
Lyme borreliosis in Europe and North America

J. PIESMAN1 and L. GERN2

1Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control
and Prevention, PO Box 2087, Fort Collins, CO 80522, USA
2 Institut de Zoologie, University of Neuchâtel, Emile-Argand 11, 2007 Neuchâtel 7, Switzerland

SUMMARY

Since the discovery of the Lyme disease spirochete in North America in 1982 and in Europe in 1983, a plethora of studies

on this unique group of spirochetes that comprise Borrelia burgdorferi sensu lato has been accumulated. In an attempt to

compare and contrast Lyme borreliosis in Europe and North America we have reviewed the biology of the aetiologic

agents, as well as the clinical aspects, diagnosis and treatment of this disease on both continents. Moreover, we have

detailed the ecology of the Ixodes ticks that transmit this infection and the reservoir hosts that maintain the spirochete

cycle in nature. Finally, we have examined the transmission dynamics of the spirochete on both continents, as well as

the available prevention strategies. Although it has been over two decades since the discovery of the Lyme disease

spirochete, Lyme borreliosis is an expanding public health problem that has defied our attempts to control it. By com-

paring the accumulated experience of investigators in North America and Europe, where the disease is most frequently

reported, we hope to advance the cause of developing novel approaches to combat Lyme borreliosis.
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INTRODUCTION

Arthropod-borne spirochetes have long caused

human suffering and disease. Louse-borne relapsing

fever (LBRF), caused by Borrelia recurrentis and

transmitted by the human body louse (Pediculus

humanus), was once widespread in the extensive

areas where human body lice were found. Today,

LBRF is reported mainly from northeastern and

central Africa including the countries of Ethiopia,

Somalia and Sudan, in discrete foci where human

body lice remain prevalent (Porcella et al. 2000).

Tick-borne relapsing fever (TBRF) was first de-

scribed in Africa where the argasid tick, or soft tick

Ornithodoros moubata, was found to transmit Borre-

lia duttoni (see historical review by Burgdorfer,

2001). Isolated endemic cycles of TBRF caused by

individual species of relapsing fever spirochetes and

their matching argasid vector species have been

subsequently described in Asia, Europe, and the

Americas (Felsenfeld, 1979). Recent reports detail-

ing the epidemiology and biology of relapsing fever

include studies in Tanzania, where Borrelia duttoni

frequently causes human disease (Melkert & Stel,

1991; Fukunaga et al. 2001), as well as studies in

North America where Borrelia hermsii is the pri-

mary aetiologic agent of relapsing fever (Dworkin

et al. 2002). Although Borrelia were known to cause

humandisease in isolated pockets, scant attentionwas

directed toward the study of these organisms in the

latter half of the 20th century until an epidemic

of arthritis was described in Lyme, Connecticut

(Steere et al. 1977b). In sequential fashion, this con-

dition was associated with a typical rash previously

described in Europe as erythema chronicum migrans

(later shortened to erythema migrans or EM) and the

bite of the blacklegged tick, Ixodes scapularis (Steere,

Broderick & Malawista, 1978; Steere & Malawista,

1979). A significant breakthrough occurred in 1982

when Burgdorfer et al. (1982) reported the discovery

of a spirochete in Ixodes scapularis, and a few months

later in Ixodes ricinus (Burgdorfer et al. 1983), that

proved to be the aetiologic agent of Lyme disease

(LD) or Lyme borreliosis (LB). This spirochete was

subsequently named Borrelia burgdorferi (Johnson

et al. 1984). It seems appropriate to review at this

time (two decades following the discovery of B.

burgdorferi), the large body of knowledge accumu-

lated concerning the ecology, entomology, epidemi-

ology, microbiology and prevention of LB in the 2

areas of the world where the most human cases have

been described: Europe and North America.

By necessity, this review must focus solely on

Lyme borreliosis in Europe and North America

since the topic is extensive and the literature vast on

this subject alone. The subject of Lyme borreliosis

in Asia, where I. persulcatus is the primary vector,

has recently been reviewed by Miyamoto & Masu-

zawa (2002), as well as Korenberg, Gorelova &

Kovalevskii (2002). Moreover, the focus of this re-

view is placed on the aspects of Lyme borreliosis that

principally affect human health. An extensive review

of Lyme borreliosis in livestock, companion animals

and wildlife is beyond the scope of the current
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review. In the veterinary literature, the most com-

prehensive body of knowledge for disease in animals

has been developed through the use of a canine

model (Appel et al. 1993). Initial studies on devel-

oping an equine model of infection have also been

reported (Chang et al. 2000).

B. BURGDORFERI SENSU LATO IN EUROPE

In Europe, B. burgdorferi sensu lato (sl) has been

reported from 26 countries from Italy to Iceland

and from Portugal to Russia (Hubálek & Halouzka,

1997). The reported mean rates of B. burgdorferi in

unfed I. ricinus ticks vary from 0 to 11% (mean 1.9%)

for larvae, from 2 to 43% (mean 10.8%) for nymphs

and from 3 to 58% (mean 17.4%) for adults (Hubálek

& Halouzka, 1998). Occasionally, higher infection

rates have been reported, mainly using PCR, as for

example in a study in Portugal where B. burgdorferi

DNA was detected in 75% of I. ricinus ticks (de

Michelis et al. 2000).

Five Borrelia genospecies have been found associ-

ated with I. ricinus : B. burgdorferi sensu stricto (ss)

(Johnson et al. 1984), B. garinii (Baranton et al.

1992), B. afzelii (Canica et al. 1993), B. valaisiana

(Wang et al. 1997) and B. lusitaniae (Le Fleche et al.

1997) (Fig. 1). In addition, two other genospecies

have been obtained from patient tissues: B. bissettii,

a species present in North America, has been iso-

lated from patients in Slovenia (Picken et al. 1996;

Strle et al. 1997), and a novel B. burgdorferi sl geno-

species has been cultured from an erythema migrans

biopsy of a patient who contracted the disease in the

Netherlands (Wang, Van Dam & Dankert, 1999).

The European vector ticks and natural hosts of these

two genospecies have not been identified as yet. Re-

cently, a single I. ricinus from Slovakia was found

to be reactive with probes specific for B. bissettii

(Hanincová et al. 2003b) ; the fact that this tick was

also reactive with probes for two other genospecies

of B. burgdorferi complicated the specific identifi-

cation of the spirochetes present in this tick.

Very early after the discovery of B. burgdorferi,

phenotyping of Borrelia isolates showed that the

protein profiles of B. burgdorferi sl isolates are het-

erogeneous (Barbour, Heiland & Howe, 1985). A

few years later, outer surface protein A (OspA) and

outer surface protein C (OspC) serotyping of isolates

was established using sets of monoclonal antibodies

(Wilske et al. 1993, 1995, 1996). Eight OspA sero-

types of B. burgdorferi sl have been defined (Wilske

et al. 1993, 1996). These serotypes correlated well

with the delineated three most frequent genospecies:

serotype 1 corresponds to B. burgdorferi ss, serotype

2 to B. afzelii and serotypes 3 to 8 correspond to B.

garinii. The heterogeneity among B. garinii isolates

was confirmed on a genetic basis (Will et al. 1995).

Strikingly, B. garinii serotype 4 isolates have been

cultivated from cerebrospinal fluid (CSF) from

patients from Germany, the Netherlands, Denmark

and Slovenia and have been more frequently culti-

vated from CSF than other serotypes (Wilske et al.

1993, 1996; Van Dam et al. 1997) but were only

recently shown to be transmitted by I. ricinus ticks

(Hu et al. 2001).

Although there is much that is not yet known

about the distribution of the various genospecies in

Europe, current knowledge suggests that B. garinii

and B. afzelii are the most frequent and most widely

distributed species whereas B. burgdorferi ss is pres-

ent mainly in western areas of Europe and has been

rarely described in Eastern parts of Europe.

Data from these last five years suggest that B.

valaisiana and B. lusitaniae are more frequent than

previously thought. B. valaisiana was first described

in Switzerland (Peter & Bretz, 1992; Peter, Bretz &

Bee, 1995; Humair et al. 1998), the Netherlands

(Rijpkema et al. 1995), Great Britain (Cutler,

Williams & Wright, 1989), Ireland (Kirstein et al.

1997) and Croatia (Rijpkema et al. 1996). Later

reports on B. valaisiana extended to Germany

(Liebisch, Sihns & Bautsch, 1998b ; Kurtenbach

et al. 2001), Spain (Escudero et al. 2000; Barral et al.

2002), Italy (Cinco et al. 1998), Slovakia (Gern et al.

1999; Kurtenbach et al. 2001), Portugal and Latvia

(Kurtenbach et al. 2001) and Russia (Alekseev et al.

2001). Concerning B. lusitaniae, this species was first

isolated from I. ricinus ticks in Portugal (Nuncio

Fig. 1. Transmission cycle of B. burgdorferi in Europe. a) Cycle involving I. hexagonus and hedgehogs. b) Cycles

involving I. ricinus, various genospecies of B. burgdorferi sl as well as birds and rodents.
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et al. 1993) and has subsequently been reported in

the Czech Republic, Moldavia, Ukraine (Postic et al.

1997), Slovakia (Gern et al. 1999), Tunisia (Zhioua

et al. 1999), Morocco (Gern et al. 2002), Poland

(Mizak & Krol, 2000), Spain (Escudero et al. 2000;

Barral et al. 2002) and Switzerland (Jouda et al. 2003

and unpublished data). Interestingly, in Portugal (de

Michelis et al. 2000), in Tunisia (Younsi et al. 2001;

Gern et al. 2002) and in Morocco (Gern et al. 2002)

B. lusitaniae is very frequent and greatly exceeds

the other genospecies in I. ricinus ticks whereas B.

lusitaniae is only sporadically reported in ticks from

other areas. De Michelis et al. (2000) even hypoth-

esized thatB. lusitaniae has a narrow ecological niche

that involves host species restricted to the Medi-

terranean Basin and that are highly competent re-

servoirs for this genospecies. However, the recent

report on the presence of this species in countries

located outside the Mediterranean Basin, in Poland

(Mizak & Krol, 2000), in France (Richter, Schlee &

Matuschka, 2003) and in Switzerland (Jouda et al.

2003 and unpublished data) demonstrates that B.

lusitaniae can be found outside of its well defined foci

in southern Europe. Nevertheless, the fact that B.

lusitaniae is by far the dominant species in I. ricinus

ticks in Portugal (de Michelis et al. 2000), Tunisia

(Zhioua et al. 1999; Younsi et al. 2001) and Morocco

(Gern et al. 2002; Sarih et al. 2003) indicates that the

genospecies diversity of B. burgdorferi sl decreases

towards the southern margin of its European distri-

bution. If B. lusitaniae appears clearly to dominate

in southern Europe, data from northern Europe

report a dominance of B. afzelii (Jenkins et al. 2001;

Junttila et al. 1999; Schouls et al. 1999).

Since many Borrelia species may circulate in an

endemic area, mixed infection in ticks can be ob-

served. Such mixed infections are reported less fre-

quently than single infections and are often detected

by PCR methods. Detection of mixed infections in

ticks using cultivation might be more difficult

because one genospecies may overgrow another as

recently observed for B. afzelii and B. garinii

OspA serotype 4 (Hu et al. 2001). Mixed infections

in ticks may result from the feeding of ticks on a host

infected by multiple Borrelia species or from

infected ticks feeding simultaneously on a host and

exchanging the Borrelia species through co-feeding

transmission (Gern & Rais, 1996; Randolph, Gern

& Nuttall, 1996). Moreover, ticks may acquire vari-

ous Borrelia species through their successive blood

meals on various hosts and maintain the infection

to the subsequent stage via trans-stadial transmis-

sion. Infections by multiple B. burgdorferi sl geno-

species have been observed in ticks in many parts of

Europe, including the Netherlands (Rijpkema et al.

