

,

where xk(t + 1) =
(
[M(t)](i, j; α)x(t)

)
k
. Here, agent i’s objective is to bring

the updated opinions of agents she trusts as close as possible to her current

opinion, the importance of each agent being given by her trust weights.

iii.

vi
(
α | x(t),M(t), j

)
= α

(
xi(t) − xj(t)

)2
,

a simple reward function that is independent of the trust matrix M(t) and thus

builds on the persuasion bias assumption. The product of the exerted effort

and the squared distance between the two agents’ current opinions serves as a

boundedly rational proxy for the reward from manipulation. It seems natural

that, without knowledge of the network, agents manipulate those agents whose

opinions are far from their own opinion.

We will frequently use the first reward function in examples, together with a cost

function ci(αij | j) = c for some constant c > 0. Our model reverts to the standard

DeGroot model without manipulation.

Remark 1

If we choose either constant reward functions vi ≡ v for all i ∈ N or manipulation

abilities αij = 0 for all i, j ∈ N, then agents have no incentives to or cannot

manipulate, respectively, and our model reverts to the standard model of DeGroot

(1974).

3 Segregated societies

In this section, we study segregated societies. We investigate how manipulation can

change segregated groups and, in particular, under which conditions it might lead

to a connected society. We first shortly recall some graph-theoretic terminology. We

call a group of agents C ⊆ N minimal closed at time t if these agents only trust

13 For instance, consider an issue on which there will be a vote at some point. Then, the equal weights
represent that each opinion is equally important as each agent has one vote.
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agents inside the group, i.e.
∑

j∈C mij(t) = 1 for all i ∈ C , and if this property does

not hold for a proper subset C ′ � C . The set of minimal closed groups at time

t is denoted by C(t) and is called the trust structure. The society is segregated at

time t if C(t) contains more than one group. Notice that agents in a minimal closed

group reach a consensus in the long-run conditional on that the trust matrix does

not change any more. A walk at time t of length K (from agent i1 to agent iK+1) is

a sequence of agents i1, i2, . . . , iK+1 such that mik,ik+1
(t) > 0 for all k = 1, 2, . . . , K . A

walk is a path if all agents are distinct. At each time t, we can decompose the set of

agents N into minimal closed groups and agents outside these groups, the rest of

the world, R(t):

N =
⋃

C∈C(t)

C ∪ R(t).

Within minimal closed groups, all agents interact indirectly with each other, i.e. there

is a path between any two agents.14 Moreover, notice that agent i ∈ N is part of

the rest of the world R(t) if and only if there is a path at time t from her to some

agent in a minimal closed group C �� i. We say that a manipulation at time t does

not change the trust structure if C(t + 1) = C(t), which implies that R(t + 1) = R(t).

We find that manipulation changes the trust structure when the manipulated

agent belongs to a minimal closed group and additionally the manipulating agent

does not belong to the same group. The group of the manipulated agent is either

disbanded or the manipulating agent (and possibly others) join the group.

Proposition 1

Suppose that at time t, Γ(t) = (i, j; αij), αij > 0.

i. Let i ∈ N, j ∈ R(t) or i, j ∈ C ∈ C(t). Then, the trust structure does not change.

ii. Let i ∈ C ∈ C(t) and j ∈ C ′ ∈ C(t)\{C}. Then, C ′ is disbanded, i.e. C(t + 1) =

C(t)\{C ′}.
iii. Let i ∈ R(t) and j ∈ C ∈ C(t).

a. Suppose that there exists no path from i to k for any k ∈ ∪C ′∈C(t)\{C}C ′.
Then, R′ ∪ {i} joins C , i.e.

C(t + 1) = C(t)\{C} ∪ {C ∪ R′ ∪ {i}},
where R′ = {l ∈ R(t)\{i} | there is a path from i to l}.

b. Suppose that there exists C ′ ∈ C(t)\{C} such that there exists a path

from i to some k ∈ C ′. Then, C is disbanded.

The proofs of this and other results can be found in Appendix A. Manipulation

of an agent in the rest of the world or within a minimal closed group (part (i))

does not change the trust structure as all groups remain closed. Second, if both

agents belong to different groups, the one of the manipulated agent is disbanded

and its agents join the rest of the world as it is no longer closed after manipulation.

And third, if only the manipulated agent belongs to a minimal closed group, then

the effect on the group of the manipulated agent depends on the trust matrix.

If the manipulating agent does not (indirectly) trust anyone in another minimal

14 Notice that minimal closed groups are also called strongly connected and closed groups, see
Golub & Jackson (2010).
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closed group, then she and possibly others join the group of the manipulated agent

(part (iii,a)), while otherwise her group is disbanded (part (iii,b)).15 The next remark

follows immediately from the fact that the society reaches a consensus if and only

if it is not segregated, i.e. there is a single minimal closed group.16 In particular,

it shows that an agent outside two segregated groups can serve as a mediator by

manipulating members of both groups.

Remark 2

Suppose that at time t, C(t) = {C,C ′} and R(t) = {k}. Society reaches a consensus

if either

i. agent i ∈ C(C ′) manipulates agent j ∈ C ′(C) at some time instance t′ � t, or

ii. agent k manipulates agent k′ ∈ C at some time instance t′ � t and agent

k′′ ∈ C ′ at some time instance t′′ � t.

The first part follows as one of the two minimal closed groups is disbanded

(Proposition 1 part (ii)) and thus there is only one group left. Similarly, if agent

k manipulates an agent in one of the groups, then she either joins the group

(Proposition 1 part (iii,a)) or it is disbanded (Proposition 1 part (iii,a)). In the first

case, the other group will be disbanded after she has manipulated as well an agent

therein. Thus, one of the groups will be disbanded in any case as in the first part.

The following example illustrates how manipulation can enable a society to reach a

consensus when there are two segregated groups and no rest of the world.

Example 2 (Consensus due to manipulation)

Consider N = {1, 2, 3} and

ui
(
α | x(t),M(t), j

)
= −1

2

∑
k �=i

(
xi(t) − xk(t + 1)

)2 − α

10

for all i ∈ N. Notice that the first part of the utility is the reward function from

Example 1 part (i). Furthermore, the initial opinions and trust matrix are

x(0) =

⎛
⎝ 0.9

0.6

0.05

⎞
⎠ and M(0) =

⎛
⎝ 0.9 0.1 0

0.05 0.95 0

0 0 1

⎞
⎠

and αij = 0.2 is the ability of i to manipulate j, for all i �= j. Notice that the agents

form two minimal closed groups: C(0) = {{1, 2}, {3}}. Without manipulation, agents

1 and 2 would thus reach a consensus, while the stubborn agent 3 would stick to

her initial opinion. However, with manipulation, the agents reach a consensus with

probability 1 (at least one of the agents 1 and 2 manipulates agent 3 or vice versa,

implying that one of the groups is disbanded). Figure 1 depicts one simulation run

15 We say that agent i indirectly trusts agent j (at time t) if there is a path (at time t) from i to j.
16 There is always at least one minimal closed group; agents in the rest of the world adopt the consensus

of this group.
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Fig. 1. Opinion dynamics in Example 2. The solid line represents agent 1, the dashed

line agent 2, and the dashed-dotted line agent 3.

of the long-run opinion dynamics, where17

Γ(t) =

⎧⎨
⎩

(3, 1; 0.2), t = 1, 4

(2, 3; 0.2), t = 5

(·, ·; 0), otherwise

.

