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We examine the gravitational dispersal of dense fluid through a horizontal permeable
layer, which is separated from a second underlying layer by a narrow band of much
lower permeability. We derive a series of analytical solutions which describe the
propagation of the fluid through the upper layer and the draining of the fluid into the
underlying region. The model predicts that the current initially spreads according to
a self-similar solution. However, as the drainage becomes established, the spreading
slows, and in fact the fluid only spreads a finite distance before it has fully drained into
the underlying layer. We examine the sensitivity of the results to the initial conditions
through numerical solution of the governing equations. We find that for sources
of sufficiently large initial aspect ratio (defined as the ratio of height to length), the
solution converges rapidly to the initially self-similar regime. For longer and shallower
initial source conditions, this convergence does not occur, but we derive estimates for
the run-out length of the current, which compare favourably with our numerical data.
We also present some preliminary laboratory experiments, which support the model.

1. Introduction
There are numerous industrial and natural situations in which liquid spreads

through a layered porous medium. For example, many sedimentary deposits are com-
posed of numerous laterally continuous layers, of different grain sizes and hence
different permeabilities and which are associated with different phases of sedimenta-
tion. In some situations, an intruding fluid flow is driven by the gravitational forces
associated with the density differences between the fluid in the current and the host
fluid in the reservoir. Important examples involve displacement flows in oil reservoirs,
in which an injectate, such as polymer-laden water, displaces oil through the reservoir
(Christie & Blunt 1993; Lake 1989), water injection in geothermal reservoirs (Woods
1999), and the dispersal of pollutants through groundwater (Bear 1972). The dynam-
ics of such currents may be complex, particularly in displacement flows, owing to the
effects of viscosity contrasts, capillary forces, wettability of the porous matrix, and
small-scale heterogeneities in the reservoir. These effects often lead to the formation
of a zone in which the two fluids mix. However, when the buoyancy force associated
with a density difference between the fluids dominates the motion, and the viscosity
contrast does not lead to a fingering instability, the interface may remain relatively
well-defined and sharp compared to the overall scale of the flow (e.g. Woods & Mason

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

51
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100516X


24 D. Pritchard, A. W. Woods and A. J. Hogg

2000). In such a situation, it is of interest to develop a macroscopic picture of the
displacement of the interface between the two fluids, as a leading-order approximation
for the flow.

In this paper, we examine the motion of a gravity-driven flow propagating through a
permeable medium. We focus on flow through a horizontal layer of high permeability,
accounting for the effect of the drainage of some fluid through a thin underlying layer
of smaller permeability and into a second high-permeability layer. This is a simplified
picture of flow in a complex layered medium, but illustrates the important role of the
draining flow in limiting the lateral propagation of the current.

Our model is complementary to the recent experimental work of Thomas, Marino
& Linden (1998) and the analytical work of Ungarish & Huppert (2000), which
investigate the effect of drainage on an inertial gravity current. Their models share
some features with ours, such as the finite run-out distance, but because of the greater
dynamical complexity of the system which they consider, they were only able to
obtain analytical solutions for a simplified ‘box’ model. Our model also complements
the work of Davis & Hocking (1999, 2000), which considers the spreading of viscous
liquid on a porous base into which it drains. However, capillary effects are an essential
component of Davis & Hocking’s model, whereas we are able at the macroscopic
scale to ignore them.

We account for two distinct forms of drainage into the base. The first corresponds
to gravity-driven drainage and the second corresponds to drainage driven by a
uniform background vertical flow. This latter model also describes a gravity-driven
particle-laden flow through a fracture, in which the volume of relatively dense fluid
in the current decreases as a result of particle sedimentation. After presenting a
series of particular analytical solutions for these models (§ 2), we conduct some
numerical experiments to examine the sensitivity of these solutions to the detailed
initial conditions (§ 3). In § 4, we describe preliminary results from analogue laboratory
experiments. Finally, in § 5 we discuss the significance and application of our results.

2. Models of draining gravity currents
First, we review the motion of an intruding current of relatively dense fluid along

an impermeable bed, in a planar geometry. We then extend this to situations in which
the bed is permeable, and the denser fluid drains into the bed under the effects of
gravity (§ 2.2) or an imposed background flow (§ 2.3). Finally, in § 2.4, we extend this
further, to an axisymmetric current. We note that our models will also describe the
motion of an intruding current of buoyant fluid along an upper boundary, though for
convenience we restrict ourselves in this paper to the case of denser intruding fluid.

