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THE NON-AXIOMATIZABILITY OF O-MINIMALITY

ALEXRENNET

Abstract. Fix a language L extending the language of ordered fields by at least one new predicate or
function symbol. Call an L-structure R pseudo-o-minimal if it is (elementarily equivalent to) an ultra-
product of o-minimal structures. We show that for any recursive list of L-sentences Λ, there is a real
closed fieldR satisfying Λ which is not pseudo-o-minimal. This shows that the theory To-min consisting of
those L-sentences true in all o-minimal L-structures, also called the theory of o-minimality (for L), is not
recursively axiomatizable. And, in particular, there are locally o-minimal, definably complete expansions
of real closed fields which are not pseudo-o-minimal.

§1. Introduction. In [1], Ax proved that the theory of finite fields, consisting of
all those sentences in the language of fields which are true in all finite fields, is
recursively axiomatizable. To accomplish this, Ax showed first that the infinite fields
which are elementarily equivalent to ultraproducts of finite fields, called pseudofi-
nite fields, are precisely those fields which are perfect, pseudoalgebraically closed
and have an algebraic extension of each degree. And second, he showed that these
properties are all first order definable by recursive axiom schemas (in the language
of fields). The theory of finite linear orders, the set of sentences true in all finite linear
orders in the language {<}, provides another example of the same phenomenon:
pseudofinite linear orders are finitely axiomatized by the statement that the order is
discrete and has a first and last element (see [13]). Thus, a linear ordering is elemen-
tarily equivalent to an ultraproduct of finite linear orderings if and only if it is finite
or has order type �+L · �+�∗ for some linear order L, where � denotes the order
type of Z.
Both of these examples fall into the following general framework: fix a language

L, let K be a class of L-structures and let Th(K) be the theory consisting of those
L-sentenceswhich are true in allM ∈ K. Then the class ofmodels of Th(K) is exactly
the class K obtained by closing K under isomorphism, elementary equivalence and
ultraproducts [5, Corollary 8.5.13]. In other words,M is a model of Th(K) if and
only if M is elementarily equivalent to an ultraproduct of members of K. Now,
the axiomatizability results above say that with K the class of finite fields, or the
class of finite linear orders, the theory Th(K) is recursively axiomatizable or finitely
axiomatizable, respectively.
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O-minimality is a condition on ordered structures (R, <, . . .) which states that
every one-variable definable set is a finite union of points and intervals. See [15]
for a thorough introduction to o-minimality. For many languages L, this property
is not first order, by which we mean that there is no schema (ϕi )i∈I of first-order
L-sentences such that an L-structure R is o-minimal if and only if R |= ϕi for
all i ∈ I . By Łos’ Theorem, this is equivalent to saying that an ultraproduct of
o-minimal L-structures need not be o-minimal. For LOF the language of ordered
fields, an LOF structure is o-minimal if and only if it is real closed; i.e., an ultra-
product of o-minimal pure ordered fields is o-minimal. But for most languages, not
only might an ultraproduct of o-minimal structures not be o-minimal, it might not
be NIP (see e.g., [4, Example 6.19]).
Notice that a property P being first order in the sense above is a condition that
is separate from the condition of P being preserved under elementary equivalence;
i.e., that an L-structureM has property P if and only if N ≡ M has property P.
These two conditions might either obtain or fail to obtain together in some cases,
but in the case of o-minimality, they are not the same: it was shown early on in the
study of o-minimality (see [7]) that for any two elementarily equivalent structures,
either both or neither is o-minimal.
Whenever a property is not first order we can ask whether, nonetheless, it is
recursively axiomatizable. For finite fields and finite linear orders, this indeed the
case. A collection of consequences of the property of being a finite field or of being
a finite linear order were found, and then it was shown that these axiomatized
the property. In the case of o-minimality, given a fixed language L, we can ask
the same question: is the common theory of o-minimal L-structures recursively
axiomatizable? Any attempt to construct such an axiomatization will necessarily
result in a collection of first-order consequences of o-minimality; i.e., first-order
properties that hold in all o-minimal L-structures. Any such consequence we come
across can thus be regarded as a weakening of o-minimality—the class of ordered
L-structures satisfying this consequence will necessarily be larger than the class of
o-minimal structures.
In fact, many weakenings of o-minimality, such as weak o-minimality ([8]), quasi-
o-minimality ( [2]), d-minimality ( [10]), o-minimal open core ( [3]) etc., have been
studied in the literature (for evenmore, see [4,9,12,16]). Theseweakenings generalize
the tameness of o-minimal structures, and occur naturally. For instance, Van den
Dries showed in [14] that the real field with a predicate for the subgroup 2Z is
d-minimal but not o-minimal. For us, our interest falls only on those weakenings
which can be shown to be first order, since they will be building blocks for a
potential axiomatization. Two that are of particular interest to us here are the
following conditions on an ordered structure (R, <, . . .):
Definition 1.1 (Local O-minimality (LOM)). For every definable subsetA ⊆ R1,
and for every point a ∈ R, there is an interval I containing a such thatA∩ I is a finite
union of points and intervals.1

