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We generalize the POD-based Galerkin method for post-transient flow data by
incorporating Navier–Stokes equation constraints. In this method, the derived Galerkin
expansion minimizes the residual like POD, but with the power balance equation for
the resolved turbulent kinetic energy as an additional optimization constraint. Thus,
the projection of the Navier–Stokes equation on to the expansion modes yields
a Galerkin system that respects the power balance on the attractor. The resulting
dynamical system requires no stabilizing eddy-viscosity term – contrary to other POD
models of high-Reynolds-number flows. The proposed Galerkin method is illustrated
with two test cases: two-dimensional flow inside a square lid-driven cavity and a
two-dimensional mixing layer. Generalizations for more Navier–Stokes constraints,
e.g. Reynolds equations, can be achieved in straightforward variation of the presented
results.

Key words: computational methods, low-dimensional models, turbulence modelling

1. Introduction
Numerical simulation of fluid flows can be a very computationally intensive

endeavour. In addition, reaching a physical understanding from numerical simulation
data can provide another challenge. Both challenges are partially addressed by model
order reduction (MOR) techniques capable of producing reduced-order models (ROMs)
of complex fluid flows that retain some physical fidelity while substantially reducing
the size and cost of the computational model.

In fluid flow applications, proper orthogonal decomposition (POD) and Galerkin
projection form a popular MOR strategy (Noack, Morzynski & Tadmor 2011; Holmes
et al. 2012). However, the development of robust and accurate ROMs using the
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POD–Galerkin method for turbulent fluid flows remains an active area of research.
Turbulence is a phenomenon characterized by chaotic, multi-scale dynamics, in both
space and time. At high Reynolds numbers, the dynamics of turbulence exhibit
an energy cascade: large-scale eddies are broken down into smaller and smaller
eddies until the scales are fine enough so that viscous forces can dissipate their
energy (Tennekes & Lumley 1972; Moin & Mahesh 1998; Pope 2000). Application
of the standard POD–Galerkin method to a turbulent flow needs to account for
this energy cascade. On a kinematic level, POD, by construction, is biased towards
the large, energy-producing scales of the turbulent flow. Hence, on a dynamic level,
straightforward Galerkin projection yields ROMs that are not endowed with the natural
energy dissipation of the small dissipative scales. In principle, the problem can be
cured by direct modelling of small-scale dynamics by inclusion of a sufficiently
large number of POD modes. However, this will lead to ROMs that may quickly
become more expensive then the computational fluid dynamics solver used to create
the snapshots. In practice, the unresolved small-scale dissipation is accounted for by an
additional empirical subgrid-turbulence term. Unfortunately, this approach may affect
the ROM solution in undesirable ways, as these auxiliary terms modify the Galerkin
system dynamics (Aubry et al. 1988; Rempfer & Fasel 1994; Ukeiley et al. 2001;
Sirisup & Karniadakis 2004; Bailon-Cuba et al. 2012; Iliescu & Wang 2012).

In this paper, an alternative strategy to MOR of turbulent flows is proposed.
Some of the energy-dissipative small scales are absorbed into the Galerkin expansion
modes – instead of accounting for these unresolved small scales with empirical eddy-
viscosity terms on the Galerkin system level. In particular, the proposed generalization
of the POD modes is guaranteed to respect the power balance equation for the
resolved turbulent kinetic energy. Thus, the projection on to the new expansion
modes yields adequate Galerkin systems without auxiliary eddy-viscosity terms.
The proposed methodology is formulated as a small-scale constrained minimization
problem that can be solved numerically using standard, off-the-shelf MATLAB
algorithms.

This paper is organized as follows. In § 2, the POD and Galerkin methods are
summarized for the incompressible Navier–Stokes equation. In § 3, the proposed
new approach is introduced and the algorithm and its numerical implementation are
outlined. In § 4, two classical benchmarks, the lid-driven cavity and a mixing layer, are
modelled using the standard POD–Galerkin approach and the new approach. Finally, in
§ 5, the main results are summarized and future prospects laid out.

2. Traditional Galerkin method
We recapitulate the traditional Galerkin method with orthonormal global modes as a

starting point for our innovation in § 3.

2.1. Spectral method

Consider a dynamical system that evolves in a Hilbert space H, u(t) ∈ H, governed by

d
dt
u= F (u) , (2.1)

where F is the propagator in H. In fluid flows, the state variable u = u(x, t) depends
on space x ∈ Ω,Ω being the flow domain, and time t ∈ [0,T] ,T representing
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the period of integration. Then, the propagator F contains spatial derivatives. The
associated Hilbert space of square-integrable functions L2(Ω) is equipped with the
standard inner product for its elements u,v ∈ L2(Ω),

(u,v)Ω :=
∫
Ω

u ·v dx, (2.2)

where ‘:=’ defines the left-hand side in terms of the right-hand side.
In the spectral approach (Canuto et al. 1991, 2006; Boyd 2001), the governing

variable, u(x, t) is discretized using basis functions (modes) {ui(x)}∞i=1 ∈ H with
corresponding mode coefficients {ai(t)}∞i=1:

u(x, t)≈ u[1..n](x, t) :=
n∑

i=1

ai(t) ui(x). (2.3)

In the method of lines, the modes ui are known a priori and the goal is to find
mode coefficients ai that satisfy the differential equation. In general, the origin
and form of the modes ui can be arbitrarily chosen. In the context of spectral
methods in computational fluid dynamics (CFD), the spatial basis functions, ui are
usually analytical functions, e.g. trigonometric functions or Chebyshev polynomials.
The advantage of these functions is that their spatial derivatives have analytical
representations and numerically efficient algorithms such as the fast Fourier transform
(FFT) can be utilized. In the context of MOR, the spatial basis functions may
be derived a priori using completeness conditions (Ladyzhenskaya 1963; Noack &
Eckelmann 1994), from Navier–Stokes eigenfunctions (Joseph 1976), or a posteriori
from a snapshot of a solution dataset, such as the proper orthogonal decomposition
(POD) (Holmes et al. 2012) or dynamic mode decomposition (DMD) (Rowley et al.
2009; Schmid 2010).

