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We study frames in R
3 and mapping from a surface M in R

3 to the space of frames.
We consider in detail mapping frames determined by a unit tangent principal or
asymptotic direction field U and the normal field N . We obtain their generic local
singularities as well as the generic singularities of the direction field itself. We show,
for instance, that the cross-cap singularities of the principal frame map occur
precisely at the intersection points of the parabolic and subparabilic curves of
different colours. We study the images of the asymptotic and principal foliations on
the unit sphere by their associated unit direction fields. We show that these curves
are solutions of certain first order differential equations and point out a duality in
the unit sphere between some of their configurations.
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1. Introduction

Suppose given a geometrically interesting direction field on a surface M in 3-space,
represented by a unit field U(x); for example U(x) might be (locally) one of the
principal directions away from umbilics or the asymptotic directions at hyperbolic
points. Then together with the normal vector N , we have a family of frames given
by the triple (U,N ∧ U, N); we can consider the corresponding map into the space
of frames and the singularities of this mapping. It is natural that the singularities
of this map will be related to the singularities of the individual components, the
direction mappings U, N ∧ U, N : M → S

2, and we shall also consider these.
Moreover, we can consider these mappings along geometrically relevant curves,

for example the parabolic curve, the flecnodal curve, the ridge curve. We can also
consider the images of the local foliations given by (one part of) the principal or
asymptotic curves in the frame space or the unit sphere S

2.
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In this paper, we will consider the above constructions and use an elementary
result of Arnold (the triality theorem of [1]) to investigate the geometry of the
above curves in S

2. In the case of the asymptotic directions, we will replace M by
the double cover of the hyperbolic region branched over the parabolic set obtained
by considering the asymptotic directions in the sphere tangent bundle. Part of our
aim is to link this approach with other results in the generic geometry of surfaces.
We will see that the conditions emerging for various types of generic singularities of
the frame and related maps link to singularities of the distance squared functions
and folding maps in the case of the principal frame and contact with planes and
lines for the asymptotic frame. The paper is organized as follows.

In § 2, we give some preliminaries about the singularities of mappings which will
be used in the rest of the paper. In § 3, we study the set of frames F and give
various representations of this set. We also give a simple proof of Arnold’s triality
theorem. In § 4, we consider the singularities of frame mappings (U, V,N) : M → F

as well as those of U and V . We give geometric conditions for the frame map to
be singular and for the singularity to be a cross-cap. In § 5, we deal in detail of the
cases when U is a unit principal or asymptotic direction field. In § 6, we obtain the
generic configurations of the images of the principal (resp. asymptotic) foliation by
the principal (resp. asymptotic) map to the unit sphere. We show that these are,
in most cases, solutions of first order differential equations. We also consider the
images of these foliations by the Gauss map and relate some of them by duality in
the sphere.

2. Preliminaries

Let En be the local ring of germs of functions R
n, 0→ R and Mn its maximal

ideal (which is the subset of germs that vanish at the origin). Denote by E(n, p) the
p-tuples of elements in En. Let A = R×L = Diff(Rn, 0)×Diff(Rp, 0) denote the
group of right-left equivalence which acts smoothly on Mn.E(n, p) by (h, k) ·G =
k ◦G ◦ h−1.

The k-jet space of smooth map-germs (Rn, 0)→ (Rm, 0) is by definition
Jk(n, p) =Mn · E(n, p)/Mk+1

n · E(n, p).
Let Ak be the subgroup of A whose elements have k-jets the germ of the identity.

The group Ak is a normal subgroup of A. Define A(k) = A/Ak. The elements of
A(k) are the k-jets of the elements of A.

The action of A on Mn.E(n, p) induces an action of A(k) on Jk(n, p) as follows.
For jkf ∈ Jk(n, p) and jkh ∈ A(k), jkh.jkf = jk(h.f).

The tangent space to the A-orbit of f at the germ f is given by

LA·f =Mn.{fx1 , . . . , fxn
}+ f∗(Mp).{e1, . . . , ep},

where fxi
denotes partial derivatives with respect to xi (i = 1, . . . , n), e1, . . . , ep

denote the standard basis vectors of R
p considered as elements of E(n, p), and

f∗(Mp) is the pull-back of the maximal ideal in Ep. The extended tangent
space to the A-orbit of f at the germ f is given by LeA·f = En.{fx1 , . . . , fxn

}+
f∗(Ep).{e1, . . . , ep}, and the codimension of the extended orbit is de(f,A) =
dimR(E(n, p)/LeA · f ).
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Table 1. Ae-codimension �2 singularities of map-germs R
2, 0 → R

2, 0.
Name Normal form Algebraic conditions

Fold (x, y2) a22 �= 0

Cusp (x, xy + y3) a22 = 0, a21 �= 0, a33 �= 0

Lips/beaks (x, y3 ± x2y) a22 = 0, a21 = 0, a33 �= 0, a2
32 − 3a31a33 �= 0

Goose (x, y3 + x3y) a22 = 0, a21 = 0, a2
32 − 3a31a33 = 0, a33 �= 0,

27a41a3
33 − 18a42a32a2

33 + 9a43a2
32a33 − 4a44a3

32 �= 0

Swallowtail (x, xy + y4) a22 = 0, a33 = 0, a21 �= 0, a44 �= 0

Butterfly (x, xy + y5 ± y7) a22 = 0, a33 = 0, a44 = 0, a21 �= 0, a55 �= 0,

(8a55a77 − 5a2
66)a

2
21 + 2a55(a32a66 − 20a43a55)a21

+ 35a2
32a2

55 �= 0

Gulls (x, xy2 + y4 + y5) a22 = 0, a21 = 0, a33 = 0, a32 �= 0, a44 �= 0,

a55a2
32 − 2a43a44a32 + 4a31a2

44 �= 0

There are classifications of map-germs for various pairs (n, p). When p = 1, we
have Arnold’s extensive list of germs of functions (here we only need the group R
of changes of coordinates in the source). We shall need the following representatives
of R-orbits:

Ak : ±x2 ± yk+1, k � 0, Dk : x2y ± yk−1, k �4.

For (n, p) = (2, 2), that is, for map-germs from the plane to the plane, there are
several classifications and we refer to Rieger [15] for that of singularities of A-
codimension �6. In this paper, we need only the singularities of Ae-codimension
�2. For map-germs g(x, y) = (x, f(x, y)) with

f(x, y) = a20x
2 + a21xy + a22y

2 +
3∑

i=0

a3ix
3−iyi +

4∑
i=0

a4ix
4−iyi +O(5), (2.1)

where O(5) is a remainder of order 5, the conditions on the coefficients of f for
the map-germ g to have a singularity at the origin of Ae-codimension �2 are as in
table 1 (see for example [11]).

One can consider certain families of functions and mappings on a smooth surface
M in R

3 with the singularities of their members capturing some aspects of the
extrinsic geometry of the surface. These families are as follows.

The family of height functions H : M × S
2 → R on a smooth surface M ⊂ R

3 is
defined by

H(x, v) = Hv(x) = x · v,
where ‘·’ denotes the scalar product in R

3. For v fixed, the function Hv measures
the contact of the surface M with parallel planes orthogonal to v. A transversality
theorem asserts that for a generic surface M , for any v ∈ S

2 and at any point x on
M the function Hv can only have an R-singularity at x of type A1, A2 or A3. (Here,
and in the rest of the paper, generic means for a residual subset of C∞(U,R3) of
local parametrizations of M . The set C∞(U,R3) is endowed with the Whitney C∞-
topology.) A point x is a singularity of Hv if and only of v = ±N(x). The singularity
is of type A2 when x is a parabolic point and of type A3 at special parabolic points
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Figure 1. Generic local singularities of orthogonal projections of a surface in R
3.

called cusps of Gauss (at such points the Gauss map N is A-equivalent to the cusp
singularity in table 1).

The family of distance squared functions D : M × R
3 → R on M is defined by

D(x, a) = Da(x) = (x− a) · (x− a).

For a fixed, the function Da measures the contact of M with spheres of centre
a. Here, for a generic surface M , for any a ∈ R

3 and at any point x on M the
function Da can only have an R-singularity at x of type A1, A2, A3, A4 or D4. (The
D4-singularities occur at umbilic points.)

The orthogonal projection Pv of M along the direction v ∈ S
2 to the plane TvS

2

is given by Pv(x) = x− (x · v)v. This can be represented locally by a map-germ
from the plane to the plane. Varying v yields the family of orthogonal projection
P : M × S

2 → TS
2 of M given by

P (x, v) = (v, Pv(x)).

The map Pv measures the contact of the surface with lines parallel to v. Again,
a transversality theorem asserts that for a generic surface M , for any v ∈ S

2 and
at any point x on M the map-germ Pv at x has only one of local singularities in
table 1; see figure 1. It is worth observing that the cusps of Gauss are the points
where the orthogonal projection has a gulls singularity.

For a generic surface M , the orthogonal projection of M along an asymptotic
direction can have a swallowtail singularity on a smooth curve on M . This curve is
called the flecnodal curve and is the locus of the geodesic inflections of the asymp-
totic curves. Recall from [2] that for a generic surface the flecnodal curve meets
(tangentially) the parabolic curve precisely at the cusps of the Gauss map N (or
the gulls singularities of the orthogonal projection).

3. Frames and curves

In what follows, we will consider the space F of frames in 3-space. Our first result
is just a set of basic facts concerning the space of frames.
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Proposition 3.1.

(i) The set F can be identified with the unit tangent bundle to the 2-sphere S
2,

or more directly as the set F = {(a1, a2, a3) ∈ S
2 × S

2 × S
2 : ai · aj = δij}.

(ii) In turn, given a choice of standard frame, the set F can be identified with the
special orthogonal group SO(3), which is diffeomorphic to the real projective
3-space. In particular, the tangent space at each point can be identified with
the Lie algebra of SO(3), the space of skew-symmetric 3× 3 matrices.

(iii) For each choice of standard frame, F has a natural contact structure.

(iv) F has a homogeneous geometry with the metric induced from the inclusion
F ⊂ S

2 × S
2 × S

2, that is, given any two points of F, there is an isometry of
F interchanging the two.

Proof.

(i) Is clear.

