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Concordance to links with an unknotted component
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Abstract

We construct links of arbitrarily many components each component of which is slice and
yet are not concordant to any link with even one unknotted component. The only tool we
use comes from the Alexander modules.

2010 Mathematics Subject Classification: 57M25

1. Introduction

In [Coc91, CO90, CO93, CR12], Cochran, Cochran–Orr, and Cha–Ruberman proved
variations of the following theorem:

THEOREM. There are links with slice components that are not concordant to any link
with every component unknotted.

In [Coc91, theorem 2·11], Cochran used the β i -invariants to show that there exist links
L1 ∪ L2 with L1 slice and L2 unknotted which are not topologically concordant to any link
with the first component unknotted. A similar result appears in [CO90, CO93] using the
complexity of a covering link. Further, in [CR12, theorem 1·1], Cha–Ruberman used cov-
ering link calculus together with the correction term of Heegaard Floer homology to give
topologically slice links L1 ∪ L2 with L1 smoothly slice, L2 unknotted, and which are not
smoothly concordant to any link with the first component unknotted.

All the examples above are links with the second component unknotted which are not con-
cordant to any link with the first component unknotted. In this short note, we use a classical
invariant to provide examples of links whose every component is slice but which satisfy
the stronger conclusion that they are not concordant to any link with even one unknotted
component.

https://doi.org/10.1017/S0305004119000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000367
mailto:daviscw@uwec.edu
mailto:junghwan.park@math.gatech.edu
https://doi.org/10.1017/S0305004119000367


156 CHRISTOPHER W. DAVIS AND JUNGHWAN PARK

Fig. 1. A 2-component link L1 ∪ L2 of Theorem 1·1.

Fig. 2. A 3-component link L1 ∪ L2 ∪ L3 of Theorem 1·2.

THEOREM 1·1. The 2-component link of Figure 1 has slice knots for its components but
is not concordant to any link with an unknotted component.

We generalise Theorem 1·1 to links of more than two components. We first state the case
with 3-components.

THEOREM 1·2. The 3-component link of Figure 2 has slice links for its every proper
sublink but is not concordant to any link with an unknotted component.

Theorem 1·2 is a special case of a the following more general result.

THEOREM 1·3. For any n ≥ 3, the n-component link of Figure 3 has a slice link for its
every 2-component sublink but is not concordant to any link with an unknotted component.
Moreover, its every proper sublink is concordant to a link with an unknotted component.

In fact, the preceding links are not concordant to any link that has a component with trivial
Alexander polynomial. We extend this further by replacing trivial Alexander polynomial
with any given finite collection of Alexander polynomials. This should be thought of it as a
generalisation of [CR12, theorem 1·3].

THEOREM 1·4. For any finite collection D of Alexander polynomials of knots and for
any knot J with �J (t) ∈ D, there are links L = L1 ∪ L2 satisfying the following:

(1) L1 and L2 are concordant to J ;
(2) L is not concordant to any link L ′ = L ′

1 ∪ L ′
2 with either �L ′

1
(t) ∈ D or

�L ′
2
(t) ∈ D.
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Fig. 3. An n-component link L1 ∪ · · · ∪ Ln with components indexed by Z/nZ of Theorem 1·3.

Remarkably, our obstruction comes from a classical invariant, the Alexander module, of
a component of a link and the classes of the lifts of the remaining components. We recall the
Alexander module and state the obstruction in Section 2. In Section 3, we use the obstruction
to prove Theorems 1·1, 1·2, 1·3 and 1·4.

While the question of concordance to boundary links (as in [CO90, CO93, Liv90]) is not
our main focus we will take a moment and point out that the techniques of our paper pro-
duce links which are not concordant to boundary links (see Remark 2·3). It is an interesting
question to ask if our obstruction is related to Milnor’s invariants.

This project is also motivated by the following question: does there exist a link in a
homology sphere which is not concordant to any link in S3, even when each component
is concordant to a knot in S3. Note that by performing 1/p-surgery on a component of a
link of Figure 3, we get a new link where each component is concordant to a knot in S3. We
believe that this link is not concordant to any link in S3, but we are not able to prove this at
the moment. We also make a remark that the above question is a natural generalization of a
theorem of Adam Levine [Lev16] (see also [HLL18]), where he proved that there exists a
knot in a homology sphere which is not smoothly concordant to any knot in S3. As far as the
authors knowledge, it is not known if such a statement is true for the topological category.