The group of agent 1 is disbanded at time instance 1 due to the manipulation of

agent 3 (see part (ii) of Proposition 1). The last manipulation takes place at time

5, where agent 2 manipulates agent 3, meaning that agents 1 and 2 join the group

of agent 3 (see part (iii,a) of Proposition 1) such that they eventually form one

minimal closed group, C(6) = {N}, and reach a mutual consensus. This results in

the following final trust matrix:

M(t) �
⎛
⎝0.625 0.069 0.306

0.05 0.95 0

0 0.167 0.833

⎞
⎠ , t � 6.

4 Long-run opinion dynamics

In this section, we investigate the long-run effects of manipulation. First, we study the

consequences of a single manipulation on the long-run opinions of minimal closed

groups. In this context, we are interested in the role of manipulation in opinion

leadership. Second, we study the outcome of the influence process and illustrate our

results by means of an example.

4.1 Opinion leadership

Typically, an agent is called opinion leader if she has substantial influence on the

long-run beliefs of a group. That is, if she is among the most influential agents in the

17 The trajectories of the opinions can differ substantially between runs as they depend on the order of
the agents’ meetings.
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group. Intuitively, manipulating others should increase influence on long-run beliefs

and thus foster opinion leadership. In what follows, we investigate this issue.

We denote by π(C; t) = (πi(C; t))i∈C the probability vector of the agents’ influence

on the final consensus of their group C ∈ C(t) at time t, conditional on that the

trust matrix does not change any more.18 In this case, the group converges to the

consensus

x(∞) = π(C; t) x(t)|C =
∑
i∈C

πi(C; t)xi(t),

where x(t)|C = (xi(t))i∈C is the restriction of x(t) to agents in C . In other words,

πi(C; t), i ∈ C , is the influence weight of agent i’s opinion at time t, xi(t), on

the consensus of C . Notice that the influence vector π(C; t) depends on the trust

matrix M(t) and therefore changes with manipulation. A higher value of πi(C; t)

corresponds to more influence of agent i on the consensus. Each agent in a minimal

closed group has at least some influence on the consensus: πi(C; t) > 0 for all

i ∈ C .19

We restrict our analysis to the case where both the manipulating and the

manipulated agent are in the same minimal closed group. Since in this case the

trust structure is preserved (Proposition 1 part (i)), we can compare the influence

on the consensus of the group before and after manipulation. We show that

the manipulating agent always gains influence, which confirms our intuition that

manipulation fosters opinion leadership. For any other agent, the change can be

positive or negative, implying that even the manipulated agent might gain influence.

Proposition 2

Suppose that at time t, Γ(t) = (i, j; α), i, j ∈ C . If α = αij > 0, then

i. agent i strictly increases her long-run influence, πi(C; t + 1) > πi(C; t),

ii. any other agent k �= i of the group can either gain or lose influence, depending

on the trust matrix,

iii. agent k �= i, j loses influence for sure if j trusts solely her, i.e. mjk(t) = 1.

We refer to Appendix B for technical details and the proof of Proposition 2. For

agent i, the manipulator, the direct gain of influence (due to an increase of trust from

j) always dominates her indirect loss of influence (due to a decrease of trust from

j faced by agents that (indirectly) trust i). For agents k �= i, j, there is a trade-off

between an indirect gain of influence (due to the increase of trust that i obtains

from j, but only in case i (indirectly) trusts k), on the one hand, and a direct loss of

influence (due to a decrease of trust from j) as well as an indirect loss of influence

(due to a decrease of trust from j faced by agents that (indirectly) trust k), on the

other hand. In the extreme case where j only trusts k, the direct loss of influence

dominates the indirect gain for sure.

Similarly, in case of the manipulated agent j, the trade-off is between an

indirect gain of influence (due to the increase of trust that i obtains from her,

but only if i (indirectly) trusts j), and an indirect loss of influence (due to a

decrease of trust from her faced by agents that (indirectly) trust her). In particular,

18 In the language of Markov chains, π(C; t) is known as the unique stationary distribution of the
communication class C .

19 See Golub & Jackson (2010).
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this means that, somehow surprisingly, even the manipulated agent j might gain

influence. In the following, we investigate this observation more closely. We show

that the manipulated agent gains from being manipulated in situations where the

manipulating agent trusts her significantly and at the same time she does not have

much trust in her own opinion, i.e. if mij(t) is large and mjj(t) small.

Corollary 1

Suppose that at time t, Γ(t) = (i, j; α), i, j ∈ C , |C| � 3 and α = αij > 0. Then, there

exists q(η) < 1 such that agent j gains influence from being manipulated if

i. mij(t) > q(η) and

ii. mjj(t) < (1 − η)/(3 − η) · ∑
k∈C\{i,j} mjk(t),

where η := maxk∈C\{i,j} mkj(t).

The intuition behind this result is that an agent j that does not have much

trust in her own opinion (condition (ii)) basically gives it up immediately and

thus relies only on intermediaries to spread her opinion.20 In these circumstances,

agent j gains influence from being manipulated by an intermediary agent i that

trusts her significantly (condition (i)). In a sense, the manipulated agent has trusted

the “wrong” agents before, i.e. agents k �= i, j that did not trust her as much as

the manipulating agent i does. In particular, condition (ii) implies two necessary

conditions for that agent j gains influence from being manipulated: first, j needs

to trust at least some agent k �= i, j (as otherwise the right-hand side vanishes), and

second, mjj(t) < 1/4 (as η � 0 and
∑

k∈C\{i,j} mjk(t) � 1 − mjj(t)).

4.2 Convergence

We have already seen to which consensus value the agents converge to if no

more manipulation takes place. We now investigate this issue from an ex-ante

point of view. To ensure that manipulation decisions satisfy a minimum rationality

requirement, we consider the following assumptions on the reward functions of the

agents.

Assumption 1 (Minimum reward rationality)

A1. Agent i’s gain from manipulating agent j vanishes if the effect of manipulation

on the updated opinions tends to zero, i.e.

vi
(
αij | x,M, j

) − vi
(
0 | x,M, j

) → 0 if ‖[M](i, j; αij)x − [M](i, j; 0)x‖ → 0,

where ‖·‖ is any norm on �n.

A2. Agent i’s gain from manipulating agent j vanishes if their opinion difference

tends to zero, i.e.

vi
(
αij | x,M, j

) − vi
(
0 | x,M, j

) → 0 if |xi − xj | → 0.

