
TLP 7 (1&2): 123–151, 2007. C© 2007 Cambridge University Press

doi:10.1017/S147106840600281X Printed in the United Kingdom

123

Mapping Fusion and Synchronized Hyperedge
Replacement into logic programming�

IVAN LANESE and UGO MONTANARI

Computer Science Department – University of Bologna,

Mura Anteo Zamboni, 7 40127 Bologna, Italy

(e-mail: lanese@cs.unibo.it,ugo@di.unipi.it)

submitted 27 December 2003; revised 14 April 2005; accepted 5 January 2006

Abstract

In this paper we compare three different formalisms that can be used in the area of models for

distributed, concurrent and mobile systems. In particular we analyze the relationships between

a process calculus, the Fusion Calculus, graph transformations in the Synchronized Hyperedge

Replacement with Hoare synchronization (HSHR) approach and logic programming. We

present a translation from Fusion Calculus into HSHR (whereas Fusion Calculus uses Milner

synchronization) and prove a correspondence between the reduction semantics of Fusion

Calculus and HSHR transitions. We also present a mapping from HSHR into a transactional

version of logic programming and prove that there is a full correspondence between the two

formalisms. The resulting mapping from Fusion Calculus to logic programming is interesting

since it shows the tight analogies between the two formalisms, in particular for handling name

generation and mobility. The intermediate step in terms of HSHR is convenient since graph

transformations allow for multiple, remote synchronizations, as required by Fusion Calculus

semantics.

KEYWORDS: Fusion calculus, graph transformation, Synchronized Hyperedge Replacement,

logic programming, mobility

1 Introduction

In this paper we compare different formalisms that can be used to specify and model

systems which are distributed, concurrent and mobile, as those that are usually found

in the global computing area.

Global computing is becoming very important because of the great development

of networks which are deployed on huge areas, first of all Internet, but also other

kinds of networks such as networks for wireless communications. In order to build

and program these networks one needs to deal with issues such as reconfigurability,

synchronization and transactions at a suitable level of abstraction. Thus powerful

� Work supported in part by the European IST-FET Global Computing project IST-2001-33100
PROFUNDIS and the European IST-FET Global Computing 2 project IST-2005-16004 Sensoria.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

124 I. Lanese and U. Montanari

formal models and tools are needed. Until now no model has been able to emerge

as the standard one for this kind of systems, but there are a lot of approaches with

different merits and drawbacks.

An important approach is based on process calculi, like Milner’s CCS and Hoare’s

CSP. These two calculi deal with communication and synchronization in a simple

way, but they lack the concept of mobility. An important successor of CCS, the

π-calculus (Milner et al. 1992), allows to study a wide range of mobility problems in

a simple mathematical framework. We are mainly interested in the Fusion Calculus

(Parrow and Victor 1998; Victor 1998; Gardner and Wischik 2000; Gardner and

Wischik 2004), which is an evolution of π-calculus. The interesting aspect of this

calculus is that it has been obtained by simplifying and making more symmetric the

π-calculus.

One of the known limitations of process calculi when applied to distributed

systems is that they lack an intuitive representation because they are equipped with

an interleaving semantics and they use the same constructions for representing both

the agents and their configurations. An approach that solves this kind of problems

is based on graph transformations (Ehrig et al. 1999). In this case the structure of the

system is explicitly represented by a graph which offers both a clean mathematical

semantics and a suggestive representation. In particular we represent computational

entities such as processes or hosts with hyperedges (namely edges attached to any

number of nodes) and channels between them with shared nodes. As far as the

dynamic aspect is concerned, we use Synchronized Hyperedge Replacement with

Hoare synchronization (HSHR) (Degano and Montanari 1987). This approach uses

productions to specify the behaviour of single hyperedges, which are synchronized

by exposing actions on nodes. Actions exposed by different hyperedges on the

same node must be compatible. In the case of Hoare synchronization all the edges

must expose the same action (in the CSP style). This approach has the advantage,

w.r.t. other graphical frameworks such as Double Pushout (Ehrig et al. 1973) or

Bigraphs (Jensen and Milner 2003), of allowing a distributed implementation since

productions have a local effect and synchronization can be performed using a

distributed algorithm. We use the extension of HSHR with mobility (Hirsch et al.

2000; Hirsch and Montanari 2001; König and Montanari 2001; Ferrari et al. 2001;

Lanese 2002), that allows edges to expose node references together with actions, and

nodes whose references are matched during synchronization are unified.

For us HSHR is a good step in the direction of logic programming (Lloyd 1993).

We consider logic programming as a formalism for modelling concurrent and

distributed systems. This is a non-standard view of logic programming (see Bruni

et al. 2001 for a presentation of our approach) which considers goals as processes

whose evolution is defined by Horn clauses and whose interactions use variables as

channels and are managed by the unification engine. In this framework we are not

interested only in refutations, but in any partial computation that rewrites a goal

into another.

In this paper we analyze the relationships between these three formalisms and we

find tight analogies among them, like the same parallel composition operator and

the use of unification for name mobility. However we also emphasize the differences

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 125

between these models:

• the Fusion Calculus is interleaving and relies on Milner synchronization (in the

CCS style);

• HSHR is inherently concurrent since many actions can be performed at the

same time on different nodes and uses Hoare synchronization;

• logic programming is concurrent, has a wide spectrum of possible controls

which are based on the Hoare synchronization model, and also is equipped

with a more complex data management.

We will show a mapping from Fusion Calculus to HSHR and prove a correspondence

theorem. Note that HSHR is a good intermediate step between Fusion Calculus

and logic programming since in HSHR hyperedges can perform multiple actions

at each step, and this allows to build chains of synchronizations. This additional

power is needed to model Milner synchronization, which requires synchronous,

atomic routing capabilities. To simplify our treatment we consider only reduction

semantics. The interleaving behaviour is imposed with an external condition on the

allowed HSHR transitions.

Finally, we present the connections between HSHR and logic programming. Since

the logic programming paradigm allows for many computational strategies and is

equipped with powerful data structures, we need to constrain it in order to have a

close correspondence with HSHR. We define to this end Synchronized Logic Program-

ming (SLP), which is a transactional version of logic programming. The idea is that

function symbols are pending constraints that must be satisfied before a transaction

can commit, as for zero tokens in zero-safe nets (Bruni and Montanari 2000). In

the mapping from HSHR to SLP edges are translated into predicates, nodes into

variables and parallel composition into AND composition.

This translation was already presented in the MSc thesis of the first author

(Lanese 2002) and in Lanese and Montanari (2002). Fusion Calculus was mapped

into SHR with Milner synchronization (a simpler task) in Lanese and Montanari

(2004a) where Fusion LTS was considered instead of Fusion reduction semantics. The

paper Lanese and Montanari (2002) also contains a mapping of Ambient calculus

into HSHR. This result can be combined with the one here, thus obtaining a

mapping of Ambient calculus into SLP. An extensive treatment of all the topics in

this paper can also be found in the forthcoming Ph.D. thesis of the first author

(Lanese 2006).

Since logic programming is not only a theoretical framework, but also a well

developed programming style, the connections between Fusion, HSHR and logic

programming can be used for implementation purposes. SLP has been implemented

in Lanese (2002) through meta-interpretation. Thus we can use translations from

Fusion and HSHR to implement them. In particular, since implementations of logic

programming are not distributed, this can be useful mainly for simulation purposes.

In Section 2 we present the required background, in particular we introduce

the Fusion Calculus (2.1), the algebraic representation of graphs and the HSHR

(2.2), and logic programming (2.3). Section 3 is dedicated to the mapping from

Fusion Calculus to HSHR. Section 4 analyzes the relationships between HSHR

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

126 I. Lanese and U. Montanari

and logic programming, in particular we introduce SLP (4.1), we prove the

correspondence between it and HSHR (4.2) and we give some hints on how to

implement Fusion Calculus and HSHR using Prolog (4.3). Finally, in Section 5

we present some conclusions and traces for future work. Proofs can be found

elsewhere (Lanese and Montanari 2005).

2 Background

Mathematical notation. We use Tσ to denote the application of substitution σ to T

(where T can be a term or a set/vector of terms). We write substitutions as sets

of pairs of the form t/x, denoting that variable x is replaced by term t. We also

denote with σ1σ2 the composition of substitutions σ1 and σ2. We denote with σ−1(x)

the set of elements mapped to x by σ. We use | − | to denote the operation that

computes the number of elements in a set/vector. Given a function f we denote

with dom(f) its domain, with Im(f) its image and with f|S the restriction of f to

the new domain S . We use on functions and substitutions set theoretic operations

(such as ∪) referring to their representation as sets of pairs. Similarly, we apply

them to vectors, referring to the set of the elements in the vector. In particular, \ is

set difference. Given a set S we denote with S∗ the set of strings on S . Also, given

a vector�v and an integer i,�v[i] is the i-th element of�v. Finally, a vector is given by

listing its elements inside angle brackets 〈−〉.

2.1 The Fusion Calculus

The Fusion Calculus (Parrow and Victor 1998; Victor 1998) is a calculus for mod-

elling distributed and mobile systems which is based on the concepts of fusion and

scope. It is an evolution of the π-calculus (Milner et al. 1992) and the interesting

point is that it is obtained by simplifying the calculus. In fact the two action prefixes

for input and output communication are symmetric, whereas in the π-calculus they

are not, and there is just one binding operator called scope, whereas the π-calculus

has two (restriction and input). As shown elsewhere (Parrow and Victor 1998), the

π-calculus is syntactically a subcalculus of the Fusion Calculus (the key point is that

the input of π-calculus is obtained using input and scope). In order to have these

properties fusion actions have to be introduced. An asynchronous version of Fusion

Calculus is described by other authors (Gardner and Wischik 2000, 2004), where

name fusions are handled explicitly as messages. Here we follow the approach by

Parrow and Victor.