(ii) Given the standard orthonormal basis for R
3, e1, e2, e3 and a triple

(a1, a2, a3) ∈ F, we can consider the orientation preserving transformation
taking ei to ai that is, the matrix with columns a1, a2, a3. Conversely given
any element of SO(3) represented as a matrix with respect to our standard
basis, we consider the triple of vectors given by the columns. It is not hard
to see that F = SO(3) is projective 3-space: orient R

3 and to each point c
in R

3 assign the anticlockwise rotation about c through an angle π||c|| in a
direction which looking out in the direction of c. Note that when c = 0 there
is no problem since the angle is zero, that is, we have the identity. Note that
antipodal points on the boundary sphere are identified since rotation about
an axis through π clockwise is the same as rotation through π anticlockwise.

(iii) If PT ∗
S

2 is the projective cotangent sphere bundle to S
2 then consider the map

F→ PT ∗
S

2, given by (a1, a2, a3) �→ (a1, τ), where τ : Ta1S
2 → R is defined by

τ(b) = a2 · b; this is clearly a double cover. Indeed note that b ∈ Ta1S
2 if and

only if b · a1 = 0 so each non-zero linear form on Ta1S
2 arises as such a τ ,

and this bundle map is an isomorphism. The projectivised cotangent bundle
P (T ∗

S
2) has a canonical contact structure which lifts to F.

(iv) We have the inclusions F ⊂ S
2 × S

2 × S
2 ⊂ R

3 × R
3 × R

3. We claim that
given the induced metric F is a homogenous space; that is assuming the usual
metric for S

2, the product metric on S
2 × S

2 × S
2, and the induced metric on

F then there is an isometry interchanging any two points. Indeed as we have
seen there is a unique element of SO(3) taking any triple (a1, a2, a3) ∈ F to
(e1, e2, e3), and fixing F, and this is an isometry of R

3 × R
3 × R

3. �

Remarks 3.2.

(i) Suppose given a smooth map φ : M → F, then its derivative at a point x is a
map Dφ(x) : TxM → Tφ(x)F = Tφ(x)SO(3). We then translate to the identity
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element in SO(3) and consider the image of Dφ(x) as a subset of the Lie
algebra of 3× 3 skew matrices sk(3). Thus, we can think of the derivative as
a skew matrix

⎡
⎣ 0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

⎤
⎦ .

SinceDφ(x) is a linear map the ωij are 1-forms onM , the so-called connection
forms. They measure the rate of turning of the three orthogonal vectors in
the frame as we move in various directions on M .

(ii) Choosing a co-ordinate system on M , and three ordered orthonormal vectors
V1(x), V2(x), V3(x) yielding our frame, then writing ωr

ij for ωij(∂/∂xr) we
find that ωr

ij = ∂Vi/∂xr · Vj , or alternatively DVi(er) · Vj , where the er are
the images of the standard basis under the parametrization.

3.1. Curves in the unit 2-sphere

Let γ : I → S
2 be a unit speed curve, so γ(t) · γ(t) = 1, γ′(t) · γ′(t) = 1. Dif-

ferentiating the first identity gives γ(t) · γ′(t) = 0. Define the map uγ : I → F

by

uγ(t) = (γ(t), γ′(t) ∧ γ(t), γ′(t)).
As above, F has a natural contact structure with the projection F→ S

2 to the first
component being the projection to the base of a Legendre fibration; the image of
uγ is a Legendrian curve. There is a result due to Arnold, labelled by him a triality
theorem [1], which we need; its formulation requires us to orient S

2. In the form
we require it, the result is relatively easy and we give a quick proof here. We first
need two definitions.

Definition 3.3. If γ : I → S
2 is a smooth curve with a well-defined oriented

tangent at each point (so e.g., if it has a regular parametrization) then:

(i) the dual of γ is the curve obtained from the original by moving a distance
π/2 along the normals on the side determined by the orientation of γ and S

2;
in other words, we have the poles of great circles of the sphere tangent to the
curve.

(ii) The derivative of γ is the curve obtained from the original by moving each
point a distance π/2 in the positive direction along the great circle tangent to
the curve at that point.

Remarks 3.4. Arnold points out that:

(i) the definition of the dual works for co-oriented curves which are wavefronts
having local singularities of the form xn = yn+1.

(ii) The dual is naturally oriented and is a wavefront equidistant (by π/2) from
the original.
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(iii) The second dual of a curve is antipodal to the original.

(iv) These definitions work provided that γ′(t) �= 0 since we can re-parametrize to
get a unit speed curve.

Proposition 3.5 [1]. Let γ : I → S
2 be a smooth unit speed curve and let F be

the space of frames with the natural contact structure. There are three projections
πj : F→ S

2, π1(a1, a2, a3) = a1, π2(a1, a2, a3) = a2, π3(a1, a2, a3) = a3. Then:

(i) the map uγ : I → F is a Legendrian map with Legendrian projection π1,
yielding the Legendrian image γ;

(ii) the map π2 ◦ uγ : I → S
2 is (up to sign) a parametrization of the dual of γ;

(iii) the map π3 ◦ uγ : I → S
2 is (up to sign) a parametrization of the derivative

of γ;

(iv) the derivative of a wavefront coincides with the derivative of any of its
parallels.

Proof.

(i) Since uγ(t) = (γ(t), γ′(t) ∧ γ(t), γ′(t)), we have π1 ◦ uγ(t) = γ(t) and the tan-
gent great circle to γ at γ(t) is orthogonal to γ′(t) ∧ γ(t), the second
component of uγ . One now checks that vγ is a Legendrian immersion with
projection γ.

(ii) Clearly π2 ◦ uγ = γ′(t) ∧ γ(t) which is a pole of the great tangent circle.

(iii) Similarly π3 ◦ uγ(t) = γ(t) ∧ (γ′(t) ∧ γ(t)) = γ′(t) the derivative of γ.

(iv) An equidistant or parallel to γ is given by γr(t) = γ(t) + rγ(t) ∧ γ′(t). Of
course γr is no longer unit speed, but γ′r(t) = (γ′ + rγ′ ∧ γ′ + rγ ∧ γ′′)(t) =
(γ′ + rγ ∧ γ′′)(t). However γ, γ′, γ′′ are orthogonal so γ ∧ γ′′ = ±||γ′′||γ′ and
γ′r is a multiple of γ′ as required. �

Example 3.6. Suppose given a unit speed line of curvature on a surface α : I →M ,
composing with the normal map, we obtain a mapping γ = Nα : I → S

2, s �→ N ◦
α(s). Now since α is a line of curvature, we have γ′(s) = (κ1P1)(α(s)) where κ1, P1

are, respectively, the corresponding principal curvature and principal direction. The
result above tells us that the curve P2(α(s)) is the dual of γ and P1(α(s)) the
derivative map of γ (more on this in § 6.3).

4. Maps from a surface into the space of frames

Given a unit vector field U on M , we can consider the frame determined by the
unit normal N , the vector field U and the third vector V making up the orthonor-
mal triple; we choose N ∧ U . The frame U, V, N gives a map from M to F: we
are interested in the singularities of this map. If the map is generic then we can
expect the following stable singularities: transverse self-intersections, triple points
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and cross-caps. Given a geometrically relevant vector field U , for example, a field of
principal directions or asymptotic directions, we consider the following questions:

(a) When does the frame mapping M → F have a singularity?

(b) For a generic surface M ⊂ R
3 is the frame map M → F stable?

(c) If so what is the geometric interpretation of a cross-cap singularity? (The
geometric interpretation of the multi-local singularities is immediate.)

(d) If not what singularities do we have?

(e) What are the images of the integral curves of U in F or S
2 via the frame map

or U, V, N?

We start then by considering arbitrary mappings U, V : M → S
2 with U(x) ·

V (x) ≡ 0. Note that since U · U = V · V = 1, U · V = 0 we have, using subscript i
for partial differentiation with respect to xi, U · Ui = V · Vi = 0, Ui · V + U · Vi = 0.

We first remark that given a smooth germ f : R
2, 0→ R

3, 0 and a submersion
g : R

3, 0→ R
2 then if f is singular kerDf(0) ⊂ kerD(g ◦ f)(0).

In particular, if (U, V, U ∧ V ) : M → F has a singular point at x then so do U and
V , and if they both have rank 1 then kerDU(x) = kerDV (x). The converse is also
true for if f : M → F is the frame map and πj : F→ S

2 is projection to the jth com-
ponent of S

2 × S
2 × S

2 then kerDU(x) = Df(x)−1(ker dπ1(x)) and kerDV (x) =
Df(x)−1(kerDπ2(x)) but ker(Dπ1(x)) ∩ ker(Dπ2(x)) = {0}. This establishes part
(i) of the following proposition.

Proposition 4.1.

(i) If the frame map (U, V, U ∧ V ) : M → F has a singular point at x then the
maps U, V, U ∧ V : M → S

2 have singular points at x.

(ii) If U and V have singular points at x of rank 1 then either kerDU(x) =
kerDV (x) or imDU(x) and imDV (x) are parallel. In the first instance
(U, V ) is singular.

(iii) Suppose now that U, V are fold maps at x. In the second instance in (ii)
above the image of the derivative U and V at x are orthogonal to U and V .

(iv) The frame map has a singular point which is a cross-cap if kerDU(x) =
kerDV (x) and the singular sets ΣU, ΣV are transverse at x.

Proof. (ii), (iii) Suppose that U and V are singular, so we can write U2 = λU1, V2 =
μV1 (say). Then U2 · V = λU1 · V and U · V2 = μU · V1; but Uj · V = −U · Vj so
λ = μ or Uj · V = U · Vj = 0, j = 1, 2. In the first case clearly (U, V ) is singular.
In the second U1 · V = V1 · U = U1 · U = V1 · V = 0 so the one-dimensional images
of the derivatives DU and DV are orthogonal to U and V .

(iv) Suppose that U, V are singular at x and that kerDU(x) = kerDV (x). We
can take (x1, x2) as local parameters of M and suppose that the point of interest
is the origin. We can rotate the coordinate axes if necessary and suppose that
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Ux2(0, 0) = Vx2(0, 0) = 0, that is, the kernels of DU(0, 0) and DV (0, 0) are parallel
to the x2-axis. If we represent the frame as a map f : M→ Δ ⊂ S

2 × S
2 given

by f(x) = (U(x), V (x)), then by Whitney’s criteria, f has a cross-cap singularity
at the origin if and only if (∂2f/∂x1∂x2)(0, 0) and (∂2f/∂x2

2)(0, 0) are linearly
independent.