Lastly, we make a remark that examples of links that satisfy condition from Theorem 1·1
have been already established in an unpublished note due to Stefan Friedl [Fri]. His obstruc-
tion uses the multivariable Alexander polynomial for links and produces examples with
nonvanishing linking number, whereas our obstruction applies to links with pairwise linking
number zero.

2. Obstruction: the Alexander module

For the rest of this paper, we work in the topological (locally flat) category. For any
knot K , we denote by E(K ) the knot exterior S3 \ ν(K ), where ν(K ) is an open tubular
neighborhood of K . The first homology of the infinite cyclic cover of E(K ) with rational
coefficients is a Q[t, t−1]-module, where the action of t is induced by the deck transfor-
mation. This module is the Alexander module of K and is denoted by A(K ). Similarly, if
D ⊆ B4 is a slice disk for K , then we denote by E(D) the disk exterior B4 \ ν(D), where
ν(D) is an open tubular neighbourhood of D. Again, the first homology of the infinite
cyclic cover of E(D) with rational coefficients is called the Alexander module of D and
denoted by A(D).

The Alexander module can be used to frame many obstructions to the sliceness of a knot.
It is a well known fact that the Alexander module of a knot has a non-singular form called
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the Blanchfield form [Bla57] and if K bounds a slice disk D, then the kernel of the map
from A(K ) to A(D) is a Lagrangian submodule [Kea75] with respect to the Blanchfield
form. In particular, if A(K ) is not the trivial module then this kernel cannot be all of A(K ).
Also, recall that a knot has trivial Alexander module if and only if it has trivial Alexander
polynomial. Combining these facts we get the following well-known result.

PROPOSITION 2·1. If K is a knot with nontrivial Alexander polynomial and D is a slice
disk for K , then A(K ) →A(D) is not the zero homomorphism.

The following is the immediate corollary of Proposition 2·1
COROLLARY 2·2. Let L = L1 ∪ · · · ∪ Ln be a link with vanishing pairwise linking num-

bers. Suppose L1 is a slice knot with nontrivial Alexander polynomial and the classes of the
lifts of L2, . . . , Ln generate A(L1). Then L is not concordant to any link L ′ = L ′

1 ∪ · · · ∪ L ′
n

where �L1(t) and �L ′
1
(t) are relatively prime. In particular, L is not concordant to any link

of the form U ∪ L ′
2 ∪ · · · ∪ L ′

n where U is the unknot.

Proof. Suppose L and L ′ are concordant via C = C1 ∪ · · · ∪ Cn . Since L1 is slice, L ′
1 is slice

as well. Cap C1 with a disk in the 4-ball bounded by L ′
1 to get a slice disk D for L1. Since

�L1(t) is the annihilator of A(L1),

�L1(t) · [Li ] = 0 ∈A(L1) for every i ∈ {2, . . . , n}.
Here, [Li ] indicates the class of the lift of Li to A(L1). Similarly,

�L ′
1
(t) · [L ′

i ] = 0 ∈A(L ′
1) for every i ∈ {2, . . . , n}.

Since the lift of Li and the lift of L ′
i represent the same class in A(D), we have both of

�L1(t) and �L ′
1
(t) annihilating the classes of the lifts of Li in A(D). Further, since �L1(t)

and �L ′
1
(t) are relatively prime, the classes of the lifts of L2, . . . , Ln are trivial in A(D).

This is not possible by Proposition 2·1.

Remark 2·3. Corollary 2·2 also gives an obstruction for links to be concordant to bound-
ary links. Indeed, if L ′ = L ′

1 ∪ · · · ∪ L ′
n is a boundary link then by lifting Seifert surfaces

for L ′
2, . . . , L ′

n to the infinite cyclic cover of E(L ′
1) we see that the classes of the lifts

of L ′
2, . . . , L ′

n are trivial in A(L ′
1). It would be interesting to see if there exist links with

vanishing Milnor’s invariants which satisfy the hypotheses of Corollary 2·2.