We now present in details the syntax and the reduction semantics of Fusion

Calculus. In our work we deal with a subcalculus of the Fusion Calculus, which

has no match and no mismatch operators, and has only guarded summation and

recursion. All these restrictions are quite standard, apart from the one concerning

the match operator, which is needed to have an expansion lemma. To extend our

approach to deal with match we would need to extend SHR by allowing production

applications to be tagged with a unique identifier. We leave this extension for future

work. In our discussion we distinguish between sequential processes (which have a

guarded summation as topmost operator) and general processes.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 127

We assume to have an infinite set N of names ranged over by u, v, . . . , z and an

infinite set of agent variables (disjoint w.r.t. the set of names) with meta-variable

X. Names represent communication channels. We use φ to denote an equivalence

relation on N, called fusion, which is represented in the syntax by a finite set of

equalities. Function n(φ) returns all names which are fused, i.e. those contained in

an equivalence class of φ which is not a singleton.

Definition 1

The prefixes are defined by:

α : : = u�x (Input)

u�x (Output)

φ (Fusion)

Definition 2

The agents are defined by:

S : : =
∑

i αi.Pi (Guarded sum)

P : : = 0 (Inaction)

S (Sequential Agent)

P1|P2 (Composition)

(x)P (Scope)

recX.P (Recursion)

X (Agent variable)

The scope restriction operator is a binder for names, thus x is bound in (x)P .

Similarly rec is a binder for agent variables. We will only consider agents which are

closed w.r.t. both names and agent variables and where in recX.P each occurrence

of X in P is within a sequential agent (guarded recursion). We use recursion to

define infinite processes instead of other operators (e.g. replication) since it simplifies

the mapping and since their expressive power is essentially the same. We use infix +

for binary sum (which thus is associative and commutative).

Given an agent P , functions fn, bn and n compute the sets fn(P), bn(P) and n(P)

of its free, bound and all names, respectively.

Processes are agents considered up to structural axioms defined as follows.

Definition 3 (Structural congruence)

The structural congruence ≡ between agents is the least congruence satisfying the

α-conversion law (both for names and for agent variables), the abelian monoid

laws for composition (associativity, commutativity and 0 as identity), the scope

laws (x)0 ≡ 0, (x)(y)P ≡ (y)(x)P , the scope extrusion law P |(z)Q ≡ (z)(P |Q) where

z /∈ fn(P) and the recursion law recX.P ≡ P {recX.P/X}.

Note that fn is also well-defined on processes.

To deal with fusions we need the following definition.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

128 I. Lanese and U. Montanari

Definition 4 (Substitutive effect)

A substitutive effect of a fusion φ is any idempotent substitution σ : N → N
having φ as its kernel. In other words xσ = yσ iff xφy and σ sends all members of

each equivalence class of φ to one representative in the class.1

The reduction semantics for Fusion Calculus is the least relation satisfying the

following rules.

Definition 5 (Reduction semantics for Fusion Calculus)

(�z)(R|(· · ·+ u�x.P)|(u�y.Q + . . .))→ (�z)(R|P |Q)σ

where |�x| = |�y| and σ is a substitutive effect of {�x =�y} such that dom(σ) ⊆�z.

(�z)(R|(· · ·+ φ.P))→ (�z)(R|P)σ

where σ is a substitutive effect of φ such that dom(σ) ⊆�z.

P ≡ P ′, P ′ → Q′, Q′ ≡ Q

P → Q

2.2 Synchronized Hyperedge Replacement

Synchronized Hyperedge Replacement (SHR) (Degano and Montanari 1987) is an

approach to (hyper)graph transformations that defines global transitions using local

productions. Productions define how a single (hyper)edge can be rewritten and

the conditions that this rewriting imposes on adjacent nodes. Thus the global

transition is obtained by applying in parallel different productions whose conditions

are compatible. What exactly compatible means depends on which synchronization

model we use. In this work we will use the Hoare synchronization model (HSHR),

which requires that all the edges connected to a node expose the same action on

it. For a general definition of synchronization models see elsewhere (Lanese and

Montanari 2004b).

We use the extension of HSHR with mobility (Hirsch et al. 2000; Hirsch and

Montanari 2001; König and Montanari 2001; Ferrari et al. 2001; Lanese 2002),

that allows edges to expose node references together with actions, and nodes whose

references are matched during synchronization are unified.

We will give a formal description of HSHR as labelled transition system, but first

of all we need an algebraic representation for graphs.

An edge is an atomic item with a label and with as many ordered tentacles as

the rank rank(L) of its label L. A set of nodes, together with a set of such edges,

forms a graph if each edge is connected, by its tentacles, to its attachment nodes.

We will consider graphs up to isomorphisms that preserve2 nodes, labels of edges,

and connections between edges and nodes.

Now, we present a definition of graphs as syntactic judgements, where nodes

correspond to names and edges to basic terms of the form L(x1, . . . , xn), where the

1 Essentially σ is a most general unifier of φ, when it is considered as a set of equations.
2 In our approach nodes usually represent free names, and they are preserved by isomorphisms.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 129

xi are arbitrary names and rank(L) = n. Also, nil represents the empty graph and |
is the parallel composition of graphs (merging nodes with the same name).

Definition 6 (Graphs as syntactic judgements)

Let N be a fixed infinite set of names and LE a ranked alphabet of labels. A

syntactic judgement (or simply a judgement) is of the form Γ � G where:

1. Γ ⊆N is the (finite) set of nodes in the graph.

2. G is a term generated by the grammar

G : : =L(�x) | G1|G2 | nil
where �x is a vector of names and L is an edge label with rank(L) = |�x|.

We denote with n the function that given a graph G returns the set n(G) of all

the names in G. We use the notation Γ, x to denote the set obtained by adding x to

Γ, assuming x /∈ Γ. Similarly, we write Γ1,Γ2 to state that the resulting set of names

is the disjoint union of Γ1 and Γ2.

Definition 7 (Structural congruence and well-formed judgements)

The structural congruence ≡ on terms G obeys the following axioms:

(AG1) (G1|G2)|G3 ≡ G1|(G2|G3)

(AG2) G1|G2 ≡ G2|G1

(AG3) G|nil ≡ G

The well-formed judgements Γ � G over LE and N are those where n(G) ⊆ Γ.

Axioms (AG1), (AG2) and (AG3) define respectively the associativity, commut-

ativity and identity over nil for operation |.
Well-formed judgements up to structural axioms are isomorphic to graphs up to

isomorphisms. For a formal statement of the correspondence see elsewhere (Hirsch

2003).

We now present the steps of a SHR computation.

Definition 8 (SHR transition)

Let Act be a set of actions. For each action a ∈ Act, let ar(a) be its arity.

A SHR transition is of the form:

Γ � G
Λ,π
−→ Φ � G′

where Γ � G and Φ � G′ are well-formed judgements for graphs, Λ : Γ→ (Act×N∗)

is a total function and π : Γ→ Γ is an idempotent substitution. Function Λ assigns

to each node x the action a and the vector �y of node references exposed on x by

the transition. If Λ(x) = (a,�y) then we define actΛ(x) = a and nΛ(x) =�y. We require

that ar(actΛ(x)) = | nΛ(x)|, namely the arity of the action must equal the length of

the vector.

We define:

• n(Λ) = {z|∃x.z ∈ nΛ(x)}
set of exposed names;

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

130 I. Lanese and U. Montanari

• ΓΛ = n(Λ) \ Γ

set of fresh names that are exposed;

• n(π) = {x|∃x′
= x.xπ = x′π}
set of fused names.

Substitution π allows to merge nodes. Since π is idempotent, it maps every node into

a standard representative of its equivalence class. We require that ∀x ∈ n(Λ).xπ = x,

i.e. only references to representatives can be exposed. Furthermore, we require

Φ ⊇ Γπ ∪ ΓΛ, namely nodes are never erased. Nodes in ΓInt = Φ \ (Γπ ∪ ΓΛ) are

fresh internal nodes, silently created in the transition. We require that no isolate,

internal nodes are created, namely ΓInt ⊆ n(G′).

Note that the set of names Φ of the resulting graph is fully determined by Γ, Λ,

π and G′ thus we will have no need to write its definition explicitly in the inference

rules. Notice also that we can write a SHR transition as:

Γ � G
Λ,π
−→ Γπ,ΓΛ,ΓInt � G′.

We usually assume to have an action ε ∈ Act of arity 0 to denote “no synchron-

ization”. We may not write explicitly π if it is the identity, and some actions if they

are (ε, 〈〉). Furthermore we use Λε to denote the function that assigns (ε, 〈〉) to each

node in Γ (note that the dependence on Γ is implicit).

We derive SHR transitions from basic productions using a set of inference rules.

Productions define the behaviour of single edges.

Definition 9 (Production)

A production is a SHR transition of the form:

x1, . . . , xn � L(x1, . . . , xn)
Λ,π
−→ Φ � G

where all xi, i = 1 . . . n are distinct.

Productions are considered as schemas and so they are α-convertible w.r.t. names

in {x1, . . . , xn} ∪ Φ.