Using the fact that (U, V ) ∈ Δ, one can show that (∂2f/∂x1∂x2) and (∂2f/∂x2
2)

(evaluated at the origin) are linear combinations of the three independent vectors
in the ordered set B = {(U ∧ V, 0), (0, U ∧ V ), (V,−U)} and have coordinates

∂2f

∂x1∂x2
= (Ux1x2 · U ∧ V, Vx1x2 · U ∧ V, Ux1x2 · V )B

∂2f

∂x2
2

= (Ux2x2 · U ∧ V, Vx2x2 · U ∧ V, Ux2x2 · V )B

Observe that the third coordinate of ∂2f/∂x1∂x2 (resp. ∂2f/∂x2∂x2) can be
replaced by −Vx1x2 · U (resp. −Vx2x2 · U). We have, at any point x near the origin,

Ux1 = (Ux1 · V )V + (Ux1 · U ∧ V )U ∧ V,
Ux2 = (Ux2 · V )V + (Ux2 · U ∧ V )U ∧ V,
Vx1 = (Vx1 · U)U + (Vx1 · U ∧ V )U ∧ V,
Vx2 = (Vx2 · U)U + (Vx2 · U ∧ V )U ∧ V,

so the critical sets ΣU of U and ΣV of V have equations

ΣU : (Ux1 · V )(Ux2 · U ∧ V )− (Ux1 · U ∧ V )(Ux2 · V ) = 0,
ΣV : (Vx1 · U)(Vx2 · U ∧ V )− (Vx1 · U ∧ V )(Vx2 · U) = 0.

These sets are transverse at the origin if and only if

(Ux1 · V )(Vx1 · U) [(Ux1x2 · U ∧ V )(Vx2x2 · U ∧ V )

−(Ux2x2 · U ∧ V )(Vx1x2 · U ∧ V )]

− (Ux1 · V )(Vx1 · U ∧ V ) [(Ux1x2 · U ∧ V )(Vx2x2 · U)

−(Ux2x2 · U ∧ V )(Vx1x2 · U)]

+ (Vx1 · V )(Ux1 · U ∧ V ) [(Vx1x2 · U ∧ V )(Ux2x2 · V )

−(Vx2x2 · U ∧ V )(Ux1x2 · V )] �= 0

(where the left-hand side of the above inequality is evaluated at the origin). If
transversality holds, then one of the expressions in the square brackets above is non-
zero. The result follows from the fact that the expressions in the square brackets
are precisely the 2× 2-minors of the matrix formed by the vectors (∂2f/∂x1∂x2)
and (∂2f/∂x2

2) evaluated at the origin. �
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Corollary 4.2.

(i) If U, V : M → S
2 have a singular point at x ∈M and kerDU(x) =

kerDV (x) then W = U ∧ V is singular and kerD(U ∧ V )(x) = kerDU(x) =
kerDV (x).

(ii) If U, V : M → S
2 have a singular point at x ∈M and im DU(x) = im DV (x)

then generically W = U ∧ V does not have a singularity; indeed it is singular
if and only U or V has rank 0.

Proof.

(i) Clearly, Wj = (U ∧ V )j = Uj ∧ V + U ∧ Vj ; as above if U is singular at x
say then we may suppose that U2 = λU1 and if V is singular there then
we write V2 = λV1 (same multiplier). So W2 = λU1 ∧ V + λU ∧ V1, W1 =
U1 ∧ V + U ∧ V1 and W is singular, moreover, W2 = λW1 so the kernels are
identical.

(ii) Here we have U2 = λU1, V2 = μV1, λ �= μ. So W1 = (U ∧ V )1 = U1 ∧ V +
U ∧ V1, W2 = (U ∧ V )2 = U2 ∧ V + U ∧ V2 = λU1 ∧ V + μU ∧ V1. Clearly,
these are dependent if and only if λ = μ, ruled out, or one of U1 ∧ V or
U ∧ V1 = 0. But we already know that U1 · V = U · V1 = 0, so clearly the first
of these conditions implies that U1 = 0, the second V1 = 0. �

Now replace U, V, U ∧ V by V1, V2, V3 with connection forms as in remarks 3.2.

Corollary 4.3.

(i) The frame map (V1,V2,V3) : M → F has a singular point if and only if the
following matrix has rank 1:

[
ω1

12 ω1
13 ω1

23

ω2
12 ω2

13 ω2
23

]
.

(ii) We find that kerDV1(x) ∩ kerDV2(x) �= {0} if and only if (ω1
12, ω

2
12) �= (0, 0).

(iii) If we compose the frame (V1,V2,V3) : M → F with any of the three pro-
jections to S

2 we obtain maps Vi : M → S
2. The derivative of the map V1

(resp. V2, V3) at x, with respect the basis {e1, e2} for TxM and respectively,
{V2,V3}, {V1, V3}, {V1, V2} at the relevant TVi(x)S

2, is given, respectively,
by [

ω1
12 ω1

13

ω2
12 ω2

13

] (
resp.

[
ω1

21 ω1
23

ω2
21 ω2

23

]
,

[
ω1

31 ω1
32

ω2
31 ω2

32

])
.

Proof. Clearly DVi(er) =
∑

(DVi(er) · Vj)Vj =
∑
ωr

ijVj . �
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5. Geometric frames

In this section, we compute the connection forms for some key frames. We denote
by S the shape operator of M . The following well-known result ([14] p. 230) will
prove useful:

Proposition 5.1. Let α : R, 0→M be a unit speed integral curve of U ; for each t,
we consider the frame determined by U(α(t)), N(α(t)) ∧ U(α(t)), N(α(t)). Then

⎡
⎣U ′

V ′

N ′

⎤
⎦ =

⎡
⎣ 0 g κ
−g 0 τ
−κ −τ 0

⎤
⎦
⎡
⎣UV
N

⎤
⎦

where κ = S(U) · U is the normal curvature of M in the U direction, τ = S(U) · V
and g is the geodesic curvature of α. The curve is (i) geodesic if and only if g ≡ 0,
(ii) asymptotic if and only if κ ≡ 0 and (iii) principal if and only if τ ≡ 0.

Proposition 5.2. Consider a neighbourhood of a non-umbilic point on a smooth
surface M ⊂ R

3, with unit normal N , principal directions P1, P2. Choose a local
parametrisation X of M with Xj = λjPj , j = 1, 2; λ1(x1, 0) = 1, λ2(0, x2) = 1,
and the frame F = (P1, P2, N).

(i) The derivative of F is determined by a pair of skew symmetric matrices
Ω1, Ω2, with the connection 1-forms being the entries in Ω1dx1 + Ω2dx2,
and these are:

ω12 =
1

κ1 − κ2

(
∂κ1

∂x2
dx1 +

∂κ2

∂x1
dx2

)
,

ω13 = κ1dx1,

ω23 = κ2dx2.

(ii) Suppose that a frame is determined by Q1 = cos θP1 + sin θP2, Q2 =
− sin θP1 + cos θP2, N where θ is a function of x and y. Then the correspond-
ing entries are;

ω12 =
1

κ1 − κ2

((
∂θ

∂x1
+
∂κ1

∂x2

)
dx1 +

(
∂θ

∂x2
+
∂κ2

∂x1

)
dx2

)
,

ω13 = −κ1 cos θdx1 − κ2 sin θdx2,

ω23 = κ1 sin θ − κ2 cos θdx2.

(iii) It follows that the principal frame map (P1, N ∧ P1, N) has a singularity when
κ1 = ∂κ1/∂x2 = 0 or κ2 = ∂κ2/∂κ1 = 0. In case (ii), we find that the con-
ditions are κ1 = (κ1 − κ2)∂θ/∂x1 + ∂κ1/∂x2 = 0 or κ2 = (κ1 − κ2)∂θ/∂x2 +
∂κ2/∂x1 = 0. In particular, we only ever have singular points on the parabolic
set - clear since the Gauss map must have a singular point.
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Proof.

(i) This is a standard calculation, again see [14] p. 255, as usual using the
orthogonality of the frames, and an application of the Codazzi equations,
or equivalently using the equality of mixed partial derivatives of N and X.

(ii) This follows in the same way.

(iii) These are just a straightforward calculation. �

5.1. Principal and normal frame

In this section, we shall consider the mapping into the space of frames locally
defined by choosing one oriented principal direction P1 and consider the triple
(P1, N ∧ P1, N); of course N ∧ P1 is the other principal direction, which we denote
by P2.

Let X : U → R
3 be a local parametrization of an umbilic free surface patch M

where the coordinate curves are the lines of principal curvature. Suppose that κ1 �= 0
in U . Then the focal sheet F1 of the focal set is the image of the map φ(x) =
X(x) + 1/κ1(x)N(x). (If κ1 = 0 then the corresponding focal points go to infinity.)
We have

∂φ

∂x1
= − 1

κ2
1

∂κ1

∂x1
N,

∂φ

∂x2
=
κ2 − κ1

κ1
P2 − 1

κ2
1

∂κ1

∂x2
N.

As κ1 �= κ2, the map φ has rank 2 unless ∂κ1/∂x1 = 0. This is the condition for
the contact between the surface and the corresponding sphere of curvature to be
more degenerate than an A2.

Remark 5.3. The condition ∂κ1/∂x1 = 0 occurs generically on a smooth curve
on M called the ridge curve. Then the focal set is singular and is diffeomorphic
to a cuspidal edge or a swallowtail surface. Observe that the cusps of Gauss (or
gulls singularities of the orthogonal projection) are the points of intersection of the
parabolic and ridge curves associated to the same principal direction, that is, they
are the points that satisfy

κ1 =
∂κ1

∂x1
= 0

(
resp. κ2 =

∂κ2

∂x2
= 0
)

.

If ∂κ1/∂x1 �= 0, then F1 is a smooth surface and the principal direction P1(x)
is normal to F1 at φ(x), so that P1 is locally the Gauss map for F1. (Similar
construction works of course for the sheet F2 of the focal set).