20 Notice that for agents with high trust in their own opinion, their influence is partially due to the fact
that they spread it over time.
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The idea behind (A1) is that there should be no gain from manipulation without

manipulation affecting the updated opinions. For (A2), the idea is that there should

be no gain from manipulation without the current opinions of the manipulator and

the manipulated agent being different. Notice that the reward functions in Example

1 (i) and (ii) satisfy (A1) but not (A2) and vice versa for that in Example 1 (iii).

We first show that the trust structure eventually settles down. Second, if all reward

functions satisfy either (A1) or (A2), manipulation within the minimal closed groups

that have finally been formed comes to an end. We also determine the final consensus

opinion of each group.

Proposition 3

i. There exists an almost surely finite stopping time τ such that under the event

{τ = t}, we have C(t′) = C(t) for all t′ � t.

ii. Take C ∈ C(t). If for all i ∈ C either (A1) or (A2) holds, then there exists an

almost surely finite stopping time bτ such that almost surely bτ � t and under

the event {bτ = t′′} agents in C are not manipulated from time t′′ on. Moreover,

they converge to the random variable

x(∞) = π(C;bτ) M(bτ − 1)|C M(bτ − 2)|C · · · M(1)|C x(0)|C .

Part (i) holds as the number of possible changes in the trust structure is bounded.

To understand why part (ii) holds, notice that when the trust structure has settled

down, the agents continue to approach a mutual consensus after each manipulation.

At some time t′′ (under the event {bτ = t′′}), the effect of manipulation on the updated

opinions becomes small enough (the current opinions become close enough) such

that vi
(
αij | x(t′′),M(t′′), j

) − vi
(
0 | x(t′′),M(t′′), j

)
< ci(αij | j), i.e. the gain from

manipulation is too small to outweigh its cost and thus agent i decides not to

manipulate j from time t on. And as this holds for any pair of agents (i, j) in C ,

manipulation comes to an end.

Denote by πi(C; t), the overall influence of agent i’s initial opinion on the

consensus of group C at time t conditional on that no more manipulation af-

fecting C takes place. The formula for the overall influence is implicitly given by

Proposition 3. In particular, it turns out that an agent outside a minimal closed

group that has finally been formed can never have any influence on its consensus

opinion.

Corollary 2

Under the event {τ = t}, the overall influence of the initial opinion of agent i ∈ N
on the consensus of the group C ∈ C(t) is given by the random variable

πi(C;bτ) =

{ (
π(C;bτ) M(bτ − 1)|C M(bτ − 2)|C · · · M(1)|C

)
i

if i ∈ C

0 if i /∈ C
,

where τ and bτ are as defined in Proposition 3.

4.3 Three-agents example

Finally, let us consider an example to illustrate the results of this section. We use a

utility model based on the reward function in Example 1 (i).
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Fig. 2. Opinion dynamics (top), and the corresponding influence (middle), and overall

influence (bottom) of the agents in Example 3. The solid line represents agent 1, the

dashed line agent 2, and the dashed-dotted line agent 3.

Example 3 (Three-agents society)

Consider N = {1, 2, 3} and

ui
(
α | x(t),M(t), j

)
= −1

2

∑
k �=i

(
xi(t) − xk(t + 1)

)2 − α

20

for all i ∈ N. Furthermore, the initial opinions and trust matrix are

x(0) =

⎛
⎝0.95

0.7

0.05

⎞
⎠ and M(0) =

⎛
⎝0.95 0.05 0

0.05 0.92 0.03

0.05 0.05 0.9

⎞
⎠

and αij = 0.2 is the ability of i to manipulate j, for all i �= j. Notice that the agents

form one minimal closed group. The vector of initial influence and overall influence,

which is also the vector of influence in the DeGroot model without manipulation

(denoted by πDG), is π(N; 0) = π(N; 0) = πDG � (0.5, 0.385, 0.115). Thus, without

manipulation, the agents would reach the consensus xDG(∞) = πDG · x(0) � 0.75.

The influence weights and hence the consensus the agents reach might change

significantly with manipulation. Figure 2 depicts one simulation run of the long-run
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opinion dynamics and the corresponding influence and overall influence of the

agents, where

Γ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3, 2; 0.2), t = 0

(2, 3; 0.2), t = 1

(1, 3; 0.2), t = 2

(2, 1; 0.2), t = 4

(·, ·; 0), otherwise

.

Notice that although the last manipulation makes agent 2 the most influential agent

from time 5 on, agent 1 stays the most influential agent in terms of the initial

opinions. By the time agent 2 manipulates agent 1, the initial opinion of the latter

agent has already spread in the network. This reflects the intuition that manipulation

has the most bite in the beginning, before potentially misleading opinions (in this

case agent 1’s opinion) have spread. This results in the following final trust matrix:

M(t) �
⎛
⎝0.792 0.208 0

0.042 0.767 0.192

0.201 0.174 0.625

⎞
⎠ , t � 5.

The agents reach the consensus x(∞) � 0.623, which reflects the gain of overall
influence of agent 3 (and the loss of the other agents) as the consensus value is

closer to agent 3’s initial opinion compared to the case without manipulation.

5 Spread of (mis)information

In this section, we investigate how manipulation affects the aggregation of informa-

tion and the spread of misinformation in society. First, we study conditions under

which a single manipulation is beneficial for information aggregation. Second, we

rely on comparative simulations to obtain insights on the long-run consequences of

manipulation on information aggregation and the spread of misinformation.

We assume that the society forms one minimal closed group as segregated societies

clearly fail to aggregate dispersed information.21 We use an approach similar to

Acemoglu et al. (2010) and assume that there is an underlying state μ = 1/n ·∑
i∈N xi(0) that corresponds to the average of the initial opinions of the n agents.

Information about the underlying state is dispersed, but can easily be aggregated

by the agents: uniform overall influence on the long-run beliefs leads to perfect

aggregation of information.22 We measure the spread of misinformation in society

at time t by the gap between the consensus reached conditional on that no more

manipulation takes place and the underlying state:

π(N; t)x(0) − μ =
∑
i∈N

(
πi(N; t) − 1

n

)
xi(0).

Thus, we can quantify the extent of the spread of misinformation by looking at the
deviations of the overall influences from the average influence in society.

21 Nevertheless, manipulation that leads to a connected society as in Example 2 can be interpreted as
improving information aggregation.

22 We could also think of the initial opinions as being drawn independently from some distribution with
mean μ. Then, uniform overall influence would lead as well to optimal aggregation, the difference being
that it would not be perfect due to the finite number of samples drawn by the agents. Furthermore,
notice that the agents do not have any objectives regarding the underlying state.
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Definition 1 (Extent of misinformation)
i. The extent of misinformation in society at time t is

‖π(N; t) − 1/n · �‖2,

where � = (1, 1, . . . , 1) ∈ �n is a vector of 1s and ‖x‖2 =
√∑

k∈N |xk|2 the

standard Euclidean norm of x ∈ �n,
ii. manipulation at time t decreases (increases) the extent of misinformation in

society if

‖π(N; t + 1) − 1/n · �‖2 < (>)‖π(N; t) − 1/n · �‖2, and

iii. manipulation at time t strongly decreases (strongly increases) the extent of

misinformation in society if

|πi(N; t + 1) − 1/n| < (>)|πi(N; t) − 1/n| for all i ∈ N.