We will now present the set of inference rules for Hoare synchronization. The

intuitive idea of Hoare synchronization is that all the edges connected to a node

must expose the same action on that node.

Definition 10 (Rules for Hoare synchronization)

(par)
Γ � G1

Λ,π
−→ Φ � G2 Γ′ � G′1

Λ′ ,π′

−−→ Φ′ � G′2 (Γ ∪ Φ) ∩ (Γ′ ∪ Φ′) = ∅

Γ,Γ′ � G1|G′1
Λ∪Λ′ ,π∪π′
−−−−−→ Φ,Φ′ � G2|G′2

(merge)
Γ � G1

Λ,π
−→ Φ � G2 ∀x, y ∈ Γ.xσ = yσ ∧ x
= y ⇒ actΛ(x) = actΛ(y)

Γσ � G1σ
Λ′ ,π′

−−→ Φ′ � G2σρ

where σ : Γ→ Γ is an idempotent substitution and:

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 131

S

S

S

S

x

y

z

v w

Fig. 1. Star graph.

(i). ρ = mgu({(nΛ(x))σ = (nΛ(y))σ|xσ = yσ} ∪ {xσ = yσ|xπ = yπ}) where ρ

maps names to representatives in Γσ whenever possible

(ii). ∀z ∈ Γ.Λ′(zσ) = (Λ(z))σρ

(iii). π′ = ρ|Γσ

(idle) Γ � G
Λε,id−−→ Γ � G

(new)
Γ � G1

Λ,π
−→ Φ � G2 x /∈ Γ �y ∩ (Γ ∪ Φ ∪ {x}) = ∅

Γ, x � G1

Λ∪{(x,a,�y)},π
−−−−−−−→ Φ′ � G2

A transition is obtained by composing productions, which are first applied on

disconnected edges, and then by connecting the edges by merging nodes. In particular

rule (par) deals with the composition of transitions which have disjoint sets of

nodes and rule (merge) allows to merge nodes (note that σ is a projection into

representatives of equivalence classes). The side condition requires that we have the

same action on merged nodes. Definition (i) introduces the most general unifier ρ

of the union of two sets of equations: the first set identifies (the representatives of)

the tuples associated to nodes merged by σ, while the second set of equations is

just the kernel of π. Thus ρ is the merge resulting from both π and σ. Note that

(ii) Λ is updated with these merges and that (iii) π′ is ρ restricted to the nodes of the

graph which is the source of the transition. Rule (idle) guarantees that each edge

can always make an explicit idle step. Rule (new) allows adding to the source graph

an isolated node where arbitrary actions (with fresh names) are exposed.

We write P � (Γ � G
Λ,π
−→ Φ � G′) if Γ � G

Λ,π
−→ Φ � G′ can be obtained from the

productions in P using Hoare inference rules.

We will now present an example of HSHR computation.

Example 1 (Hirsch et al. 2000)

We show now how to use HSHR to derive a 4 elements ring starting from a one

element ring, and how we can then specify a reconfiguration that transforms the

ring into the star graph in Figure 1.

We use the following productions:

x, y � C(x, y)
(x,ε,〈〉),(y,ε,〈〉)
−−−−−−−→ x, y, z � C(x, z)|C(z, y)

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

132 I. Lanese and U. Montanari

C

C

C C S

x

z
x

y
y

y y

x

w

x

ε,<>

ε,<>

r,<w>

r,<w>

Fig. 2. Productions.

C C C

C

C

C C

C C

S

S

S

S

Cx

x

y

x x x

y

yw

z z
z

v

v

y

Fig. 3. Ring creation and reconfiguration to star.

x, y � C(x, y)
(x,r,〈w〉),(y,r,〈w〉)
−−−−−−−−−→ x, y, w � S(y, w)

that are graphically represented in Figure 2. Notice that Λ is represented by

decorating every node x in the left hand with actΛ(x) and nΛ(x). The first rule

allows to create rings, in fact we can create all rings with computations like:

x � C(x, x)→ x, y � C(x, y)|C(y, x)→
→ x, y, z � C(x, y)|C(y, z)|C(z, x)→

→ x, y, z, v � C(x, y)|C(y, z)|C(z, v)|C(v, x)

In order to perform the reconfiguration into a star we need rules with nontrivial

actions, like the second one. This allows to do:

x, y, z, v � C(x, y)|C(y, z)|C(z, v)|C(v, x)
(x,r,〈w〉),(y,r,〈w〉),(z,r,〈w〉),(v,r,〈w〉)
−−−−−−−−−−−−−−−−−−→

→ x, y, z, v, w � S(x, w)|S(y, w)|S(z, w)|S(v, w)

Note that if an edge C is rewritten into an edge S , then all the edges in the ring

must use the same production, since they must synchronize via action r. They must

agree also on nΛ(x) for every x, thus all the newly created nodes are merged. The

whole transition is represented in Figure 3.

It is easy to show that if we can derive a transition T , then we can also derive

every transition obtainable from T by applying an injective renaming.

Lemma 1

Let P be a set of productions and σ an injective substitution.

P � (Γ � G
Λ,π
−→ Φ � G′) iff:

P � (Γσ � Gσ
Λ′ ,π′

−−→ Φσ � G′σ)

where Λ′(xσ) = (Λ(x))σ and xσπ′ = xπσ.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 133

Proof

By rule induction.

2.3 Logic programming

In this paper we are not interested in logic computations as refutations of goals

for problem solving or artificial intelligence, but we consider logic programming

(Lloyd 1993) as a goal rewriting mechanism. We can consider logic subgoals as

concurrent communicating processes that evolve according to the rules defined by

the clauses and that use unification as the fundamental interaction primitive. A

presentation of this kind of use of logic programming can be found elsewhere

(Bruni et al. 2001).

To stress the similarities between logic programming and process calculi we present

a semantics of logic programming based on a labelled transition system.

Definition 11

We have for clauses (C) and goals (G) the following grammar:

C : : =A← G

G : : =G,G | A | �

where A is a logic atom, “,” is the AND conjunction and � is the empty goal. We

can assume “,” to be associative and commutative and with unit �.

The informal semantics of A← B1, . . . , Bn is “for every assignment of the variables,

if B1, . . . , Bn are all true, then A is true”.

A logic program is a set of clauses. Derivations in logic programming are

called SLD-derivations (from “Linear resolution for Definite clauses with Selection

function”). We will also consider partial SLD-derivations.

Definition 12 (Partial SLD-derivation)

Let P be a logic program. We define a step of a SLD-resolution computation using

the following rules:

H ← B1, . . . , Bk ∈ P θ = mgu({A = Hρ})

P � A
θ−→ (B1, . . . , Bk)ρθ

atomic goal

where ρ is an injective renaming of variables such that all the variables in the clause

variant (H ← B1, . . . , Bk)ρ are fresh.

P � G
θ−→ F

P � G,G′
θ−→ F,G′θ

conjunctive goal

We will omit P � if P is clear from the context.

A partial SLD-derivation of P ∪ {G} is a sequence (possibly empty) of steps of

SLD-resolution allowed by program P with initial goal G.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

134 I. Lanese and U. Montanari

3 Mapping Fusion Calculus into Synchronized Hyperedge Replacement

In this section we present a mapping from Fusion Calculus to HSHR. This mapping

is quite complex since there are many differences between the two formalisms.

First of all we need to bridge the gap between a process calculus and a graph

transformation formalism, and this is done by associating edges to sequential

processes and by connecting them according to the structure of the system. Moreover

we need to map Milner synchronization, which is used in Fusion Calculus, into Hoare

synchronization. In order to do this we define some connection structures that we

call amoeboids which implement Milner synchronization using Hoare connectors.

Since Hoare synchronization involves all the edges attached to a node while Milner

one involves just pairs of connectors, we use amoeboids to force each node to be

shared by exactly two edges (one if the node is an interface to the outside) since

in that case the behaviour of Hoare and Milner synchronization is similar. An

amoeboid is essentially a router (with no path-selection abilities) that connects an

action with the corresponding coaction. This is possible since in HSHR an edge

can do many synchronizations on different nodes at the same time. Finally, some

restrictions have to be imposed on HSHR in order to have an interleaving behaviour

as required by Fusion Calculus.

We define the translation on processes in the form (�x)P where P is the parallel

composition of sequential processes. Notice that every process can be reduced to the

above form by applying the structural axioms: recursive definitions which are not

inside a sequential agent have to be unfolded once and scope operators which are

not inside a sequential agent must be taken to the outside. We define the translation

also in the case (�x)P is not closed w.r.t. names (but it must be closed w.r.t. process

variables) since this case is needed for defining productions.

In the form (�x)P we assume that the ordering of names in (�x) is fixed, dictated

by some structural condition on their occurrences in P .

For our purposes, it is also convenient to express process P in (�x)P as P = P ′σ,

where P ′ is a linear agent, i.e. every name in it appears once. We assume that the

free names of P ′ are fresh, namely fn(P ′)∩ fn(P) = ∅, and again structurally ordered.

The corresponding vector is called fnarray(P ′).

The decomposition P = P ′σ highlights the role of amoeboids. In fact, in the

translation, substitution σ is made concrete by a graph consisting of amoeboids,

which implement a router for every name in fn(P). More precisely, we assume the

existence of edge labels mi and n of ranks i = 2, 3, . . . and 1 respectively. Edges

labelled by mi implement routers among i nodes, while n edges “close” restricted

names �x in (�x)P ′σ.

Finally, linear sequential processes S in P ′ must also be given a standard form.