The mode coefficients ai are chosen to minimize the residual of the Galerkin
expansion. Let {vi ∈ H | i = 1, . . . , n} be a basis for a subspace of H. We seek ai

such that (
vi,

d
dt
u[1..n]

)
Ω

− (vi,F
(
u[1..n]

))
Ω
= 0. (2.4)

In the traditional Galerkin method, the trial basis is equal to the test basis;
vi ≡ ui (Fletcher 1984). The projection yields a set of evolution equations for the
mode coefficients ai:

d
dt

ai = fi(a), (2.5)

where a := (a1, . . . , an)
T represents the state and f := (f1, . . . , an)

T its propagator.
Given the initial conditions, the evolution equation can be integrated using standard
numerical integration techniques.

2.2. Proper orthogonal decomposition (POD)
We express the POD optimality condition in terms of the instantaneous turbulent
kinetic energy E(t) of the flow, defined as

E(t) := 1
2

∫
Ω

|u(x, t)− u0(x)|2 dx. (2.6)
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POD provides an expansion that minimizes its averaged residual in the energy norm.
As a consequence, the instantaneous turbulent kinetic energy of the expansion

E[1..n](t) := 1
2

∫
Ω

∣∣∣∣∣
n∑

i=1

ai(t)ui(x)

∣∣∣∣∣
2

dx (2.7)

is as close as possible, on average, to the corresponding energy of the employed flow
data. The average of a state variable F in the data horizon [0,T] and is defined by

〈F〉T :=
1
T

∫ T

0
F dt. (2.8)

The optimality condition for POD can be formulated as follows:

arg min
a,ui

〈∫
Ω

∣∣∣∣∣u(x, t)− u0(x)−
n∑

i=1

ai(t)ui(x)

∣∣∣∣∣
2

dx

〉
T

s.t.
(
ui,uj

)
Ω
=
∫
Ω

ui(x) ·uj(x) dx= δij, (2.9)

where δij is the Kronecker delta function. For later reference, we lump the second
moments of the mode coefficients into a n× n correlation matrix:

Λ := (λij

)
where λij := 〈ai, aj〉T . (2.10)

Note that Λ is a diagonal matrix, λij = δijλi where the diagonal term λi represents the
ith POD eigenvalue. The discretized equivalent of (2.9) is solved using the well-known
Eckart–Young theorem (Demmel 1997) of singular value decomposition (SVD) and the
method of snapshots (Sirovich 1987).

2.3. Galerkin MOR of the Navier–Stokes equation

The evolution of the velocity field u(x, t) of an incompressible Newtonian fluid is
governed by the equation of continuity and the Navier–Stokes equation

∇ ·u= 0, (2.11a)
∂u
∂t
= ν1u−∇ · (uu)−∇p, (2.11b)

where ν is the viscosity and p is the pressure. The flow is described in a steady
domain Ω , with a Dirichlet, free stream or convective outflow condition on the
boundary ∂Ω . We augment the Galerkin expansion (2.21) with the basic mode u0

as temporal mean flow:

u(x, t)≈ u[0..n](x, t) := u0(x)+
n∑

i=1

ai(t)ui(x). (2.12)

The basic mode satisfies the original boundary conditions while the modes respect
the homogenized version. Thus, the Galerkin expansion (2.12) fulfils the boundary
conditions for all choices of mode coefficients ai. In addition, the equation of
continuity (2.11a) is satisfied for all choices of mode coefficients by the solenoidal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

27
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.278


Low-dimensional modelling of high-Reynolds-number shear flows 289

modes ∇ ·ui = 0, i= 0, . . . , n. Galerkin projection on (2.11b) yields a set of n coupled,
quadratic ordinary differential equations (ODEs):

d
dt

ai = Ci +
n∑

j=1

Lijaj +
n∑

j,k=1

Qijkajak. (2.13)

For the sake of brevity, dependence on time and space is omitted in the remaining part
of this paper. For the assumed divergence-free spatial basis functions and boundary
conditions, the Galerkin system coefficients read as follows:

Ci = ν(ui,1u0)Ω − (ui,∇ · (u0u0))Ω, (2.14a)

Lij = ν
(
ui,1uj

)
Ω
− (ui,∇ · (u0uj)

)
Ω
− (ui,∇ · (uju0)

)
Ω
, (2.14b)

Qijk =−
(
ui,∇ · (ujuk)

)
Ω
. (2.14c)

For open flows, the Galerkin pressure-term representation does not vanish identically
and leads to contributions to all coefficients Ci,Lij and Qijk (Noack, Papas &
Monkewitz 2005). In practice, however, the pressure term is either neglected or
modelled well using a linear fit of the linear Galerkin term Lij (Galletti et al. 2004;
Noack et al. 2005).