1995), Croatia (Rijpkema et al. 1996), Switzerland

(Leuba-Garcia et al. 1994; Jouda et al. 2003 and un-

published observations), France (Pichon et al. 1995),

Austria (Stunzner et al. 1998), Belgium (Misonne,

Van Impe & Hoet, 1998), Estonia, Kirghizia,

Moldavia, Russia and Ukraine (Postic et al. 1997),

Ireland (Kirstein et al. 1997), Italy (Cinco et al.

1998), Germany (Liebisch et al. 1998b ; Hu et al.

2001; Kurtenbach et al. 2001), Latvia, United

Kingdom and Slovakia (Kurtenbach et al. 2001),

Norway (Jenkins et al. 2001), Finland (Junttila et al.

1999), Czech Republic (Basta et al. 1999) and Poland

(Stanczak et al. 2000). Different combinations of

mixed infection with two or three genospecies have

been detected in I. ricinus. Borrelia garinii and B.

valaisiana constitute the majority of mixed infec-

tions followed by mixed infections with B. garinii

and B. afzelii.

B. BURGDORFERI SENSU LATO IN

NORTH AMERICA

The diversity of spirochetes was thought to be much

greater in Europe than in North America until close

examination of spirochete populations across the

Atlantic was initiated during the 1990s. A landmark

study involved molecular characterization of a total

of 186 strains from throughout the United States

(Mathiesen et al. 1997). These strains fell into 2

major groups: a fairly uniform B31 division and a

more heterologous division from more moderate

climates, resembling the well characterized 25015

strain. A smaller group included several isolates from

Ixodes dentatus ticks in Missouri. Mathiesen et al.

(1997) also noted that all the strains they examined

that were human-derived fell within the B31 group.

Three formal genospecies have now been well

defined in North America. The predominant one is

the former B31 division, corresponding to the geno-

species B. burgdorferi ss according to molecular cri-

teria (Baranton et al. 1992; Postic et al. 1994). This

is the only genospecies that has been demonstrated

to infect humans in North America and it is ubiqui-

tous in Ixodes scapularis ticks in the hyperendemic

regions of the Northeastern United States (Seinost

et al. 1999). The 25015 division (also called the

DN127 group) was defined as a unique genospecies

named B. bissettii by Postic et al. (1998). Several

B. bissettii strains were described from I. pacificus

ticks collected in California in this original descrip-

tion. In addition, a large number of strains isolated

from an enzootic cycle involving woodrats and I.

spinipalpis ticks in Colorado were found to be B.

bissettii (Norris et al. 1999; Schneider et al. 2000)

(Fig. 2). B. bissettii has also been isolated from a

variety of rodents and ticks in the southern United

States (Lin, Oliver & Gao, 2002), as well as from

rodents in the metropolitan Chicago area (Picken &

Picken, 2000). The third recognized genospecies in

North America has been isolated from rabbits and

from a tick associated with rabbits, I. dentatus.

These spirochetes were formally described as a new

genospecies (B. andersonii) by Marconi, Liveris &
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Schwartz (1995) (Fig. 2). Spirochetes that appear to

fit the definition of B. burgdorferi sl but that are

distinctly different from any well described geno-

species have also been detected in California (Postic

et al. 1998) and Florida (Lin et al. 2002). Although

the known diversity of B. burgdorferi sl in North

America is likely to expand, it must be stressed that

human-derived culture confirmed isolates have all

been B. burgdorferi ss. Additional attempts to make

human-derived Borrelia isolates in culture medium

from various geographic locations in North America

are urgently needed.

A group of spirochetes quite separate and distinct

from B. burgdorferi sl have been reported to infect

hard ticks in North America (see Telford &Goethert

in this Supplement). These include B. lonestari from

the lone star tick Amblyomma americanum (Barbour

et al. 1996), ‘Novel Borrelia-MP2000’ from I.

scapularis (Scoles et al. 2001), and B. theileri

from Boophilus microplus and Rhipicephalus spp.

(Rich et al. 2001). Attempts to culture all three of

theseBorrelia have failed. Based on molecular analy-

sis they are more closely related to relapsing fever

spirochetes than to B. burgdorferi sl. They have been

informally called ‘hard-tick relapsing fever spiro-

chetes’. Moreover, they are very closely related to

a spirochete that has been successfully isolated from

I. persulcatus in Japan:B. miyamotoi (Fukunaga et al.

1995), as well as a spirochete detected from I. ricinus

in Sweden (Fraenkel, Garpmo & Berglund, 2002),

and in Germany and France (Richter et al. 2003).

Although B. lonestari DNA has been detected in an

erythema migrans lesion and an associated A. ameri-

canum (James et al. 2001), the pathogenic potential

of all of these hard tick relapsing fever spirochetes

is still undetermined. A prime importance of these

spirochetes is the confusion they cause when sur-

veying tick populations for B. burgdorferi sl. Specific

tools to differentiate the hard tick relapsing fever

spirochetes from B. burgdorferi sl must be developed

before generic molecular tools can be used to survey

ticks for Borrelia in North America. In both North

America and Europe, special care will be required

to distinguish spirochetes infecting unfed larvae in

estimates of transovarial transmission rates, due to

the possibility these hard tick relapsing fever spiro-

chetes are transovarially transmitted, as suggested

by Rich et al. (2001).

CLINICAL ASPECTS, DIAGNOSIS AND

TREATMENT OF LYME DISEASE IN EUROPE

The first clinical case of what is now known as Lyme

borreliosis was reported in Europe at the end of the

19th century (Buchwald, 1883). In the following

years, Erythema migrans (EM), Lymphadenosis

benigna cutis, Acrodermatitis chronica atrophicans

(ACA) and meningopolyneuritis were described

(Weber & Pfister, 1993).

In Europe, the clinical case definition described

by the European Union Concerted Action on Risk

Assessment (Stanek et al. 1996) can serve as a

guideline for clinical diagnosis of the disease. Two

different aspects can be distinguished in the devel-

opment of the infection: the localized infection and

the disseminated infection.

EM is the hallmark of Lyme borreliosis. The ery-

thema begins as a red macule or papule, often with

central clearing at the site of the tick bite approxi-

mately a few days to one month after the tick bite.

At that stage the infection is localized.

The disseminated form of the disease appears a

few days or weeks after the tick bite. Manifestations

of early neurological involvement including menin-

gitis, unilateral facial palsy, other cranial neuritis and

radiculitis may occur. Chronic involvement of the

central nervous system includes encephalomyelitis

and chronic meningitis. But these manifestations are

very rare. Lyme arthritis includes brief attacks of

joint swelling with occasional persistence of syno-

vitis. Cardiac involvement appears as an acute onset

of disturbances in the atrio-ventricular conduction.

Fig. 2. Transmission cycle of B. burgdorferi in North America. a) Cycles involving B. andersonii, I. dentatus and

rabbits, as well as B. bissettii, I. spinipalpis and rodents. b) Cycle involving I. scapularis or I. pacificus, B. burgdorferi ss,

as well as birds and rodents.
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Endomyocarditis, pericarditis and rhythm disturb-

ances have also been reported (Stanek et al. 1996).

The EM is similar in the whole geographic dis-

tribution of Lyme borreliosis whereas there appear

to be differences in the manifestations of the disease

as well as the frequency and severity of the disease.

This may be related to the geographical distribution

of the various pathogenic genospecies and their

prevalences. In Europe, where more pathogenic

genospecies have been described than in North

America, the disease expresses itself under a wider

range of manifestations (Stanek et al. 1996, 2002). It

is believed that this may reflect regional differences

in the distribution and frequency of the different

Borrelia genospecies. Currently, only three Borrelia

species, B. burgdorferi ss, B. garinii and B. afzelii,

have been isolated from patients suffering from

Lyme borreliosis. B. valaisiana’s status as a patho-

gen has yet to be confirmed (Wang et al. 1999) as

well as B. lusitaniae’s status although this species has

recently been reported to be pathogenic for labora-

tory mice (Zeidner et al. 2001).

Various studies have suggested an association be-

tween clinical manifestations and Borrelia species in

Europe. The three pathogenic species,B. burgdorferi

ss, B. garinii and B. afzelii, have a different organo-

tropism and preferentially cause different clinical

manifestations (Assous et al. 1993; Van Dam et al.

1993; Dressler, Ackermann & Steere, 1994; Balmelli

& Piffaretti, 1995; Busch et al. 1996a, b ; Eiffert

et al. 1998; Picken et al. 1998; Jaulhac et al. 2000)

(Table 1). Borrelia afzelii is predominant among

human skin isolates and B. garinii among CSF iso-

lates (Wilske et al. 1993, 1996) whereas a considerable

heterogeneity has been described in Borrelia species

detected in synovial fluid (Vasiliu et al. 1998).

Currently, the situation appears to be more compli-

cated than that. Recent studies reported that a few

groups of Borrelia within the 3 pathogenic species

are responsible for the disseminated form of the

disease (Seinost et al. 1999; Baranton et al. 2001). In

fact, the authors of these studies showed that 58

OspC groups could be defined within the 3 patho-

genic species based on OspC sequence analysis of

various Borrelia isolates obtained from ticks and

patients, and that all isolates from patients with

disseminated forms of LB were contained in only

10 groups. All tick and EM isolates were included in

the other groups.

This suggests that the OspC gene is involved in

invasiveness of strains leading to either localized in-

fections due to non-invasive clones, or to the dissemi-

nated form of the disease due to a few clones that are

invasive. The geographic distribution and frequency

of these various OspC groups are unknown.

Stanek et al. (1996), in their paper describing

clinical manifestations of LB in Europe, also re-

ported on laboratory evidence that is essential or

which supports the clinical findings. Diagnosis of

Lyme borreliosis by serological testing is difficult

and is even complicated in Europe by the presence of

at least 3 different pathogenic species (Dressler et al.

1994; Hauser et al. 1998). A European multicentre

study on immunoblotting showed that it would be

very difficult to have a standardized immunoblotting

method because it would require agreement on

the strains used as antigens (Robertson et al. 2000).

Moreover, this approach appears as unlikely due

to the local distribution of species and strains of

B. burgdorferi sl and the heterogeneity within the

strains. A new test developed in the USA (Liang

et al. 1999) (see next section) based on the vslE

protein of B. burgdorferi may help in the future

to improve serological testing in Europe. However,

it is clear from all accumulated studies on Lyme

borreliosis serology that serological testing should

be used as a support of clinical diagnosis rather than

a confirmation.

Treatment practices in Europe andNorth America

are fairly similar. Treatment practices are described

in detail in the section that follows.