In fact, they will be modelled in the HSHR translation by edges labelled by LS ,

namely by a label encapsulating S itself. However in the derivatives of a recursive

process the same sequential process can appear with different names an unbound

number of times. To make the number of labels (and also of productions, as we will

see in short) finite, for every given process, we choose standard names x1, . . . , xn and

order them structurally: S = Ŝ(x1, . . . , xn)ρS with S1 = S2ρ implying Ŝ1 = Ŝ2 and

ρS1
= ρρS2

.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 135

m2

m3
y z

x

r w

Fig. 4. Amoeboids for σ.

We can now define the translation from Fusion Calculus to HSHR. The translation

is parametrized by the nodes in the vectors �v and �w we choose to represent the

names in �x and fnarray(P ′). We denote with
[]
x∈S Gx the parallel composition of

graphs Gx for each x ∈ S .

Definition 13 (Translation from Fusion Calculus to HSHR)

�(�x)P ′σ��v,�w = Γ � �P ′�{�w/ fnarray(P ′)}|�σ�{�v/�x}{�w/ fnarray(P ′)}|
[]
x∈�v n(x) where:

|�v| = |�x|,
|�w| = | fnarray(P ′)|,
�v ∩ �w = ∅
and with:

Γ = fn((�x)P ′σ),�v,�w.

�0� = nil

�S� = LŜ (x1, . . . , xn)ρS with n = | fn(Ŝ)|
�P1|P2� = �P1�|�P2�

�σ� =
[]
x∈Im(σ)

mk+1(x, σ
−1(x)) where k = |σ−1(x)|.

In the above translation, graph �P ′� consists of a set of disconnected edges, one

for each sequential process of (�x)P ′σ. The translation produces a graph with three

kinds of nodes. The nodes of the first kind are those in �w. Each of them is adjacent

to exactly two edges, one representing a sequential process of P ′, and the other an

amoeboid. Also the nodes in �v are adjacent to two edges, an amoeboid and an n

edge. Finally the nodes in fn((�x)P ′σ) are adjacent only to an amoeboid.

As mentioned above, translation �σ� builds an amoeboid for every free name x

of P ′σ: it has k + 1 tentacles, where k are the occurrences of x in P ′σ, namely the

free names of P ′ mapped to it. Notice that the choice of the order within σ−1(x) is

immaterial, since we will see that amoeboids are commutative w.r.t. their tentacles.

However, to make the translation deterministic, σ−1(x) could be ordered according

to some fixed precedence of the names.

Example 2 (Translation of a substitution)

Let σ = {y/x, y/z, r/w}. The translation of σ is in Figure 4.

Example 3 (Translation of a process)

Let us consider the (closed) process (uz)uz.0| recX.(x)ux.(ux.0|X). We can write it in

the form (�x)P as:

(uzy)uz.0|uy.(uy.0| recX.(x)ux.(ux.0|X))

Furthermore we can decompose P into P ′σ where:

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

136 I. Lanese and U. Montanari

P ′ = u1z1.0|u2y1.(u3y2.0| recX.(x)u4x.(u5x.0|X))

σ = {u/u1, z/z1, u/u2, y/y1, u/u3, y/y2, u/u4, u/u5}.
We can now perform the translation.

We choose�v = (u, z, y) and �w = (u1, z1, u2, y1, u3, y2, u4, u5):

�(�x)P ′σ��v,�w = u, z, y, u1, z1, u2, y1, u3, y2, u4, u5 �
Lx1x2 .0(u1, z1)|Lx1x2 .(x3x4 .0| recX.(x)x5x.(x6x.0|X))(u2, y1, u3, y2, u4, u5)|

m6(u, u1, u2, u3, u4, u5)|m2(z, z1)|m3(y, y1, y2)|n(u)|n(z)|n(y)

Now we define the productions used in the HSHR system. We have two kinds of

productions: auxiliary productions that are applied to amoeboid edges and process

productions that are applied to process edges. Before showing process productions we

need to present the translation from Fusion Calculus prefixes into HSHR transition

labels.

Definition 14

The translation from Fusion Calculus prefixes into HSHR transition labels is the

following:

�α� = (Λ, π) where

if α = u�x then Λ(u) = (inn,�x), Λ(x) = (ε, 〈〉) if x
= u with n = |�x|, π = id

if α = u�x then Λ(u) = (outn,�x), Λ(x) = (ε, 〈〉) if x
= u and n = |�x|, π = id

if α = φ then Λ = Λε and π is any substitutive effect of φ.

We will write �u�x� and �u�x� as (u, inn,�x) and (u, outn,�x) respectively.

Definition 15 (Process productions)

We have a process production for each prefix at the top level of a linear standard

sequential process (which has {x1, . . . , xn} as free names). Let
∑

i αi.Pi be such a

process. Its productions can be derived with the following inference rule:

�Pjξ��v,�w = Γ � G �αj� = (Λ, π)

x1, . . . , xn � L∑
i αi.Pi

(x1, . . . , xn)
�αj�−−→ Γ,Γ′ � G|�ξ�|�π�|

[]
x∈Γ′′

n(x)

if�v∪�w, {x1, . . . , xn} and fn(Pj)ξ are pairwise disjoint with ξ injective renaming from

fn(Pj) to fresh names, Γ′ = x1, . . . , xn and Γ′′ = Γ′ \ (n(Λ) ∪ n(π) ∪ fn(Pj)).

We add some explanations on the derivable productions. Essentially, if αj .Pj is a

possible choice, the edge labelled by the process can have a transition labelled by

�αj� to something related to �Pj��v,�w . We use Pjξ instead of Pj (and then we add the

translation of ξ) to preserve the parity of the number of amoeboid edges on each

path (see Definition 17). The parameter�v of the translation contains fresh nodes for

restricted names that are taken to the top level during the normalization of Pj while

�w contains the free names in the normalization of Pj (note that some of them may

be duplicated w.r.t. Pj , if this one contains recursion). If αj is a fusion φ, according

to the semantics of the calculus, a substitutive effect π of it should be applied to Pj ,

and this is obtained by adding the amoeboids �π� in parallel. Furthermore, Γ � G

must be enriched in other two ways: since nodes can never be erased, nodes which

are present in the sequential process, i.e. the nodes in Γ′, must be added to Γ. Also

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 137

“close” n edges must be associated to forgotten nodes (to forbid further transitions

on them and to have them connected to exactly two edges in the result of the

transition), provided they are not exposed, i.e. to nodes in Γ′′.

Note that when translating the RHS (�x)Pσ of productions we may have names

in Pσ which occur just once. Since they are renamed by σ and ξ, they will produce

in the translation some chains of m2 connectors of even length, which, as we will see

shortly, are behaviourally equivalent to simple nodes. For simplicity, in the examples

we will use the equivalent productions where these connectors have been removed

and the nodes connected by them have been merged.

Example 4 (Translation of a production)

Let us consider firstly the simple agent x1x2.0. The only production for this agent

(where�v = �w = 〈〉) is:

x1, x2 � Lx1x2 .0(x1, x2)
(x1 ,out1 ,〈x2〉)−−−−−−−→ x1, x2 � n(x1)

where we closed node x1 but not node x2 since the second one is exposed on x1.

Let us consider a more complex example:

x1x2.(x3x4.0| recX.(x)x5x.(x6x.0|X)).

The process x3x4.0| recX.(x)x5x.(x6x.0|X)ξ where xiξ = x′i can be transformed into:

(y)y1y2.0|y3y4.(y5y6.0| recX.((x)y7x.(y8x.0|X)))σ

where σ = {x′3/y1, x
′
4/y2, x

′
5/y3, y/y4, x

′
6/y5, y/y6, x

′
5/y7, x

′
6/y8}.

Its translation (with�v = 〈y〉 and �w = 〈y1, y2, y3, y4, y5, y6, y7, y8〉) is:

x′3, x
′
4, x
′
5, x
′
6, y1, y2, y3, y4, y5, y6, y7, y8, y �

Lx1x2 .0(y1, y2)|Lx1x2 .(x3x4 .0| recX.((x)x5x.(x6x.0|X)))(y3, y4, y5, y6, y7, y8)|
m2(x

′
3, y1)|m2(x

′
4, y2)|m3(x

′
5, y3, y7)|m3(x

′
6, y5, y8)|m3(y, y4, y6)|n(y)

Thus the production is:

x1, x2, x3, x4, x5, x6 � Lx1x2 .(x3x4 .0| recX.(x)x5x.(x6x.0|X))(x1, x2, x3, x4, x5, x6)

(x1 ,in1 ,〈x2〉)−−−−−−→
x1, x2, x3, x4, x5, x6, y3, y4, y5, y6, y7, y8, y, x

′
5, x
′
6 �

Lx1x2 .0(x3, x4)|Lx1x2 .(x3x4 .0| recX.((x)x5x.(x6x.0|X)))(y3, y4, y5, y6, y7, y8)|
m3(x

′
5, y3, y7)|m3(x

′
6, y5, y8)|m3(y, y4, y6)|n(y)|m2(x5, x

′
5)|m2(x6, x

′
6)|n(x1)

where for simplicity we collapsed y1 with x3 and y2 with x4.

We will now show the productions for amoeboids.

Definition 16 (Auxiliary productions)

We have auxiliary productions of the form:

Γ � mk(Γ)
(x1 ,inn,�y1),(x2 ,outn,�y2)−−−−−−−−−−−→ Γ,�y1,�y2 � mk(Γ)|

[]
i=1...|�y1| m2(�y1[i],�y2[i])

We need such a production for each k and n and each pair of nodes x1 and x2 in Γ

where Γ is a chosen tuple of distinct names with k components and �y1 and �y2 are

two vectors of fresh names such that |�y1| = |�y2| = n.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

138 I. Lanese and U. Montanari

Note that we also have the analogous production where x1 and x2 are swapped.