2.4. Power balance

In this section, we revisit the power balance in the Galerkin subspace to motivate the
proposed innovation of the next section. For a statistically stationary turbulent flow, the
total power of turbulent kinetic energy vanishes on average, i.e. 〈(d/dt)E〉T = 0. This is
also true in the subspace spanned by the first n POD modes. The instantaneous energy
in this Galerkin space is given exactly by

E[1..n] := 1
2

n∑
i=1

a2
i . (2.15)

The rate of change, called the (total) power in the sequel, reads as follows:

d
dt

E[1..n] :=
n∑

i=1

ai
d
dt

ai. (2.16)

The exact derivative of the mode coefficients requires the interactions with the
complete set of POD modes:

d
dt

ai = Ci +
∞∑

j=1

Lijaj +
∞∑

j,k=1

Qijkajak. (2.17)

Thus, (2.16) becomes

d
dt

E[1..n] =
n∑

i=1

Ciai +
n∑

i=1

∞∑
j=1

Lijaiaj +
n∑

i=1

∞∑
j,k=1

Qijkaiajak. (2.18)
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The averaged total power (2.18) has to vanish. The resulting power balance is
simplified by employing the POD coefficient statistics 〈ai〉T = 0, 〈aiaj〉T = δijλj:

0=
〈

d
dt

E[1..n]
〉

T

=
n∑

i=1

Liiλi +
n∑

i=1

∞∑
j,k=1

Qijk〈aiajak〉T . (2.19)

Additional insights can be gained from employing energy preservation of the
quadratic term Qijk + Qikj + Qjik + Qjki + Qkij + Qkji = 0 (Kraichnan & Chen
1989). This energy preservation annihilates all triads resolved in the considered
POD space, i.e. Qijk〈aiajak〉T, i, j, k = 1, . . . , n. The resulting total power balance
contains the resolved linear term

∑
i=1..nLiiλi, comprising production, convection

and dissipation (Noack et al. 2005) and the unresolved transfer term T< :=∑n
i=1

∑∞
j,k=1

max(j,k)>n
Qijk〈aiajak〉T (Holmes et al. 2012):

0=
n∑

i=1

Liiλi + T<. (2.20)

The unresolved transfer term T< describes the nonlinear energy transfer from resolved
large-scale modes to neglected higher-order small-scale modes and is generally
negative. This means that the Galerkin system with n POD modes must be expected
to predict an excess unresolved power

∑n
i=1Liiλi on the Navier–Stokes attractor and

as a result over-predict the fluctuation level. This excess resolved power can absorbed
by an eddy-viscosity model, i.e. by an additional term in the Galerkin system (see
appendix B for details).

In this study, we develop a subgrid-turbulence representation adopting the power
balance as guiding proxy but pursuing an alternative approach to cure the excess
resolved power. We search for a Galerkin expansion with the same mean flow as basic
mode u0 but general orthogonal modes ũi, i= 1, . . . , n:

ũ[0..n](x, t)= u0(x)+
n∑

i=1

ãi(t)ũi(x). (2.21)

Note that the new mode coefficients ãi cannot be expected to be uncorrelated. In
other words, the covariance matrix Λ̃= (λ̃ij), λ̃ij = 〈ãiãj〉T is not a diagonal matrix. The
resulting Galerkin system does not change its form and the new constant, linear and
quadratic system coefficients are indicated by a tilde. The resulting power balance in
the new Galerkin subspace reads as follows:

0=
n∑

i,j=1

L̃ijλ̃ij + T̃<. (2.22)

The unresolved transfer term characterizes the nonlinear energy cascade but contains
also linear terms, T< =

∑n
i=1

∑∞
j=n+1L̃ijλ̃ij +

∑n
i=1

∑∞
j,k=1

max(j,k)>n
Q̃ijk〈ãiãjãk〉T . The key idea

is to ‘rotate’ the new modes ũi a ‘minimal amount’ away from the POD modes ui into
‘more dissipative regimes’, so that the transfer term T̃< = 0 vanishes.

Up to now, the mode coefficients ai and ãi have been assumed to arise from the
exact Navier–Stokes solution. The Galerkin solution, however, cannot be expected to
match the Navier–Stokes solution exactly. In fact, the inter-model energy flows in
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Galerkin systems are often under-predicted. Hence, we introduce a free transfer term
parameter ε, to account for such discrepancies:

ε =
n∑

i,j=1

L̃ijλ̃ij. (2.23)

In the following section, the sketched MOR approach is detailed.

3. Galerkin MOR approach with power balance constraint
3.1. Formulation of a new optimization principle for the expansion modes

In this section, a new MOR approach for high-Reynolds-number Navier–Stokes fluid
flows is proposed. Instead of modelling the unresolved scales on the Galerkin system
level using an eddy-viscosity term, the unresolved scales are included at the kinematic
level, i.e. at the modal level. In other words, we seek a new set of spatial and temporal
basis functions ũi and ãi such that, in addition to optimally representing the data, they
also satisfy the power balance

arg min
ã,ũ

〈∫
Ω

∣∣∣∣∣u(x, t)− u0(x)−
n∑

i=1

ãi(t)ũi(x)

∣∣∣∣∣
2

dx

〉
T

,

s.t. (1)
(
ũi, ũj

)
Ω
= δij,

(2)
n∑

i,j=1

L̃ijλ̃ij = ε. (3.1)

In the spirit of related previous work (Amsallem & Farhat 2011), we propose the
following parametrization of the solution to (3.1). We seek a linear transformation,
from a larger subspace of POD basis functions that satisfies (3.1). One can write

ũi =
N∑

j=1

Xjiuj, (3.2a)

ãi =
N∑

j=1

Xjiaj, (3.2b)

where X ∈ RN×n is an orthonormal (X TX = In×n) transformation matrix and, by
construction, N > n. The new Galerkin system tensors can be all expressed as a
function of the transformation matrix X as follows:

Q̃ijk =
N∑

p,q,r=1

XpiQpqrXqjXrk i, j, k = 1, . . . , n, (3.3a)

L̃= X TLX , (3.3b)

C̃ = X TC, (3.3c)

Λ̃= X TΛX , (3.3d)

where C ∈ RN,L ∈ RN×N and Q ∈ RN×N×N are the Galerkin system coefficients
corresponding to POD modes ui for i = 1, . . . ,N. Note that the transformed Galerkin
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tensor Q̃ remains energy conserving due to the orthonormal transformation and thus
does not contribute to the energy budget. As a final step, the objective function is
reformulated. The objective function in problem (3.1) is a measure of the distance
between the snapshot solution u(x, t) and the Galerkin expansion

∑n
i=1ãi(t)ũi(x) in

the energy norm. By definition, the reconstruction of the snapshot solution using
POD basis functions,

∑n
i=1ai(t)ui(x), is the optimal reconstruction. In other words, the

following inequalities always hold:〈∫
Ω

|u(x, t)− u0(x)|2 dx
〉

T

>
n∑

i=1

λi >
n∑

i=1

λ̃i. (3.4)

And so, the minimization problem (3.1) takes the following final form:

arg min
X∈RN×n

n∑
i=1

(
λi −

(
X TΛX

)
ii

)
s.t. (1) X TX = In×n

(2)
n∑

i,j=1

(
X TLX

)
ij

(
X TΛX

)
ij
= ε. (3.5)

3.2. The algorithm and numerical implementation

For reasonably small problems, our proposed approach can be directly implemented
and solved in MATLAB. Specifically, (3.5) can be solved using MATLAB’s sequential
quadratic programming (SQP) (Dixon & Szegö 1975; Schittkowski 1986; Nocedal
& Wright 1999) implementation, fmincon, and the critical transfer term parameter
can be found using MATLAB’s Brent’s method (Brent 2002) implementation, fzero.
The entire algorithm is initialized using the time-averaged total power of the POD
modes, i.e. ε =∑n

i,j=1Lijλi, as the initial guess for the critical transfer term parameter.
Following a single solution of (3.5) using fmincon, the new Galerkin ROM is
integrated in time and the transfer term parameter is updated using fzero, where
the function whose root we seek is the Galerkin ROM error

r(ε) :=
n∑

i=1

λ̃ii −
〈

n∑
i=1

ã2
i (t)

〉
T

. (3.6)

The mode coefficients ãi in (3.6) are those derived from a numerical integration of
the corresponding new Galerkin ROM. Unfortunately, our approach does not guarantee
roots for (3.6); nor does it guarantee feasible solutions for (3.5). However, for the
specific test cases analysed, roots and feasible solutions were found for all model
orders n and most ‘reasonable’ values of N. Specifically, we have found the best
performance with transformations of dimension N ≈ 2n. For these transformation
dimensions, convergence to the critical transfer term parameter is achieved in less than
20 iterations, which – depending on the size of the ROM – equates to several minutes
of total CPU time. Details of a simple MATLAB implementation are summarized in
appendix A. The following pseudo-code summarizes the approach:
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Algorithm 1 Stabilization Algorithm
Input: POD basis functions, ui(x) and ai(t), for i = 1, . . . ,N, and the associated

Galerkin tensors C ∈ RN , L ∈ RN×N and Q ∈ RN×N×N . The transfer term parameter
ε.

Output: Galerkin tensors C̃ ∈ Rn, L̃ ∈ Rn×n and Q̃ ∈ Rn×n×n associated with the
transformed basis functions, ũi, for i= 1, . . . , n.

1: Choose n> 0, s.t. N > n.
2: Compute the POD eigenvalues, λi, i= 1, . . . ,N.
3: while r(ε) 6= 0 do
4: Solve the minimization problem:

arg min
X∈RN×n

n∑
i=1

(
λi −

(
X TΛX

)
ii

)
s.t. (1) X TX = In×n

(2)
n∑

i,j=1

(
X TLX

)
ij

(
X TΛX

)
ij
= ε.

5: Evaluate Λ̃ and the new Galerkin system tensors, C̃, L̃ and Q̃.
6: Numerically integrate the new Galerkin ROM.
7: Update ε using the root-finding algorithm.
8: end while
9: Return ũi,X and the new Galerkin system tensors C̃, L̃ and Q̃.

4. Applications
4.1. Lid-driven cavity

The lid-driven cavity is a well-known benchmark problem used to validate fluid
flow numerical schemes and reduced-order models (Cazemier, Verstappen & Veldman
1998; Shankar & Deshpande 2000; Terragni, Valero & Vega 2011). Specifically, the
incompressible, two-dimensional flow inside a square cavity driven by a prescribed
lid velocity, ulid = (1− x2)

2, is considered. The Reynolds number (Re) is defined
with respect to the maximum velocity of the lid and the width of the cavity. The
Navier–Stokes equation is discretized in space using Chebyshev polynomials. The
convective nonlinearities are handled pseudospectrally and the Chebyshev coefficients
are derived using the fast Fourier transform (FFT). The equations are integrated in
time using a semi-implicit, second-order Euler scheme. Figure 1 is a snapshot of
a statistically stationary solution at Reu = 3 × 104. This particular simulation was
performed using a 1282 Chebyshev grid. The computations were performed using 8
processors. The simulation is first initialized over 100 000 time steps (1t = 1 × 10−3),
which corresponds to a wall-clock run time of 6 h. The database is then generated:
50 000 iterations corresponding to 3 wall-clock hours to create 5000 snapshots.