CLINICAL ASPECTS, DIAGNOSIS AND

TREATMENT OF LYME DISEASE IN

NORTH AMERICA

Lyme disease in North America was first described

as a distinct clinical entity in Lyme, Connecticut

among a population of children believed to have juv-

enile rheumatoid arthritis (Steere et al. 1977b). In

rapid succession, the skin (Steere et al. 1977a),

neurological (Reik et al. 1979) and cardiac (Steere

Table 1. Clinical features of Lyme borreliosis in

North America and Eurasia

Vector
North America I. scapularis, I. pacificus
Eurasia I. ricinus, I. persulcatus

Aetiologic agents
North America B. burgdorferi ss
Eurasia B. burgdorferi ss, B. afzelii 1,

B. garinii 2

Clinical Features
North America Erythema migrans, arthritis,

facial palsy, meningitis,
peripheral radiculoneuropathy,
atrioventricular block

Eurasia Erythema migrans, acrodermatitis
chronica atrophicans1,
lymphocytoma, arthritis,
facial palsy2, meningitis2,
peripheral radiculoneuropathy2,
atrioventricular block

1 B. afzelii is associated with skin disease, including
specifically acrodermatitis chronica atrophicans. 2 B. garinii
is associated with neurological disease, including facial
palsy, meningitis, and peripheral radiculoneuropathy.
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et al. 1980) manifestations of Lyme disease were

brilliantly elucidated. The clinical manifestations of

Lyme disease in North America can be broken down

into an acute and chronic phase. The earliest stage of

the disease, often called localized early infection,

usually starts as a macule or papule at the site of a

tick bite, 3 to 32 days following exposure. This

spreads into a large annular lesion, most often with

a bright red border and partial central clearing

(Steere, 1994). This so-called bull’s eye or target

lesion was originally called erythema chronicum

migrans (ECM), as per the older literature in Europe.

This was shortened to erythemamigrans (EM), in part

because these lesions proved not to be chronic in

North America as they can be in European patients.

A large-scale multi-centre study that examined

10936 participants described 118 patients with

microbiologically confirmed erythema migrans ; curi-

ously, most of these patients had fairly homogeneous

EM lesions, with only 9% demonstrating classical

bull’s eye lesions with central clearing (Smith et al.

2002). The reason for the lack of bull’s eye rashes

was thought to be the short duration between onset

of symptoms and presentation at the clinics (mean=
3 days) for diagnosis and treatment when compared

to previous studies (Nadelman & Wormser, 2002).

The next stage of the disease has been called early

disseminated infection. This stage follows the orig-

inal EM lesion and may include systemic symptoms

e.g. severe headache, mild neck stiffness, fever,

chills, migratory musculoskeletal pain, arthralgias,

and profound malaise and fatigue (Steere, 1994).

Another key characteristic of this stage is the pres-

ence of secondary EM lesions at sites remote from

the original lesion. These lesions may reflect the

haematogenous spread of spirochetes from the orig-

inal tick bite site. Interestingly, in a study of patients

in a clinic in Westchester County, New York,

patient-derived isolates of B. burgdorferi ss fell into

3 distinct genetic subtypes based on restriction

fragment length polymorphism (RFLP type 1, 2, 3) ;

RFLP Type 1 strains were found in the blood of

patients with disseminated disease, as compared to

skin lesion biopsies from patients with localized dis-

ease (predominantly Type 2 and 3) (Wormser et al.

1999). In an elegant series of studies, Seinost et al.

(1999) and Qiu et al. (2002) demonstrated that at

least 21 major clonal groups of B. burgdorferi ss (as

defined by OspA and OspC haplotypes) have been

isolated from I. scapularis ticks along the eastern

seaboard; 15 of these groups have been isolated from

primary EM lesions. However, only 4 of the clonal

groups (A, B, I, K) have been isolated from sec-

ondary sites of infection (e.g. blood and cerebral

spinal fluid-CSF). Groups A, B, and K are 3 of the

most common haplotypes and the type strain of B.

burgdorferi ss (B31) is a group A strain. The pro-

portion of Lyme disease patients that present with

an EM lesion has been estimated to be between 80%

(Steere, 2001) and 90% (Nadelman & Wormser,

2002). Early symptoms seem to disappear within

several weeks.

Prior to the association of Lyme disease with

a specific bacterial aetiology, many cases of Lyme

disease in North America were not treated with anti-

biotics. This permitted the natural course of the

disease to evolve in patients and for observation by

physicians. Several months after the acute disease,

approximately 60% of patients begin to have inter-

mittent attacks of joint swelling and pain, particu-

larly in the large joints; the knee is the joint most

commonly affected site, but not exclusively so

(Steere, 1989, 1994). This pattern can best be de-

scribed as an oligoarticular arthritis. Although the

arthritis can move from joint to joint, in a small

number of patients the lesions in one or both knees

may become chronic with actual erosion of cartilage

and bone. These types of severe chronic arthritic

lesions are not seen very often in North America

today due to prompt recognition and treatment of

the disease in its early stages.

Several weeks after the onset of illness, about 5%

of untreated patients in North America develop car-

diac involvement (Steere, 2001). The most common

cardiac abnormality is an atrioventricular block of

fluctuating degrees. In some cases, more diffuse car-

diac involvement occurs, including acute myoperi-

carditis, left ventricular dysfunction, cardiomegaly

or pancarditis (Steere, 1994). Symptomsmay include

lightheadedness, palpitations, and chest pains.

The most complex manifestations of Lyme disease

involve neurological disease. This occurs in about

15% of untreated patients in North America (Steere,

1989, 1994). Neurological abnormalities include

meningitis, subtle encephalitic signs, cranial neuritis,

bilateral facial palsy, motor or sensory radiculo-

neuropathy,mononeuritismultiplex, chorea ormyel-

itis. The usual pattern is fluctuating symptoms of

meningitis accompanied by facial palsy and peri-

pheral radiculoneuropathy. CSF may show a lym-

phocytic pleocytosis at this point of about 100 cells

per ml. Although these symptoms may resolve even

in untreated patients and respond well to treatment,

a small minority of patients in North America may

develop a late neurological syndrome called ‘Lyme

encephalopathy’ manifested by subtle cognitive dis-

turbances (Halperin et al. 1989; Logigian, Kaplan &

Steere, 1990). The frequency and severity of these

cognitive disturbances appear to be the source of

much controversy in the United States. Severe

neurological consequences of Lyme disease in the

United States are rare in the present day, but, at least

one case of permanent bilateral blindness in a child

due to increased cranial pressure has been reported

(Rothermel, Hedges & Steere, 2001). The com-

parative clinical aspects of Lyme disease in United

States and Europe (Table 1) have been succinctly

reviewed by Steere (2001).
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Like many bacterial diseases, the ideal basis

for diagnosis of Lyme disease is isolation of the

aetiologic agent, namely Borrelia burgdorferi. The

standard culture media is called Barbour-Stoenner-

Kelly media or BSK. Tissue samples are generally

surface disinfected, minced, placed in BSK and incu-

bated at 33–34 xC. Successful culture of frank EM

lesions has been achieved on a routine basis in re-

search settings in highly endemic regions of the

United States through biopsy and culture of the skin

at the affected site (Berger et al. 1992; Schwartz et al.

1992). Recently, quantitative PCR techniques have

proved quite successful in the detection of spiro-

chetes in EM lesions, with detection ofBorreliaDNA

in up to 80% of the lesions tested (Nowakowski et al.

2001; Liveris et al. 2002). Large volume blood cul-

tures yielded positives in 44% of early Lyme disease

patients (Wormser et al. 2001) ; the yield of spiro-

chetes or DNA in late stage Lyme disease from

blood, CSF or synovial fluid is, however, much less

successful (Nocton et al. 1994; Steere, 2001).

Unfortunately, in the United States Lyme disease

has become a potential diagnosis in an extremely

large number of patients lacking a frank EM and

presenting with a complex of symptoms including

fatigue and vague feelings of ill health. Although

diagnosis of Lyme disease is fundamentally based on

a clinical evaluation of the patient, in practice diag-

nosis is often based upon serology. In fact, a market

analysis predicted that approximately 2.8 million

serological tests for Lyme disease were performed in

the United States during 1995 (Johnson et al. 1996).

The majority of those tested do not have Lyme dis-

ease. Thus, serological diagnosis of Lyme disease

in the United States has become an area of current

controversy. In general, a 2-tiered testing regime

that involves an ELISA screening test and a con-

firmatory western blot test can produce reliable

results (Dressler et al. 1993; CDC, 1995; Johnson

et al. 1996). Due to the large number of serological

samples that are tested each year, however, the

specificity of this testing regime is not robust enough

to completely eliminate the problem of false positive

results. This is a particularly acute problem with

IgM blots conducted after the first month of illness.

Thus, only IgG results should be used to support

the diagnosis of Lyme disease after the first month

of infection (Steere, 2001). A new test, based on a

recombinant protein of a portion (C6) of the vlsE

protein of B. burgdorferi shows promise for improv-

ing the sensitivity and specificity of the serological

diagnosis of Lyme disease in the future (Liang et al.

1999; Philipp et al. 2001).

Practice guidelines for the treatment of Lyme

disease were issued by the Infectious Diseases

Society of America (Wormser et al. 2000). Under

these definitive guidelines, adults with early Lyme

disease should be treated with doxycycline (100 mg

twice daily) or amoxicillin (500 mg 3 times daily) for

14–21 days. Cefuroxime axetil (500 mg orally twice

daily) should be reserved for patients who cannot

take doxycycline or amoxicillin. Children should be

treated with amoxicillin (50 mg/kg/d, maximum of

500 mg/dose) divided into 3 doses per day, or doxy-

cycline for thoseo8 years of age at a dose of 1–2 mg/

kg twice daily (maximum of 100 mg/dose). Cefur-

oxime axetil can be used as a suitable alternative in

children. The use of ceftriaxone (2 g once daily i.v.

for 14–28 days) should be reserved for those with

early Lyme disease who are also suffering from men-

ingitis or radiculopathy; in addition, ceftriaxone is

useful in early Lyme disease patients with third-

degree atrioventricular heart block. Lyme arthritis

can usually be treated with doxycycline or amoxi-

cillin at the same doses mentioned above but for a

duration of 28 days. In patients with late neurologi-

cal disease affecting the CNS or peripheral nervous

system, treatment with ceftriaxone (2 g once a day

i.v. for 2–4 weeks) is recommended. Clinical trials

that have attempted to enrol patients with ‘chronic

Lyme disease’ or ‘post-Lyme disease syndrome’

have generally been terminated early due to a lack of

enrolees with objective evidence of Lyme disease. In

these limited trials, however, no benefit of continued

antibiotic treatment was found (Klempner et al.

2001).

The practice of prophylactic treatment of tick bite

in Lyme disease endemic areas has generated much

public discussion. A cost–benefit analysis concluded

that prophylactic treatment should only be con-

sidered in areas with an extremely high risk of Lyme

disease transmission (Magid et al. 1992). In a recent

clinical trial, Nadelman et al. (2001) found that

prophylactic treatment of bites by partially fed

nymphal I. scapularis with a single dose of doxy-

cycline inWestchesterCounty,NYwas 87% effective

in preventing Lyme disease. Experimental work

with rodents has demonstrated that transmission of

B. burgdorferi ss becomes efficient after nymphal

I. scapularis are attached for >48 hours (des Vignes

et al. 2001). Prophylactic treatment of only those

patients exposed to infected I. scapularis that have

fed for more than 2 days would be ideal. It remains

to be seen whether this ideal plan can be put into

widespread clinical practice, since it would involve

rapid testing of ticks for infection and estimation of

the duration of attachment based on a scutal index of

tick engorgement.