3. Proofs of Theorems 1·1, 1·2, 1·3, and 1·4
We are now ready to prove that our examples satisfy the asserted conditions.

Proof of Theorem 1·1. Let L = L1 ∪ L2 be the link in Figure 1. Each of L1 and L2 is isotopic
to the 946 knot which is slice. The 946 knot has a cyclic Alexander module

A(L1) ∼= Q[t, t−1]
〈(1 − 2t) · (2 − t)〉

with a generator given by the lift of the curve depicted to the far right of Figure 4. Also,
Figure 4 describes a homotopy in the exterior of L1 from L2 to the curve whose lift generates
A(L1).

https://doi.org/10.1017/S0305004119000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000367


Concordance to links with an unknotted component 159
(a) (b) (c)

Fig. 4. Left to right: (a) the Link L1 ∪ L2; (b) a homotopy changing 5 crossings of L2 in the complement
of L1; (c) an isotopy reduces the image of L2 in (b) to a curve whose lift generates A(L1).

(a) (b) (c)

Fig. 5. A 2-component sublink Lk ∪ Lk+1 of L and a pair of band moves showing it is slice.

The class of the lift of L2 generates A(L1). Thus, Corollary 2·2 concludes that L is not
concordant to any link L ′

1 ∪ L ′
2 with L ′

1 unknotted. The proof is complete by the symmetry
of L .

Since Theorem 1·2 is a special case of Theorem 1·3, we only prove Theorem 1·3.

Proof of Theorem 1·3. Let L = L1 ∪ L2 ∪ · · · ∪ Ln be the link in Figure 3. As every compo-
nent of L is the 946 knot, each component is slice. Further, every 2-component sublink of
L is either isotopic to a link drawn in Figure 5 (a) or the split link 946 � 946. Observe that
both links are slice, as shown in Figure 5. Let L ′ be a proper sublink of L , then for some
k ∈Z/n, Lk is a component of L ′ and Lk+1 is not. We may now modify L ′ by changing Lk

by a similar band move to that depicted in Figure 5. This reveals that L ′ is concordant to a
link with an unknotted component.

Let k ∈Z/nZ and consider a 3-component sublink Lk−1 ∪ Lk ∪ Lk+1. As in the proof
of Theorem 1·1, it is straightforward to verify that the classes of lifts of Lk−1 and Lk+1

generate A(Lk). By Corollary 2·2, we conclude that L is not concordant any link with the
kth component unknotted. Again, the proof is complete by the symmetry of L .

Lastly, we prove Theorem 1·4.

Proof of Theorem 1·4. Let L = L(m, J ) = L1(m, J ) ∪ L2(m, J ) be the link of Figure 6. We
choose m large enough so that �L1(m,U )(t) = �L2(m,U )(t) is relatively prime to every polyno-
mial in the finite set D. Since L1(m, J ) and L2(m, J ) are isotopic to a knot obtained as the
connected sum of J with a slice knot, the first condition of the theorem is satisfied.

Suppose L is concordant to a link L ′ = L ′
1 ∪ L ′

2 where �L ′
1
(t) ∈ D and let −J be the

knot obtained by taking the mirror image J and reversing the orientation. By locally tying
−J into the concordance from L to L ′ and stacking a concordance from L(m, J# − J ) to
L(m, U ), we see that L(m, U ) is concordant to a link L ′′ = L ′′

1 ∪ L ′′
2 where L ′′

1 is isotopic to
a connected sum of L ′

1 with −J . In particular, �L ′′
1
(t) = �L ′

1
(t)�J (t). By the assumption,
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Fig. 6. A 2-component link L(m, J ) = L1(m, J ) ∪ L2(m, J ) of Theorem 1·4. Each box containing an inte-
ger m indicates the bands passing through the box have m full twists rather than all the strands. Each box
containing a knot J indicates the strand passing through the box is tied into J .

�L1(m,U )(t) and �L ′′
1
(t) are relatively prime. As in the proof of Theorem 1·1, it is straightfor-

ward to verify that each component of L(m, U ) is slice and the class of the lift of L2(m, U )

generate A(L1(m, U )). We get a contradiction by Corollary 2·2. The proof is complete by
applying the same argument for the second component.
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