4.1.1. POD modes of the lid-driven cavity
A database of 5000 DNS snapshots of the lid-driven cavity was used to find the

POD modes ui. The non-dimensional time interval between each snapshot equalled 0.1.
Increasing the number of snapshots or the time interval between each snapshot had
no significant effect on the performance characteristics of the ROMs. The normalized
turbulent kinetic energy captured by the first n POD modes is labelled e[1..n] and
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FIGURE 1. (Colour online) Vorticity contours from a DNS of the lid-driven cavity at
Reu = 3× 104.

n e[1..n] (%)

1 16.06
2 29.21
3 37.45
4 44.88
5 50.37
10 67.16
20 82.40
50 93.21
200 99.31

TABLE 1. The normalized turbulent kinetic energy captured by the first n POD modes of
the lid-driven cavity at Reu = 3× 104.

defined as follows:

e[1..n] :=
〈
E[1..n]

〉
T

〈E〉T
=

n∑
i=1

λi

∞∑
i=1

λi

. (4.1)

Results for the lid-driven cavity are shown in table 1. Vorticity contours of spatial
POD modes, ui, for i = 1, 2, 20, 50 and 200 of the lid-driven cavity, are illustrated in
figure 2. As expected, the low-order POD modes correspond to the large, high-energy
physical scales of the unsteady flow, while the higher-order POD modes correspond to
the small, low-energy physical scales.

4.1.2. Galerkin ROMs of lid-driven cavity using standard POD modes
In this section, Galerkin ROMs of the lid-driven cavity are derived using the

standard POD modes, ui for i = 1, . . . , n. The instantaneous turbulent kinetic energy
as predicted by these ROMs is illustrated in figure 3. Numerical integration of the
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FIGURE 2. (Colour online) Vorticity contours of spatial POD modes of the lid-driven cavity
at Reu = 3× 104: (a) u1; (b) u2; (c) u10; (d) u20; (e) u50; (f ) u200.
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E(t)

10–4

10–1

102
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FIGURE 3. (Colour online) The evolution of the instantaneous turbulent kinetic energy of the
lid-driven cavity as predicted by standard POD-based Galerkin ROMs of order n = 5 (dotted
red line), 10 (dashed blue line), 50 (dashed black line) and 200 (solid black line); DNS (thick
grey line).

ROM was performed in MATLAB, using the adaptive forth/fifth order Runge–Kutta
scheme ODE45. Despite the fact that the POD modes capture a large normalized
turbulent kinetic energy of the snapshot solution (see table 1), figure 3 clearly
indicates that low-order Galerkin ROMs based on these modes do not resolve the
direct numerical solution. Good agreement between ROM and DNS is achieved only
when a prohibitively large number of POD modes are utilized; approximately n = 200
POD modes for this particular test case. These convergence issues, of course, were
anticipated. Galerkin ROMs of the Navier–Stokes equation that utilize only the first
few most energetic POD modes tend to under-resolve the small, energy-dissipating
scales of the turbulent flow – which, therefore, leads to excessive resolved power. As
discussed in § 3, the time-averaged resolved power associated with the POD modes
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FIGURE 4. The time-averaged resolved power of the first n POD modes of the lid-driven
cavity.

can be calculated using (2.23); these rates are illustrated in figure 4. As shown, the
time-averaged resolved power associated with the first n POD modes is always positive
and approaches zero asymptotically. It is not surprising, therefore, that ROMs derived
using only the most energetic modes tend to over-predict the kinetic energy of the
flow.

4.1.3. Galerkin ROMs of lid-driven cavity using the proposed new modes
In this section, ROMs of the lid-driven cavity are derived using the new proposed

methodology. Galerkin ROMs are derived using modes with negative time-averaged
resolved power, i.e. modes for which 〈(d/dt)E[1..n]〉T = ε < 0. In the previous section,
it was demonstrated that the standard POD basis functions have positive time-averaged
resolved power, 〈(d/dt)E[1..n]〉T = ε > 0 and therefore, produce Galerkin ROMs that
over-predict the kinetic energy of the flow. The critical time-averaged resolved power
ε for the new modes is found iteratively, using the algorithm introduced in § 3.2 using
N = 2n.

Figure 5 illustrates the evolution of the instantaneous turbulent kinetic energy of
the lid-driven cavity as predicted by the new Galerkin ROMs. For the sake of
brevity, only n = 5, 10 and 20 ROMs are illustrated. As predicted, ROMs derived
using the new modes converge to the correct mean value of kinetic energy and the
accuracy of the models is improved as n is increased. Figure 6 illustrates the power
spectral density (PSD) of the instantaneous turbulent kinetic energy as predicted by
the new ROMs. The PSD is estimated using Welch’s averaged, modified periodogram
method (Welch 1967). Specifically, MATLAB’s built-in Welch’s algorithm, cpsd, is
utilized. The estimation is performed using a Hamming window with a 50 % overlap.
The length of the Hamming window is such that two equal sections of the signal are
used to compute the average. The results in figure 6 demonstrate that the ROMs also
converge to the correct attractor. As stated previously, these new modes have negative
time-averaged resolved power ε, while the standard POD modes have positive values.
Despite this difference, these new modes remain very similar to the POD modes, as
summarized in table 2. The normalized turbulent kinetic energy captured by the first n
new modes ẽ[1..n] is defined by