LYME DISEASE VECTOR ECOLOGY IN EUROPE

In Europe, three tick species have been described as

being vectors of B. burgdorferi sl : I. ricinus, I. hexa-

gonus and I. uriae. These three species have very

different ecologies, but they all are three-host ticks

with each parasitic stage (larva, nymph and adult

female) feeding on different hosts. Although adult

male Ixodes sometimes ingest fluids from hosts, they
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do not ingest significant amounts of blood and their

role as vectors is probably insignificant but has

not been thoroughly evaluated. These three species,

however, have a rather different host range and dif-

ferent biology. Vector biology is an important fac-

tor since it dictates much of the epidemiology of the

diseases. According to their habitats, the three rec-

ognized European vectors of B. burgdorferi sl can

be divided into non-nidiculous ticks, I. ricinus, and

nidiculous ticks, I. uriae and I. hexagonus. Non-

nidiculous ticks occupy open habitats whereas nid-

iculous ticks live in caves, burrows or nests of their

hosts. The differences concerning behaviour and

physiology between nidiculous and non-nidiculous

ticks are enormous especially in their host-finding

behaviours. The non-nidiculous tick I. ricinus awaits

a host on the vegetation. The nidiculous tick species,

like I. uriae and I. hexagonus, have closer contact

with their host by living in their nests or in their

very close environment. This implies that contacts

between non-nidiculous ticks and humans are

more frequent than between nidiculous ticks and

humans and shows that vector biology is an import-

ant factor dictating much of the epidemiology of

Lyme disease.

The common European tick species, I. ricinus, is

the main vector of B. burgdorferi sl. This tick species

has a very wide geographical distribution through-

out Europe. It has been described within the

latitudes 65x and 39x and from Portugal to Russia

(Gern & Humair, 2002) and also in North Africa

(Tunisia, Algeria and Morocco) (Gern et al. 2002).

This wide geographical distribution of I. ricinus

implies that this tick survives under various en-

vironmental conditions. I. ricinus prefers deciduous

woodlands and mixed forests. High humidity is a

prerequisite for tick survival since they are suscep-

tible to desiccation when questing for hosts on veg-

etation. High humidity will be found at the base of

vegetation in the leaf litter where ticks periodically

return to uptake atmospheric water. Therefore I.

ricinus will survive only where relative humidity in

its micro-environment is higher than 80% (Kahl &

Knülle, 1988; Randolph et al. 2000). If saturation

deficit (measurement of the drying power of the

air) is above c. 4 mmHg (calculated according to

Randolph & Storey, 1999), I. ricinus shows positive

geotropism (McLeod, 1935). In nature, abrupt de-

clines in questing tick density have been reported to

coincide with abrupt increases in saturation deficit

(Perret et al. 2000; Randolph et al. 2002). Tem-

perature, which is known to have an effect on tick

questing activity and on tick development rates,

varies throughout the geographical distribution of

I. ricinus. Specific dynamics of seasonal activity have

been demonstrated under different climatic condi-

tions (Steele & Randolph, 1985; Tälleklint & Jaen-

son, 1996; Korenberg, 2000; Perret et al. 2000;

Randolph et al. 2002). The seasonal activity pattern

is either unimodal or bimodal. Data and model pre-

dictions from Randolph et al. (2002) suggest a sim-

ple life cycle for I. ricinus with a single cohort of each

stage starting in the autumn and not two separate

cohorts as previously thought (Lees & Milne, 1951;

Donnelly, 1976; Gray, 1982, 1985, 1991; Walker,

2001). The height at which I. ricinus ticks quest on

vegetation depends on each stage and on the veg-

etation structure, and it influences host encounters

(Mejlon & Jaenson, 1997). I. ricinus feeds on an

extraordinarily broad array of hosts, from small,

medium and large-sized mammals to birds and rep-

tiles (Anderson, 1991) and is the tick species which

most frequently bites humans in Europe.

Ixodes hexagonus is an endophilous nidicole tick

and is one of the most widespread tick species in

Europe (Morel, 1965). It has been reported from

Northern Europe (Jaenson et al. 1994) to the North

of Africa (Bailly-Choumara, Morel & Rageau, 1974).

This tick species lives in the nest and burrow of

its hosts, an environment which provides a suitable

micro-climate for the tick survival and therefore

the geographical distribution of I. hexagonus is less

dependent on meso- and micro-climatic conditions

than that of I. ricinus. Nevertheless, temperature

also influences duration of I. hexagonus development

as reported by Toutoungi, Aeschlimann & Gern

(1993). This suggests that duration of tick develop-

ment may be longer during the winter months than

in spring or summer. In view of its habitats, I.

hexagonus rarely comes in contact with humans.

Nevertheless, humans can be bitten occasionally,

particularly when they handle nests of hedgehogs

when gardening – a frequent host of I. hexagonus –

which have surface nests and are frequent in gardens

in Europe. I. hexagonus parasitizes primarily Mus-

telidae (e.g. Meles meles – European badger, Martes

fouina – beach marten, Mustela putorius – European

polecat, Mustela ermina – Ermine) and hedgehogs

(Erinaceus europaeus). In Switzerland, it was col-

lected from 15 animal species, especially from

foxes and Mustelidae, but also from domestic ani-

mals like dogs and cats (Toutoungi et al. 1991). I.

hexagonus may also occasionally infest birds (Pica

pica, Falco tinnunculus) and deer (Capreolus capreo-

lus) (Hubbard, Baker & Cann, 1998; Toutoungi et al.

1991). An additional tick species that is widely dis-

tributed throughout Europe and may serve a sec-

ondary role as an enzootic vector of B. burgdorferi is

I. trianguliceps, a tick that feeds predominantly on

rodents and has been found to be infected with B.

burgdorferi (Gorelova et al. 1996).

The third known vector of B. burgdorferi sl in

Europe, I. uriae, is a tick species parasitizing sea-

birds which has a three-stage life cycle usually cor-

responding to one stage each year. Each stage

attaches to the host for a single, long blood meal and

then returns to the host nesting substrate to over-

winter (Eveleigh & Threlfall, 1974). It has been
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reported that the prevalence and abundance of I.

uriae are autocorrelated in both space and time at the

scale of the host-breeding cliff (Danchin, Boulinier

& Massot, 1998; McCoy et al. 1999). The seabird

tick, I. uriae, has a distribution area covering coasts

situated at high latitudes both in northern and

southern hemispheres. In Europe, this includes coast

in Ireland, Iceland, Norway, Sweden, Denmark,

UK and France (Olsen et al. 1995a ; Hillyard, 1996).

I. uriae infests principally seabirds, but it has oc-

casionally been reported on mammals such as seals,

river otters and humans (Olsen, 1995).

LYME DISEASE VECTOR ECOLOGY IN

NORTH AMERICA

The two principal vectors of Lyme disease in North

America are the blacklegged tick (Ixodes scapularis)

in the eastern half of the continent and the western

blacklegged tick (Ixodes pacificus) in the western half

of the continent (Fig. 2). The vast majority of Lyme

disease infections in North America are acquired

through the bites of I. scapularis. Both biotic and

abiotic factors control the distribution of these fasci-

nating and nefarious ticks. One key component that

controls I. scapularis distribution is humidity. These

ticks are very susceptible to desiccation (Stafford,

1994). In fact, on a local level inWestchester County,

New York researchers found that the distribution

of I. scapularis was positively associated with a re-

motely sensed greenness–wetness index (Dister et al.

1997). In the north-central United States, the pres-

ence of I. scapularis was positively associated with

deciduous, dry to mesic forests and alfisol-type soils

of sandy or loam-sand textures overlying sedimen-

tary rock; tick absence was associated with grass-

lands, wet to wet/mesic forests, conifer forests,

acidic soils of low fertility and a clay soil texture, and

Precambrian bedrock (Guerra et al. 2002). In other

words, these ticks were found in moist soils, but

not in poorly drained soils where standing water

occurred.

There seems little doubt that I. scapularis ticks

are forest inhabitants. An analysis of I. scapularis

populations in suburban landscapes in Westchester

County, New York demonstrated that these tick

populations were highest in the woods, intermediate

in ecotonal vegetation and sparse in ornamental

planting and lawns (Maupin et al. 1991). In Long

Point (Ontario, Canada), I. scapularis were most

abundant in maple forests, followed by oak savan-

nah; these ticks were rare in white pine forest and

cottonwood dunes (Lindsay et al. 1999a, b). In gen-

eral, these ticks are found in hardwood forests where

abundant leaf litter provides ample cover from des-

iccation and protective cover during snowfall. The

importance of leaf litter was demonstrated in an ex-

periment where leaf litter was actually removed from

a forested plot ; I. scapularis populations decreased

by 72–100% as a result of litter removal (Schulze,

Jordan & Hung, 1995). Although populations of I.

scapularis are mainly associated with mature oak–

maple forests in the northeastern United States,

these ticks have the flexibility to inhabit diverse

habitats. In coastal regions and islands, these ticks can

be found in extremely dense shrub-like habitat that

contains bayberry, rose and scrub oak as predomi-

nant vegetation (Piesman & Spielman, 1979). Some

of these coastal areas have been affected by intense

deer browsing that promotes non-native plant

species like Japanese barberry and honeysuckle. The

cycle of intense deer browse and selected understory

may add to the suitability of the habitat for tick

populations (P. Rand, personal communication).

Another interesting observation has been the influ-

ence of masting in oak trees (wherein a massive crop

of acorns are produced every 2–5 years) on the den-

sity of ticks within forests and the annual variation

in populations of I. scapularis (Jones et al. 1998).

Although populations of I. scapularis are mainly

associated with hardwood forests they can also be

found in pine forests that are surrounded by hard-

woods (Schulze, Jordan & Hung, 1998). The mini-

mal amount of ground cover and hardwood leaf

litter that will allow I. scapularis to thrive in a conifer

dominated forest has not been established.

In eastern North America, I. scapularis essentially

takes 2 years to go through its life cycle (Fig. 3).

Setting year 0 as the first year of active questing,

larvae generally feed in August–September (Pies-

man & Spielman, 1979). The majority of larvae

moult to nymphs that overwinter as flat nymphs.

Nymphs feed the following year (year 1) in May–

July. These nymphs then moult to adults that begin

questing that same year in the fall. Adults quest from

October of year 1 until April of the next year (year

2). In areas with cold winter temperatures, adult

feeding ceases in the middle of winter, but in

southern areas adult questing may actually peak in

February (Goddard, 1992). In year 2, these replete

females lay eggs in May and June; larvae hatch by

August and begin questing thus completing the

2-year life cycle. This standard life cycle has been

elegantly described by Yuval & Spielman (1990).

Interestingly, in some colder climates this idealized

life cycle may not take place. Lindsay et al. (1995)

discovered that locations in northern Ontario that

lacked sufficient degree-days >11 xC, larvae did not

emerge from eggs laid in May or June during that

same year. Although some eggs could survive the

winter and hatch the next year, the overall surviva-

bility of these eggs was quite low in this extreme

environment. The key factor was not just latitude,

since one area (Kenora) that was north and west of

other areas had sufficient degree days, while other

areas to the south and east did not have sufficient

degree-days during most years (Kapsuskasing,

Geraldton, Thunder Bay). Sufficient thermal
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warming during the summer months may be

required for I. scapularis to efficiently go through its

life cycle. This key factor may bemuchmore import-

ant than the mean or minimum winter temperatures,

when the ticks may be insulated by snow cover and

well protected. Thus, there may be thermal limits

on the areas where I. scapularis can efficiently go

through its life cycle in North America.

The distribution of I. scapularis in the United

States was surveyed in 1991, 1994, and 1997 via

questionnaires delivered to entomologists and public

health officials. A county-by-county map was pro-

duced showing records of I. scapularis in 952 of the

3141 counties within the United States (Dennis et al.

1998). This tick is distributed along the eastern sea-

board from Florida to Maine and as far west as

central Texas. Interestingly, the distribution is not

continuous, with a ‘hole’ in the distribution seen

in central states (e.g.West Virginia, Ohio, Kentucky,

Tennessee). The possibility that I. scapularis was

once extant over the entire eastern United States,

then reduced to a few refugia due to human

encroachment and host reduction and now slowly

but surely regaining its former range is intriguing;

this hypothesis will be difficult to test.