Proposition 5.4. Away from umblic, parabolic and ridge points, the principal
frame on M corresponds to a frame on F1 with P1 the normal, N, P2 orthonor-
mal tangent vectors at φ(x), and the principal curves corresponding to P1 lift to
geodesics on F1.
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Proof. We choose the parametrization as above. The normal to F1 is P1, so that
(P1, N, P2) is a geometric frame on F1. Now consider the lift of the lines of curvature
corresponding to P1, β(t) = X(t, c) + 1/κ1(X(t, c))N(X(t, c)). Differentiating with
respect to t (just as above) we obtain a multiple of N . We reparametrize β by
arclength s so that β′(s) = N(s), with N(s) = N(X(t(s), c)). Then β′′(s) = N ′(s)
is parallel to P1 which is normal to F1, and this implies that β is a geodesic on
F1. �

The differential geometry of the focal set is studied in [6,18] using singularity
theory. The contact of F1 with a plane P is captured by the singularities of the
folding map onM with respect to P. The folding map is locally a map-germ R

2, 0→
R

3, 0. It has an S2-singularity at x if and only if φ(x) is an ordinary parabolic point
on F1, that is, the Gauss map P1 has a fold singularity. (The Sk-singularities are
those that are A-equivalent to (x, y2, y3 ± xk+1y), see [12].) The singularity of the
folding map is of type S3 if and only if φ(x) is a cusp of Gauss of F1, that is, the
Gauss map P1 has a cusp singularity.

The parabolic set of the focal set is called sub-parabolic curve in [6,18]. We have
the following geometric characterization of the sub-parabolic curve in terms of the
principal curvatures.

Proposition 5.5 [4,13]. Away from umbilic, parabolic and ridge points, and with
a parametrization of the surface with coordinate curves the lines of principal cur-
vature, a point x ∈M is on the sub-parabolic curve corresponding to the parabolic
set of the focal F1 (resp. F2) if and only if

∂κ2

∂x1
(x) = 0

(
resp.

∂κ1

∂x2
(x) = 0

)
.

Remark 5.6. Suppose that x is not an extremum of κ1 (resp. κ2): generically,
we will not have any points for which κj = ∂κj/∂x1 = ∂κj/∂x2 = 0. Then the
condition

κ1 =
∂κ1

∂x2
= 0

(
resp. κ2 =

∂κ2

∂x1
= 0
)

in Proposition 5.2(ii) for the principal frame to have a cross-cap singularity
corresponds to point which is both parabolic with κ1 = 0 (resp. κ2 = 0) and sub-
parabolic associated with a parabolic point on the focal sheet F2 (resp. F1). Observe
that with the genericity condition above the focal sheet F2 (resp. F1) is a smooth
surface.

We next consider the nature of the singular points of the principal frame map as
well as that of the principal and normal maps. We consider only the principal map
P2, the results are similar for P1. (We chose P2 so that the generic conditions that
appear in the proof can be matched with those in table 1).
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Theorem 5.7.

(i) The principal and normal maps P1, P2, N : M → S
2 have singular points

when:

P1 : κ1 = 0 or ∂κ2/∂x1 = 0,

that is, at a parabolic point on M or a parabolic point on F1

P2 : κ2 = 0 or ∂κ1/∂x2 = 0, similar interpretation.

N : κ1κ2 = 0, that is, at a parabolic point.

(ii) The frame map (P1, P2, N) has a cross-cap when

κ1 =
∂κ1

∂x2
= 0,

∂κ1

∂x1
�= 0,

∂2κ1

∂x2
2

�= 0,

or

κ2 =
∂κ2

∂x1
= 0,

∂κ2

∂x2
�= 0,

∂2κ2

∂x2
1

�= 0.

In other words, if we are at a parabolic point and sub-parabolic point corre-
sponding to the parabolic point of the other sheet of the focal set. These points
are generically distinct from the cusps of Gauss. We call them the cross-cap
points of the principal frame map. See figure 2.

(iii) The normal map N has a fold when the contact between the surface and its
tangent plane is of type A2 and a cusp when this contact is of type A3.

(iv) If κ2 �= 0 and ∂κ1/∂x2 = 0 (i.e., at a sub-parabolic point corresponding to a
parabolic point on the focal sheet F2) the principal direction map P2 has a
fold when the principal plane spanned by P1 and N and the focal set F2 at
the focal point have A2 contact, and generically, a cusp when they have A3

contact. (This case includes parabolic points κ1 = 0.)

(v) If κ2 = 0 and ∂κ1/∂x2 �= 0 at x, generically, the principal direction map P2 is
a fold unless x is a goose singularity of the orthogonal projection of M along
P2. At a goose singularity of the projection, generically it is a cusp.

(vi) If κ2 = ∂κ1/∂x2 = 0, then the map P2, generically, has a beaks singularity.

Proof. The conditions in

(i) just follow from the computation of the connection forms for the
principal frame.

(ii) We choose two of the vector fields making the frames, say P1, N
and apply the criterion in Proposition 4.1. We want kerDP1(x) =
kerDN(x) and the critical sets, that is the parabolic and subparabolic
curves, to be transverse, and these are the resulting conditions.
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Figure 2. The singular sets of the maps N, P1, P2 and the cross-cap singularities of the
principal frame map (thick dots).

(iii) This is well known. There are many interpretations/characterizations
of these cusps of Gauss or godrons as they are also known; see for
example [2].

(iv) At a regular point of F2 the principal direction P2 is normal, that is,
P2 is the Gauss map of F2, and the result follows as in (ii). (The fact
that generically there is a cusp when there is A3 contact follows from
[6]).

(v)-(vi) Here we need to dig a little deeper. We take M in Monge form φ(x, y) =
(x, y, f(x, y)) at the origin with f as in (2.1). We take the principal
directions along the x- and y-axes at the origin so a21 = 0. As κ2(0, 0) =
0, a22 = 0. The origin is not an umbilic point, so a20 �= 0. In fact, we
can choose a20 > 0 by reversing the direction of the z-axis if necessary.

As usual writing E,F,G, respectively l,m, n for the coefficients of the
first, resp. second, fundamental form in the given co-ordinate system,
the principal directions are solutions of the binary differential equation

(Em− lF )dx2 + (En− lG)dxdy + (Fn−mG)dy2 = 0,

with

E(x, y) = 1 + 4a20x
2 +O(3),
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F (x, y) = O(3),

G(x, y) = 1 +O(3),

l(x, y) = 2a20 + 6a30x+ 2a31y + 12a40x
2 + 6a41xy + 2a42y

2 +O(3),

m(x, y) = 2a31x+ 2a32y + 3a41x
2 + 4a42xy + 3a43y

2 +O(3),

n(x, y) = 2a32x+ 6a33y + 2a42x
2 + 6a43xy + 12a44y

2 +O(3).

We seek the principal direction which is parallel to φy(0, 0) at the
origin, so we can set q = dx/dy and with q a solution of

(Em− lF )q2 + (En− lG)q + (Fn−mG) = 0. (5.1)

Thus the unit principal direction on M which is parallel to φy(0, 0) at
the origin is given by

P2 =
1

(Eq2 + 2Fq +G)1/2
(qφx + φy)

with q a solution of (5.1).
We consider an A-equivalent map to P2 by projecting P2 =

(P21, P22, P23) to the tangent space of the sphere at P2(0, 0) = (0, 1, 0).
We write P̃2 = (P21, P23). The calculations are carried out using Maple
and the expression for the relevant jet of P̃2 is too lengthy to reproduce
here. We shall use the recognition criteria of singularities of map-germs
from the plane to the plane (see e.g., [16]) to identify the singularities
of P̃2 (and hence of P2). Let g(x, y) = 0 define the critical set of a map-
germ h : R

2, 0→ R
2, 0 of corank 1 and let η be a vector field such that

ηh = 0 on the critical set of h. Then, the singularity of h at the origin
is a

fold ⇐⇒ g is regular and ηg �= 0
cusp ⇐⇒ g is regular, ηg = 0 and ηηg �= 0

beaks ⇐⇒ g has an A−
1 -singularity and ηηg �= 0

The singular set Σ of P̃2 is the zero set of the function g(x, y) =
detDP̃2(x, y). The kernel of DP̃2 at points on Σ is parallel to η =
(−∂P21/∂y, ∂P21/∂x). We consider η as a germ of a vector field in R

2.
We have ∇g(0, 0) = −((2a31)/(a20))(a32, 3a33), so generically, Σ is

singular if and only if a31 = 0, equivalently, ∂κ1/∂x2(0, 0) = 0.
For (v) we have a31 �= 0. Then the map P̃2 has a fold singularity at

the origin if and only if ηg(0, 0) �= 0, which we found to be equivalent
to a2

32 − 3a31a33 �= 0.
If a2

32 − 3a31a33 = 0, then P̃2 has a cusp singularity if and only if
ηηg(0, 0) �= 0, equivalently,

a32(27a41a
3
33 − 18a42a32a

2
33 + 9a43a

2
32a33 − 4a44a

3
32) �= 0.

We observe that a32 = 0 if and only if ∂κ2/∂x1(0, 0) = 0. As we have
already κ2 = ∂κ1/∂x2 = 0 at the origin, generically a32 �= 0. Therefore,
P̃2 has a cusp singularity at precisely the goose singularities of the
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Figure 3. The generic singularities of the principal map P2 : M → S
2. The singularities

in bracket on the parabolic set are those of the orthogonal projection along the unique
asymptotic direction.

orthogonal projection along P2 (compare above conditions with those
in table 1).

For (vi), we have a31 = 0. Then,

j2g(x, y) =
2
a2
20

(a32x+ 3a33y)(3a20a41x+ (2a2
32 − 3a30a32 + 2a20a42)y)

which generically has a Morse singularity of type A−
1 . We have

ηηg(0, 0) = −12a3
32a41/a

3
20, and generically this is not zero. Therefore,

the map-germ P̃2 has a beaks singularity at the origin. �

5.2. Asymptotic and normal frame

We consider here the asymptotic and normal frame; we already know that any
critical point of the frame map must be at a parabolic point ofM , and this is exactly
the curve distinguishing two and zero asymptotic directions. For completeness, we
compute the connection forms in this case, but to carry out a detailed analysis, we
require different tools.