The model flow is illustrated in figure 1. We examine the motion of liquid of density
ρ + ∆ρ and viscosity µ through a porous layer of permeability K and porosity φ,
which is saturated with liquid of density ρ. The bed of the layer is assumed to have
permeability Kb(�K) and porosity φb.

In each case, the current is assumed to be long and thin, so that the aspect ratio
H/L � 1, where L is the length, and H a typical depth, of the current. Under this
assumption, motion in both the current and the ambient is, to first order in H/L,
unidirectional and parallel to the bed, and so the pressure can be assumed to be
hydrostatic (e.g. Huppert & Woods 1995). The pressure within the current is then
given by

p = p0 + ∆ρg(h− y) + ρg(Ha − y), h > y > 0, (2.1)
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Figure 1. Definition diagram for gravity current through porous medium with a permeable bed.

where p0 is an arbitrary constant pressure at the top of the porous layer, g is
gravitational acceleration, and Ha is the depth of the layer.

We further assume that the depth of the ambient fluid is large compared to that
of the current, Ha � H , so we may neglect the effect of any return flow. (When the
depth of the ambient fluid is comparable to that of the current, the problem becomes
similar to that of a reservoir exchange flow (Huppert & Woods 1995), modifying both
the shape and the motion of the interface.)

In this approximation, the continuity equation has the form

φ
∂h

∂t
+

∂

∂x
(uh) = 0, (2.2)

where u is the horizontal transport velocity in the current.
Finally, the transport velocity is modelled by Darcy’s law for low Reynolds number

flow through a permeable medium,

u = −K
µ

∂p

∂x
. (2.3)

2.1. Impermeable base (no drainage)

In the limit Kb = 0, corresponding to an impermeable underlying boundary, there is
no drainage of fluid into the bed, and the volume of fluid in the permeable layer is
conserved. We follow Huppert (1986) to obtain a similarity solution for the shape of
the current.

Combining (2.3) with (2.2), we obtain the governing equation

∂h

∂t
= β

∂

∂x

(
h
∂h

∂x

)
, (2.4)

where

β =
Kg∆ρ

µφ
. (2.5)

For the subsequent discussion, a useful reference case concerns the motion of an
instantaneous release of a finite volume per unit width of relatively dense fluid. We

define the volume per unit width to be V (t) =
∫ L

0
h(x, t) dx, where L(t) is the length

of the current. For a non-draining current, this will be constant, V (t) = V, and for
a draining current, we will define V to be the initial volume per unit width of the
current, V = limt→0 V (t). Some natural dimensionless variables can now be defined,

x̂ =
x

V1/2
, t̂ =

tβ

V1/2
, ĥ =

h

V1/2
, (2.6)
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26 D. Pritchard, A. W. Woods and A. J. Hogg

giving the governing equation the form

∂ĥ

∂t̂
=

∂

∂x̂

(
ĥ
∂ĥ

∂x̂

)
. (2.7)

The global conservation of volume requires that
∫ L̂

0
ĥ(x̂, t̂) dx̂ = 1, and the no-flux

condition at x̂ = 0 gives ∂ĥ/∂x̂ = 0 at x̂ = 0. This problem has the classic exact
similarity solution (Pattle 1959)

ĥ(x̂, t̂) = 1
6
t̂−1/3

(
92/3 − x̂2

t̂2/3

)
. (2.8)

We note that the solution (2.8) corresponds formally to an initial condition where
the fluid is concentrated at the origin at t = 0. This clearly does not represent a
realistic distribution of fluid, and in fact violates the assumption of small aspect ratio
on which the model was based. However, (2.8) is also known (Barenblatt 1996) to
act as an ‘intermediate asymptotic’ for solutions with a more general class of initial
conditions. This is discussed further in § 3.

2.2. Gravity-driven drainage

We now consider how the flow evolves if the base of the high-permeability layer
consists of a thin layer of permeability Kb (� K) and thickness b (� H), beneath
which there is a further relatively deep high-permeability channel. This picture is
characteristic of a number of sedimentary deposits in which a thin low-permeability,
clay-rich deposit may form between two higher-permeability layers.