There has been debate concerning the species

status of I. scapularis. Spielman et al. (1979)

proposed that this species be divided into a southern

species (I. scapularis) and northern species (I. dam-

mini). In contrast, Oliver et al. (1993b) challenged

the validity of I. dammini as a species separate and

distinct from I. scapularis. Molecular studies on the

mitochondrial genes 16S and 12S suggested that 2

distinct clades of I. scapularis could be defined: one

clade, called the southern clade, stretched from

Florida to North Carolina, while the northern or

All-American clade stretched from Massachusetts

to Mississippi (Rich et al. 1995; Norris et al. 1996).

The southern clade was considered the basal group

of I. scapularis by Norris et al. (1996). A recent

phylogenetic analysis of I. scapularis from South

Carolina to Massachusetts confirmed that 2 mito-

chondrial clades of I. scapularis exist (Qiu et al.

2002). These researchers found that the northern

clade (Clade A) had a low within-population se-

quence divergence (0.2%), while the southern clade

Fig. 3. Life cycle of B. burgdorferi in the United States, highlighting various points for intervention strategies to

prevent Lyme disease. (Reprinted with permission from the Massachusetts Medical Society; Hayes & Piesman, 2003.)
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(Clade B) had a much higher diversity (1.5%). Qiu

et al. 2002 suggested that the northern and southern

clades have separate and different evolutionary his-

tories, perhaps influenced by separation during the

last glacial maximum 18000 years ago. The theory

that the northern clade of I. scapularis results from

several refugia established during the last ice age and

that this population is now expanding across the

eastern United States, with these ticks being the

principal ticks responsible for transmitting Lyme

disease in North America is worthy of further ob-

jective study. But the complexity and diversity of

host (see Reservoir Hosts section below) populations

present in different geographical areas may play a

predominant role in determining local risk of Lyme

disease transmission, in addition to the genetic

makeup of local I. scapularis populations.

The western blacklegged tick I. pacificus is found

along the Pacific Coast from British Columbia to

Baja California Norte, Mexico (Kain, Sperling &

Lane, 1997). Although the populations of I. pacificus

are principally coastal, isolated inland populations

have been described in such arid overall climates

as Mohave County, Arizona (Olson et al. 1992) and

the southwestern corner of Utah (Kain et al. 1997).

There is no evidence of genetic isolation among these

diverse populations of I. pacificus (Kain et al. 1999).

Habitats where adult I. pacificus can be collected are

extremely varied, from redwood or Douglas fir for-

est, to more open habitats such as chaparral and open

grasslands. When collecting adult I. pacificus along

trails established by people or animals, several re-

searchers have found that the majority of these ticks

can be found on the uphill side of the trail. Like I.

scapularis, I. pacificus has been collected mainly at

lower altitudes, but I. pacificus has been collected, in

at least one instance, at an altitude of 2345 m (Olson

et al. 1992). The habitats where questing nymphal

I. pacificus can be collected in abundance are more

restricted than comparable adult habitat. Areas of

high nymphal abundance are mainly characterized

by the presence of mature trees and abundant leaf

litter (Tälleklint-Eisen & Lane, 1999; Li, Peavey &

Lane, 2000).

RESERVOIR HOSTS IN EUROPE

Among all of the main tick vectors of B. burgdorferi

sl, I. ricinus is the one which feeds on the largest

variety of vertebrate hosts (>300 vertebrate species,

Anderson, 1991). However, only a few dozen of

these vertebrate hosts have been currently identified

as reservoir hosts for B. burgdorferi sl in Europe

(Gern et al. 1998). Thus, little information is avail-

able on the real significance of most animal hosts

as sources for infecting ticks with B. burgdorferi sl.

From the few tick hosts which have been studied up

to now some of them act as reservoirs whereas others

appear to be refractory to infection. A distinction

must be made between animals that serve as hosts

for ticks and are occasionally found to be infected

with Borrelia burgdorferi, vs. true reservoirs of

infection that infect a significant proportion of the

immature ticks that feed on them. A careful analysis

of the term reservoir capacity was recently published

by Kahl et al. (2002).

The enzootic cycle involves larval and nymphal

ticks becoming infected with B. burgdorferi while

feeding on their hosts. Small mammals are frequent

hosts of these developmental stages and are certainly

the group that has been the most extensively investi-

gated up to now in Europe and North America. Cur-

rently several species of mice, voles, rats and shrews

have been shown to be competent reservoirs of B.

burgdorferi sl in Europe (Gern et al. 1998). In par-

ticular, evidence that the mice Apodemus flavicollis,

A. sylvaticus,A. agrarius and the vole, Clethrionomys

glareolus, act as reservoirs for B. burgdorferi sl

has been obtained in many European countries

(Aeschlimann et al. 1986; Matuschka et al. 1992; de

Boer et al. 1993; Humair et al. 1993a ; Gern et al.

1994; Kurtenbach et al. 1994, 1995, 1998b ; Tällek-

lint & Jaenson, 1994; Randolph & Craine, 1995; Hu

et al. 1997; Humair, Rais & Gern, 1999; Richter

et al. 1999; Hanincová et al. 2003a). Apodemus, once

infected, persistently remain infectious for ticks

(Gern et al. 1994) ; and since small rodents are fre-

quently parasitized by nymphal and larval I. ricinus

(Humair et al. 1993a ; Randolph et al. 2000) they are

potent reservoir hosts. However, a study highlighted

different transmission patterns in nature between

Apodemus and ticks and Clethrionomys and ticks

(Humair et al. 1999). The authors of this study ob-

served that each host species seems to have devel-

oped different strategies towards tick infestation and

Borrelia infection. Borrelia infection in Apodemus is

rarely detected by Borrelia isolation; this may be

related to the fact that Apodemus appear to maintain

low level of Borrelia infection through their im-

mune system (Kurtenbach et al. 1994). On the other

hand, Borrelia is efficiently transmitted from Apo-

demus to ticks (Humair et al. 1999). In contrast, in

Clethrionomys, Borrelia infection is easily detectable

by isolation and spirochetes are easily transmitted to

ticks but most ticks do not feed completely or do not

moult (Humair et al. 1999). This is in line with the

observation that Clethrionomys develop an immune

response to ticks that prevent ticks from engorging

and moulting successfully (Kurtenbach et al. 1994;

Dizij & Kurtenbach, 1995). Consequently, the res-

ervoir competence of Apodemus and Clethrionomys is

modulated by their immune response towards the

pathogen and towards the tick.

More limited information has been obtained on

the implications of other small mammals in themain-

tenance cycles of Borrelia in nature. Nevertheless,

another species of vole, Microtus agrestis in Sweden

(Tälleklint & Jaenson, 1994), and black rats (Rattus
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rattus) and Norway rats (R. norvegicus) in urbanized

environments in Germany (Matuschka et al. 1996,

1997) and in Madeira (Matuschka et al. 1994a) may

serve to infect I. ricinus ticks. Similarly, only a few

studies mentioned B. burgdorferi sl in shrews or in

ticks attached on them: Sorex minutus and S. araneus

(Humair et al. 1993a ; Tälleklint & Jaenson, 1994)

and Neomys foediens (Tälleklint & Jaenson, 1994).

Observations in endemic areas in Germany and

in France showed that edible dormice (Glis glis)

(Matuschka et al. 1994b) and garden dormice (Elio-

mys quercinus) (Matuschka et al. 1999) are reservoir

hosts for Borrelia. In Germany, the edible dormice

were frequently parasitized by subadult ticks and

infected around 95% of larvae (Matuschka et al.

1994b).

Additional rodents, like grey squirrels (Sciurus

carolinensis) in the UK (Craine et al. 1997) and red

squirrels (S. vulgaris) in Switzerland (Humair &

Gern, 1998), also contribute to the amplification of

Borrelia in the tick population. Observations made

on infestations of squirrels by ticks indicated that red

and grey squirrels were heavily infested with ticks

and one study reported a high prevalence of infec-

tion (69%) in ticks feeding on red squirrels (Humair

& Gern, 1998).

Several researchers demonstrated that the Eur-

opean hedgehog (Erinaceus europaeus) also perpetu-

ates B. burgdorferi sl in Ireland (Gray et al. 1994),

Germany (Liebisch, Finkbeiner-Weber & Liebisch,

1996) and Switzerland (Gern et al. 1997) (Fig. 1). In

Switzerland, an enzootic transmission cycle of B.

burgdorferi sl involving hedgehogs and another tick

vector, I. hexagonus, has been described in an urban

environment (Gern et al. 1997).

Another group of animals, lagomorphs, play a role

in the support of the enzootic cycle of B. burgdorferi

sl. In Sweden in habitats where hares coexist with

small mammals (Tälleklint & Jaenson, 1993, 1994),

as well as on islands where hares are the only

terrestrial mammal species permanently present,

lagomorphs like the brown hare (Lepus europaeus)

and the varying hare (L. timidus) contribute to the

maintenance ofB. burgdorferi sl in nature (Jaenson &

Tälleklint, 1996). An alternative candidate reservoir

host among lagomorphs includes the European rab-

bit (Oryctolagus cuniculus) (Matuschka et al. 2000).

However, the European rabbit appears to be poorly

competent, since only 1/7 rabbits (14%) in this study

were infective to ticks.

Among larger mammals, the red fox is implicated

in the maintenance of Borrelia in nature as described

in two studies in Germany (Kahl & Geue, 1998;

Liebisch et al. 1998a). These animals did not appear

to be very potent reservoirs since spirochetes were

poorly transmitted to ticks.

Not all tick-hosts are competent to serve as reser-

voirs. This is the case for cervids in general which

act primarily as sources of blood for ticks. In fact,

studies on roe deer (Capreolus capreolus) (Jaenson &

Tälleklint, 1992), moose (Alces alces) (Tälleklint &

Jaenson, 1994), red deer (Cervus elaphus) (Gray et al.

1995), and fallowdeer (Damadama) (Gray et al. 1992)

suggest that these species do not infect feeding ticks

with B. burgdorferi. Interestingly, sheep have been

found to be reservoirs of Borrelia burgdorferi in areas

of the UK, but the principal mechanism by which

they infect I. ricinus is cofeeding (Ogden, Nuttall &

Randolph, 1997). This is a phenomenon in which

the host does not necessarily become infected, but

neighbouring ticks serve to infect each other while

feeding on the host.

After a long period of controversy, the role of

birds in the maintenance of B. burgdorferi sl in en-

demic areas is currently recognized (Humair, 2002).

The first report in Europe of B. burgdorferi sl in

I. ricinus ticks feeding on birds dates back to 1993

(Humair et al. 1993b). The same year, Olsen et al.

(1993) demonstrated the existence of a transmission

cycle of B. burgdorferi sl in seabird colonies among

razorbills (Alca torda) and I. uriae on a Swedish

Island. Later, spirochetes were reported in I. ricinus

ticks collected from migratory birds in Sweden

(Olsen, Jaenson & Bergström, 1995b) and in ticks

feeding on birds captured in endemic areas in the

Czech Republic (Hubálek et al. 1996) and in the UK

(Craine et al. 1997). In 1998, two studies clearly

defined the reservoir role of birds, one on a passerine

bird, the blackbird (Turdus merula) (Humair et al.

1998), the other one on a gallinaceous bird species,

the pheasant (Phasianus colchicus) (Kurtenbach et al.