ẽ[1..n] :=

n∑
i=1

λ̃ii

∞∑
i=1

λi

. (4.2)
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FIGURE 5. The evolution of the instantaneous turbulent kinetic energy of the lid-driven
cavity as predicted by standard POD-based Galerkin ROMs (dashed black lines) and the new
Galerkin ROMs (solid black lines); DNS (thick grey lines).
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FIGURE 6. (Colour online) PSD of the turbulent kinetic energy of the lid-driven cavity as
predicted by the new Galerkin ROMs of order n = 5 (dotted red line), 10 (dashed blue line)
and 20 (thin black line); DNS (thick grey line).
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n e[1..n] (%) ε ẽ[1..n] (%) ε̃

5 50.37 3.60× 10−5 50.01 −1.78×10−5

10 67.16 3.70× 10−5 66.72 −2.22×10−5

20 82.40 3.88× 10−5 82.11 −1.60×10−5

TABLE 2. The normalized turbulent kinetic energy and time-averaged resolved power
captured by the first n POD and the proposed new modes of the lid-driven cavity.

For all orders n, the new modes capture a very similar total of kinetic energy of the
flow as compared to POD modes. In fact, the transformation matrix associated with
these new modes makes little change to the modes: ui ≈ ũi. This matrix reads

XN×n =
[

In×n

O(N−n)×n

]
+ δN×n, (4.3)

where In×n and O(N−n)×n are the identity and null matrices, respectively. δN×n is a
matrix whose entries are all less than one, i.e. |δij| � 1 ∀i, j. Therefore, the new modes
inherit much of the optimality of the original POD modes.

4.2. Mixing layer
The database used for the present work corresponds to the DNS of an isothermal
two-dimensional mixing layer. The numerical algorithm is the same as that employed
previously for studies on jet noise sources (Cavalieri et al. 2011). The full
Navier–Stokes equation for two-dimensional fluid motion is formulated in Cartesian
coordinates and solved in conservative form. Spatial derivatives are computed with
a fourth-order-accurate finite scheme for both the inviscid and viscous portions
of the flux (Gottlieb & Turkel 1976; Hayder & Turkel 1993). A second-order
predictor–corrector scheme is used to advance the solution in time. In addition,
block decomposition and MPI parallelization are implemented. The three-dimensional
Navier–Stokes equation characteristic non-reflective boundary conditions (3D-NSCBC),
developed by Lodato, Domingo & Vervisch (2008), are applied at the boundaries
of the computational domain to account for convective fluxes and pressure gradients
across the boundary plane. In order to simulate anechoic boundary conditions, the
mesh is stretched and a dissipative term is added to the equations in the sponge
zone (Colonius, Lele & Moin 1993). A detailed description of the numerical procedure
is given in Daviller (2010).

The inflow mean streamwise velocity profile is given by a hyperbolic tangent
profile:

u(y)= U2 +1U

[
1+ tanh(2y)

2

]
, (4.4)

with 1U = U1 − U2 being the velocity difference across the mixing layer, where
U1 and U2 are the initial velocity above and below, respectively. The velocities,
lengths and time are non-dimensionalized with 1U and the initial vorticity thickness
δω. The flow Reynolds number is Re = δω1U/νa = 500, where the subscript (·)a
indicates a constant ambient quantity. The Mach numbers of the free streams are
M1 = U1/ca = 0.1 and M2 = U2/ca = 0.033, where ca is the speed of sound. The
inflow mean temperature is calculated with the Crocco–Busemann relation, and the
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FIGURE 7. (Colour online) Vorticity contours from a DNS of the mixing at Reδω = 500.

n e[1..n] (%)

1 18.05
2 34.69
3 40.20
4 46.23
5 50.71
10 66.80
20 81.77
50 93.93
100 98.36

TABLE 3. The normalized turbulent kinetic energy captured by the first n POD modes of
the mixing layer at Reδω = 500.

inflow mean pressure is constant. The Prandtl number is selected to be Pr = 0.7.
Finally, the convective Mach number is given by Mc = 1U/2ca = 0.033, so that
the flow can be assumed to be quasi-incompressible. The numerical code was
extensively validated against numerical and experimental data; some results can be
found in Daviller (2010) and Cavalieri et al. (2011).

The computations were performed on the cluster of the PPRIME Institute, using
64 processors. The computational domain comprises approximately 2.1 million grid
points: 2367 points in the streamwise direction and 884 points along the y direction.
The extension of the computational domain is 325δω × 120δω. The sponge regions are
from x =−20δω to x = 0 and x = 250δω to x = 305δω in the streamwise direction, and
from ±50δω to ±60δω in the transverse y direction. To promote a natural transition
to turbulence from an initially laminar solution, the flow is forced by adding at every
iteration solenoidal perturbations defined as in Bogey (2000). The simulation is first
initialized over 330 000 time steps (1t = 0.002), which corresponds to a wall-clock
run time of 35 h. The database is then generated: 1 093 695 iterations corresponding to
115 wall-clock hours to create 2000 snapshots.

4.2.1. POD modes of the mixing layer
A database of 2000 DNS snapshots of the mixing-layer cavity were used to find the

POD modes ui. The non-dimensional time interval between each snapshot equals unity.
Increasing the number of snapshots or the time interval between each snapshot had
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FIGURE 8. (Colour online) Vorticity contours of spatial POD modes of the mixing layer at
Reδω = 500: (a) u1; (b) u2; (c) u20; (d) u100.

no noticeable effect on the performance characteristics of the ROMs. The percentages
of time-averaged, turbulent kinetic energy captured by the first n POD modes of the
mixing layer are summarized in table 1. Vorticity contours of spatial POD modes, ui,
for i = 1, 2, 20 and 100, of the mixing layer are illustrated in figure 8. As before,
the low-order POD modes correspond to the large, high-energy physical scales of the
unsteady flow, while the higher-order POD modes correspond to the small, low-energy
physical scales.