Since the low-permeability layer is very thin, a small vertical flow may develop
through this layer, dominated by the gravitational head of the overlying current
relative to that in the surrounding fluid. We consider the regime in which the time
of drainage across this layer, td ∼ (νb2)/(Kbg

′h), is much smaller than the time
for flow along the high-permeability layer, tf ∼ (νL)/(Kg′(∂h/∂x)) (where ν = µ/ρ,
g′ = g∆ρ/ρ). This requires L� (K/Kb)

1/2b: under this condition, the vertical volume
flux per unit area through the lower layer is given by

v = −Kb

µ

∆ρgh

b
. (2.9)

This flow continues downwards through the thin layer of low permeability and into the
underlying layer of much higher permeability. Owing to the contrast in permeability,
the pressure gradients associated with the flow below the thin layer are negligible.
The process of drainage modifies the equation for the conservation of mass in the
main current (in the upper high-permeability channel) to the form

φ
∂h

∂t
= − ∂

∂x
(uh)− v. (2.10)

Combining these equations, we find that the governing equation for the flow takes
the form

∂h

∂t
= β

∂

∂x

(
h
∂h

∂x

)
− βKb

K

h

b
, (2.11)

where β is defined by equation (2.5). Equation (2.11) is a generalization of the
nonlinear diffusion equation (2.7) for a current spreading along an impermeable
boundary, which now accounts for the drainage of the flow.
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Slow draining of a gravity current 27

We note in passing that for a current supplied by a source of fluid Q(t) and with
the extent of the current given by L(t), we can obtain a simple expression for the
global conservation of mass of dense fluid in the current,

dV (t)

dt
= Q(t)− β Kb

bK
V (t), (2.12)

which indicates that the volume of the current per unit width evolves according to
the relation

V (t) = exp

(
−βKbt

bK

)[
V (0)−

∫ t

0

Q(t′) exp

(
β
Kbt

′

bK

)
dt′
]
. (2.13)

2.2.1. Finite-volume release

For comparison with the case of an impermeable lower boundary, described in § 2.1,
we now examine the motion of a finite volume of fluid V per unit width, released
at t = 0. As in § 2.1, we can introduce dimensionless variables (2.6), so that equation
(2.11) reduces to the form

∂ĥ

∂t̂
=

∂

∂x̂

(
ĥ
∂ĥ

∂x̂

)
− λĥ, (2.14)

where λ = (KbV1/2)/(Kb). The dimensionless parameter λ represents the ratio of the
horizontal to vertical velocity scales, assumed to be much less than unity.

Equation (2.14) can be transformed to the original nonlinear diffusion equation
(2.7) using the substitutions (see e.g. Murray 1989)

H = ĥ exp (λt̂) and τ =
1− exp (−λt̂)

λ
, (2.15)

so that
∂H

∂τ
=

∂

∂x̂

(
H
∂H

∂x̂

)
. (2.16)

As in § 2.1, this has solution

H = 1
6
τ−1/3

(
92/3 − x̂2

τ2/3

)
. (2.17)

Figure 2 shows a numerical experiment in which this solution was reproduced using
the numerical method described in Appendix A. The overall pattern of the motion
involves an initial spreading phase, followed by a drainage-dominated phase. The
nose of the current has position

L̂(t̂) = 91/3τ1/3 =

[
9

λ
(1− exp [−λt̂])

]1/3

. (2.18)

This illustrates how, as the flow evolves from the spreading phase into the draining
regime, the current approaches the maximum lateral extent (9/λ)1/3.

2.2.2. Steady-flow solution

With a steady supply of fluid at x = 0, the flow regime is somewhat different. A
steady state becomes possible in which the drainage flux matches the source flux. If
we denote the constant flux by Q, and introduce the dimensionless length and time
scales Q/β and Q/β2 respectively, where β is defined by equation (2.5), then we obtain
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0.6
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0.2

0 1 2 3 4
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ĥ(x̂, t̂ )

Figure 2. Analytical solution for gravity-driven drainage with λ = 0.1: height of the current, ĥ, as

a function of distance x̂, at t̂ = 1, 5, 10, 20, 30. Note the run-out length L̂∞ = (9/λ)1/3 ≈ 4.48.

an equation governing the steady shape of the current:

d

dx̂

(
ĥ

dĥ

dx̂

)
= λQĥ, (2.19)

with λQ = (KbφQ)/(Kφbbβ).
For this steady flow, the flux boundary condition at the origin has the form

h(0)u(0) = Q, which may be expressed as ĥ(∂ĥ/∂x̂) = −1 at x̂ = 0. With this boundary
condition, equation (2.19) has steady solution

ĥ(x̂) =
λQ
6

[
x̂−

(
18

λ2Q

)1/3
]2

. (2.20)

Figure 3 shows a numerical experiment where the time-dependent equation 2.14
was solved with constant unit flux and with λQ = 0.5, illustrating how the flow
evolves towards this solution from a triangular initial shape. The current approaches
a parabolic shape rapidly, and then gradually increases in length until it asymptotes
to the analytical solution. A series of similar experiments suggest that this behaviour
is typical.