1998a). Both studies demonstrated the reservoir role

of these bird species using xenodiagnosis, obtaining

the evidence that birds contribute to the circulation

of Borrelia in endemic areas. The involvement of

seabirds and I. uriae in the marine environment was

also confirmed by additional studies in both the

northern and the southern hemispheres (Olsen et al.

1995a ; Gylfe et al. 1999).

In endemic areas in Europe, at least 5 Borrelia

genospecies may circulate between vertebrate hosts

and ticks. The first findings on host specificity of

Borrelia species came from a study conducted in

Switzerland (Humair et al. 1995). In this study, it

was shown that Borrelia species isolated from Apo-

demus spp. captured in two different endemic sites all

belonged to B. afzelii, whereas genospecies diversity

in ticks collected by flagging vegetation in these sites

displayed heterogeneity. Later, it was shown that

small rodents of the genus Apodemus, such as

woodmice (A. sylvaticus) and yellow-necked mice

(A. flavicollis) and of the genus Clethrionomys as well

as red (Sciurus vulgaris) and grey squirrels (S. caro-

linensis) are usually infected by B. afzelii and less

frequently by B. burgdorferi ss; moreover, these

hosts transmit these Borrelia species to ticks feeding

on them (Craine et al. 1997; Hu et al. 1997; Humair

et al. 1999; Kurtenbach et al. 1998b). On the other
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hand, an increasing body of evidence first showed

that B. garinii was mostly associated with migratory

birds (Olsen et al. 1995b), and later that B. garinii

and B. valaisiana were associated with blackbirds

and pheasants (Humair et al. 1998; Kurtenbach

et al. 1998a, b). B. garinii was also described as the

Borrelia species involved in marine environments, in

seabird colonies located on the northern and south-

ern hemispheres (Olsen et al. 1995a ; Gylfe et al.

1999). This gives us the opportunity to reiterate that

Olsen and colleagues, in their 1995a study, detected

the presence of B. garinii DNA in North America

(Alaska). In fact, amplified flagellin gene fragments

from positive I. uriae ticks collected from fork-tailed

storm petrels on Egg Island (Alaska) subjected

to DNA sequencing showed that they were closely

related to the fla gene of B. garinii suggesting the

presence of B. garinii in North America at least in

a very specific area (marine enzootic cycles).

B. garinii has also occasionally been described

associated with rodents in Austria, Germany and

Russia (Khanakah et al. 1994; Gorelova et al. 1995;

Richter et al. 1999). From these studies, it is un-

known whether the incriminated B. garinii belonged

to one serotype or another. In view, however, of

recent findings showing that laboratory mice chal-

lenged with nymphs collected in nature were able

to transmit B. garinii OspA serotype 4 to xeno-

diagnostic ticks (Hu et al. 2001) and that Apodemus

captured in Switzerland transmitted B. gariniiOspA

serotype 4 to xenodiagnostic ticks (Huegli et al.

2002), rodents, at least in some well specified areas,

are also reservoir hosts for B. garinii (Huegli et al.

2002). In summary, rodents are mainly associated

with B. afzelii, but also with B. burgdorferi ss and

B. garinii OspA serotype 4 whereas other B. garinii

serotypes are associatedwith birds (Kurtenbach et al.

2002b) ; B. valaisiana has been currently described

only in birds and never in rodents and therefore

appears to be very specific to birds (Gylfe et al. 2000;

Humair et al. 1998; Kurtenbach et al. 1998b ; Olsen,

1995; Olsen et al. 1993, 1995a, b) (Fig. 1).

Concerning the fifth Borrelia species infecting I.

ricinus, B. lusitaniae, although this species may be

very frequent in I. ricinus ticks in some areas of

North Africa (Younsi et al. 2001; Gern et al. 2002)

and Portugal (de Michelis et al. 2000) and usually

infects ticks with large numbers of spirochetes (un-

published data), its reservoir hosts have not yet been

identified.

The host complement system appears to be a

major determinant of host-specificity of B. burgdor-

feri sl in Europe (Kurtenbach et al. 1998c, 2002a). It

was demonstrated in vitro that the various Borrelia

species show different patterns of resistance or sen-

sitivity to serum according to host species, which

corresponds to the host specificity observed in nature

(Kurtenbach et al. 1998c, 2002a). The specificity of

complement lysis of genospecies of B. burgdorferi is

apparently mediated through the expression of the

erp gene loci. These gene loci encode for the so-

called CRASPs (complement regulatory-acquiring

surface proteins) which bind differentially to comp-

lement inhibitors (e.g. factor H). Intense research is

ongoing into the specific receptors involved in this

interaction between host and pathogen (Kraiczy et al.

2001; Stevenson et al. 2002). The evolutionary con-

sequences of this system are an intriguing subject

for further study.

RESERVOIR HOSTS IN NORTH AMERICA

There is little doubt that white-tailed deer (Odocoi-

leus virginianus) play a key role in the Lyme disease

enzootic cycle in North America because they serve

as the principal hosts for the adult stage of these

ticks. Early studies demonstrated that white-tailed

deer support large numbers of adult I. scapularis

(Piesman et al. 1979, Main et al. 1981; Spielman

et al. 1985). In addition, populations of white-tailed

deer have exploded during the latter half of the 20th

century, exactly coinciding with the time period

of the Lyme disease epidemic in North America.

Observations on islands or parks, with and without

deer, added to the impression that these tick popu-

lations were dependent on the presence of deer

(Wilson, Adler & Spielman, 1985; Anderson et al.

1987; Duffy et al. 1994). Although other animals

such as medium-sized mammals (Fish & Dowler,

1989), dogs and cats are often infested with adult

I. scapularis, these hosts generally do not support

the large numbers needed to support populations of

I. scapularis. Black bears (Ursus americanus) can be

infested with large numbers of I. scapularis, but

these large animals are few in number (Kazmierczak,

Amundson & Burgess, 1988).

Despite the importance of white-tailed deer as

hosts for the adult stage of the principal vector of

Lyme disease spirochetes in North America, these

hosts are not an important reservoir of B. burgdorferi

due to the lytic properties of the complement con-

tained in deer sera. Telford et al. (1988) demon-

strated that larval I. scapularis dropping off deer

carcasses were not infected with B. burgdorferi in an

area of Massachusetts highly endemic for this aetio-

logic agent. European researchers have now dem-

onstrated that complement contained in deer sera

is highly lytic to a wide variety of B. burgdorferi

(Kurtenbach et al. 2002a) and this observation has

been confirmed using a North American strain of

B. burgdorferi ss (Nelson et al. 2000). Thus, white-

tailed deer are a doubled-edged sword in the main-

tenance of theLyme disease spirochete enzootic cycle

in eastern North America; deer are needed to sup-

port large populations of vector ticks, but these hosts

also serve to decrease the proportion of the tick popu-

lation that becomes infected with spirochetes. Co-

lumbian black-tailed deer (O. hemionus columbianus),
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and other so-called ‘mule deer’ play a similar role in

support of I. pacificus populations (Westrom, Lane

& Anderson, 1985) in western North America.

Another group of animals that serve as important

hosts for I. scapularis and I. pacificus but apparently

do not serve as reservoirs for spirochetal infection

are lizards. Spielman et al. (1985) originally coined

the phrase ‘zooprophylaxis ’ for hosts that fail to

infect the ticks that infest them. Lizards appear to

be important zooprophylactic hosts, serving to drive

down the B. burgdorferi infection rates of questing

ticks in key areas. In the southern United States,

lizards serve as hosts to the majority of immature

I. scapularis (Apperson et al. 1993; Oliver, Cummins

& Joiner, 1993a). Similarly, lizards also serve as

important hosts for immature I. pacificus (Lane &

Loye, 1989). Several researchers speculated that

lizards were incompetent hosts for B. burgdorferi

and that nymphs and adult ticks that had previously

fed on these hosts were not infected with B. burgdor-

feri (Spielman, 1988). Recently, Kuo, Lane & Gicias

(2000) demonstrated that complement from Scelo-

porus and Elgaria lizards were highly lytic for B.

burgdorferi ss, thus supporting the rationale that liz-

ards were zooprophylactic hosts. A note of caution

must be sounded, however, based on the obser-

vations of Levin et al. (1996). These researchers

found that lizards in the genus Eumeces and Anolis

could serve to infect I. scapularis with spirochetes

under experimental conditions. The activity of the

complement of a wide range of lizards that serve

as hosts for Ixodes ticks should be studied before

general conclusions are made about the reservoir

competence of reptilian hosts.

Birds play two roles in the support of the enzootic

cycle of B. burgdorferi in North America. Migrating

birds may serve to move immature I. scapularis and

I. pacificus into new locations (Spielman, 1988), and

some birds may serve as reservoir hosts infecting

the ticks that feed on them (Fig. 2). The fact that

a variety of birds serve as hosts for immature I.

scapularis has been documented numerous times

(Anderson & Magnarelli, 1984; Battaly & Fish,

1993; Stafford, Bladen & Magnarelli, 1995). In gen-

eral, ground-feeding and ground-nesting birds are

themost heavily infested birds (Weisbrod& Johnson,

1989). Numerous isolates ofB. burgdorferi have been

obtained from birds in North America (Anderson,

Magnarelli & Stafford, 1990; McLean et al. 1993),

but the reservoir competence or ability of birds to

infect larval I. scapularis feeding on them has been

controversial. The fact that larval I. scapularis re-

moved from many species of birds in the wild were

infected with B. burgdorferi ss was repeatedly docu-

mented (Weisbrod & Johnson, 1989; Stafford et al.

1995). The first experiments attempting to infect

xenodiagnostic larval I. scapularis by feeding them

on grey catbirds (Dumatella carolinensis) indicated

that these birds could not serve as reservoirs of

B. burgdorferi (Mather et al. 1989a). In contrast,

American robins (Turdus migratorius) efficiently

infected larval I. scapularis that fed upon them

(Richter et al. 2000). The degree to which various

bird species serve to infect I. scapularis with B. bur-

gdorferi in the eastern United States needs further

research. In addition, the relationship between birds

and I. pacificus seems to vary from site to site, with

birds in some western regions carrying extremely

light burdens of ticks (Manweiler et al. 1990), and

birds in other regions heavily infested (Wright et al.

2000). The observation that unidentified spirochetes

were found in blood smears from birds in Placer

County, California (Wright et al. 2000) needs further

evaluation.

Rodents are clearly the primary reservoir hosts of

B. burgdorferi ss in the regions most highly endemic

for Lyme disease in North America (Fig. 2). Initial

studies on Nantucket Island, Massachusetts pointed

toward the white-footed mouse (Peromyscus leuco-

pus) as the primary host for larval and nymphal I.

scapularis. Spielman, Levine & Wilson (1984) esti-

mated that 91% of larval and nymphal I. scapularis

fed on P. leucopus and these hosts could infect as

many as 76% of larval ticks feeding on them (Mather

et al. 1989a). Clearly, the contribution of P. leucopus

as a reservoir host serving to infect ticks with B.

burgdorferi ss in coastal New England is substantial.

A study on Monhegan Island (Maine) demonstrated

that on an island where P. leucopus is absent, other

rodents such as Norway rats (Rattus novegicus) could

serve efficiently as substitute reservoir hosts for B.

burgdorferi (Smith et al. 1993). Short-tailed shrews

(Blarina brevicauda) have also been mentioned as

efficient reservoirs of B. burgdorferi (Telford et al.