4.2.2. Galerkin ROMs of the mixing layer using standard POD modes
In this section, Galerkin ROMs of the mixing layer are derived using standard POD

modes ui for i = 1, . . . , n. The turbulent kinetic energy as predicted by these ROMs
is illustrated in figure 9. Similar to the lid-driven cavity test case, Galerkin ROMs
of the mixing layer based on POD modes over-predict the kinetic energy of the flow.
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FIGURE 9. (Colour online) The evolution of the instantaneous turbulent kinetic energy of
the mixing layer as predicted by standard POD-based Galerkin ROMs of order n = 5 (dotted
red line), 10 (dashed blue line), 50 (thick dashed black line) and 100 (solid black line); DNS
(thick grey line).
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FIGURE 10. The time-averaged resolved power of the first n POD modes of the mixing layer.

These inaccuracies were anticipated because the time-averaged power resolved power
associated with the POD modes is positive (see figure 10).

4.2.3. Galerkin ROMs of the mixing layer using the proposed new modes
In this section, the proposed new methodology is used to derive more accurate

Galerkin ROMs of the mixing layer. Figure 11 illustrates the evolution of the turbulent
kinetic energy of the mixing layer as predicted by the new Galerkin ROMs. For
the sake of brevity, only n = 5, 10 and 20 ROMs are illustrated. The critical rate
of the time-averaged resolved power ε for each ROM order n was found iteratively
using the algorithm introduced in § 3.2, using N = 2n. As expected, the new Galerkin
ROMs converge to the correct mean of kinetic energy of the DNS. Finally, figure 12
illustrates that the new ROMs also converge to the correct attractor. As stated
previously, these new modes have negative time-averaged resolved power ε < 0, while
the standard POD modes have positive values. Despite this difference, these new
modes remain very similar to the POD modes, as summarized in table 4.

5. Conclusions and future directions
The starting point of this study is the POD–Galerkin method, which yields a

modal expansion on a kinematic level and a dynamical system as a Navier–Stokes
equation surrogate. We have generalized this method to account for constraints from
the Navier–Stokes equation already at the kinematic level. Traditionally, the modal
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FIGURE 11. The evolution of the instantaneous turbulent kinetic energy of the mixing layer
as predicted by standard POD-based Galerkin ROMs (dashed black lines) and the new
Galerkin ROMs (solid black lines); DNS (thick grey lines).

n e[1..n] (%) ε ẽ[1..n] (%) ε̃

5 50.71 5.98× 10−2 50.21 −2.61×10−2

10 66.80 5.54× 10−2 66.67 −7.52×10−2

20 81.77 5.06× 10−2 79.14 −1.65×10−1

TABLE 4. The normalized turbulent kinetic energy and time-averaged resolved power
captured by the first n POD and the proposed new modes of the mixing layer.

compression of flow data yields the POD expansion, which minimizes the average
expansion residual for the provided data. This approach is biased towards large,
energy-producing scales, as opposed towards small-scale dissipative structures. Thus,
a straightforward Galerkin projection on to the Navier–Stokes equation tends to yield a
Galerkin system with unbounded solutions or fluctuation levels that are too large.
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FIGURE 12. (Colour online) PSD of the turbulent kinetic energy of the mixing layer as
predicted by the new Galerkin ROMs of order n = 5 (dotted red line), 10 (dashed blue line)
and 20 (solid black line); DNS (thick grey line).

The key to a cure is the power balance for the resolved fluctuation on the attractor.
Typically, the unresolved dissipative structures are accounted for by an auxiliary eddy-
viscosity term in the Galerkin system, i.e. on the dynamic level. In the proposed
generalization, we incorporate this power balance as a new kinematic constraint for the
Galerkin expansion, thus generalizing POD. Now, the projection of the Navier–Stokes
equation on to the new modal expansion satisfies the power balance on the attractor by
construction. No eddy-viscosity term is needed for this purpose.

The proposed model order reduction (MOR) is employed to confined and open
high-Reynolds-number flows, both of which exhibit unphysical solutions of traditional
Galerkin systems based on POD without subgrid-turbulence representation. The
Navier–Stokes constrained POD expansion is demonstrated to yield satisfactory
Galerkin solutions after a straightforward Galerkin projection.

The traditional and new POD–Galerkin methods can be expected to converge
with an increasing number of modes as the power balance will be increasing
adequately resolved by the traditional POD expansion. For the targeted low-order
models, the Navier–Stokes constrained POD–Galerkin method may enable a physical
representation of the nonlinear energy cascade. In contrast, a linear eddy-viscosity
term expressly ignores nonlinear amplitude damping. An unexplored opportunity of
our approach is the inclusion of more constraints from the Navier–Stokes equation in
the Galerkin expansion, e.g. the Reynolds equation.
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Appendix A. MATLAB implementation
The following is a simple MATLAB implementation of the proposed Navier–Stokes

constrained POD algorithm. The inputs of the function constrained POD are the
POD temporal coefficients a, the linear Galerkin matrix L, the transformation
dimensions N and n, and the transfer term parameter epsilon. The output of this
function is the transformation matrix, X . The objective function objective evaluates
the difference between the optimal reconstruction of the time-averaged, turbulent
kinetic energy using the POD basis functions and the new basis functions. The
constraint function constraint evaluates the time-averaged resolved power for a
given epsilon.