2.3. Drainage driven by background flow

If there is an externally imposed uniform vertical background flow through the
permeable rock, then as a dense current spreads along the high-permeability layer, a
part of the fluid will drain into the underlying layer. We consider situations where the
background pressure gradient drives a flow which is much greater than the drainage
driven by the hydrostatic pressure within the current, but is still small compared to
horizontal flows in the high-permeability layer. In this regime, the loss of fluid from
the current now occurs at a constant volume flux per unit area, w, and the evolution
becomes governed by the equation

φ
∂h

∂t
=
Kg∆ρ

µ

∂

∂x

(
h
∂h

∂x

)
− w. (2.21)
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2.0

1.0

0.5

0 1 2 3 4
x̂

1.5

ĥ(x̂, t̂ )

Figure 3. Profiles of current depth as a function of position, ĥ(x̂, t̂), at the dimensionless times
t̂ = 0, 0.15, 1.5, 3, 6, 9, 12, 15, showing the evolution to the steady-flow solution for λQ = 0.5.

In this case, there is no simple relation for the global conservation of mass, such as
(2.13), since the evolution equation for the volume of fluid in the upper layer is not
decoupled from the length of the current. However, the equation does admit an exact
analytical solution, as described below.

It is interesting to note that equation (2.21) also describes the low Reynolds number
gravity-driven flow of a particle-laden current propagating in a narrow crack (of width
Lc), in which the density difference between the current and the ambient fluid arises
from the particles. In this case (see Huppert 1986), the dynamics of the current
without particle settling are described by

∂h

∂t
=
g′L2

c

12ν

∂

∂x

(
h
∂h

∂x

)
. (2.22)

The effects of particle settling may be described by including a term −ws on the
right-hand side of equation (2.22) to represent the rate of release of fluid at the top
of the current associated with the particle settling.

2.3.1. Finite-volume release

In the case of a finite-volume release, we can again use the scalings (2.6) to obtain
a dimensionless equation governing the evolution of the current,

∂ĥ

∂t̂
=

∂

∂x̂

(
ĥ
∂ĥ

∂x̂

)
− ε. (2.23)

Here ε = w/β represents the ratio of the draining (or sedimenting) velocity to the
horizontal velocity scale of the current. We have found an exact solution to equation
(2.23), given by

ĥ(x̂, t̂) = 1
6
t̂−1/3

(
92/3 − x̂2

t̂2/3

)
− 3

4
εt̂. (2.24)

Figure 4 illustrates how this solution evolves with time: initially, the motion is very
similar to that of the non-draining solution, but as the flow evolves, the effect of
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ĥ(x̂, t̂ )

Figure 4. Analytical solution for drainage driven by background flow, with ε = 0.05:

height ĥ as a function of x̂ at t̂ = 0.5, 2.5, 5, 7.5, 9.

drainage into the lower less-permeable layer becomes dominant. This may be seen
from the variation of the lateral extent of the current, L̂(t̂), with time,

L̂(t̂) = t̂1/3(92/3 − 9
2
εt̂4/3)1/2. (2.25)

L̂(t̂) in fact reaches a maximum length L̂max = (8/3)1/4ε−1/4, in a finite time t̂max =
(8/243)1/4ε−3/4.

We note that, in the context of particle settling, the rate of fluid loss from the
current is the sedimentation velocity ws. Assuming that ws is given by the Stokes
settling velocity, it is inversely proportional to the kinematic viscosity ν of the
interstitial fluid. Hence ε = ws/β is independent of ν, and so the run-out length of
the current is independent of the kinematic viscosity of the fluid. This is because
an increase in viscosity decreases the vertical settling speed, but also reduces the
horizontal spreading rate. The only effect of viscosity is to alter the dimensional time,
tmax =V1/2t̂max/β, which it takes to reach this length.