Proposition 5.8. For the asymptotic frame obtained from a principal frame by
rotation as in proposition 5.2, we find that

∂θ

∂xj
=

1
2κ2(κ2 − κ1) tan θ

(
κ1
∂κ2

∂xj
− κ2

∂κ1

∂xj

)
,

where tan2 θ = −κ1/κ2.

Proof. The sectional curvature in a direction inclined at an angle θ to the principal
direction P1 is κ1 cos2 θ + κ2 sin2 θ by Euler’s Theorem. An asymptotic direc-
tion is one in which this sectional curvature is zero so assuming say κ2 �= 0, we
can set tan2 θ = −κ1/κ2. Note that generically, there are no flat umbilics, that
is points where all sectional curvatures vanish so this assumption is valid. If
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we write r = −κ1/κ2 say then ∂r/∂xj = 2 tan θ(1 + tan2 θ)∂θ/∂xj so ∂θ/∂xj =
∂r/∂xj/2 tan θ(1 + tan2 θ) which reduces to the required result. �

Proposition 5.9. Let A be a smooth unit vector field determining asymptotic direc-
tions in a neighbourhood of a hyperbolic point q ∈M . Then the map A : M, q → S

2

has a singular point if and only if the asymptotic curve determined by A has a
geodesic inflection, and the kernel of the derivative of A at q contains A(q), in
other words, we are on the flecnodal curve of M .

Proof. For any smooth unit speed curve γ : I →M through q = γ(0), we have
A(γ(s)) ·A(γ(s)) ≡ 1, A(γ(s)) ·N(γ(s)) ≡ 0. Differentiating and evaluating at 0 we
find that DA(q)(v) ·A(q) = 0, DA(q)(v) ·N(q) +A(q) · Sq(v) = 0 where v = γ′(0).
Let B be a vector field making A, B, N an orthonormal triple. If v = A(q)
then as A(q) · Sq(A(q)) = 0 by definition of an asymptotic direction we find that
DA(q)(A(q)) is orthogonal to both A(q) and N(q). So either DA(q)(A(q)) is zero
or it is a non-zero multiple of B(q). Suppose the latter and that we are at a singular
point of A. Then the image of DA(q) is generated by B(q) and the second equation
above reduces to A(q) · Sq(v) = 0 for all v ∈ TqM . It follows that Sq is singular,
which contradicts our hypothesis that q is hyperbolic. So DA(q)(A(q)) = γ′′(0) = 0,
where γ is the asymptotic curve through q determined by A; in particular, this
curve has a geodesic inflection. Conversely, if we have a geodesic inflection then
γ′′(0) ·B(q) = 0; but we already know that γ′′(0) is orthogonal to A(q) and N(q)
so γ′′(0) = DA(q)(A(q)) = 0 and A has a singular point. �

At each hyperbolic point on M , there are two asymptotic directions, at each
parabolic point one and none in the elliptic region. Therefore, near each hyperbolic
point, we can find 2 sets of frames determined by an asymptotic direction A, a
tangent direction orthogonal to A and the unit normal. We want to extend these
families of frames across the parabolic set. For a generic surface M the parabolic
set is smooth and we can consider the set of asymptotic directions in the projective
tangent bundle M̃ ⊂ PTM to obtain a double cover of the non-elliptic points,
ramified over the parabolic curve with each point of the double cover giving a
frame, that is, we obtain a smooth mapping M̃ → F. In particular, we have the maps
Ã, Ñ : M̃ → S

2 given by Ã(q) = A(π(q̃)) and Ñ(q) = N(π(q̃)), where π : PTM →
M is the canonical projection.

Taking a local chart in PTM , the surface M̃ is given by

M̃ = {(x, y, p) : l(x, y)p2 + 2m(x, y)p+ n(x, y) = 0}.
For a generic surface M , M̃ is a smooth 2-dimensional manifold, with the projection
M̃ →M having a fold singularity along the set consisting of parabolic points and
their unique asymptotic direction.

To carry out the next set of calculations, we shall work with the representation
of F as Δ = {(a, b) ∈ S

2 × S
2 : a · b = 0}.

Lemma 5.10. The tangent space to Δ ⊂ S
2 × S

2 at (a, b) is generated by

{(a ∧ b, 0), (0, a ∧ b), (b,−a)}.
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Proof. The set Δ is given by a · a = b · b = 1, a · b = 0, so differentiating a path
(a(t), b(t)) in S

2 × S
2 we find that (a′(0), b′(0)) = (u, v) is tangent at (a, b) if and

only if u · a = v · b = u · b+ v · a = 0. One checks that the three vectors above satisfy
these conditions and are independent. �

We consider now the frame (Ã, Ñ) : M̃ → Δ at a point q̃ ∈ M̃ corresponding to
a parabolic point q ∈M .

Theorem 5.11. Let q ∈M be a parabolic point but not a cusp of Gauss and let A0

be the unique asymptotic direction at q, so q̃ = (q, [A0]).

(i) The germ Ã : M̃, q̃ → S
2 has a fold singularity unless q is a goose singularity

of the orthogonal projection along A0. At the point corresponding to a goose
singularity the map Ã has a cusp singularity.

(ii) The germ Ñ : M̃, q̃ → S
2 is not finitely-A-determined.

(iii) The frame germ (Ã, Ñ) : M̃, q̃ → Δ ⊂ S
2 × S

2 is an immersion.

Proof. We take M in Monge form φ(x, y) = (x, y, f(x, y)) at the origin with f as
in (2.1). We take the asymptotic direction at the origin, which we assume to be a
parabolic point, along (0, 1, 0), so a21 = 0 and a22 = 0.

The height function on M in the normal direction (0, 0, 1), that is, the function
f , has an A2-singularity at the origin (the origin is not a cusp of Gauss). Therefore,
a20 �= 0 and a33 �= 0.

The Gauss map is given by

N =
1

(f2
x + f2

y + 1)1/2
(−fx,−fy, 1)

and choosing a chart in the target by projecting to the tangent plane to S
2 at

(0, 0, 1), we can compute its initial terms

N = (−2a20x− 3a30x
2 − 2a31xy − a32y

2 +O(3),−a31x
2 − 2a32xy − 3a33y

2 +O(3)).

(i) As usual writing E,F,G, respectively l,m, n for the coefficients of the first,
resp. second, fundamental form in the given co-ordinate system, the asymptotic
directions are solutions of the binary differential equation

l(x, y)dx2 + 2m(x, y)dxdy + n(x, y)dy2 = 0,

with

l(x, y) = 2a20 + 6a30x+ 2a31y + 12a40x
2 + 6a41xy + 2a42y

2 +O(3),

m(x, y) = 2a31x+ 2a32y + 3a41x
2 + 4a42xy + 3a43y

2 +O(3),

n(x, y) = 2a32x+ 6a33y + 2a42x
2 + 6a43xy + 12a44y

2 +O(3).

As l(0, 0) �= 0, we can set p = dx/dy and the equation of the asymptotic directions
becomes

l(x, y)p2 + 2m(x, y)p+ n(x, y) = 0. (5.2)
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Thus a unit asymptotic direction on M is given by

A =
1

(Ep2 + 2Fp+G)1/2
(pφx + φy)

with p a solution of (5.2).
As seen above the surface M̃ = {(x, y, p) : l(x, y)p2 + 2m(x, y)p+ n(x, y) = 0} is

smooth and is the graph of a function y = y(x, p). We find (using Maple) that

j3y(x, p) = t10x+ t20x
2 + t21xp+ t22p

2 + t30x
3 + t31x

2p+ t32xp
2 + t33p

3,

with

t10 = − 1
3a33

a32,

t20 = − 1
9a3

33

(2a44a
2
32 + 3a42a

2
33 − 3a43a32a33),

t21 = − 2
9a2

33

(3a31a33 − a2
32),

t22 = − 1
3a33

a20,

t30 =
1

81a5
33

(−24a2
44a

3
32 − 36a44a32a42a

2
33 + 54a44a

2
32a43a33 + 27a53a32a

3
33+

27a43a
3
33a42 − 27a2

43a
2
33a32 − 27a52a

4
33 − 18a54a

2
32a

2
33 + 10a55a

3
32a33),

t31 = − 1
9a4

33

(9a41a
3
33 − 6a43a

2
33a31 + 5a43a

2
32a33 + 8a44a32a31a33 − 4a44a

3
32

− 6a42a32a
2
33),

t32 = − 1
27a3

33

(4a3
32 − 15a31a32a33 − 9a43a20a33 + 12a44a32a20 + 27a30a

2
33),

t33 =
2

9a2
33

a32a20.

As before when considering the 3-jet of the map Ã : M̃ → S
2, with Ã(x, p) =

A(x, y(x, p)), we choose a chart in the target by projecting to the tangent space,
and the 3-jet is given by

j3(Ã1, Ã3) =
(
p− 1

2
p3,

3a33a31 − a2
32

3a33
x2 + 2a20xp

+
27a41a

3
33 − 18a42a32a

2
33 + 9a43a

2
32a33 − 4a44a

3
32

27a3
33

x3

+
27a30a

2
33 − 6a31a32a33 + a3

32

9a2
33

x2p

)
.

Here we do not need to use the recognition criteria in the proof of Proposition 5.7
as elementary changes of coordinates in the source and target show that this 3-jet
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is A(3)-equivalent to

(
p,

3a33a31 − a2
32

3a33
x2 + 2a20xp +

27a41a3
33 − 18a42a32a2

33 + 9a43a2
32a33 − 4a44a3

32

27a3
33

x3
)

.

We can deduce immediately that Ã has a singularity at the origin of type

fold ⇐⇒ 3a31a33 − a2
32 �= 0;

cusp ⇐⇒ 3a31a33 − a2
32 = 0, 27a41a

3
33 − 18a42a32a

2
33 + 9a43a

2
32a33 − 4a44a

3
32 �= 0.

The asymptotic direction at the origin is along (0, 1, 0) and the projection of M
along this direction is the map-germ P (x, y) = (x, f(x, y)). The conditions for Ã to
be a fold (resp. cusp) are precisely those for P to have a lips/beaks (resp. goose)
singularity, see table 1.