Notice that the above measure is also useful in other situations. If the issue at stake

is, for instance, normative, we can think of the extent of misinformation as a measure

for how egalitarian the society is in terms of influence; in this sense, the underlying

state reflects the consensus a fully egalitarian society would attain. The next result

provides conditions under which manipulation strongly decreases the extent of

misinformation in society. We show that first, the ability of the manipulating agent

should be limited and second, agents with excess overall influence (πk(N; t) > 1/n)

should lose and others gain overall influence.

Proposition 4
Suppose that πk(N; t) �= 1/n for all k ∈ N. Then, there exists α > 0 such that the

manipulation Γ(t) = (i, j; αij), αij > 0, strongly decreases the extent of misinformation

if

i. αij � α, and
ii.

∑n
l=1 mlk(t)

(
πl(N; t + 1) − πl(N; t)

)
< (>) 0 for k ∈ N such that πk(N; t) >

(<) 1/n.

Intuitively, condition (ii) says that agents whose current overall influence is above

the average influence in society (πk(N; t) > 1/n) should lose overall influence

due to the manipulation and agents whose current overall influence is below

the average influence (πk(N; t) < 1/n) should gain. Then, this leads to a strong

reduction of the extent of misinformation if i’s ability to manipulate j is below some

threshold (condition (i)). Otherwise, manipulation makes some agents too influential,

in particular the manipulating agent, and might lead to an increase of the extent of

misinformation.

5.1 Comparative simulations

Example 3 indicates that when preferences for manipulation and abilities to ma-

nipulate are homogeneous, then manipulation might overall—i.e. in terms of the

overall influences after the last manipulation has taken place—decrease the extent

of misinformation.23 In the following, we conduct comparative simulations to further

23 Figure 2 depicts a simulation run where manipulation overall has strongly decreased the extent of
misinformation.
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investigate this observation. Doing comparative simulations is a risky business as

the resulting opinion dynamics may highly depend on the order in which the agents

manipulate in a particular simulation run and even more on the particular initial

opinion vectors and trust matrices we use. We therefore consider many different

combinations of initial opinion vectors and trust matrices and also take the average

values over a large number of simulation runs to ensure that our results are

robust and precise approximations of the expected impact of manipulation. We

investigate environments with (1) homogeneous preferences and abilities, and (2)

homogeneous preferences but heterogeneous abilities. We conduct the simulations

for N = {1, 2, 3} and do R = 100, 000 simulation runs for each combination of

preferences and parameter values, which allows us to precisely approximate the

expected final overall influences and the corresponding extent of misinformation.

These quantities indicate the tendency of the impact of manipulation in each of the

settings.

We start with homogeneous preferences and abilities for manipulation, i.e.

ui
(
α | x(t),M(t), j

)
= −1

2

∑
k �=i

(
xi(t) − xk(t + 1)

)2 − χ{α�=0}(α) · 1

100

for all i ∈ N and αij = 0.2 for all i �= j.24 We consider all permutations of the initial

opinion vectors

x(0) =

⎛
⎝0.9

0.7

0.1

⎞
⎠ and x(0) =

⎛
⎝0.9

0.5

0.1

⎞
⎠ .25

The initial trust matrix in the basic setting (1) is

M(0) = M(1) =

⎛
⎝0.95 0.05 0

0.05 0.92 0.03

0.05 0.05 0.9

⎞
⎠ .

To test how the impact of manipulation depends on the initial trust matrix, we

consider modifications of M(1). We increase one (or two) trust weight(s) mij(0), i �= j,

by 0.1 (0.05 each), and decrease the corresponding weight mii(0) accordingly. Thus,

we run simulations with the initial trust matrix M(1) and the following modifications:

M(2) =

⎛
⎝0.85 0.15 0

0.05 0.92 0.03

0.05 0.05 0.9

⎞
⎠ ,M(3) =

⎛
⎝0.85 0.05 0.1

0.05 0.92 0.03

0.05 0.05 0.9

⎞
⎠ ,

24 χ{α�=0}(α) = { 1, if α �= 0
0, otherwise

denotes the characteristic function of the set {α �= 0}.
25 Notice that only the absolute differences of each pair of opinions matter for the agents’ preferences.

Thus, we implicitly also cover permutations of the vector

(
0.9
0.3
0.1

)
as, e.g. the opinion dynamics with

this vector of initial opinions is equivalent in terms of manipulations to the one with initial opinions(
0.1
0.7
0.9

)
. And we also cover permutations of vectors

(
0.9 + h
0.7 + h
0.1 + h

)
, h ∈ �.
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M(4) =

⎛
⎝0.95 0.05 0

0.15 0.82 0.03

0.05 0.05 0.9

⎞
⎠ ,M(5) =

⎛
⎝0.95 0.05 0

0.05 0.82 0.13

0.05 0.05 0.9

⎞
⎠ ,

M(6) =

⎛
⎝0.95 0.05 0

0.05 0.92 0.03

0.15 0.05 0.8

⎞
⎠ ,M(7) =

⎛
⎝0.95 0.05 0

0.05 0.92 0.03

0.05 0.15 0.8

⎞
⎠ ,

M(8) =

⎛
⎝0.85 0.1 0.05

0.05 0.92 0.03

0.05 0.05 0.9

⎞
⎠ ,M(9) =

⎛
⎝0.95 0.05 0

0.1 0.82 0.08

0.05 0.05 0.9

⎞
⎠ ,

M(10) =

⎛
⎝0.95 0.05 0

0.05 0.92 0.03

0.1 0.1 0.8

⎞
⎠ ,M(11) =

⎛
⎝ 0.9 0.05 0.05

0.05 0.87 0.08

0.05 0.05 0.9

⎞
⎠ ,

M(12) =

⎛
⎝ 0.9 0.1 0

0.05 0.92 0.03

0.05 0.1 0.85

⎞
⎠ ,M(13) =

⎛
⎝0.95 0.05 0

0.1 0.87 0.03

0.1 0.05 0.85

⎞
⎠ .

For a given combination of initial opinion vector and trust matrix defined above,

the extent of misinformation corresponding to the mean final overall influences

is given by ‖π∗,mean − 1/3 · �‖2, where π
∗,mean
i = 1/R · ∑R

r=1 π
∗,r
i denotes the mean

final overall influence of agent i and π
∗,r
i the final overall influence of agent i in

run r, i.e. the overall influence of agent i in run r after the last manipulation has

taken place. The results of the simulations in terms of the extents of misinformation

corresponding to the mean final overall influences are presented in Table 1.