Note also that the solution (2.24) can be rewritten in the form

ĥ(x̂, t̂) = 1
6
t̂−1/3(92/3 − 9

2
εt̂4/3)(1− ζ2)

= ĥ(0, t̂)(1− ζ2), (2.26)

where ζ = x̂/L̂(t̂). We will refer to this in § 3.

2.3.2. Steady-flow solution

As in the case of the gravity-driven draining process (§ 2.2), it is also of interest to
examine the steady-state solution which becomes established with a steady source of
fluid at x = 0. If the volume flux per unit width supplied to the current at x = 0 is Q,
then the flow has length scale Q/β and time scale Q/β2, leading to the dimensionless
equation

0 =
d

dx̂

(
ĥ

dĥ

dx̂

)
− ε, (2.27)
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2.0
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0.5

0 1 2 4 5
x̂

1.5

3

2.5

ĥ(x̂, t̂ )

Figure 5. Current profile, ĥ(x̂, t̂) as a function of x̂ for t̂ = 0, 0.4, 4, 8, 20, 40, showing evolution to
the steady-flow solution for ε = 0.2.

with ε = w/β as before. If we apply the flux boundary condition at the origin,
Q = u(0)h(0), and the global conservation of volume, Q = εL, then we find the
solution for the shape of the current:

ĥ(x̂) =
1√
ε

(1− εx̂). (2.28)

This solution is obvious since, in the steady state, the loss of fluid by drainage per
unit length is uniform along the current.

Again, a series of numerical experiments confirms that the flow evolves to this
solution from a range of initial conditions. Figure 5 illustrates the development to
the steady-state solution for ε = 0.2, from a triangular initial condition. The profile
remains approximately linear throughout, with the gradient evolving rapidly towards
the analytical value; the volume per unit width of the current then evolves more
slowly towards the analytical solution.

2.4. Axisymmetric flows

It is also possible to construct the model in an axisymmetric geometry. Again, we
assume hydrostatic pressure (equation (2.1)), and a transport velocity modelled by
Darcy’s law (equation (2.3)). The continuity equation in an axisymmetric geometry
has the form

φ
∂h

∂t
+

1

r

∂

∂r
(ruh) = −v, (2.29)

where r is the radial coordinate in the horizontal plane, and v(r, t) is the vertical
drainage velocity through the underlying layer. For an intrusion of volume Va, the
global volume condition has the form

lim
t→0

∫ R(t)

0

2πrh(r, t) dr =Va. (2.30)
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2.4.1. Finite-volume release

We combine the expressions for pressure, velocity and continuity as before, and we
introduce dimensionless variables

r̂ = r

(
2π

Va

)−1/3

, t̂ = tβ

(
2π

Va

)1/3

, ĥ = h

(
2π

Va

)−1/3

, (2.31)

where β is defined as in equation 2.5, to obtain

∂ĥ

∂t̂
=

1

r̂

∂

∂r̂

(
r̂ĥ
∂ĥ

∂r̂

)
− v̂ and lim

t̂→0

∫ R̂(t̂)

0

r̂ĥ(r̂, t̂) dr̂ = 1. (2.32)

As before, the draining term is v̂ = 0 for an impermeable bed, v̂ = KbV1/3
a /(2πKb) =

λaĥ for gravity-driven drainage, and v̂ = w/β = ε for drainage driven by an imposed
vertical flow.

In the case of an impermeable bed, equation (2.32) admits a similarity solution,

ĥ(r̂, t̂) = 1
8
t̂−1/2

[
η2
N − r̂2

t̂1/2

]
. (2.33)

where ηN = 25/4.

For gravity-driven drainage, v̂ = λaĥ, we can apply the transformation (2.15) to
recover the equation

∂H

∂τ
=

1

r̂

∂

∂r̂

(
r̂H

∂H

∂r̂

)
, (2.34)

which has the solution

ĥ(r̂, t̂) = 1
8
e−λa t̂

(
1− exp (−λat̂)

λa

)−1/2
[
η2
N − r̂2

(
1− exp (−λat̂)

λa

)−1/2
]
. (2.35)

For drainage driven by background flow, v̂ = ε, there is again an exact solution,

ĥ(r̂, t̂) = 1
8
t̂−1/2

[
η2
N − r̂2

t̂1/2

]
− 2

3
εt̂, (2.36)

and we note that this can be rewritten in the form

ĥ(r̂, t̂) = 1
8
t̂−1/2

[
η2
N − 2

3
εt̂3/2

]
(1− ζ2)

= ĥ(0, t̂)(1− ζ2), (2.37)

where ζ = r̂/R̂(t̂), and the dimensionless radius of the current is

R̂(t̂) =
√
η2
Nt̂

1/2 − 16
3
εt̂2. (2.38)

These solutions have been reproduced by numerical integration of equation (2.32)
for a finite-volume release from various initial conditions, which indicates that they
are stable and suggests that they act as an intermediate asymptotic in the same
manner as the planar solutions.