(ii) The Gauss map N : M → S
2 has a fold singularity at an ordinary point on

the parabolic curve (i.e., away from the cusps of Gauss). The map (x, p) �→
(x, y(x, p)) is clearly a fold map (t22 �= 0). Its discriminant is the critical set
of the Gauss map. It follows that the composite map Ñ(x, p) = N(x, y(x, p))
is not finitely-A-determined along its critical set. For if it was A-finite then
by Gaffney’s geometric criterion for finite determinacy its complexification
would be stable off a point, see [17]. But it is not hard to see that along the
set of critical values of the composite the local multiplicity is at least 4, which
means that the mapping fails to be stable.

(iii) We have Ã0 = Ã(0, 0) = (0, 1, 0) and Ñ0 = Ñ(0, 0) = (0, 0, 1). By lemma 5.10,
the tangent space to Δ ⊂ S

2 × S
2 at (Ã0, Ñ0) is spanned by (Ã0 ∧ Ñ0; 0),

(0; Ã0 ∧ Ñ0) and (Ñ0,−Ã0), that is by

((1, 0, 0); (0, 0, 0)), ((0, 0, 0); (1, 0, 0)), ((0, 0, 1); (0,−1, 0)).

Composing the map (Ã, Ñ) : M̃ → Δ ⊂ S
2 × S

2 with the projection to
T(Ã0,Ñ0)

Δ yields an A-equivalent map-germ. If we write Ã = (Ã1, Ã2, Ã3)
and Ñ = (Ñ1, Ñ2, Ñ3) then

(Ã, Ñ) ∼A (Ã1, Ñ1,−Ã3 + Ñ2).

The 1-jet of the (Ã1, Ñ1,−Ã3 + Ñ2) is (p,−2a20x, 0), so (Ã, Ñ) is an immer-
sion. (We are assuming that a20 �= 0, that is, κ1(0, 0) �= 0; generically this is
the case.) �

Theorem 5.12. Let q be a cusp of Gauss of the surface M, with q̃ the corresponding
point on M̃ .

(i) Generically, the germ Ã : M̃, q̃ → S
2 has a beaks singularity.

(ii) The germ Ñ : M̃, q̃ → S
2 is not finitely-A-determined.

(iii) Generically, the frame map (Ã, Ñ) : M̃, q̃ → Δ ⊂ S
2 × S

2 has an S1-
singularity.
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Proof. We follow the same steps as in the proof of Theorem 5.11. Here, we
take a21 = a22 = a33 = 0 and 4a20a44 − a2

32 �= 0 (the height function has an
A3-singularity). One easily checks that the set M̃ is a smooth surface if and only if
a32 �= 0, that is, if and only if the parabolic set on M is a smooth curve. When this
is the case it can be parametrized as the graph of a smooth function x = x(y, p)
with

j3x(y, p) =− 6a44

a32
y2 − 2yp− a20

a32
p2 +

1
a2
32

(2(9a43a44 − 5a55a32)y3+

3(4a31a44 + a43a32)y2p+ 3(a43a20 + a31a32)yp2 + 2a31a20p
3).

(i) The map-germ Ã = (Ã1, Ã2, Ã3) is A-equivalent to (Ã1, Ã3) whose 3-jet is(
p− 1

2
p3,−8a44y

3 − 3
a32

(4a20a44 + a2
32)py

2 − 6a20p
2y − 2a2

20

a32
p3

)
.

Provided that a44a32 �= 0 this is A(3)-equivalent to(
p,−8a44y

3 +
3(a2

32 − 4a20a44)2

8a44a2
32

yp2

)
,

which is a beaks singularity. The non-vanishing of a32a44 is a necessary
condition for the projection along the asymptotic direction to have a gulls
singularity, see table 1. (Generically, the projection has a gulls singularity at
a cusp of Gauss.)

(ii) The statement follows, as in the proof of Theorem 5.11(ii).

(iii) Following the proof of Theorem 5.11(iii), (Ã, Ñ) is A-equivalent to
(Ã1, Ñ1,−Ã3 + Ñ2) which has a 3-jet A(3)-equivalent to(

p,
12a20a44 − a2

32

a32
y2, 16a44y

3 − 36a20(a2
32 − 4a20a44)2

(12a20a44 − a2
32)2

yp2

)

when 12a20a44 − a2
32 �= 0. This is an S1-singularity if furthermore a44 �= 0.

Both conditions are satisfied for generic surfaces at cusps of Gauss. The
equality 12a20a44 − a2

32 = 0 is the condition that the asymptotic curves have
a folded saddle-node singularity (see [5]). �

Remark 5.13. Theorem 5.12(iii) gives a geometric setting where the singularity S1

(which is of Ae-codimension 1) occurs stably.

6. Singular foliations of the sphere

There are geometric foliations on the surface M obtained by integrating the asymp-
totic (resp. principal) direction fields. We are interested in the image of these
foliations in the sphere S2 by the asymptotic (resp. principal) map. We also com-
ment on the image of the foliations by the Gauss map. To do this, we consider the
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Figure 4. The generic types of divergent mapping diagrams.

foliation on the surface M̃ for the asymptotic curves and on M for the principal
curves; when the foliation is regular, it is given locally as the level sets of a sub-
mersion μ. Let g denote the map Ã, Pi, i = 1, 2, or N and consider the divergent
diagram (f, g):

R, 0
μ←− R

2, 0
g−→ R

2, 0.

The above diagrams are studied by Dufour in [8,9]. Two such germs (g1, μ1),
(g2, μ2) of divergent diagrams are equivalent if the diagram

R, 0
μ1←− R

2, 0
g1−→ R

2, 0
↓h ↓k ↓l

R, 0
μ2←− R

2, 0
g2−→ R

2, 0

commutes for some germs of diffeomorphisms h, k, l.

Theorem 6.1 [8,9]. There are six generic types of divergent mapping diagrams and
these are characterized as follows (figure 4):

(1) g is a diffeomorphism, μ is a submersion;

(2) g is a diffeomorphism, μ has a Morse singularity;

(3) g has a fold singularity, μ restricted to the singular set Σg of g is regular and
(g, μ) : R

2, 0→ R
3, 0 is regular;

(4) g has a fold singularity, μ|Σg
has a Morse singularity, and (g, μ) is regular;

(5) g has a fold singularity, (g, μ) is a cross-cap whose double points curve is
transverse at 0 to the plane R

2 × {0} in R
3;

(6) g has a cusp singularity and (g, μ) is regular.

In [10], the authors studied divergent diagrams induced by germs of first order
ordinary differential equations (or, briefly, equations) with independent first inte-
gral. An equation is defined to be the germ of the surface N = F−1(0), with
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F : PT ∗
R

2, z → R, 0 a germ of a smooth function. The projectivised cotangent
bundle PT ∗

R
2 of R

2 is endowed with the canonical contact structure given by the
1-form α = dy − pdx. The surface N is supposed to be smooth in [10], so is locally
the image of a germ of an immersion f : R

2, 0→ PT ∗
R

2, z. The equation is then
represented by the germ f .

Let π : PT ∗
R

2 → R
2 be the natural projection. Two germs of immersions (equa-

tions) f : R
2, 0→ PT ∗

R
2, z and f ′ : R

2, 0→ PT ∗
R

2, z′ are said to be equivalent if
there exist germs of diffeomorphisms ψ : R

2, 0→ R
2, 0 and φ : R

2, π(z)→ R
2, π(z′)

such that φ̂ ◦ f = f ′ ◦ ψ, where φ̂ : PT ∗
R

2, z → PT ∗
R

2, z′ is the lift of φ.
Suppose that the equation f has a first integral, that is, there exists a germ

of a submersion μ : R
2, 0→ R, 0 such that dμ ∧ f∗α = 0. As the solutions of the

equation in the plane are the images under π ◦ f of the level sets of μ, it is natural to
consider the divergent mapping diagram R, 0

μ←− R
2, 0

π◦f−→ R
2, 0. Consider

in general a divergent mapping diagram (g, μ)

R, 0
μ←− R

2, 0
g−→ R

2, 0

where g is a smooth map germ and μ is a germ of a submersion. The diagram (g, μ)
is called an integral diagram if there exists a germ of an immersion f : R

2, 0→
PT ∗

R
2, z such that dμ ∧ f∗α = 0 and g = π ◦ f [10]. Then (g, μ) is said to be

induced by f . Suppose given two germs of equations f and f ′ with first integrals
and with the set of critical points of π ◦ f and π ◦ f ′ nowhere dense. Then f and
f ′ are equivalent as equations if and only if the diagrams (π ◦ f, μ) and (π ◦ f ′, μ′)
are equivalent as mapping diagrams ([10, proposition 2.8]). (The ‘if’ part of [10,
proposition 2.8] remains true if in the definition of f having a first integral one
allows μ to have singularities. The ‘only if’ part holds when μ is a submersion.) A
weaker equivalence relation between integral diagrams is introduced in [10]) and
the following result proved there.

Theorem 6.2 ([10, theorem B]). An integral diagram of generic type is equivalent
to one of the following integral diagrams (g, μ):

(1) Non-singular: g = (u, v), μ = v.

(2) Regular fold: g = (u2, v), μ = v − 1/3u3.

(3) Clairaut fold: g = (u, v2), μ = v − 1/2u.

(4) Regular cusp: g = (u3 + uv, v), μ = 3/4u4 + 1/2u2v + β ◦ g, where β(x, y) is
a germ of a smooth function with β(0) = 0 and βy(0) = ±1.

(5) Clairaut cusp: g = (u, v3 + uv), μ = v + β ◦ g, where β(x, y) is a germ of a
smooth function with β(0) = 0.

(6) Mixed fold: g = (u, v3 + uv2), μ = 1/2v2 + β ◦ g, where β(x, y) is a germ of
a smooth function with β(0) = 0 and βx(0) = 1.

The configurations of the solutions of the associated equations are as shown in
figure 5, (1)–(6).
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Figure 5. Configurations of generic integral diagrams (1)–(6) and of the Clairaut
cross-cap (7).

The case when the surface N of the equation has a cross-cap singularity is studied
in [7]. The generic model is the Clairaut cross-cap g = (u, 1/4v2), μ = v − 1/2u2

([7, theorem 2.7]); see figure 5(7).