1If we strengthen this by allowing the point to possibly be±∞, we get a property that Schoutens calls
type completeness (TC) in [11]. Local o-minimality, though prima facie weaker, is only actually weaker
if the structure in question does not have a multiplicative group structure. Since we will be primarily
interested in expansions of ordered fields, this distinction is immaterial for us.
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Definition 1.2 (Definable Completeness (DC)). Every definable subset A ⊆ R1
which is bounded above has a supremum.

Ordered fields satisfying both of these properties are necessarily real closed (this
follows easily from [9, Proposition 2.5]) and have particularly nice definable sets:
for instance, every definable A ⊆ R1 has a discrete boundary which first, has no
accumulation points in the topology on R, and second, is either finite, or has order
type�+L · �+�∗ for some linear order L. This should be seen as a sort of pseudo
finite analogue of the definition of o-minimality.
Since LOM and DC are expressible by first-order axiom schemas,2 and true in
every o-minimal structure, they are a starting point to look for a recursive axiomati-
zation of o-minimality. In [11], Schoutens hypothesizes that LOM andDC together
(from now on, just LOM+DC) possibly with a first-order variant of the pigeonhole
principle for discrete definable sets, might be enough to axiomatize To-min. And
in [4], Fornasiero investigated LOM+DC fields. They showed that such structures
have many important tameness properties in analogy with o-minimal structures,
helping build the case that o-minimality might be recursively axiomatizable.
The main theorem of this paper will show on the contrary that LOM+DC, or
even LOM+DC strengthened by any recursive list of axioms, does not axiomatize
To-min:

Theorem 1.3. Let L be a language extending the language of ordered fields by at
least one new function or predicate symbol, and let Λ be a consistent, recursive list of
L-sentences extending RCF. Then there is an L-structure which satisfies Λ but is not
elementarily equivalent to an ultraproduct of o-minimal L-structures.
The rest of the paper has two parts: in the first, we set up some terminology and
definitions; and in the second we prove Theorem 1.3.

§2. Preliminaries. Let L extend the language of (pure) ordered fields LOF by
a new unary predicate symbol N , and possibly other new symbols. Let R be an
L-structure which is an expansion of a real closed field.
As we mentioned in the introduction, any ordered field considered as an LOF -
structure with the usual interpretations of the symbols is o-minimal if and only if
it is real closed. Since being a real closed field is first order, ultraproducts of real
closed fields are real closed fields, and hence o-minimal. Thus, in LOF , pseudo-o-
minimal structures are o-minimal. This is why we insist that L be an extension of
LOF containing at least one new function or predicate symbol.
For every one-variable L-formula ϕ(z), we fix a new variable x not occuring in
ϕ(z) and define:

Definition 2.1. ϕ≤x(z) is the formulaϕ(z), but whenever ‘N(t)’ appears for some
L-term t, it is replaced by ‘N(t) ∧ t ≤ x’.
For a subset X ⊆ Rn, we define X≤r := {x ∈ X | x1, . . . xn ≤ r}, and make
similar definitions for X≥r , X<r and X>r .

2Both of these claims are easy lemmas. The case of definable completeness is a straightforward
translation, and for local o-minimality, the key observation is that for a small enough interval I , there
are only eight possibilities for A ∩ I .
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If (Mi)i∈I is an I -indexed set ofL-structures, andU is a (nonprincipal) ultrafilter
on I , wewrite

∏
i∈I Mi/U for the corresponding ultraproduct.And if P is a property

of L-structures, then we say U-most index modelsMi have property P if

{i ∈ I | Mi has property P} ∈ U .
Let PA be the relational theory of Peano Arithmetic (see [6] for an introduction
to the model theory of PA). That is, we consider PA in a relational language with
symbols for only the ordering and the graphs of addition and multiplication. Note
that this is essentially equivalent to the usual theory PA in its usual language with
function symbols for addition, multiplication, and successor: a (nonfinite) model of
relational PA, can be definitionally expanded to a model of ordinary PA, and vice
versa. The relevant difference of us is that a substructure of a model of relational
PA can be finite.
Though the word o-minimalistic is used in [11] to describe those structures
elementarily equivalent to ultraproducts of o-minimal structures, the terminol-
ogy pseudo-o-minimal is more in line with examples like pseudofinite fields and
pseudofinite orderings.