2.4.2. Steady-flow solutions

It is also interesting to seek steady-state solutions, which correspond to the states
which might evolve, for example, due to constant injection of fluid from a vertical
pipe inserted at r = 0. The flux of volume per unit time is denoted by Qa, and after
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combining the continuity and Darcy equations in the usual way and scaling by the
length scale [Qa/(2πβ)]1/2, we obtain the equation

∂

∂r̂

(
r̂ĥ
∂ĥ

∂r̂

)
= v̂r̂, (2.39)

where, for drainage driven by an external flow, v̂ = ε as before; and for gravity-driven

drainage, v̂ = h[KbQ1/2
a /(2πβ1/2Kb)]. The boundary condition at the origin is

lim
r̂→0

(
r̂ĥ
∂ĥ

∂r̂

)
= −1. (2.40)

In the case of flow-driven drainage, v̂ = ε, we have a simple condition for global
mass balance, εR̂2 = 2, and we can obtain the analytical solution

ĥ(r̂) =

√
1
2
εr̂2 − 2 log (r

√
1
2
ε)− 1. (2.41)

We note that this profile becomes singular at r̂ = 0, although the flux is bounded.
In the case of gravitationally driven drainage, we have been unable to obtain an

analytical solution, although equation (2.39) can be integrated numerically in the
region away from r = 0.

3. Initial conditions and adjustment
Much of the motivation for developing similarity solutions comes from their role as

intermediate asymptotic solutions (Barenblatt 1996). Although the similarity solutions
have a highly idealized singular initial condition, they describe the behaviour of the
system as it evolves from a much wider range of initial conditions, for times large
enough that the details of the initial state have been lost, but before the system
reaches its long-term equilibrium. For non-draining gravity currents in the laboratory,
the flow has typically ‘forgotten’ the initial conditions, and adjusted to a self-similar
form, once it has travelled a few times the length of the initial release (the so-called
‘lock-lengths rule’).

It seems reasonable to hope that our analytical solutions will play the same role
for draining flows. However, there may be initial conditions which are so far from
the analytical solution that the flow is unable to adjust to it before the fluid has
drained out entirely; and there are certainly initial conditions which will be longer
than the run-out length of the analytical solution. In discussing the relevance of our
solutions, therefore, it is important to quantify both the length scales and time scales
of the adjustment process and the regimes of initial conditions in which adjustment
is impossible.

This is not a question of merely mathematical interest. In natural or industrial
situations, the initial distribution of fluid will have finite depth and lateral extent, and
in laboratory experiments, fluid is typically released from a lock of finite length. Thus,
if we hope to test our models experimentally or to use them to make quantitative
predictions, we must take account of the adjustment process.

In order to investigate these issues, we have integrated the dimensionless governing
equations (2.7), (2.14) and (2.23) numerically, for a range of initial conditions. First
we describe the behaviour of non-draining flows (§ 3.1), then we move to the draining
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flows (§§ 3.2, 3.3). For notational convenience, the hats on all dimensionless variables
have been dropped for the remainder of this section.

In order to describe the convergence of our numerical solutions to the analytical
solutions, we require a means to quantify the shape of the current profiles. The
analytical solutions for a finite release of fluid, (2.8), (2.17), (2.26), can all be written
in the form h(0, t)m(ζ), for ζ = x/L(t), and so the volume of fluid per unit width may
be written in the form

V (t) =

∫ L(t)

0

h(x, t) dx = L(t)h(0, t)

∫ 1

0

m(ζ) dζ. (3.1)

Therefore, for all the analytical solutions, the shape factor Γ (t) defined by Γ (t) ≡
V (t)/[h(0, t)L(t)] is constant in time, and in each case it has value 2/3. In contrast, if
the fluid is released from a rectangular initial distribution with volume per unit width
1, Γ (0) = 1, while for a triangular initial distribution, with apex at x = 0, Γ (0) = 1/2.