Remark 6.3. It is worth observing that there are pairs (g, μ) which are generic as
mapping diagrams but not as integral diagrams and vice-versa (compare figures 4
and 5).

6.1. Images of the principal curves by the principal map

We start by considering the image of the principal curves in S
2 by the principal

map, say P2. If P2 is a regular map, then it will map the principal foliation F2

associated with P2 (and F1 associated with P1) to a regular foliation on the unit
sphere. We shall suppose that the map P2 is singular. Recall from proposition 5.7
that P2 has critical points along the sub-parabolic and parabolic curves (κ2 = 0 or
∂κ1/∂x2 = 0). We take a coordinate system where the coordinate curves represent
the foliations F1 and F2. The derivative map of P2 at a point q with respect to the
standard basis for TqM and basis {P1, N} for the tangent space to S

2 at P2(x) is⎛
⎝ 1
κ2 − κ1

∂κ1

∂x2

1
κ2 − κ1

∂κ2

∂x1
0 κ2

⎞
⎠ .

Theorem 6.4.

(1) Away from the beaks singularities of the map P2, the configurations of the
images of the principal curves of the foliation F2 of a generic surface by
the principal map P2 are those of a generic divergent diagram and are as
follows:
(i) When κ2 �= 0 and ∂κ1/∂x2 = 0:
• At a fold singularity of P2:

– at most points on the sub-parabolic curve: figure 4(3).
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Figure 6. Images of the foliation F2 by the principal map P2.

– at isolated points on the sub-parabolic curve: figure 4(4).

• At a cusp singularity of P2: figure 4(6).

(ii) When κ2 = 0 and ∂κ1/∂x2 �= 0 at q:
• At a fold singularity of P2:

– at most points on the parabolic curve: figure 4(3).

– at a cusp of Gauss: figure 4(4)

– at a cross-cap point of the principal frame: figure 4(5).

• At a cusp singularity of P2: figure 4(6).

(2) At a beaks singularity of P2, that is, when κ2 = ∂κ1/∂x2 = 0 at q, the con-
figurations are not one of a generic divergent diagrams. They are as in
figure 7.

See figure 6.

Proof. (1) We take the point q to be the origin.
(i) The sub-parabolic curve associated with the map P2 is given by

∂κ1/∂x2 = 0 and the kernel of DP2 at each point on the sub-parabolic
curve is parallel to (1, 0). At a fold singularity of P2, the sub-parabolic
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curve is transverse to (1, 0), that is, ∂2κ1/∂x1∂x2 �= 0 at the point of
interest. At generic points of the sub-parabolic curve, we also have
∂2κ1/∂x

2
2 �= 0, that is, the sub-parabolic curve is transverse to the folia-

tion F2. In this case, we are in the case (3) of theorem 6.1 and the image
of the foliation F2 by P2 is as in figure 4(3).
At isolated points on the parabolic curve, which again we can translate
to the origin, we can have ∂2κ1/∂x

2
2(0, 0) = 0. Then the contact of the

sub-parabolic curve with the leaf x1 = 0 of F2 is of order 2 (ordinary
tangency) if and only if ∂3κ1/∂x

3
2(0, 0) �= 0. This is, of course, satisfied

for generic surfaces, so we are in the case (4) of theorem 6.1 and the image
of the foliation F2 by P2 is as in figure 4(4).
If the origin is a cusp singularity of the map P2, the foliation F2 is
transverse to the sub-parabolic curve. The map (P2, x1) is regular, so
we are in the case (6) of theorem 6.1 and the image of the foliation F2

by the map P2 is as in figure 4(6).

(ii) Here we are on that part of the parabolic curve κ2 = 0 and the kernel of
DP2 at each point is parallel to (∂κ2/∂x1,−∂κ1/∂x2). When P2 has a fold
singularity at q and ∂κ2/∂x1(q) �= 0 (i.e., q is not a sub-parabolic point
associated with P1), the line of principal curvature in F2 is transverse
to the kernel of P2. If the line of principal curvature is also transverse
to the parabolic, that is, ∂κ2/∂x2(q) �= 0, then the configuration is as in
figure 4(3). If it is tangent to the parabolic set (∂κ2/∂x2(q) = 0; occurs
at a cusp of Gauss), we have generically the configuration in figure 4(4).
When ∂κ2/∂x1(q) = 0 (i.e. at a cross-cap point of the principal frame),
we are generically in the case 5 of theorem 6.1, so the configuration is as
in figure 4(5). Therefore, the image of a line of curvature in F2 is singular.
If P2 has a cusp singularity, then generically the line of curvature is trans-
verse to the parabolic set (which is tangent to the kernel of DP2) so the
configuration is as in figure 4(6).

(2) When P2 has a beaks singularity, the leaves of the foliation F2 are transverse
to the parabolic and sub-parabolic curves as well as to the kernel of DP2.
We can make changes of coordinates in the source and target and take P2

in the A-normal form g = (x, x2y − y3). We have a divergent diagram (g, μ)
which is not one of the generic cases in theorem 6.1. Here, we have two possible
configurations depending on the position of the fibre μ−1(0). It can be mapped
by g to the regions where each point has one pre-images by g (figure 7 left)
or to the regions where each point has three pre-images (figure 7 right). We
consider an example of μ for each case and draw the images of the fibres of
μ by g. �

Theorem 6.5. For a generic surface and away from parabolic points or at generic
parabolic points, the images of the lines of principal curvature in F2 by the map P2

are solutions of a first order differential equation.

Proof. The lines of principal curvature are smooth curves as we are away from
umbilic points, so locally they are the fibres of some submersion μ : M, q → R, 0.
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Figure 7. Image of the foliation F2 by P2 at the intersection of the parabolic and
sub-parabolic curves (thin curves; images of the parabolic and sub-parabolic

curves in thick).

We need to show that the divergent diagram (P2, μ) is an integral diagram. That is,
we need to construct a germ of an immersion f : M, q → PT ∗

S
2 such that π ◦ f =

P2 and dμ ∧ f∗α = 0, where π : PT ∗
S

2 → S
2 is the canonical projection of the

cotangent bundle and α is the canonical 1-form in PT ∗
S

2. We take a local coordinate
system in M where the coordinate curves are the lines of principal curvatures.
Suppose that a line of curvature in F2 is parametrized by (c1, t+ c2). Then we
require that its image by f to be a Legendrian curve, that is, we require that

f(c1, t+ c2) = (P2(c1, t+ c2), [(P2(c1, t+ c2))′])

= (P2(c1, t+ c2)),
[
∂P2

∂x2
(c1, t+ c2)

])

=
(
P2(c1, t+ c2),

[(
1

k2 − k1

∂κ2

∂x1
P1 + κ2N

)
(c1, t+ c2)

])
.

For this reason, we define f : M, q → PT ∗
S

2 by

f(x1, x2) =
(
P2(x1, x2),

[
∂P2

∂x2
(x1, x2)

])

=
(
P2(x1, x2),

[(
1

k2 − k1

∂κ2

∂x1
P1 + κ2N

)
(x1, x2)

])
.

We need f to be a germ of an immersion (or of a cross-cap in the case of Clairaut
cross-cap). At points where P2 is regular f is an immersion, so we only need to
analyse the cases when P2 is singular. Following proposition 5.7, we have three
cases to consider.

Case (i): ∂κ1/∂x2 = 0, κ2 �= 0 at q. Here, ∂P2/∂x1(q) = 0 and ∂P2/∂x2(q) �= 0,
so we need ∂2P2/∂x1∂x2(q) �= 0. Differentiating and doting with P1 and N , we find
that ∂2P2/∂x1∂x2(q) = 0 if and only if(

∂

∂x1

(
1

κ2 − κ1

∂k2

∂x1

)
− κ1κ2

)
(q) = 0 and

(
∂k2

∂x1

(
1 +

1
(κ2 − κ1)2

∂k2

∂x1

))
(q) = 0.
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As we have already one condition ∂κ1/∂x2(q) = 0, so for generic surfaces, the
above two equalities do not hold simultaneously. Therefore, in this case, for generic
surfaces, f is a germ of an immersion.

Case (ii): ∂κ1/∂x2 �= 0, κ2 = 0 at q. Then ∂P2/∂x1(q) and ∂P2/∂x2(q) are parallel
to P1(q), so we need ∂2P2/∂x1∂x2(q) and ∂2P2/∂x

2
2(q) to be linearly independent.

The two vectors can become dependent at isolated points on the parabolic set. These
points are in general distinct from the cusp of Gauss (where the configuration in
as in figure 4(4)), so we do not have a Clairaut cross-cap at such points (i.e. f is
a cross-cap singularity; figure 5(7)). At such points (P2, μ) is a generic divergent
diagram but is not a generic integral diagram (see remark 6.3).

Case (iii): ∂κ1/∂x2 = κ2 = 0 at q. This is similar to case (i) as ∂P2/∂x1(q) =
0 and ∂P2/∂x2(q) �= 0. Generically, ∂2P2/∂x1∂x2(q) �= 0, so (P2, μ) is indeed an
integral diagram but is not a generic one (the configurations in figure 7 are not
part of figure 5). �

We consider now the image of the foliation F1 by P2.

Theorem 6.6. Suppose that q is a singular point of the map P2 but not of the map
P1. Then the images of the lines of principal curvature in F1 by P2 are solutions of
a first-order differential equation with an integral diagram of the following type.

(i) When κ2 �= 0 and ∂κ1/∂x2 = 0 at q
– At a fold singularity of P2: Regular fold (figure 5(2)).

– At a cusp singularity of P2: Regular cusp (figure 5(4)).

(ii) When κ2 = 0 and ∂κ1/∂x2 �= 0 at q:
– At a fold singularity of P2: Clairaut Fold (figure 5(3)).

– At a cross-cap singularity of the principal frame: Clairaut cross-cap
(figure 5(7)).

– At a cusp singularity of P2: Clairaut cusp (figure 5(5)).

(ii) When κ2 = ∂κ1/∂x2 = 0 at q: Mixed fold (figure 5(6)).

See figure 8.