The results show that, in expectation, manipulation decreases the final extent

of misinformation for all combinations of initial opinions and trust matrices; and

moreover, the decrease is strong for most combinations.26 In particular, it is striking

that this is even the case in settings (3) and (11), where the extent of misinformation

is already rather small ex-ante. We have also conducted a robustness check with

the reward function from Example 1 (iii) to see whether these results depend on

the fact that the agents need to know the social network. The results were almost

identical,27 which confirms that manipulation, in expectation, decreases the extent of

misinformation when preferences and abilities for manipulation are homogeneous.

And in particular, this even holds when agents only take into account their ability

and current opinions for their decisions and do not know the social network.

The intuition for this finding is that given a certain ability to manipulate, the

benefit from manipulation depends mainly on the influence of the manipulated

agent. If the latter is influential, then the manipulator benefits a lot and gains

substantially in influence, while she does not benefit much otherwise. The reason

is that manipulating an influential agent makes the manipulator indirectly more

influential on many other agents. Furthermore, notice that the higher an agent’s

influence, the lower the average influence of the other agents in the society. Therefore,

26 Notice that π
(11)
1 (N; 0) = π

(12)
1 (N; 0) = 1/3 and thus a strong decrease of the extent of misinformation

is not possible in settings (11) and (12).
27 The final extent of misinformation decreased for all combinations of initial opinions and trust matrices,

and strongly decreased for most combinations.
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Table 1. Simulation results with homogeneous preferences and abilities in terms of the extents of misinformation corresponding to the mean final overall

influences. ∗ indicates a decrease and ∗∗ a strong decrease compared to the DeGroot model without manipulation.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

0.9, 0.7, 0.1 0.11∗∗ 0.19∗∗ 0.07∗∗ 0.24∗∗ 0.17∗ 0.23∗∗ 0.2∗∗ 0.12∗∗ 0.18∗∗ 0.21∗∗ 0.06∗ 0.19∗ 0.25∗
0.9, 0.5, 0.1 0.1∗∗ 0.16∗∗ 0.06∗∗ 0.19∗∗ 0.11∗∗ 0.21∗∗ 0.2∗ 0.1∗∗ 0.14∗∗ 0.2∗∗ 0.05∗ 0.18∗ 0.2∗∗
0.1, 0.7, 0.9 0.11∗∗ 0.2∗∗ 0.06∗∗ 0.18∗∗ 0.12∗∗ 0.23∗ 0.24∗ 0.12∗∗ 0.14∗∗ 0.23∗ 0.07∗ 0.23∗ 0.21∗∗
0.9, 0.1, 0.7 0.2∗∗ 0.16∗∗ 0.08∗ 0.34∗∗ 0.14∗∗ 0.3∗∗ 0.28∗∗ 0.09∗∗ 0.23∗∗ 0.28∗∗ 0.05∗ 0.21∗ 0.32∗∗
0.9, 0.1, 0.5 0.13∗∗ 0.18∗∗ 0.06∗∗ 0.23∗∗ 0.1∗∗ 0.24∗∗ 0.22∗∗ 0.1∗∗ 0.15∗∗ 0.22∗∗ 0.04∗ 0.2∗ 0.24∗∗
0.1, 0.9, 0.7 0.14∗ 0.23∗∗ 0.07∗∗ 0.2∗∗ 0.11∗∗ 0.26∗ 0.25∗ 0.13∗∗ 0.14∗∗ 0.25∗ 0.06∗ 0.25∗ 0.23∗∗
0.7, 0.9, 0.1 0.13∗∗ 0.19∗ 0.08∗∗ 0.26∗∗ 0.14∗∗ 0.25∗∗ 0.21∗∗ 0.13∗∗ 0.2∗∗ 0.22∗∗ 0.04∗ 0.19∗ 0.26∗
0.5, 0.9, 0.1 0.12∗∗ 0.14∗∗ 0.07∗∗ 0.24∗∗ 0.13∗∗ 0.23∗∗ 0.21∗∗ 0.1∗∗ 0.17∗∗ 0.22∗∗ 0.04∗ 0.17∗ 0.26∗∗
0.7, 0.1, 0.9 0.18∗∗ 0.14∗ 0.09∗ 0.32∗∗ 0.14∗∗ 0.3∗∗ 0.26∗∗ 0.1∗∗ 0.23∗∗ 0.28∗∗ 0.05∗ 0.16∗ 0.32∗∗

DeGroot 0.28 0.3 0.1 0.48 0.21 0.36 0.33 0.18 0.34 0.34 0.08 0.31 0.44
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Table 2. Simulation results with homogeneous preferences and heterogeneous abilities in

terms of the mean final overall influences and the corresponding extents of misinformation.

(1) (2) (3) (4) (5) (6) (7) (8) DeGroot

π
∗,mean
1 0.337 0.375 0.374 0.41 0.438 0.264 0.299 0.287 1/3

π
∗,mean
2 0.325 0.263 0.362 0.291 0.282 0.37 0.402 0.425 1/3

π
∗,mean
3 0.338 0.362 0.264 0.299 0.281 0.365 0.299 0.288 1/3

‖π∗,mean − 1/3 · �‖2 0.01 0.087 0.085 0.094 0.128 0.084 0.084 0.112 0

in expectation, agents benefit more from manipulation the lower their own influence

and thus manipulation decreases the extent of misinformation.

Second, we conduct simulations with heterogeneous abilities for manipulation.

Therefore, we take an otherwise symmetric environment where preferences are

ui
(
α | x(t),M(t), j

)
= −1

2

∑
k �=i

(
xi(t) − xk(t + 1)

)2 − χ{α�=0}(α) · 1

100

for all i ∈ N and initial opinions and initial trust matrix are given by

x(0) =

⎛
⎝0.9

0.5

0.1

⎞
⎠ and M(0) =

⎛
⎝ 0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9

⎞
⎠ .

The vector of initial overall influence is π(N; 0) = (1/3, 1/3, 1/3). Notice that the

agents are not perfectly symmetric in the distance between their initial opinions and

thus we can only treat agents 1 and 3 as equivalent. The abilities to manipulate in

the basic setting (1) are given by α
(1)
ij = 0.2 for all i �= j. To test how the impact of

manipulation depends on the abilities, we increase first one ability of agent 1 by 0.4,

and then both abilities by 0.4 as well as by 1; and the same is done for agent 2. Thus,

we run simulations with the abilities α
(1)
ij and the following modifications (abilities

that do not change are omitted):28

α
(2)
12 = 0.6; α(3)

13 = 0.6; α(4)
12 = α

(4)
13 = 0.6; α(5)

12 = α
(5)
13 = 1.2;

α
(6)
21 = 0.6; α(7)

21 = α
(7)
23 = 0.6; α(8)

21 = α
(8)
23 = 1.2.

The results of the simulations in terms of the mean final overall influences are

presented in Table 2.29

Settings (2) and (3) show that increasing one ability by 0.4 already benefits agent

1 significantly in expectation, while the agent more susceptible to manipulation

loses influence. Notice that the agent not concerned by the change in ability also

significantly gains influence in expectation. Increasing both abilities by 0.4 (setting

(4)) and by 1 (setting (5)) further increases the gain of influence of agent 1,

while the other agents lose equally. Moreover, we also find that the extent of

misinformation significantly increases in expectation when some agent gets more

ability to manipulate. The increase of both abilities from 0.2 to 1.2 has increased

28 We omit the case α
(6′)
23 = 0.6 as it is equivalent to α

(6)
21 = 0.6.