1990). Interestingly, the reservoir potential of east-

ern chipmunks appears to differ from region to

region. In coastal Massachusetts, white-footed mice

were found to infect many more immature I. scapu-

laris with B. burgdorferi compared to chipmunks

(Mather et al. 1989b), but in the midwestern state of

Illinois, evidence suggested that chipmunks may be

more important than white-footed mice as reservoirs

of B. burgdorferi (Slajchert et al. 1997). Local vari-

ation in the importance of various reservoir hosts in

the enzootic cycle of B. burgdorferi in eastern North

America is an important factor that must be taken

into account when designing control strategies for

Lyme disease spirochetes transmitted by I. scapu-

laris.

The importance of rodents as reservoirs of B.

burgdorferi in areas of western North America,

where I. pacificus is the principal vector is a complex

subject. A study in Oregon demonstrated that

rodents such as Neotoma fuscipes, Peromyscus mani-

culatus, and Peromyscus boylii were infected with B.

burgdorferi and infested with both I. pacificus and

I. spinipalpis (Burkot et al. 1999). In northern

California, various rodents were infected with B.

J. Piesman and L. Gern S204

https://doi.org/10.1017/S0031182003004694 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182003004694


burgdorferi and infested with I. spinipalpis (Peavey,

Lane & Kleinjan, 1997). A possible scenario exists,

wherein I. spinipalpis serves as the principal enzootic

vector of B. burgdorferi in western North America,

transmitting the pathogen from rodent to rodent;

people only are at risk of acquiring these rodent-

derived strains when I. pacificus acquires infection

from rodents and subsequently transmits these

spirochetes to humans. This hypothesis warrants

further investigation.

TRANSMISSION DYNAMICS IN EUROPE

B. burgdorferi sl is transmitted orally while ticks are

feeding on hosts. Indeed, it is currently well estab-

lished for North American and European tick vec-

tors that B. burgdorferi sl is transmitted to the host

via infected saliva during the blood meal. Only a few

studies in Europe investigated the transmission

dynamic ofB. burgdorferi sl by I. ricinus. However, it

is currently known that, in the majority of infected

unfed I. ricinus nymphs and adults, spirochetes are

present in the midgut and migrate during blood

feeding to the salivary glands from which they are

transmitted to the host via saliva (Gern, Zhu &

Aeschlimann, 1990; Gern, Lebet & Moret, 1996;

Zhu, 1998). However, microscopic examination of

unfed nymphal and adult I. ricinus collected in

endemic areas in Switzerland demonstrated that

spirochetes may infect salivary glands even before

any blood uptake (Leuba-Garcia et al. 1994; Lebet

& Gern, 1994; Zhu, 1998). These systemic or gener-

alized infections may occur rather frequently com-

pared to what has been described for I. scapularis in

North America. When unfed I. ricinus attaches to a

vertebrate host Borrelia transmission does not occur

at the beginning of the blood uptake but later and

transmission efficiency increases with the duration of

the blood-meal (Kahl et al. 1998). In a laboratory

study, an early transmission of borreliae with high

efficiency was described for I. ricinus. In fact, Kahl

et al. (1998) reported that 50% of laboratory animals

were infected by B. burgdorferi sl after only 16.7 h of

tick attachment. The observations of high infection

rates in salivary glands of unfed I. ricinus suggest

that systemically infected ticks may transmit Borre-

lia early after attachment to hosts (Leuba-Garcia

et al. 1994; Lebet & Gern, 1994) and this might be a

factor which influences delay of transmission after

attachment of the ticks to the hosts. It was recently

reported that this delay may also be influenced by

the Borrelia species infecting the ticks (Crippa, Rais

& Gern, 2002). In fact, earlier transmission by I.

ricinus when ticks were infected by B. afzelii rather

than by B. burgdorferi ss may occur. Crippa et al.

(2002) noted that during the first 48 h of attachment

to the host, B. burgdorferi ss-infected ticks did not

infect the 18 exposed mice whereas B. afzelii-

infected ticks transmitted infection to 33% of mice.

This study showed that I. ricinus transmits B. afzelii

earlier than B. burgdorferi ss, and also that I. ricinus

is a more efficient vector for B. afzelii than for B.

burgdorferi ss.

It is well known from studies on I. scapularis, that

spirochetes express outer surface protein A in the

tick midgut and that during blood feeding, OspA

synthesis is repressed and OspC synthesis is induced

(Schwan & Piesman, 2002). In I. ricinus, very few

studies addressed this point. Leuba-Garcia, Marti-

nez & Gern (1998) observed that B. afzelii spiro-

chetes expressing OspA and OspC were present in

the midgut of unfed ticks and that spirochetes ex-

pressing OspA were not detected in ticks attached

to the host for more than 24 h. In salivary glands

of engorged ticks B. afzelii spirochetes expressed

OspC. This study also reported that in the skin of

mice infected by B. afzelii-infected nymphs, borre-

liae expressed OspC. Later Fingerle et al. (2002),

using different B. afzelii and B. garinii strains, dem-

onstrated that in capillary-infected I. ricinus ticks

OspA was expressed in the tick midgut and that the

proportion of OspC-positive borreliae was usually

greater when the borreliae reached the salivary

glands. In this study, aB. afzelii strain unable to pro-

duce OspC was unable to disseminate and to induce

infection in salivary glands, showing the role of OspC

in Borrelia dissemination in I. ricinus. The degree of

strain specificity on the dynamics of Osp expression

and the dissemination of spirochetes in the vector is

an interesting topic. The interactions of the various

Borrelia species and strains with I. ricinus are clearly

extremely complex.

TRANSMISSION DYNAMICS IN NORTH AMERICA

A recent review by Schwan & Piesman (2002) sum-

marized the intricate relationship between Borrelia

and their tick vectors. One of the systems that have

received the most intense research attention is the B.

burgdorferi–I. scapularis interaction during spiro-

chete transmission. Transmission by nymphal I.

scapularis, in particular, has received close scrutiny

since the vast majority of Lyme disease cases in

North America acquire infection from nymphal ticks

(Piesman et al. 1987a ; Piesman, 1989; Falco et al.

1999). A key factor in the transmission dynamics of

B. burgdorferi is the duration of attachment required

for efficient transmission of spirochetes to the host.

Several animal studies with laboratory infected and/

or field collected nymphal I. scapularis have dem-

onstrated that nymphs must be attached to hosts for

>48 h in order for B. burgdorferi ss to be efficiently

transmitted (Piesman et al. 1987b ; des Vignes et al.

2001). Observations with patients in Lyme disease

endemic regions also support the concept that only

those ticks feeding for >48 h transmit an infectious

dose of spirochetes (Sood et al. 1997; Nadelman et al.

2001). Although the smaller nymphs often escape
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detection and feed for a sufficient interval to transmit

spirochetes, the larger adult female I. scapularis is

more routinely detected and removed before feeding

long enough to transmit spirochetes (Piesman et al.

1991; Falco, Fish & Piesman, 1996) (Fig. 4). Thus,

Lyme disease cases occur in North America virtually

exclusively when nymphal I. scapularis are active

(May–July) as opposed to when adults are active

(October–April).

The underlying reasons for the delay between tick

attachment and spirochete transmission, have been

described by Ohnishi, Piesman & de Silva (2001), as

well as Schwan & Piesman (2002). Spirochetes in

flat nymphs are restricted mainly to the tick midgut;

the vast majority of these spirochetes express OspA.

When feeding commences, rapid multiplication of

the spirochetes occurs and OspA is down-regulated

and a proportion of the population now express

OspC. The down-regulation of OspA may allow the

spirochetes to leave the midgut since OspA appar-

ently binds to uncharacterized tick midgut proteins

(Pal et al. 2000). Spirochete populations increase in

tick salivary glands during the feeding process and

are eventually transmitted to the skin adjacent to the

feeding site (Piesman, Schneider & Zeidner, 2001;

Ohnishi et al. 2001). This process occurs in I. sca-

pularis infected with B. burgdorferi ss. Transmission

dynamics of other genospecies of B. burgdorferi may

differ dramatically (Crippa et al. 2002). The re-

quirement for ticks to be attached for a period>48 h

in order to transmit B. burgdorferi ss efficiently also

seems to hold true for I. pacificus (Peavey & Lane,

1995).

PREVENTION IN NORTH AMERICA AND IN

EUROPE

The first line of defense against Lyme disease in

North America and in Europe is clearly personal

protection. This involves avoidance of tick-infested

habitat, wearing protective clothing, the prudent use

of tick repellents and daily tick checks to detect and

promptly remove attached ticks. In order to be ef-

fective, personal protection requires that residents of

highly endemic regions have a fairly sophisticated

knowledge of the enzootic cycle of Lyme disease and

the biology of infected ticks.

In North America, the knowledge, attitudes and

practice of Lyme disease prevention differs from

region to region (Herrington et al. 1997). Certainly,

people living in the endemic regions of the north-

eastern United States have an in-depth understand-

ing of the biology of Lyme disease; however,

prevention practices are not routinely employed even

in a place like Nantucket Island, Massachusetts that

has been dealing with the Lyme disease epidemic for

decades (Phillips et al. 2001). Intense education cam-

paigns are currently underway in select communities

in Massachusetts, Connecticut, New York and New

Jersey to see if the community education approach to

Lyme disease prevention can be optimized.

Tick control methods are also an essential part of

Lyme disease prevention in North America (Fig. 3).

A single well-timed area-wide application of acari-

cides such as carbaryl, cyflutherin or deltamethrin

to vegetation can reduce populations of questing

nymphs by 68–100% (Stafford, 1991a ; Curran, Fish

& Piesman, 1993; Schulze et al. 1994, 2001).

Fig. 4. The principal ticks found commonly biting people in eastern North America, including the principal vector

of Lyme disease, Ixodes scapularis. (Reprinted with permission from the Massachusetts Medical Society; Hayes &

Piesman, 2003.)
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Although many home-owners do allow licensed pest

control operators to apply acaricides to their

properties in endemic areas (Stafford, 1997), the

majority of home-owners have reservations about

using this approach due to concerns about the effect

of these chemicals on non-target species and human

toxicity. It is therefore incumbent upon the public

health community to present home-owners with

alternative means for tick control.

Vegetation management is one alternative means

of tick control. Burning (Stafford, Ward & Magnar-

elli, 1998), brush removal (Wilson, 1986), leaf litter

removal (Schulze et al. 1995) and the establishment

of wood-chip barriers have all been tested as means

of reducing contact with ticks. In addition, treat-

ment of vegetation with soaps and desiccants holds

promise for tick reduction (Allan & Patrican, 1995).

The use of biological control agents such as parasit-

oid wasps, parasitic nematodes and fungi is under

evaluation as well (Stafford, Denicola & Magnarelli,

1996; Zhioua et al. 1995, 1997; Benjamin, Zhioua

& Ostfeld, 2002; see also chapter by Samish et al.

in this Supplement). Vegetation management and

biological control agents are well received by the

community due to their reputation as non-toxic

environmentally-sound control methodologies. In

general, however, these ‘bio-friendly’ methods are

less consistently effective than chemical acaricidal

agents.

Host-targeted control methods have also been

tested for their efficacy in reducing populations of

I. scapularis. Some of these methods aim at overall

population reduction and others aim at specifically

reducing the number of questing nymphs infected

with B. burgdorferi. Due to their role as primary

hosts for the adult stage of I. scapularis, white tailed

deer have been targeted for various intervention ef-

forts to control ticks. These include deer eradication

(Wilson et al. 1988), deer reduction (Deblinger et al.