1 function [X] = constrained POD(a,L,N,n,epsilon)
2 global lambda L epsilon
3

4 for i=1:N;
5 lambda(i) = mean(a(i,:).*a(i,:));
6 end
7

8 x0 = eye(n,n);
9 x0(N,:) = 0;

10

11 problem = createOptimProblem('fmincon', ...
12 'objective', @objective, ...
13 'nonlcon', @constraint, ...
14 'x0',x0);
15 [x,fval,EXITFLAG,OUTPUT,LAMBDA] = fmincon(problem)
16 OUTPUT.message
17

18 X = x*(x'*x)ˆ(−1/2);
19 end

1 function [f] = objective(x)
2 global lambda;
3 X = x*(x'*x)ˆ(−1/2);
4 sum lambda = sum(lambda);
5 lambda tilde = diag(X'*diag(lambda)*X);
6 sum lambda tilde = sum(lambda tilde);
7

8 f = (sum lambda − sum lambda tilde)/sum lambda;
9 end

1 function [c,ceq] = constraint(x)
2 global L lambda epsilon;
3 X = x*(x'*x)ˆ(−1/2);
4 L tilde = X'*L*X;
5 lambda tilde = (X'*diag(lambda)*X);
6 ceq = sum(sum(L tilde.*lambda tilde)) − epsilon;
7 c = [];
8 end

Tables 5 and 6 summarize the computational costs and online ROM speed-ups for
the lid-driven and mixing-layer test cases, respectively. The CFD wall-clock hours for
the lid-driven cavity and mixing layer equalled 3 and 115 h, respectively. The ROM

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

27
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.278


Low-dimensional modelling of high-Reynolds-number shear flows 305

n Solving for ε ROM Online speed-up

5 9.8× 10−4 6.5× 10−5 4.6× 104

10 6.0× 10−2 6.6× 10−5 4.5× 104

20 1.8× 10−1 4.4× 10−4 6.8× 103

TABLE 5. A summary of the computational costs (in wall-clock hours) and online ROM
speed-ups for the lid-driven cavity.

n Solving for ε ROM Online speed-up

5 9.4× 10−3 1.0× 10−6 1.2× 108

10 8.0× 10−2 1.9× 10−6 6.1× 107

20 8.3× 10−2 5.0× 10−5 2.3× 106

TABLE 6. A summary of the computational costs (in wall-clock hours) and online ROM
speed-ups for the mixing layer.

online speed-up is defined as the CFD wall-clock hours divided by ROM wall-clock
hours.

Appendix B. Important similarities with previous approaches
The proposed approach shares important theoretical and practical aspects with

subgrid-turbulence representations of Galerkin models in the literature. Virtually all
representations employ the power balance equation as a proxy and add in some
form of additional dissipation as a stabilizer. The first pioneering POD–Galerkin
model by Aubry et al. (1988) contains a single additional eddy-viscosity parameter.
Its value is determined by a solution-matching procedure. However, with a single
effective viscosity, the turbulent coherent structure model can be derived from a
projection on the low-Reynolds-number Navier–Stokes equation, i.e. this ansatz is a
strong imposition (Rempfer & Fasel 1994) for the calibration of these viscosities. This
approach has been successfully employed up to the present day. A corresponding
application to the lid-driven cavity has been presented by Cazemier et al. (1998).
An even more general ansatz is the identification of an additional linear term
in the Galerkin system to account for unresolved turbulent fluctuations and other
phenomena (Galletti et al. 2004). These authors have employed a solution-matching
procedure. The advantage is the possibility of including, for instance, frequency
changes due to unresolved turbulence. However, the ansatz cannot easily be physically
interpreted.

The above subgrid-turbulence representations propose a linear term for a nonlinear
turbulence cascade. The price is a potential – if not likely – lack of robustness of
the closure. The damping at large fluctuations is generally under-predicted. Noack
et al. (2011) have proposed a nonlinear eddy-viscosity term that is consistent with
the finite-time thermodynamics closure (Noack et al. 2008) and that guarantees the
boundedness of the Galerkin solution (Cordier et al. 2013). Borggaard’s group pursues
a similar goal of more realistic nonlinear subgrid-turbulence representations. They
derive nonlinear terms from a Galerkin projection of an LES-filtered Navier–Stokes
equation (Wang et al. 2011, 2012).
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The need for a subgrid-turbulence closure model rests in a property of POD.
By construction, POD is biased towards the large, energy-containing scales of the
turbulent flow. In fact, Lumnley (1967) has introduced POD with the very purpose
of distilling just the coherent flow structures. There have been several previous
attempts at generalizing POD in the past. For example, Iollo, Lanteri & Désidéri
(2000) formulate the POD with respect to the Sobolev H1 norm. The inclusion of
derivatives of the snapshot matrix increases the contribution of the small scales of
the turbulent flow in the basis functions and, therefore, tends to stabilize the Galerkin
ROMs. The price is an empirical calibration of the exact definition of the Sobolev
norm to achieve stability.

In the proposed new approach, we comprise several constitute elements of the above
approaches. Similarly to Iollo et al. (2000), we have generalized the POD algorithm
so that a more appropriate balance of large and small scales is included in the basis
functions. Similarly to Cazemier et al. (1998), we utilize the power balance equation
derived from the Navier–Stokes equation as an additional constraint. Following Noack
et al. (2011) and Wang et al. (2011), we respect the nonlinear energy transfer by
allowing the reduced-order model to establish its own nonlinear energy transfer from
producing to dissipative modes. Conceptually, one might consider the proposed new
ROM as a POD ROM enriched with additional energy-absorbing dynamic equations,
as opposed to an additional energy-absorbing term.
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