29 Notice that the different mean final overall influences in the basic setting (1) between agent 1 (agent 3)
and agent 2 are due to their asymmetry with respect to the initial opinions; and the slight difference
between agent 1 and agent 3 reflects the approximation error of our simulations.
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agent 1’s mean final overall influence by around 30% and furthermore, it has

increased more than tenfold the extent of misinformation corresponding to the

mean final overall influences. The tests with agent 2 (settings (6)–(8)) confirm these

observations, the only difference being that the increase of influence is slightly

lower due to her weaker position in terms of initial opinions. Thus, our results

confirm the intuition that agents that are more powerful than others in terms of the

abilities to manipulate, e.g. lobbyists or lobby organizations, might severely harm the

aggregation of information and spread their (potentially) misleading information.

Here, the tendency of the average benefit from manipulation to decrease with

the agent’s own influence is dominated by the effect coming from the asymmetry in

abilities. Agents with higher ability to manipulate benefit more from manipulation

and hence, in expectation, increase their influence even if they were already rather

influential before.

In total, our simulations suggest that manipulation is beneficial to information

aggregation when preferences and abilities for manipulation are homogeneous, but

detrimental in case abilities are concentrated at few powerful agents.

6 Conclusion

This paper investigates a model of opinion formation where agents are subject to

persuasion bias, i.e. fail to adjust for possible repetitions of information they receive

and instead treat all information as new, and can exert effort to manipulate trust in

the opinions of others in their favor. Our analysis is motivated by various examples

where it is desirable for individuals that others hold similar beliefs as this would

make them taking similar decisions.

Agents hold opinions about some issue of common interest, are organized in a

weighted social network and repeatedly meet and communicate with their neighbors

in the network. At each time instance, first a pair of agents is selected by a stochastic

process such that one of them has the opportunity to manipulate the other, which is

modeled as changing the persuasion bias of the manipulated agent in favor of the

manipulator. Second, all agents communicate with their neighbors and update their

opinions according to their (possibly manipulated) social trust.

We first study segregated societies and show that manipulation can connect

segregated groups and thus make them reaching a consensus. In particular, an

agent outside these groups can serve as a mediator by manipulating members

of both groups. Second, we investigate the long-run effects of manipulation and

find that it fosters opinion leadership; and surprisingly agents with low trust

in their own opinion might get more influential even by being manipulated.

Finally, we investigate the tension between information aggregation and spread of

misinformation. Our comparative simulations reveal that manipulation is beneficial

to information aggregation when preferences and abilities for manipulation are

homogeneous. This result turns out to be very robust and even holds when agents

manipulate without knowing the social network. However, the simulations also show

that manipulation is detrimental to information aggregation in case abilities are

concentrated at few powerful agents; such agents, e.g. lobby organizations, might

severely harm information aggregation and spread their (potentially) misleading

information.
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We should notice at this point that manipulation how we model it has no bite

in large societies as studied by Golub & Jackson (2010). They study social learning

under persuasion bias and find that all opinions in a large society converge to

the truth if and only if the influence of the most influential agent vanishes as the

society grows. In large societies, manipulation does not change convergence to the

underlying state since its consequences are negligible compared to the size of society.

However, our intuition is that an agent being able to manipulate a substantial

proportion of the society could spread misinformation also in large societies.

We view our paper as a first attempt in studying manipulation and spread of

(mis)information in social networks. Our approach incorporates boundedly rational

decision making in a model where agents are subject to persuasion bias. We made

several simplifying assumptions and derived results that apply to general societies.

One line of future investigation is to relax the restriction to manipulation of a single

agent. Extending manipulation to groups is interesting in particular in the context

of large societies as studied by Golub & Jackson (2010). Second, it is important to

study manipulation when agents are, at least partly, Bayesian. While our boundedly

rational approach is a natural starting point as the notion of manipulation is

more difficult to introduce into a Bayesian setup, it would be interesting to study

manipulation with rational agents.
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A Appendix

A.1 Proof of Proposition 1

i. Follows immediately since all minimal closed groups remain unchanged.

ii. If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since C ′ � j

is minimal closed at time t, there exists a path at t + 1 from l to i for all

l ∈ C ′. Since C is still minimal closed, it follows that R(t + 1) = R(t) ∪ C ′, i.e.

C(t + 1) = C(t)\{C ′}.
iii. a. If agent i manipulates agent j, then it follows that

∑
l∈C∪{i} mkl(t + 1) = 1

for all k ∈ C since C is closed at time t. Furthermore, since by assumption

there is no path from i to k for any k ∈ ∪C ′∈C(t)\{C}C ′ and by definition

of R′,
∑

l∈C∪R′∪{i} mkl(t + 1) = 1 for all k ∈ R′ ∪ {i}. Hence, it follows that∑
l∈C∪R′∪{i} mkl(t + 1) = 1 for all k ∈ C ∪ R′ ∪ {i}, i.e. C ∪ R′ ∪ {i} is closed.

Moreover, since by assumption there is no path from i to k for any

k ∈ ∪C ′∈C(t)\{C}C ′, there is a path from i to j (otherwise R′ ∪ {i} was closed

at t). Thus, since C is minimal closed and i manipulates j, there is a path

from k to l for all k, l ∈ C ∪ {i} at t + 1. Then, by definition of R′, there

is also a path from k to l for all k ∈ C ∪ {i} and l ∈ R′. Moreover, again

by assumption and definition of R′, there exists a path from k to l for all

k ∈ R′ and all l ∈ C (otherwise a subset of R′ was closed at t).

Combined, this implies that the same holds for all k, l ∈ C∪R′ ∪{i}. Hence,

C ∪ R′ ∪ {i} is minimal closed, i.e. C(t + 1) = C(t)\{C} ∪ {C ∪ R′ ∪ {i}}.
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b. If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since C � j

is minimal closed at time t, there exists a path at t + 1 from l to i for all

l ∈ C . Hence, by assumption there exists a path from agent j to k, but not

vice versa since C ′ � k is minimal closed. Thus, R(t+ 1) = R(t) ∪ C , which

finishes the proof.

A.2 Proof of Corollary 1

First, it follows from Remarks 3 and 4 in Appendix B that for all k ∈ C\{i, j},
rkj(t) = 1 +

∑
l∈C\{j}

mkl(t)rlj(t) � 1 +
∑

l∈C\{j}
mkl(t) =2 − mkj(t)

�2 − max
u∈C\{i,j}

muj(t)

=2 − η > 1

since muu(t) > 0 for all u ∈ C\{i, j}. And as mij(t) → 1 implies rij(t) → 1, there exists

q(η) < 1 such that rij(t) � (3 − η)/2 if mij(t) > q(η).