In particular, the set of productions for a mk edge is invariant w.r.t. permutations of

the tentacles, modelling the fact that its tentacles are essentially unordered. We have

no productions for edges labelled with n, which thus forbid any synchronization.

The notion of amoeboid introduced previously is not sufficient for our purposes.

In fact, existing amoeboids can be connected using m2 edges and nodes that are no

more used can be closed using n edges. Thus we present a more general definition

of amoeboid for a set of nodes and we show that, in the situations of interest, these

amoeboids behave exactly as the simpler mi edges.

Definition 17 (Structured amoeboid)

Given a vector of nodes �s, a structured amoeboid M(�s) for the set of nodes S

containing all the nodes in �s is any connected graph composed by m and n edges

that satisfies the following properties:

• its set of nodes is of the form S ∪ I , with S ∩ I = ∅;
• nodes in S are connected to exactly one edge of the amoeboid;

• nodes in I are connected to exactly two edges of the amoeboid;

• the number of edges composing each path connecting two distinct nodes of S

is odd.

Nodes in S are called external, nodes in I are called internal. We consider equivalent

all the amoeboids with the same set S of external nodes. The last condition is

required since each connector inverts the polarity of the synchronization, and we

want amoeboids to invert it. Note that m|S |(�s) is an amoeboid for S .

Lemma 2

If M(�s) is a structured amoeboid for S, the transitions for M(�s) which are non idle

and expose non ε actions on at most two nodes x1, x2 ∈ S are of the form:

S, I �M(�s)
Λ,id
−−→ S, I, I ′,�y1,�y2 �M(�s)|

[]
i=1...|�y1|M(�y1[i],�y2[i])|

[]
M̃(∅)

where Λ(x1) = (inn,�y1) and Λ(x2) = (outn,�y2) (non trivial actions may be exposed

also on some internal nodes) and �y1 and �y2 are two vectors of fresh names such

that |�y1| = |�y2| = n. Here M̃(∅) contains rings of m2 connectors connected only to

fresh nodes which thus are disconnected from the rest of the graph. We call them

pseudoamoeboids. Furthermore we have at least one transition of this kind for each

choice of x1, x2, �y1 and �y2.

Thanks to the above result we will refer to structured amoeboids simply as

amoeboids.

We can now present the results on the correctness and completeness of our

translation.

Theorem 1 (Correctness)

For each closed fusion process P and each pair of vectors �v and �w satisfying the

constraints of Definition 13, if P → P ′ then there exist Λ, Γ and G such that

�P ��v,�w
Λ,id
−−→ Γ � G. Furthermore Γ � G is equal to �P ′��v′ ,�w′ (for some �v′ and �w′)

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 139

up to isolated nodes, up to injective renamings, up to equivalence of amoeboids

(Γ � G can have a structured amoeboid where �P ′��v′ ,�w′ has a simple one) and up to

pseudoamoeboids.

Proof

The proof is by rule induction on the reduction semantics.

Theorem 2 (Completeness)

For each closed fusion process P and each pair of vectors�v and �w if �P ��v,�w
Λ,π
−→ Γ � G

with a HSHR transition that uses exactly two productions for communication or

one production for a fusion action (plus any number of auxiliary productions) then

P → P ′ and Γ � G is equal to �P ′��v′ ,�w′ (for some �v′ and �w′) up to isolate nodes, up

to injective renamings, up to equivalence of amoeboids (Γ � G can have a structured

amoeboid where �P ′��v′ ,�w′ has a simple one) and up to pseudoamoeboids.

These two theorems prove that the allowed transitions in the HSHR setting

correspond to reductions in the Fusion Calculus setting. Note that in HSHR we must

consider only transitions where we have either two productions for communication

or one production for a fusion action. This is necessary to model the interleaving

behaviour of Fusion Calculus within the HSHR formalism, which is concurrent. On

the contrary, one can consider the fusion equivalent of all the HSHR transitions:

these correspond to concurrent executions of many fusion reductions. One can give a

semantics for Fusion Calculus with that behaviour. Anyway in that case the notion

of equivalence of amoeboids is no more valid, since different amoeboids allow

different degrees of concurrency. We thus need to constrain them. The simplest case

is to have only simple amoeboids, that is to have no concurrency inside a single

channel, but there is no way to force normalization of amoeboids to happen before

undesired transitions can occur. The opposite case (all the processes can interact

in pairs, also on the same channel) can be realized, but it requires more complex

auxiliary productions.

Note that the differences between the final graph of a transition and the translation

of the final process of a Fusion Calculus reduction are not important, since the two

graphs have essentially the same behaviours (see Lemma 1 for the effect of an

injective renaming and Lemma 2 for the characterization of the behaviour of a

complex amoeboid; isolated nodes and pseudoamoeboids are not relevant since

different connected components evolve independently). Thus the previous results

can be extended from transitions to whole computations.

Note that in the HSHR model the behavioural part of the system is represented

by productions while the topological part is represented by graphs. Thus we have a

convenient separation between the two different aspects.

Example 5 (Translation of a transition)

We will now show an example of the translation. Let us consider the process:

(uxyzw)(Q(x, y, z)|uxy.R(u, x)|uzw.S(z, w))

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

140 I. Lanese and U. Montanari

x x x .S(x ,x)

m4 m4

m3

m4

m3

n

n
x

n

n

n

Q(x ,x ,x)L
1 2 3

x x x .R(x ,x)1 2 3 4 5

x 1 z z1

x

L

1 2 3 4 5
L

2 x 3
y 1

z 2

z 3

u 2
u 1

u

u

3

w2w

w

1

y

y

2

1 3

2

2 5

3

1 4

1

2

4

53

Fig. 5. (uxyzw)(Q(x, y, z)|uxy.R(u, x)|uzw.S (z, w)).

Note that it is already in the form (�x)P . It can do the following transition:

(uxyzw)(Q(x, y, z)|uxy.R(u, x)|uzw.S(z, w))→
(uxy)(Q(x, y, z)|R(u, x)|S(z, w)){x/z, y/w}

We can write P in the form:

(Q(x1, y1, z1)|u1x2y2.R(u2, x3)|u3z2w1.S(z3, w2))σ

where:

σ = {x/x1, y/y1, z/z1, u/u1, x/x2, y/y2, u/u2, x/x3, u/u3, z/z2, w/w1, z/z3, w/w2}.

A translation of the starting process is:

u, x, y, w, z, x1, y1, z1, u1, x2, y2, u2, x3, u3, z2, w1, z3, w2 �
LQ(x1 ,x2 ,x3)(x1, y1, z1)|Lx1x2x3 .R(x4 ,x5)(u1, x2, y2, u2, x3)|

Lx1x2x3 .S (x4 ,x5)(u3, z2, w1, z3, w2)|m4(u, u1, u2, u3)|m4(x, x1, x2, x3)|
m3(y, y1, y2)|m4(z, z1, z2, z3)|m3(w,w1, w2)|n(u)|n(x)|n(y)|n(w)|n(z)

A graphical representation is in Figure 5.

We have the following process productions:

y1, y2, y3, y4, y5 � Lx1x2x3 .R(x4 ,x5)(y1, y2, y3, y4, y5)
(y1 ,out2 ,〈y2 ,y3〉)−−−−−−−−→

y1, y2, y3, y4, y5 � LR(x1 ,x2)(y4, y5)|n(y1)

y1, y2, y3, y4, y5 � Lx1x2x3 .S (x4 ,x5)(y1, y2, y3, y4, y5)
(y1 ,in2 ,〈y2 ,y3〉)−−−−−−−→

y1, y2, y3, y4, y5 � LS (x1 ,x2)(y4, y5)|n(y1)

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 141

Fig. 6. Graph with actions.

To apply (suitable variants of) these two productions concurrently we have to

synchronize their actions. This can be done since in the actual transition actions are

exposed on nodes u1 and u3 respectively, which are connected to the same m4 edge.

Thus the synchronization can be performed (see Figure 6) and we obtain as final

graph:

u, x, y, w, z, x1, y1, z1, u1, x2, y2, u2, x3, u3, z2, w1, z3, w2 �
LQ(x1 ,x2 ,x3)(x1, y1, z1)|LR(x1 ,x2)(u2, x3)|n(u1)|LS (x1 ,x2)(z3, w2)|n(u3)|

m4(u, u1, u2, u3)|m4(x, x1, x2, x3)|m3(y, y1, y2)|m4(z, z1, z2, z3)|m3(w,w1, w2)|
m2(x2, z2)|m2(y2, w1)|n(u)|n(x)|n(y)|n(w)|n(z)

which is represented in Figure 7. The amoeboids connect the following tuples of

nodes: (u, u1, u2, u3), (x, x1, x2, x3, z2, z, z1, z3), (w,w1, w2, y2, y, y1). Thus, if we connect

these sets of nodes with simple amoeboids instead of with complex ones, we have

up to injective renamings a translation of (uxy)Q(x, y, x)|R(u, x)|S(x, y) as required.