§3. Proof of Theorem 1.3. Fix from now on a consistent, recursive list Λ of
L-sentences extending RCF, and suppose for contradiction that it is an axiomatiza-
tion of To-min.
Extend L by two ternary predicate symbols α and �, and let T be the L(α,�)-
theory consisting of the following informally stated, but nonetheless first-order
axiom schemas (whereR = (R,+,×, <, 0, 1, N, α, �) is a model of the axioms):
1. (R,+,×, <, 0, 1) |= RCF .
2. N := (N,α, �,<, 0, 1) |= PA.
3. α and � are the graphs of + and × intersected with N 3.
4. For each � ∈ Λ, (R,N,α, �) |= ∀x �≤x .

The fourth schema ensures that when the model N of PA defined in R is
restricted to any initial segment N≤x := (N≤x, α≤x, �≤x,<), the axioms in
Λ are forced to hold in R with N replaced by N≤x . That is, the structure
(R,+,×, 0, 1, N≤x, α≤x, �≤x) must model Λ.
In order that we can work with T, we first need to know that it is consistent.
Indeed, we will show that not only does T have a model, but we proceed to show
that there is a model of T with a reduct that satisfies Λ but which could not possibly
be an ultraproduct of o-minimal structures.

Claim. T is consistent.

Observe that the real field, R = (R,+,×, <, 0, 1) with added predicates for N
and the graphs of addition and multiplication on N is a model of T. For this we
only need to check the fourth schema. But, we immediately see that for any r ∈ R,
N

≤r is a finite initial segment of N, so this subset, and the induced partial graphs
of multiplication and addition on this set were definable inside R already. Thus,
(R,N≤r , α≤r , �≤r) is just a definitional expansion of R. Now, since R is o-minimal,
(R,N≤r , α≤r , �≤r) thus satisfies all the first-order consequences of o-minimality;
and in particular, Λ. Thus, (R,N) |= T. �
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Since every model of T interprets a model of PA (in fact, defines one), Gödel’s
Second Incompleteness Theorem applies, allowing us to conclude that T+¬Con(T)
is also consistent.3 So from now on, let (R,N ) |= T+ ¬Con(T).
Let α ∈ N be a Gödel code for a proof of ¬Con(T), and let α < r ∈ R be
sufficiently large (we ask that the codes for any symbols occuring in the proof
coded by α be contained in N≤r etc.). Since (R,N ) is a model of T, (R,N≤r)
satisfies Λ. And since N≤r is an initial segment of a model N of PA with bounded
portions of addition and multiplication, it is a Δ0-elementary substructure of N
(by [6, Theorem 2.7]). Noting that α being a code for a proof of 0 = 1 in T is
a Δ0-property of α ∈ N≤r , and that r was chosen sufficiently large, we have that
N≤r |= ¬Con(T).
Claim. (R,N≤r) is not pseudo-o-minimal.

Suppose for contradiction that (R,N≤r) was elementarily equivalent to an
ultraproduct of o-minimal structures:

(R,N≤r) ≡ (S,M) =
∏

i∈I
(Si ,Mi)/U

with U a nonprincipal ultrafilter on I , and U-most (Si ,Mi) o-minimal.
SinceN≤r is an initial segment of a model of PA, so isM. And, in particular, we
have (S,M) |= ¬Con(T) by elementary equivalence.
ButM is discrete in S, so U-most of the setsMi must also be discrete in the Si by
Łos’ Theorem. And since U-most index models (Si ,Mi) are o-minimal, U-mostMi

must then be finite, being discrete and definable. But any finiteMi is (isomorphic
to) a finite initial segment of N. That is, U-mostMi are isomorphic to a structure
N

≤n(i) consisting, for some n(i) ∈ N, of the first n(i) elements of N, together with
the graphs of addition, multiplication, and ordering restricted to this set.
Finally,M |= ¬Con(T), so there is α ∈ M such that α is a code for a proof
of 0 = 1 in T. But then for an index i such that (Si ,Mi) is o-minimal, andMi

is isomorphic to some N≤n(i) as above, the i-th coordinate of α, i.e., the element
αi ∈ Mi , must be a code for a proof of 0 = 1 in T as well.
But this implies that there is a standard code (i.e., inN) for the proof of¬Con(T).
From the existence of a standard code for a proof we could recover an actual proof
of ¬Con(T). Hence, T would actually be inconsistent, a contradiction. �
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3The meaning of “Con(T)” relies, of course, on a construction of Gödel coding done inside the model
of PA definable in a given model of T . We will not reproduce the details of such a construction here.
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