Proof. Suppose that a line of curvature in F1 is parametrized by (t+ c1, c2). Fol-
lowing the proof of Theorem 6.5 and using the notation of that proof, we need to
construct an immersion f : M → PT ∗

S
2 which maps (t+ c1, c2) to a Legentrian

curve, so

f(t+ c1, c2) = (P2(t+ c1, c2), [(P2(t+ c1, c2))′])

=
(
P2(t+ c1, c2),

[
∂P2

∂x1
(t+ c1, c2)

])
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Figure 8. Images of the foliation F1 by the principal map P2.

=
(
P2(t+ c1, c2),

[
∂κ1

∂x2
(t+ c1, c2)P1(t+ c1, c2)

])

= (P2(t+ c1, c2), [P1(t+ c1, c2)]) when
∂κ1

∂x2
�= 0.

For this reason, we define f : M, q → PT ∗
S

2 by

f(x1, x2) = (P2(x1, x2), [P1(x1, x2)]).

We have dμ ∧ f∗α = 0 by construction, where the fibres of μ are the leaves of F1.
We only need to show that f is a germ of an immersion. This is straightforward
using the fact that

DP1 =

⎛
⎜⎜⎝

1
κ2 − κ1

∂κ1

∂x2
κ1

1
κ2 − κ1

∂κ2

∂x1
0

⎞
⎟⎟⎠ , DP2 =

⎛
⎝ 1
κ2 − κ1

∂κ1

∂x2

1
κ2 − κ1

∂κ2

∂x1

0 κ2

⎞
⎠

and the assumption that P1 is not singular when P2 is.
It is now a matter of identifying the type of the integral diagram from theorem 6.2.

The arguments for the cases (i) and (ii) are similar to those in the proof of Propo-
sition 6.4 and are omitted. For (iii) the map P2 has a beaks singularity, the lines
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Figure 9. From left to right: family of cusps, folded saddle, folded node and folded focus.

of curvature in F1 are transverse to the two components of the critical set of P2,
are tangent to the kernel of DP2 along one component of the critical set of P2 and
transverse to it along the other. This is case 6 in theorem 6.2. �

Remark 6.7.

(1) At point when both P2 and P1 are singular, the map f is not an immersion.

(2) In the cases in theorem 6.6 (ii), the integral diagram (P2, μ) is also a generic
divergent diagram. For the cases (i) and (iii) of the same theorem, (P2, μ) is
not a generic divergent diagram but is a generic integral diagram.

6.2. Images of the lift of the asymptotic curves by the map Ã

Finally, we consider the asymptotic curves on the surface, which yield the stan-
dard family of cusps near an ordinary point of the parabolic set (figure 9, left) and
generically there is one of the final three topological configurations in figure 9 at
a cusp of Gauss. The asymptotic curves are lifted to a foliation on the surface M̃
which are integral curves of a vector field ξ. The vector field ξ is regular at a lift
of an ordinary parabolic point and generically has a saddle, node or focus singu-
larity at a cusp of Gauss with the singularities of the asymptotic curves labelled,
accordingly, folded saddle, node or focus.

Proposition 6.8.

(1) Suppose that q ∈M is a parabolic point but not a cusp of Gauss, that is, the
Gauss map has a fold at q, let q̃ denote the corresponding point of M̃ . Then
the images of the integral curves of ξ near q̃ by the map Ã : M̃ → S

2 are those
of a generic divergent diagram as well as of a generic integral diagram and
are as follows:
(i) If q is not a goose singularity of the orthogonal projection of M along the

asymptotic direction: figure 4(3) or figure 5(3).

(ii) If q is a goose singularity of the projection of M along the asymptotic
direction: figure 4(6) or figure 5(5).
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Figure 10. The Beaks-Saddle cases. Top figures: the configurations of the integral curves
of ξ on M̃ in thin, the critical set of g in thick, and the set S(g) in discontinuous. Bottom
figures: the images of configurations of the top figures in S

2 by the map Ã.

(2) At a cusp of Gauss, the images of the integral curves of ξ by the map Ã are
neither those of a generic divergent diagram nor those of a generic integral
diagram. They are generically as in figures 10, 11, 12 at respectively a saddle,
node, focus singularity of ξ.

Proof.

(1) The integral curves of ξ are smooth so are the level sets of a submersion g. We
consider the divergent diagram R, 0

μ←− M̃, q̃
Ã−→ S

2, Ã(q̃) . The map

Ã is locally a fold in case (i) and a cusp in case (ii) (theorem 5.11). We need
to prove that the germ (Ã, μ) : M̃, q̃ → S

2 × R is regular (has maximal rank)
at q̃ (see theorem 6.1). Following the proof of Theorem 5.11, an asymptotic
curve (x(t), y(t)) at a parabolic point q = (x(0), y(0)) is lifted to the curve
γ(t) = (x(t), y(t), p(t)) on M̃ , with γ(0) = q̃ and γ′(0) a multiple of (0, 0, 1).
Of course g has the integral curve γ as a fibre, so the condition for regularity
is that DÃ(γ(0))γ′(0) �= 0 in other words, (Ã ◦ γ)′(0) �= 0 (in fact it is clear
from the picture that we need Ã ◦ γ to be an immersion at 0). This holds if
and only if ∂Ã/∂p(q̃) �= 0, and this follows from the proofs of Theorems 5.11,
and 5.12.

To show that (Ã, μ) is an integral diagram, we parametrize M by
(x, p) �→ (x, y(x, p), p) as in the proof Theorem 5.11 and consider the map
germ f : R

2, 0→ PT ∗
S

2 ≡ PT ∗
R

2 given by f(x, y) = (x, y(x, p), p) (taking
an appropriate affine chart in PT ∗

R
2). Clearly, f is a germ of an immersion,

(μ, π ◦ f) = (Ã, μ) and dμ ∧ f∗α = 0 by construction.

(2) At a cusp of Gauss, Ã has a beaks singularity (theorem 5.12), there are nearby
flecnodal points where A is singular, and the lifted field has a saddle/node
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Figure 11. The Beaks-Node cases. Top figures: the configurations of the integral curves of
ξ on M̃ in thin, the critical set of g in thick, and the set S(g) in discontinuous. Bottom
figures: the images of configurations of the top figures in S

2 by the map Ã.

or focus singularity. Here, we certainly have a functional (even topological)
modulus for the image of the asymptotic foliation in S

2. However, one can
still obtain some information on the configuration of the foliation in S

2. We
change coordinates and fix Ã in normal form g(u, v) = (u, u2v − 1/3v3). The
critical set Σ(g) of g is given by (u− v)(u+ v) = 0, which is two trans-
verse lines through the origin. The discriminant Δ(g) of g is the union of
the curve v = 2/3u3 and v = −2/3u3. The discriminant locally separates
the plane into regions with 1 or 3 pre-image points by g. The set g−1(Δ)
consists of Σ(g) together with a set denoted by S(g) which is the union
of the two lines v = 2u and v = −2u. The set S(g) locally separates the
source into regions which are mapped to those that have 1 or 3 pre-images
by g.

In the plane (u, v), we have a vector field η with an elementary singularity
at the origin and we seek to draw the images of the integral curves of η under
the map g. When η has a saddle, the image foliation is determined by the
relative position of the tangent lines to the separatrices with respect to the
curves Σ(g) and S(g) (figure 10, top figures). When it has a node one has to
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Figure 12. The Beaks-Focus case.

Figure 13. Foliations and their duals, left and right respectively, and vice-versa.

consider, in addition, the position of the line in the direction of the eigenvector
corresponding to the largest modulus of the eigenvalues, figure 11, top figures
in each case. There is only one possibility in the focus case. �
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6.3. Images of foliations by the Gauss map and duality

We consider here only the images of the principal curves in S
2 by the Gauss map.

The asymptotic curves are singular along the parabolic set which is also the locus
of points where the Gauss map is singular. This makes the singularities of their
images by the Gauss map very degenerate (see theorems 5.11(ii) and 5.12(ii)).

Away from parabolic points, the Gauss map is a local diffeomorfism, so the
images of the principal foliations (away from umbilic points) by the Gauss map are
regular foliations on the sphere. Following example 3.6, if α(s) is a principal curve
associated with P1, then P2(α(s)) is the dual curve of N(α(s)) in the sphere S

2.
When the lines of curvature in F1 have geodesic inflections (which occur along
the sub-parabolic curve ∂κ1/∂x2 = 0), their images in N(F1) also have geodesic
inflections in S

2, and the dual foliation P2(F1) has the configuration in figure 5(2)
(Regular fold) or figure 5(4) (Regular cusp) (see theorem 6.6(i)); see also figure 13
(1) and (2).

At a parabolic point κ1 = 0, the kernel of DN is parallel to P1. Away from cusps
of Gauss, N(F1) is a family of cusps (figure 5(2)) and P2(F1) is a regular foliation
with geodesic inflections of its leaves along a curve transverse the foliation (figure 13
(1)). At a cusp of Gauss, N(α(s)) has the configuration in figure 5(4) and P2(F1)
is a regular foliation with geodesic inflections of the leaves along a curve tangent
to the image of the principal curve at the cusp of Gauss (figure 13(2); see [3] for
details).

At a parabolic point κ2 = 0, we have the following cases:
Away from cusps of Gauss, cross-cap points of the principal map and cusp and

beaks-singularities of P2, N(α(s)) has the configuration in Figure 5(3) (figure 13(3),
(a) in first column) and its dual foliation P2(F1) has the same configuration
(figure 13(3), (a) in second column).

At a cusp of Gauss, N(F1) has the configuration in Figure 5(5) (figure 13(3),
(b) in first column) and its dual foliation that of Figure 5(3) (figure 13(3), (a) in
second column).

At a cusp of P2 (goose singularity), N(F1) has the configuration in figure 13(3),
(a) in first column, and its dual foliation that in figure 13(3), (b) in second column.

At a beaks-singularity of P2, N(F1) still has the configuration in Figure 5(3)
but its dual foliation has the Mixed fold configuration in figure 5(6). (This is
because at the beaks-singularity of P2, the leaves of F1 have geodesic inflections,
see figure 13(4).)

At a cross-cap point of the principal map, the principal curve associated wit P1

is tangent to the parabolic curve κ2 = 0. Here, both N(F1) and P2(F1) have the
configuration in figure 5(7) (figure 13(5)).
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