Example 6 (Translation of a transition with recursion)

We will show here an example that uses recursion. Let us consider the closed process

(uz)uz| recX.(x)ux.(ux.0|X). The translation of this process, as shown in Example 3

is:

u, z, y, u1, z1, u2, y1, u3, y2, u4, u5 �
Lx1x2 .0(u1, z1)|Lx1x2 .(x3x4 .0| recX.(x)x5x.(x6x.0|X))(u2, y1, u3, y2, u4, u5)|

m6(u, u1, u2, u3, u4, u5)|m2(z, z1)|m3(y, y1, y2)|n(u)|n(z)|n(y)

We need the productions for two sequential edges (for the first step): x1x2.0 and

x1x2.(x3x4.0| recX.(x)x5x.(ux6.0|X)).

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

142 I. Lanese and U. Montanari

m4 m4

m3

n n

m2

n

m2 m3 nm4

n

u

n n

Q(x ,x ,x)1 2 3

R(x ,x)1 2

x 2 z 2

xx L

L
S(x ,x)1 2

L

1 z 1
1

x 3

2

2
1

1

3

y

y

1
z

z

3

u 2 y 2 w2

u 1 u 3 w w1

Fig. 7. Resulting graph.

The productions are the ones of Example 4 (we write them here in a suitable

α-converted form):

u1, z1 � Lx1x2 .0(u1, z1)
(u1 ,out1 ,〈z1〉)−−−−−−→ u1, z1 � n(u1)

u2, y1, u3, y2, u4, u5 � Lx1x2 .(x3x4 .0| recX.(x)x5x.(x6x.0|X))(u2, y1, u3, y2, u4, u5)

u2 ,in1 ,〈y1〉−−−−−→
u2, y1, u3, y2, u4, u5, w1, w2, w3, w4, w5, w6, y

′, u′4, u
′
5 �

Lx1x2 .0(u3, y2)|Lx1x2 .(x3x4 .0| recX.((x)x5x.(x6x.0|X)))(w1, w2, w3, w4, w5, w6)|
m3(u

′
4, w1, w5)|m3(u

′
5, w3, w6)|m3(y

′, w2, w4)|n(y′)|m2(u4, u
′
4)|m2(u5, u

′
5)|n(u2)

By using these two productions and a production for m6 (the other edges stay idle)

we have the following transition:

u, z, y, u1, z1, u2, y1, u3, y2, u4, u5 �
Lx1x2 .0(u1, z1)|Lx1x2 .(x3x4 .0| recX.(x)x5x.(x6x.0|X))(u2, y1, u3, y2, u4, u5)|
m6(u, u1, u2, u3, u4, u5)|m2(z, z1)|m3(y, y1, y2)|n(u)|n(z)|n(y)

(u1 ,out1 ,〈z1〉)(u2 ,in1 ,〈y1〉)−−−−−−−−−−−−−→
u, y, z, x, u1, z1, u2, y1, u3, y2, u4, u5, w1, w2, w3, w4, w5, w6, y

′, u′4, u
′
5 �

n(u1)|Lx1x2 .0(u3, y2)|Lx1x2 .(x3x4 .0| recX.((x)x5x.(x6x.0|X)))(w1, w2, w3, w4, w5, w6)|
m3(u

′
4, w1, w5)|m3(u

′
5, w3, w6)|m3(y

′, w2, w4)|n(y′)|m2(u4, u
′
4)|m2(u5, u

′
5)|n(u2)|

m6(u, u1, u2, u3, u4, u5)|m2(z1, y1)|m2(z, z1)|m3(y, y1, y2)|n(u)|n(z)|n(y)

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 143

Table 1

Fusion HSHR Fusion HSHR

Closed process Graph Reduction Transition

Sequential process Edge Name Amoeboid

Prefix execution Production 0 Nil

The resulting graph is, up to injective renaming and equivalence of amoeboids, a

translation of: (uyy′)(uy.0|uy′.(uy′.0| recX.(x)ux.(ux.0|X))) as required.

We end this section with a simple schema on the correspondence between the two

models (Table 1).

As shown in Table 1, we represent (closed) processes by graphs where edges are

sequential processes and amoeboids model names. The inactive process 0 is the

empty graph nil. From a dynamic point of view, Fusion reductions are modelled by

HSHR transitions obtained composing productions that represent prefix executions.

4 Mapping Hoare SHR into logic programming

We will now present a mapping from HSHR into a subset of logic programming

called Synchronized Logic Programming (SLP). The idea is to compose this mapping

with the previous one obtaining a mapping from Fusion Calculus into logic

programming.

4.1 Synchronized Logic Programming

In this subsection we present Synchronized Logic Programming. SLP has been

introduced because logic programming allows for many execution strategies and for

complex interactions. Essentially SLP is obtained from standard logic programming

by adding a mechanism of transactions. The approach is similar to the zero-safe

nets approach (Bruni and Montanari 2000) for Petri nets. In particular we consider

that function symbols are resources that can be used only inside a transaction. A

transaction can thus end only when the goal contains just predicates and variables.

During a transaction, which is called big-step in this setting, each atom can be

rewritten at most once. If a transaction can not be terminated, then the computation

is not allowed. A computation is thus a sequence of big-steps.

This synchronized flavour of logic programming corresponds to HSHR since:

• used goals correspond to graphs (goal-graphs);

• clauses in programs correspond to HSHR productions (synchronized clauses);

• resulting computations model HSHR computations (synchronized computa-

tions).

Definition 18 (Goal-graph)

We call goal-graph a goal which has no function symbols (constants are considered

as functions of arity 0).

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

144 I. Lanese and U. Montanari

Definition 19 (Synchronized program)

A synchronized program is a finite set of synchronized rules, i.e. definite program

clauses such that:

• the body of each rule is a goal-graph;

• the head of each rule is A(t1, . . . , tn) where ti is either a variable or a single

function (of arity at least 1) symbol applied to variables. If it is a variable

then it also appears in the body of the clause.

Example 7

q(f(x), y)← p(x, y) synchronized rule;

q(f(x), y)← p(x, f(y)) not synchronized since p(x, f(y)) is not a goal-graph;

q(g(f(x)), y)← p(x, y) not synchronized since it contains nested functions;

q(f(x), y, f(z))← p(x) not synchronized since y is an argument of the head

predicate but it does not appear in the body;
q(f(x), f(z))← p(x) synchronized, even if z does not appear in the body.

In the mapping, the transaction mechanism is used to model the synchronization

of HSHR, where edges can be rewritten only if the synchronization constraints are

satisfied. In particular, a clause A(t1, . . . , tn)← B1, . . . , Bn will represent a production

where the head predicate A is the label of the edge in the left hand side, and the

body B1, . . . , Bn is the graph in the right hand side. Term ti in the head represents

the action occurring in xi, if A(x1, . . . , xn) is the edge matched by the production.

Intuitively, the first condition of Definition 19 says that the result of a local rewriting

must be a goal-graph. The second condition forbids synchronizations with structured

actions, which are not allowed in HSHR (this would correspond to allow an action

in a production to synchronize with a sequence of actions from a computation of

an adjacent subgraph). Furthermore it imposes that we cannot disconnect from a

node without synchronizing on it.3

Now we will define the subset of computations we are interested in.

Definition 20 (Synchronized Logic Programming)

Given a synchronized program P we write:

G1
θ⇒ G2

iff G1
θ′−→* G2 and all steps performed in the computation expand different atoms

of G1, θ
′|n(G1) = θ and both G1 and G2 are goal-graphs. We call G1

θ⇒ G2 a big-step

and all the → steps in a big-step small-steps. A SLP computation is: G1 ⇒∗ G2 i.e.

a sequence of 0 or more big-steps.

3 This condition has only the technical meaning of making impossible some rewritings in which an
incorrect transition may not be forbidden because its only effect is on the discarded variable. Luckily, we
can impose this condition without altering the power of the formalism, because we can always perform
a special foo action on the node we disconnect from and make sure that all the other edges can freely
do the same action. For example we can rewrite q(f(x), y, f(z)) ← p(x) as q(f(x), foo(y), f(z)) ← p(x),
which is an allowed synchronized rule. An explicit translation of action ε can be used too.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 145

4.2 The mapping

We want to use SLP to model HSHR systems. As a first step we need to translate

graphs, i.e. syntactic judgements, to goals. In this translation, edge labels are mapped

into SLP predicates. Goals corresponding to graphs will have no function symbols.

However function symbols will be used to represent actions. In the translation we

will lose the context Γ.

Definition 21 (Translation for syntactic judgements)

We define the translation operator �−� as:

�Γ � L(x1, . . . , xn)� = L(x1, . . . , xn)

�Γ � G1|G2� = �Γ � G1�, �Γ � G2�

�Γ � nil� = �

Sometimes we will omit the Γ part of the syntactic judgement. We can do this

because it does not influence the translation. For simplicity, we suppose that the set

of nodes in the SHR model coincides with the set of variables in SLP (otherwise we

need a bijective translation function). We do the same for edge labels and names of

predicates, and for actions and function symbols.

Definition 22

Let Γ � G and Γ′ � G′ be graphs. We define the equivalence relation ∼= in the

following way: Γ � G ∼= Γ′ � G′ iff G ≡ G′.

Observe that if two judgements are equivalent then they can be written as:

Γ,Γunused � G

Γ,Γ′unused � G

where Γ = n(G).

Theorem 3 (Correspondence of judgements and goal-graphs)

The operator �−� defines an isomorphism between judgements (defined up to ∼=)

and goal-graphs.

Proof

The proof is straightforward observing that the operator �−� defines a bijection

between representatives of syntactic judgements and representatives of goal-graphs

and the congruence on the two structures is essentially the same. �

We now define the translation from HSHR productions to definite clauses.