Next, suppose that mij(t) > q(η) and mjj(t) < (1 − η)/(3 − η) · ∑
k∈C\{i,j} mjk(t). It

follows that∑
k∈C\{i,j}

mjk(t)
(
rkj(t) − rij(t)

)︸ ︷︷ ︸
�2−η−(3−η)/2=(1−η)/2

�
1 − η

2

∑
k∈C\{i,j}

mjk(t) >
3 − η

2
mjj(t)

� mjj(t)rij(t),

which by Proposition 2 part (ii) (the extended version in Appendix B) implies that

agent j gains influence and thus finishes the proof.

A.3 Proof of Proposition 3

Suppose that the sequence (τk)
∞
k=1 of stopping times denotes the time instances where

the trust structure changes, i.e. under the event {τk = t} the trust structure changes

the kth time at time t. Notice that the event {τk = +∞} means that the kth change

never happens. By Proposition 1, it follows that under the event {τk = t < +∞},
either

a. 1 � |C(t + 1)| < |C(t)| and |R(t + 1)| > |R(t)|, or

b. |C(t + 1)| = |C(t)| and 0 � |R(t + 1)| < |R(t)|
holds. This implies that the maximal number of changes in the trust structure is

finite, i.e. there exists a positive integer K such that there are at most K changes in

the structure and thus, almost surely τK+1 = +∞. Hence, τ := max{τk+1 | τk < +∞},
where τ0 ≡ 0, is the desired almost surely finite stopping time, which finishes part

(i). Part (ii) follows from the following lemma.

Lemma 1

Suppose that C(0) = {N}. If for all i ∈ N either (A1) or (A2) holds, then there

exists an almost surely finite stopping time τ such that under the event {τ = t} no

more manipulation takes place from time t on. The society converges to the random
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variable

x(∞) = π(N; τ)M(τ − 1)x(0).30

Proof

By Proposition 1, we know that C(t) = {N} for all t � 0. First, we show that the

opinions converge almost surely to a consensus x(∞). Therefore, suppose to the

contrary that the opinions do not converge almost surely, i.e. there exists a value

d > 0 such that maxi,j∈N|xi(t) − xj(t)| → d for t → ∞ with positive probability. In

this case, there exists t′ > 0 such that d � maxi,j∈N|xi(t) − xj(t)| < d+ ε for all t � t′
and some ε > 0. Furthermore, this implies that there exists a periodic trust matrix

M∗ ∈ �n×n such that M(t) → M∗ for t → ∞.31 In particular, there are without loss

of generality 2 � k � n agents i1, i2, . . . , ik such that m∗
il il+1

= 1 for all l = 1, 2, . . . , k,

with k + 1 ≡ 1, and

d � max
l,l′∈{1,2,...,k}

|xil (t) − xil′ (t)| < d + ε

for all t � t′. Next, take any agent il . As |mil il+1
(t′) −m∗

il il+1
| � mil il (t

′) > 0, there exists

0 < δ(mil (t
′)) < 1 such that if mil (t

′) = mil (t
′ + k), i.e. il is not manipulated during k

consecutive time instances, then

max
l′ ,l′′

|xil′ (t′ + k) − xil′′ (t
′ + k)| � δ(mil (t

′)) · max
l′ ,l′′

|xil′ (t′) − xil′′ (t
′)|,

which implies

max
l′ ,l′′

|xil′ (t′ + k) − xil′′ (t
′ + k)| < δ(mil (t

′)) · (d + ε).32

Moreover, there exists an integer r∗ > 0 such that δ(mil (t
′))r∗ · (d + ε) < d, which

implies that

max
l′ ,l′′

|xil′ (t′ + r∗ · k) − xil′′ (t
′ + r∗ · k)| < d

if il is not manipulated during r∗ · k consecutive time instances. Hence, as the same

argument holds for all t′′ > t′, it follows that there exists an almost surely finite

stopping time τ′ such that under the event {τ′ = t} maxi,j∈N|xi(t) − xj(t)| < d, which

is a contradiction.

Having established the convergence of opinions, it follows immediately that

‖[M(t)](i, j; αij)x(t) − [M(t)](i, j; 0)x(t)‖ → 0 and |xi(t) − xj(t)| → 0, for t → ∞
and any pair of agents (i, j). Hence, as by assumption either (A1) or (A2) holds, we

get vi
(
αij | x(t),M(t), j

) − vi
(
0 | x(t),M(t), j

) → 0 < ci(αij | j) for t → ∞ and any

pair of agents (i, j), which shows that there exists an almost surely finite stopping

time τ such that under the event {τ = t}, there is no more manipulation from time

30 We define M(t) := In for t = 0,−1, where In is the n × n identity matrix.
31 The reason is that as the agents form a minimal closed group (which will not change due to

manipulation), they will fail to converge only in case the trust matrix converges to a periodic matrix.
Notice also that mii(0) > 0 implies mii(t) > 0 and thus M(t) �= M∗ for all t � 0.

32 Notice that δ(mil (t
′)) can be calculated by using a theoretical benchmark where all trust vectors

except that of agent il are equal to those in the periodic trust matrix and where no manipulation

takes place: set x̃(t′) := x(t′), emil := mil (t
′), fmil′ := m∗

il′ for all l′ �= l and x̃(t′ + k) := eM
k
x̃(t′). Then,

δ(mil (t
′)) := maxl′ ,l′′ |x̃il′ (t′ +k)−x̃il′′ (t

′ +k)|/maxl′ ,l′′ |x̃il′ (t′)−x̃il′′ (t
′)| < 1 as | emil il+1

−m∗
il il+1

| � fmil il > 0.
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t on. Furthermore, agents reach a stochastic consensus that can be written as

x(∞) = π(N; τ)x(τ) = π(N; τ)M(τ)x(τ − 1)

= π(N; τ)M(τ − 1)M(τ − 2) · · ·M(1)x(0)

= π(N; τ)M(τ − 1)x(0),

where the second equality follows from the fact that π(N; τ) is a left eigenvector of

M(τ) corresponding to eigenvalue 1, which finishes the proof. �

Finally, notice that the restriction to C of the matrices M(·) in the computation of

the consensus belief is possible as C is minimal closed and thus M(·)|C are stochastic

matrices, which finishes the proof.

A.4 Proof of Proposition 4

First, we derive a formula for the absolute change of the overall influence weights

due to manipulation.

Lemma 2

For k ∈ N,

πk(N; t + 1) − πk(N; t) =

n∑
l=1

mlk(t)
(
πl(N; t + 1) − πl(N; t)

)
.