1993), fencing (Stafford, 1993; Daniels & Fish,

1995), and the application of acaricides to deer via

bait stations charged with chemicals on paint roller

delivery systems. This latter method is called the ‘4-

poster’ method; it has been shown to be effective

against Amblyomma americanum (Pound, Miller &

George, 2000) and is currently under evaluation for

the control of I. scapularis. Although deer-target

methods for the control of I. scapularis hold great

promise for the future, they have yet to be put into

common practice in Lyme disease endemic regions

in North America, with the possible exception of

fencing of individual properties.

Rodents have also been the target of tick control

intervention efforts in North America. A commer-

cial product that utilizes permethrin-treated cotton

balls collected specifically by white-footed mice has

been developed. It appears to have worked to reduce

the population of questing I. scapularis in some

trials, but not in others (Mather, Ribeiro&Spielman,

1987; Deblinger & Rimmer, 1991; Stafford, 1991b,

1992; Daniels, Fish & Falco, 1991). One of the

reasons suggested for its varied success was the

importance of white-footed mice vs. other reservoir

hosts in different locations. Permethrin-treated cot-

ton balls were also ineffective when tested against

I. pacificus (Leprince & Lane, 1996). Other rodent-

targeted methods involve the use of bait stations

for applying acaricides to various rodent species

(Sonenshine & Haines, 1985; Gage et al. 1997; Lane

et al. 1998). Trials are currently being conducted

using bait boxes treated with fipronil, a promising

new topical acaricide (Davey et al. 1998), for the

control of I. scapularis infected with B. burgdorferi.

Significant decreases in ticks on rodents and quest-

ing nymphs have been observed where these bait

boxes are undergoing field trials. Systemic treatment

of deer and rodents with ivermectin or closely re-

lated compounds is also a future avenue for research.

The current status of tick control methods is in a

rapid state of change. No one single method holds

promise as the ‘magic bullet’ for tick control. Cer-

tainly, an integrated pest management approach

(IPM) that utilizes various methods in diverse situ-

ations will be the most effective response to prevent

Lyme disease in the future.

Although much research on control strategies

against I. scapularis in North America has been car-

ried out, much less has been done in Europe to

control I. ricinus. This is probably essentially due to

different risk exposures. In the highly endemic areas

of the northeastern United States, people have close

contact with I. scapularis and residential exposure

dominates. In Europe, the majority of residential

properties do not have borders with woodlands or

forests and most people contract Lyme borreliosis

while visiting tick-endemic areas. Tick bites are

primarily due to occupational or recreational ex-

posure.

A study undertaken in Sweden evaluated per-

methrin-treated rodent nesting materials similar to

those used in North America (Mejlon, Jaenson &

Mather, 1995). The authors concluded that appli-

cation of these methods in natural ecosystems would

not represent a practical and economic method to

reduce risk of humans to acquire Lyme borreliosis

mainly because host reservoirs for B. burgdorferi in

Europe are diverse and are not restricted to rodents.

A review of various potential methods to reduce I.

ricinus in Sweden similarly concluded that most

methods were not appropriate to reduce Lyme bor-

reliosis cases (Tälleklint & Jaenson, 1995). There-

fore, in Europe personal protection is favoured.

Simple measures include use of tick repellents

before entering a tick-infested area, avoidance of, or

minimization of, exposure to tick-infested areas

and thorough examination of cloths and skin after

exposure. Protective clothing, particularly boots,

long trousers tucked into the boots and a shirt tucked
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into the trousers are recommended. Light-coloured

clothes will favour detection of ticks crawling on

humans before they find a suitable place to attach to

skin. Attached ticks should be removed as soon as

possible because I. ricinus may transmit B. burgdor-

feri sl quite early after tick attachment (Kahl et al.

1998; Crippa et al. 2002). Therefore, regular checks

for ticks on clothes and the body immediately when

one leaves the area where ticks are present is highly

recommended.

A survey conducted in various countries of

Europe on Lyme borreliosis awareness showed that

awareness was greater in countries showing a preva-

lence of Lyme borreliosis like Germany, Russia,

Sweden and the Czech Republic whereas it was

lower in countries with low prevalence such as UK

and Ireland (Gray et al. 1998). Interestingly, the

media were the main source of information for most

people.

In the United States, a Lyme disease vaccine

based on a recombinant OspA protein was tested

(Steere et al. 1998; Sigal et al. 1998) and licensed

for use. Despite the fact that it was reasonably effi-

cacious, and an adverse events registry reported

only minor side effects associated with the vaccine

(Lathrop et al. 2002), the vaccine was withdrawn

from the market essentially due to lack of demand.

Problems associated with the vaccine also included

the need for a series of three shots and an undeter-

mined need to get booster injections in the future,

high cost and a theoretical but widespread concern

that the vaccine could cause serious autoimmune

reactions (Gross et al. 1998).

In Europe, where at least three pathogenic species

are infecting I. ricinus ticks, the variability in OspA

expression among B. burgdorferi sl isolates was often

used as an argument against a development of an

OspA vaccine. However, a study showed that a vac-

cine compatible with human use, containingmultiple

OspA antigens, was very efficient at protecting mice

against the three causative agents of Lyme borre-

liosis in Europe, B. burgdorferi ss, B. garinii and B.

afzelii, using the natural mode of transmission (Gern

et al. 1997). However, after the licensed vaccine in

North America was withdrawn from the market, the

development programme of this OspA vaccine for

Europe has been stopped.

As discussed in the ‘Treatment’ section of this

review, prophylactic treatment of tick bites in highly

endemic regions of North America remains an

option (Nadelman et al. 2001). In Europe, prophyl-

actic treatment after a tick bite is usually not re-

commended (Stanek & Kahl, 1999). In the end, the

most effective prevention campaign against Lyme

disease may involve education of the community

to practise personal protection measures, IPM

campaigns for tick control and an alert and dedi-

cated public health infrastructure to combat Lyme

disease.
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RÖSSLER, D., SOUTSCHEK, E., WILSKE, B. & PREAC-MURSIC,

V. (1995). Sequence analysis of ospA genes shows

homogeneity within Borrelia burgdorferi sensu stricto

and Borrelia afzelii strains but reveals major subgroups

within the Borrelia garinii species. Medical Microbiology

and Immunology 184, 73–80.

WILSKE, B., BUSCH, U. B., EIFFERT, H., FINGERLE, V., PFISTER,

H. W. & PREAC-MURSIC, V. (1996). Diversity of OspA and

OspC among cerebrospinal fluid isolates of Borrelia

burgdorferi sensu lato from patients with

neuroborreliosis in Germany. Medical Microbiology and

Immunology 184, 195–201.

WILSKE, B., JAURIS-HEIPKE, S., LOBENTANZER, R., PRADEL, I.,

PREAC-MURSIC, V., ROSSLER, D., SOUTSCHEK, E. &

JOHNSON, R. C. (1995). Phenotypic analysis of outer

surface protein C (OspC) of Borrelia burgdorferi sensu

lato by monoclonal antibodies : relationship to

genospecies and OspA serotype. Journal of Clinical

Microbiolology 33, 103–109.

WILSKE, B., PREAC-MURSIC, U. B., GOBEL, B., GRAF, S., JAURIS,

E., SOUTSCHEK, E., SCHWAB, E. & ZUMSTEIN, G. (1993). An

OspA serotyping system for Borrelia burgdorferi based

on reactivity with monoclonal antibodies and OspA

sequence analysis. Journal of Clinical Microbiolology

31, 340–350.

WILSON, M. L. (1986). Reduced abundance of adult

Ixodes dammini (Acari : Ixodidae) following destruction

of vegetation. Journal of Economic Entomology 79,

693–696.

WILSON, M. L., ADLER, G. H. & SPIELMAN, A. (1985).

Correlation between deer abundance and that of the

deer tick Ixodes dammini (Acari : Ixodidae).Annals of the

Entomological Society of America 78, 172–176.

WILSON, M. L., TELFORD, S. R. III, PIESMAN, J. & SPIELMAN, A.

(1988). Reduced abundance of immature Ixodes

dammini (Acari : Ixodidae) following elimination of deer.

Journal of Medical Entomology 25, 224–228.

WORMSER, G. P., BITTKER, S., COOPER, D., NOWAKOWSKI, J.,

NADELMAN, R. B. & PAVIA, C. (2001). Yield of large-

volume blood cultures in patients with early Lyme

disease. Journal of Infectious Diseases 184, 1070–1072.

WORMSER, G. P., LIVERIS, D., NOWAKOWSKI, J., NADELMAN,

R. B., CAVALIERE, L. F., MCKENNA, D., HOLMGREN, D. &

SCHWARTZ, I. (1999). Association of specific subtypes of

Borrelia burgdorferi with hematogenous dissemination

of early Lyme disease. Journal of Infectious Diseases 180,

720–725.

WORMSER, G. P., NADELMAN, R. D., DATTWYLER, R. J.,

DENNIS, D. T., SHAPIRO, E. D., STEERE, A. C., RUSH, T. J.,

RAHN, D. W., COYLE, P. K., PERSING, D. H., FISH, D. & LUFT,

B. J. (2000). Practice guidelines for the treatment of

Lyme disease. Clinical Infectious Diseases 31 (Suppl.),

S1–S14.

WRIGHT, S. A., THOMPSON, M. A., MILLER, M. J., KNERL, K. M.,

ELMS, S. L., KARPOWICZ, J. C., YOUNG, J. F. & KRAMER, V. L.

(2000). Ecology of Borrelia burgdorferi in ticks (Acari :

Ixodidae), rodents, and birds in the Sierra Nevada

foothills, Placer County, California. Journal of Medical

Entomology 37, 909–918.

YOUNSI, H., POSTIC, D., BARANTON, G. & BOUATTOUR, A.

(2001). High prevalence of Borrelia lusitaniae in Ixodes

ricinus ticks in Tunisia. European Journal of

Epidemiology 17, 53–56.

YUVAL, B. & SPIELMAN, A. (1990). Duration and regulation

of the development cycle of Ixodes dammini

(Acari : Ixodidae). Journal of Medical Entomology

27, 196–201.

ZEIDNER, N. S., NUNCIO, M. S., SCHNEIDER, B. S., GERN, L.,

PIESMAN, J., BRANDO, O. & FILIPE, A. R. (2001). A

Portuguese isolate of Borrelia lusitaniae induces disease

in C3H/HeN mice. Journal of Medical Microbiology 50,

1055–1060.

ZHIOUA, E., BOUATTOUR, A., HU, C. M., GHARBI, M.,

AESCHLIMANN, A., GINSBERG, H. & GERN, L. (1999).

Infections of Ixodes ricinus (Acari : Ixodidae) by Borrelia

burgdorferi sensu lato in North Africa (Tunisia). Journal

of Medical Entomology 36, 216–218.

ZHIOUA, E., BROWNING, M., JOHNSON, P. W., GINSBERG, H. S.

& LEBRUN, R. A. (1997). Pathogenicity of the

entomopathogenic fungus Metarhizium anisopliae

(Deuteromycetes) to Ixodes scapularis (Acari : Ixodidae).

Journal of Parasitology 83, 815–818.

ZHIOUA, E., LEBRUN, R. A., GINSBERG, H. S. & AESCHLIMANN,

A. (1995). Pathogenicity of Steinernema carpocapsae and

S. glaseri (Nematoda: Steinernematidae) to Ixodes

scapularis (Acari : Ixodidae). Journal of Medical

Entomology 32, 900–905.

ZHU, Z. (1998). Histological observations on Borrelia

burgdorferi growth in naturally infected female Ixodes

ricinus. Acarologia 39, 11–22.

J. Piesman and L. Gern S220

https://doi.org/10.1017/S0031182003004694 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182003004694