Definition 23 (Translation from productions to clauses)

We define the translation operator �−� as:

�L(x1, . . . , xn)
Λ,π
−→ G� = L(a1(x1π,�y1), . . . , an(xnπ,�yn))← �G�

if Λ(xi) = (ai,�yi) for each i ∈ {1, . . . , n} and if ai
= ε. If ai = ε we write simply xiπ

instead of ε(xiπ).

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

146 I. Lanese and U. Montanari

The idea of the translation is that the condition given by an action (x, a,�y) is

represented by using the term a(xπ,�y) as argument in the position that corresponds

to x. Notice that in this term a is a function symbol and π is a substitution. During

unification, x will be bound to that term and, when other instances of x are met, the

corresponding term must contain the same function symbol (as required by Hoare

synchronization) in order to be unifiable. Furthermore the corresponding tuples of

transmitted nodes are unified. Since x will disappear we need another variable to

represent the node that corresponds to x. We use the first argument of a to this

purpose. If two nodes are merged by π then their successors are the same as required.

Observe that we do not need to translate all the possible variants of the rules since

variants with fresh variables are automatically built when the clauses are applied.

Notice also that the clauses we obtain are synchronized clauses.

The observable substitution contains information on Λ and π. Thus given a

transition we can associate to it a substitution θ. We have different choices for

θ according to where we map variables. In fact in HSHR nodes are mapped to

their representatives according to π, while, in SLP, θ cannot do the same, since the

variables of the clause variant must be all fresh. The possible choices of fresh names

for the variables change by an injective renaming the result of the big-step.

Definition 24 (Substitution associated to a transition)

Let Γ � G
Λ,π
−→ Φ � G′ be a transition. We say that the substitution θρ associated to

this transition is:

θρ = {(a(xπρ,�yρ)/x|Λ(x) = (a,�y), a
= ε} ∪ {xπρ/x}|Λ(x) = (ε, 〈〉)} for some injective

renaming ρ.

We will now prove the correctness and the completeness of our translation.

Theorem 4 (Correctness)

Let P be a set of productions of a HSHR system as defined in definitions 9 and 10.

Let P be the logic program obtained by translating the productions in P according

to Definition 23. If: P � (Γ � G
Λ,π
−→ Φ � G′)

then we can have in P a big-step of Synchronized Logic Programming:

�Γ � G�
θρ⇒ T

for every ρ such that xρ is a fresh variable unless possibly when x ∈ Γ∧Λ(x) = (ε, 〈〉).
In that case we may have xρ = x. Furthermore θρ is associated to Γ � G

Λ,π
−→ Φ � G′

and T = �Φ � G′�ρ. Finally, used productions translate into the clauses used in the

big-step and are applied to the edges that translate into the predicates rewritten by

them.

Proof

The proof is by rule induction.

Theorem 5 (Completeness)

Let P be a set of productions of a HSHR system. Let P be the logic program

obtained by translating the productions in P according to Definition 23. If we have

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 147

in P a big-step of logic programming:

�Γ � G�
θ⇒ T

then there exist ρ, θ′, Λ, π, Φ and G′ such that θ = θ′ρ is associated to Γ � G
Λ,π
−→

Φ � G′. Furthermore T = �Φ � G′�ρ and P � (Γ � G
Λ,π
−→ Φ � G′).

Example 8

We continue here Example 5 by showing how that fusion computation can be

translated into a Synchronized Logic Programming computation.

(uxyzw)(Q(x, y, z)|uxy.R(u, x)|uzw.S(z, w))→
(uxy)(Q(x, y, z)|R(u, x)|S(z, w)){x/z, y/w}

Remember that a translation of the starting process is:

u, x, y, w, z, x1, y1, z1, u1, x2, y2, u2, x3, u3, z2, w1, z3, w2 �
LQ(x1 ,x2 ,x3)(x1, y1, z1)|Lx1x2x3 .R(x4 ,x5)(u1, x2, y2, u2, x3)|

Lx1x2x3 .S (x4 ,x5)(u3, z2, w1, z3, w2)|m4(u, u1, u2, u3)|m4(x, x1, x2, x3)|
m3(y, y1, y2)|m4(z, z1, z2, z3)|m3(w,w1, w2)|n(u)|n(x)|n(y)|n(w)|n(z)

We have the following productions:

y1, y2, y3, y4, y5 � Lx1x2x3 .R(x4 ,x5)(y1, y2, y3, y4, y5)
(y1 ,out2 ,〈y2 ,y3〉)−−−−−−−−→

y1, y2, y3, y4, y5 � LR(x1 ,x2)(y4, y5)|n(y1)

y1, y2, y3, y4, y5 � Lx1x2x3 .S (x4 ,x5)(y1, y2, y3, y4, y5)
(y1 ,in2 ,〈y2 ,y3〉)−−−−−−−→

y1, y2, y3, y4, y5 � LS (x1 ,x2)(y4, y5)|n(y1)

that corresponds to the clauses (we directly write suitably renamed variants):

Lx1x2x3 .R(x4 ,x5)(out2(u
′
1, x
′
2, y
′
2), x

′
2, y
′
2, u
′
2, x
′
3)← LR(x1 ,x2)(u

′
2, x
′
3)|n(u′1)

Lx1x2x3 .S (x4 ,x5)(in2(u
′′′
3 , z

′′′
2 , w

′′′
1), z′′′2 , w

′′′
1 , z

′′′
3 , w

′′′
2)← LS (x1 ,x2)(z

′′′
3 , w

′′′
2)|n(u′′′3)

plus the clause obtained from the auxiliary production:

m4(u
′′, out2(u

′′
1 , x
′′
2 , y
′′
2), u

′′
2 , in2(u

′′
3 , z
′′
2 , w

′′
1)) ← m4(u

′′, u′′1 , u
′′
2 , u
′′
3), m2(x

′′
2 , z
′′
2), m2(y

′′
2 , w

′′
1)

We obtain the big-step represented in Figure 8. The observable substitution of the

big-step is {out2(u′1, x2, y2)/u1, in2(u
′′
3 , z2, w1)/u3}. This is associated to the wanted

HSHR transition with ρ = {u′1/u1, u
′′
3/u3} and by applying ρ to the final graph of

the HSHR transition we obtain:

LQ(x1 ,x2 ,x3)(x1, y1, z1)|LR(x1 ,x2)(u2, x3)|n(u′1)|LS (x1 ,x2)(z3, w2)|n(u′′3)|
m4(u, u

′
1, u2, u

′′
3)|m4(x, x1, x2, x3)|m3(y, y1, y2)|m4(z, z1, z2, z3)|m3(w,w1, w2)|

m2(x2, z2)|m2(y2, w1)|n(u)|n(x)|n(y)|n(w)|n(z)

that, translated, becomes the final goal of the big-step as required.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

148 I. Lanese and U. Montanari

LQ(x1 ,x2 ,x3)(x1, y1, z1), Lx1x2x3 .R(x4 ,x5)(u1, x2, y2, u2, x3),

Lx1x2x3 .S(x4 ,x5)(u3, z2, w1, z3, w2),

m4(u, u1, u2, u3), m4(x, x1, x2, x3), m3(y, y1, y2), m4(z, z1, z2, z3), m3(w,w1, w2),

n(u), n(x), n(y), n(w), n(z)

out2(u′1 ,x2 ,y2)/u1 ,x2/x
′
2 ,y2/y

′
2 ,u2/u

′
2 ,x3/x

′
3−−−−−−−−−−−−−−−−−−−−−−→

LQ(x1 ,x2 ,x3)(x1, y1, z1), LR(x1 ,x2)(u2, x3), n(u
′
1), Lx1x2x3 .S(x4 ,x5)(u3, z2, w1, z3, w2),

m4(u, out2(u
′
1, x2, y2), u2, u3), m4(x, x1, x2, x3), m3(y, y1, y2),

m4(z, z1, z2, z3), m3(w,w1, w2), n(u), n(x), n(y), n(w), n(z)

u/u′′ ,u′1/u
′′
1 ,x2/x

′′
2 ,y2/y

′′
2 ,u2/u

′′
2 ,in2(u′′3 ,z

′′
2 ,w
′′
1)/u3−−−−−−−−−−−−−−−−−−−−−−−−→

LQ(x1 ,x2 ,x3)(x1, y1, z1), LR(x1 ,x2)(u2, x3), n(u
′
1),

Lx1x2x3 .S(x4 ,x5)(in2(u
′′
3 , z
′′
2 , w

′′
1), z2, w1, z3, w2),

m4(u, u
′
1, u2, u

′′
3), m2(x2, z

′′
2), m2(y2, w

′′
1), m4(x, x1, x2, x3), m3(y, y1, y2),

m4(z, z1, z2, z3), m3(w,w1, w2), n(u), n(x), n(y), n(w), n(z)

u′′3/u
′′′
3 ,z2/z

′′
2 ,w1/w

′′
1 ,z2/z

′′′
2 ,w1/w

′′′
1 ,z3/z

′′′
3 ,w2/w

′′′
2−−−−−−−−−−−−−−−−−−−−−−−−−→

LQ(x1 ,x2 ,x3)(x1, y1, z1), LR(x1 ,x2)(u2, x3), n(u
′
1), LS(x1 ,x2)(z3, w2), n(u

′′
3),

m4(u, u
′
1, u2, u

′′
3), m2(x2, z2), m2(y2, w1), m4(x, x1, x2, x3), m3(y, y1, y2),

m4(z, z1, z2, z3), m3(w,w1, w2), n(u), n(x), n(y), n(w), n(z)

Fig. 8. Big-step for a Fusion transition.