Proof

It follows from Corollary 2 that

πk(N; t + 1) =

n∑
l=1

mlk(t)πl(N; t + 1)

=

n∑
l=1

mlk(t)
(
πl(N; t + 1) − πl(N; t)

)
+

n∑
l=1

mlk(t)πl(N; t)

=

n∑
l=1

mlk(t)
(
πl(N; t + 1) − πl(N; t)

)
+

n∑
l=1

mlk(t − 1)πl(N; t)

︸ ︷︷ ︸
=πk(N;t)

,

where the last equality follows since π(N; t) is a left eigenvector of M(t), which

finishes the proof. �

Next, let N∗ := {k ∈ N | πk(N; t) < 1/n} and N∗ := {k ∈ N | πk(N; t) > 1/n}.
Notice that N∗, N∗ �= ∅. By Lemma 3 in Appendix B, we have πk(N; t + 1) −
πk(N; t) → 0 for αij → 0 and all k ∈ N and thus, by Lemma 2,

πk(N; t + 1) − πk(N; t) → 0 for αij → 0 and all k ∈ N. (A1)

Let k ∈ N∗, then by (ii) and Lemma 2, πk(N; t + 1) > πk(N; t). Hence, by

Equation (A1), there exists α(k) > 0 such that

1/n � πk(N; t + 1) > πk(N; t) for all 0 < αij � α(k).

Analogously, for k ∈ N∗, there exists α(k) > 0 such that

1/n � πk(N; t + 1) < πk(N; t) for all 0 < αij � α(k).
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Therefore, setting α := mink∈N α(k), we have

|πk(N; t + 1) − 1/n| < |πk(N; t) − 1/n|
for all k ∈ N and 0 < αij � α, which finishes the proof.

B Appendix – Derivation of Proposition 2

The proof of Proposition 2 relies on a measure for how remotely agents are located

from each other in the network, i.e. how directly agents trust other agents. This

measure is known as the mean first passage time in Markov chain theory. Let

(X(t)
s )∞

s=0 denote the homogeneous Markov chain induced by transition matrix M(t).

The agents are then interpreted as states of the Markov chain and the trust of i in

j, mij(t), is interpreted as the transition probability from state i to state j.

The mean first passage time from state i to state j is defined as �[inf{s � 0 | X(t)
s =

j} | X(t)
0 = i]. Given the current state of the Markov chain is i, the mean first passage

time to j is the expected time it takes for the chain to reach state j. In other words,

the mean first passage time from i to j corresponds to the average (expected) length

of a random walk on the weighted network M(t) from i to j that takes each link

with probability equal to the assigned weight.33 This average length is small if the

weights along short paths from i to j are high, i.e. if agent i trusts agent j rather

directly. We therefore call this measure weighted remoteness of j from i.

Definition 2 (Weighted remoteness)

Take i, j ∈ N, i �= j. The weighted remoteness at time t of agent j from agent i is

given by

rij(t) = �[inf{s � 0 | X(t)
s = j} | X(t)

0 = i],

where (X(t)
s )∞

s=0 is the homogeneous Markov chain induced by M(t).

The following remark shows that the weighted remoteness attains its minimum

when i trusts solely j.

Remark 3

Take i, j ∈ N, i �= j.

i. rij(t) � 1,

ii. rij(t) < +∞ if and only if there is a path from i to j, and, in particular, if

i, j ∈ C ∈ C(t), and

iii. rij(t) = 1 if and only if mij(t) = 1.

To provide some more intuition, let us look at an alternative (implicit) formula

for the weighted remoteness. Suppose that i, j ∈ C ∈ C(t) are two distinct agents in

a minimal closed group. By part (ii) of Remark 3, the weighted remoteness is finite

for all pairs of agents in that group. The unique walk from i to j with length 1 is

assigned weight (or has probability, when interpreted as a random walk) mij(t). And

the average length of walks to j that first pass through k ∈ C\{j} is rkj(t) + 1, i.e.

33 More precisely, it is a random walk on the state space N that, if currently in state k, travels to state l
with probability mkl (t) . The length of this random walk to j is the time it takes for it to reach state j.
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walks from i to j with average length rkj(t)+1 are assigned weight (have probability)

mik(t). Thus,

rij(t) = mij(t) · 1 +
∑

k∈C\{j}
mik(t) · (rkj(t) + 1).

Finally, applying
∑

k∈C mik(t) = 1 leads to the following remark.

Remark 4

Take i, j ∈ C ∈ C(t), i �= j. Then,

rij(t) = 1 +
∑

k∈C\{j}
mik(t)rkj(t).

Note that computing the weighted remoteness using this formula amounts to

solving a linear system of |C|(|C| − 1) equations, which has a unique solution. The

following lemma provides a formula for the absolute change of the influence weights.

Lemma 3

Suppose that at time t, Γ(t) = (i, j; α), i, j ∈ C . Then, the influence of agent k ∈ C

on the final consensus of her group changes as follows:

πk(C; t + 1) − πk(C; t) ={
α/(1 + α)πi(C; t)πj(C; t + 1)

∑
l∈C\{i} mjl(t)rli(t) if k = i

α/(1 + α)πk(C; t)πj(C; t + 1)
(∑

l∈C\{k} mjl(t)rlk(t) − rik(t)
)

if k �= i
.

Proof

Suppose without loss of generality that C(t) = {N}. We can write

M(t + 1) = M(t) + ejz(t),

where ej is the jth unit vector, and

zk(t) =

{ (
mji(t) + α

)
/ (1 + α) − mji(t) if k = i(

mjk(t)
)
/ (1 + α) − mjk(t) if k �= i

=

{
α(1 − mji(t))/ (1 + α) if k = i

−αmjk(t)/ (1 + α) if k �= i
.

From Hunter (2005), we get

πk(N; t + 1) − πk(N; t) = −πk(N; t)πj(N; t + 1)
∑
l �=k

zl(t)rlk(t)

=

{
α/ (1 + α) πi(N; t)πj(N; t + 1)

∑
l �=i mjl(t)rli(t) if k = i

α/ (1 + α) πk(N; t)πj(N; t + 1)
(∑

l �=k mjl(t)rlk(t) − rik(t)
)

if k �= i
,

which finishes the proof. �

Notice that the magnitude of the change in long-run influence increases with i’s

ability to manipulate j, and it is zero if i does not manipulate. We are now in the

position to prove the following result.
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Proposition 2

Suppose that at time t, Γ(t) = (i, j; α), i, j ∈ C . If α = αij > 0, then

i. agent i strictly increases her long-run influence, πi(C; t + 1) > πi(C; t),

ii. any other agent k �= i of the group can either gain or lose influence, depending

on the trust matrix. [In particular, she gains if and only if∑
l∈C\{k,i}

mjl(t)
(
rlk(t) − rik(t)

)
> mjk(t)rik(t), ]

iii. agent k �= i, j loses influence for sure if j trusts solely her, i.e. mjk(t) = 1.

Proof

We know that πk(C; t), πk(C; t+1) > 0 for all k ∈ C . Furthermore, mjj(0) > 0 implies

mjj(t) > 0 and thus, by Remark 3,
∑

l∈C\{i} mjl(t)rli(t) > 0. Hence, πi(N; t + 1) >

πi(N; t), which proves part (i). Part (ii) is obvious. Part (iii) follows since mjk(t) = 1

implies
∑

l∈C\{k} mjl(t)rlk(t) = 0, which finishes the proof. �
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