Table 2

HSHR SLP HSHR SLP

Graph Goal Transition Big-step

Edge Atomic goal Node Variable

Parallel comp. And comp. Nil �
Production Clause Action Function s.

We end this section with a simple schema on the correspondence between the two

models (Table 2).

Essentially the correspondence is given by the homomorphism between graphs and

goals, with edges mapped to atomic goals, nodes to variables, parallel composition

to And composition and nil to �. Dynamically, HSHR transitions are modelled by

big-steps, that are transactional applications of clauses which model productions.

Finally, HSHR actions are modelled by function symbols.

4.3 Using Prolog to implement Fusion Calculus

The theorems seen in the previous sections can be used for implementation purposes.

As far as Synchronized Logic Programming is concerned, elsewhere (Lanese 2002)

a simple meta-interpreter is presented.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 149

The idea is to use Prolog ability of dynamically changing the clause database to

insert into it a set of clauses and a goal and to compute the possible synchron-

ized computations of given length. This can be directly used to simulate HSHR

transitions. In order to simulate Fusion Calculus processes we have to implement

amoeboids using a bounded number of different connectors (note that m2, m3 and

n are enough) and to implement in the meta-interpreter the condition under which

productions can be applied in a single big-step. This can be easily done. Furthermore

this decreases the possible choices of applicable productions and thus improves the

efficiency w.r.t. the general case.

5 Conclusion

In this paper we have analyzed the relationships between three different formalisms,

namely Fusion Calculus, HSHR and logic programming.

The correspondence between HSHR and the chosen transactional version of logic

programming, SLP, is complete and quite natural. Thus we can consider HSHR as

a “subcalculus” of (synchronized) logic programming.

The mapping between Fusion Calculus and HSHR is instead more involved

because it has to deal with many important differences:

• process calculi features vs graph transformation features;

• interleaving models vs concurrent models;

• Milner synchronization vs Hoare synchronization.

Hoare synchronization was necessary since our aim was to eventually map Fusion

Calculus to logic programming. If the aim is just to compare Fusion Calculus and

SHR it is possible to use SHR with Milner synchronization, achieving a much

simpler and complete mapping, which considers the LTS of Fusion Calculus instead

of reductions (see Lanese and Montanari 2004a).

We think that the present work can suggest several interesting lines of devel-

opment, dictated by the comparison of the three formalisms studied in the paper.

First, our implementation of routers in terms of amoeboids is rather general and

abstract, and shows that Fusion Calculus names are a rather high level concept. They

abstract out the behaviour of an underlying network of connections which must

be open and reconfigurable. Had we chosen π-calculus instead (see a translation of

π-calculus to Milner SHR in Hirsch and Montanari 2001), we would have noticed

important differences. For instance, fusions are also considered in the semantics of

open π-calculus by Sangiorgi (Sangiorgi 1993), but in that work not all the names

can be fused: newly extruded names cannot be merged with previously generated

names. This is essential for specifying nonces and session keys for secure protocols.

Instead, Fusion Calculus does not provide equivalent constructs. Looking at our

translation, we can conclude that logic programming does not offer this feature,

either. Thus logic programming is a suitable counterpart of Fusion Calculus, but it

should be properly extended for matching open π-calculus and security applications.

In a similar line of thought, we observe that we have a scope restriction operator

in the Fusion Calculus, but no restriction is found in our version of HSHR. We think

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

150 I. Lanese and U. Montanari

this omission simplifies our development, since no restriction exists in ordinary logic

programming, either. However versions of SHR with restriction have been con-

sidered (Hirsch and Montanari 2001; Ferrari et al. 2001; Lanese 2002). Also (syn-

chronized) logic programming can be smoothly extended with a restriction operator

(Lanese 2002). More importantly, Fusion Calculus is equipped with an observational

abstract semantics based on (hyper) bisimulation. We did not consider a similar

concept for SHR or logic programming, since we considered it outside the scope of

the paper. Furthermore our operational correspondence between HSHR and SLP is

very strong and it should respect any reasonable abstract semantics. The mapping

from Fusion Calculus into HSHR deals only with closed terms, thus no observations

can be considered. However a bisimulation semantics of SHR has been considered in

(König and Montanari 2001), and an observational semantics of logic programming

is discussed elsewhere (Bruni et al. 2001).

Another comment concerns concurrency. To prove the equivalence of Fusion Cal-

culus and of its translation into HSHR we had to restrict the possible computations

of the latter. On the contrary, if all computations were allowed, the same translation

would yield a concurrent semantics of Fusion Calculus, that we think is worth

studying. For instance in the presence of concurrent computations not all equivalent

amoeboids would have the same behaviour, since some of them would allow for

more parallelism than others.

Finally we would like to emphasize some practical implication of our work. In fact,

logic programming is not only a model of computation, but also a well developed

programming paradigm. Following the lines of our translation, implementations of

languages based on Fusion Calculus and HSHR could be designed, allowing to

exploit existing ideas, algorithms and tools developed for logic programming.

References

Bruni, R. and Montanari, U. 2000. Zero-safe nets: Comparing the collective and individual

token approaches. Information and Computation 156, 1–2, 46–89.

Bruni, R., Montanari, U., and Rossi, F. 2001. An interactive semantics of logic programming.

Theory and Practice of Logic Programming 1, 6, 647–690.

Degano, P. and Montanari, U. 1987. A model for distributed systems based on graph

rewriting. Journal of the ACM (JACM) 34, 2, 411–449.

Ehrig, H., Kreowski, H.-J., Montanari, U., and Rozenberg, G., Eds. 1999. Handbook of

Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency, Parallelism,

and Distribution. World Scientific.

Ehrig, H., Pfender, M., and Schneider, H. J. 1973. Graph grammars: an algebraic approach.

In Proc. of IEEE Conference on Automata and Switching Theory. IEEE Computer Society,

167–180.

Ferrari, G. L., Montanari, U., and Tuosto, E. 2001. A LTS semantics of ambients via graph

synchronization with mobility. In Proc. of ICTCS’01. LNCS, vol. 2202. Springer, 1–16.

Gardner, P. and Wischik, L. 2000. Explicit fusions. In Mathematical Foundations of Computer

Science. 373–382.

Gardner, P. and Wischik, L. 2004. Strong bisimulation for the explicit fusion calculus. In

Proc. of FoSSaCS’04. LNCS, vol. 2987. Springer, 484–498.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

Mapping Fusion and SHR into logic programming 151

Hirsch, D. 2003. Graph transformation models for software architecture styles. Ph.D. thesis,

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de

Buenos Aires, Argentina.

Hirsch, D., Inverardi, P., and Montanari, U. 2000. Reconfiguration of software architecture

styles with name mobility. In Proc. of COORDINATION 2000. LNCS, vol. 1906. Springer,

148–163.

Hirsch, D. and Montanari, U. 2001. Synchronized hyperedge replacement with name

mobility. In Proc. of CONCUR’01. LNCS, vol. 2154. Springer, 121–136.

Jensen, O. H. and Milner, R. 2003. Bigraphs and transitions. SIGPLAN Not. 38, 1, 38–49.

König, B. and Montanari, U. 2001. Observational equivalence for synchronized graph

rewriting. In Proc. of TACS’01. LNCS, vol. 2215. Springer, 145–164.

Lanese, I. 2002. Process synchronization in distributed systems via Horn clauses. M.S.

thesis, Computer Science Department, University of Pisa, Pisa, Italy. Downloadable from

http://www.di.unipi.it/~lanese/tesi.ps.

Lanese, I. 2006. Synchronization strategies for global computing models. Ph.D. thesis,

Computer Science Department, University of Pisa, Pisa, Italy. Forthcoming.

Lanese, I. and Montanari, U. 2002. Software architectures, global computing and graph

transformation via logic programming. In Proc. SBES’2002 – 16th Brazilian Symposium on

Software Engineering. Anais, 11–35.

Lanese, I. and Montanari, U. 2004a. A graphical fusion calculus. In Proc. of the Workshop

of the COMETA Project on Computational Metamodels. Electronic Notes in Theoretical

Computer Science, vol. 104. Elsevier Science, 199–215.

Lanese, I. and Montanari, U. 2004b. Synchronization algebras with mobility for graph

transformations. In Proc. of FGUC’04 – Foundations of Global Ubiquitous Computing.

Electronic Notes in Theoretical Computer Science, vol. 138. Elsevier Science, 43–60.

Lanese, I. and Montanari, U. 2005. Mapping fusion and synchronized

hyperedge replacement into logic programming. Computing Research Repository

(http://arxiv.org/corr/home). Paper n. cs.LO/0504050.

Lloyd, J. W. 1993. Foundations of Logic Programming, Second Extended Edition. Springer.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes. Information

and Computation 100, 1–77.

Parrow, J. and Victor, B. 1998. The fusion calculus: Expressiveness and symmetry in mobile

processes. In Proc. of LICS ’98. IEEE, Computer Society Press.

Sangiorgi, D. 1993. A theory of bisimulation for the pi-calculus. In Proc. of CONCUR’93.

LNCS, vol. 715. Springer, 127–142.

Victor, B. 1998. The fusion calculus: Expressiveness and symmetry in mobile processes. Ph.D.

thesis, Dept. of Computer Systems, Uppsala University, Sweden.

https://doi.org/10.1017/S147106840600281X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840600281X