This suggests that, by following the evolution of Γ (t) from an arbitrary initial
condition, we may examine the shape evolution of the current. As the current adjusts
to the analytical solution, Γ (t)→ 2/3 as time increases, and we can define the degree
to which the current has adjusted as |Γ (t)−2/3|. The use of Γ (t) to track the evolution
of the current also has the advantage that it makes no prior assumption about the
solution (referred to as the target solution) to which the current will converge.

Although the numerical integrations were started from t = 0, it is probable that the
target solution will have a virtual origin in time at t = −t0, which corresponds to the
time at which the length of the target solution vanishes. Furthermore, for draining
flows, there will also be a virtual initial volume per unit width, V0, which corresponds
to the volume per unit width of the target solution at t = −t0 (see § 3.3). In other
words, rather than converging to the analytical solution h(x, t;V (0) = 1), the current
may converge to an analytical solution h(x, t + t0;V (−t0) = V0). The definition of
convergence in terms of Γ (t) allows us to deduce these quantities from the ones which
characterize the convergence process, namely, the time tadj taken to converge to the
target solution, the length Ladj of the current when convergence has occurred, and
the volume per unit width Vadj of the current at this time.

In all our numerical experiments, unless otherwise stated, the initial condition
was a rectangle of length L0 and area 1. We find that Γ (t) does decrease towards
2/3, and we regard convergence as corresponding to situations where Γ approaches
2/3 asymptotically. For convenience, the current was taken to have adjusted to the
anaytical solution when |Γ (t)− 2/3| < 0.015.

3.1. Impermeable base (no drainage)

First, we consider a current propagating without drainage. In this case, the conver-
gence to the target solution can be characterized by two quantities, tadj and Ladj,
while the target solution itself can be characterized by one, t0. Since t0 is determined
from tadj and Ladj using L(tadj + t0) = Ladj, there are only two independent quantities
involved: in fitting the scalings below, this was taken into account.

Numerical experiments were conducted for a range of values of L0, 0.2 6 L0 6 4.0.
It was found empirically that t0 = (0.225 ± 0.002)L3

0, Ladj = (1.64 ± 0.04)L0 and
tadj = (0.265 ± 0.04)L3

0. The functional form of these scalings may be expected,
because L0 is the only free parameter in the initial conditions, and according to the
similarity solution, the current length evolves as t1/3.

For illustration, profiles of the height of the current are shown in figure 6 for a
numerical calculation with initial condition L0 = 3.0.
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0.2

0.1

0 1 2 4 5
x

h(x, t)

3

0.3

Figure 6. Convergence to similarity solution from a rectangular initial condition, L0 = 3.0: height
of the current h(x, t) as a function of position, x, at t = 0, 2.5, 5, 7.5, 10 (Γ ≈ 1, 0.74, 0.7, 0.68, 0.67
respectively)

Numerical calculations were also carried out for the same range of L0, from
a triangular initial condition, of initial length L0 and height 2/L0 at x = 0. The
corresponding (empirical) results were: t0 = (0.0887±0.001)L3

0; Ladj = (1.25±0.03)L0;
and tadj = (0.128±0.005)L3

0. The results for both the rectangular and triangular initial
conditions suggest that the ‘lock-length’ rule of thumb is valid, since the current has
adjusted to self-similar form before it has travelled more than two lock lengths.

3.2. Gravity-driven drainage

In the various physical contexts where a current both spreads and drains (such as
the spread of injectate through an oil reservoir, or of pollutants through an aquifer),
one of the most important quantities is the run-out length Lmax of the current. For
gravity-driven drainage, this coincides with L∞ ≡ limt→∞ L(t), since the current does
not recede.

It is useful to be able to predict the run-out length from the initial length L0.
We expect that in the regime of very small L0, the current propagates according
to the analytical solution 2.17, while in the regime of very large L0, the current
propagation approximates that corresponding to the Heaviside problem described in
Appendix B. In order to obtain estimates of Lmax for intermediate initial conditions,
it is necessary to consider the adjustment process in some detail. This will allow us
both to characterize the target solution and to define the regime in which adjustment
does occur.

We note that it is possible to scale λ out of the problem altogether using the
transformed variables t′ = λ2/3t, h′ = λ−1/3h, x′ = λ1/3x. This suggests that the critical
parameter which distinguishes between adjusting and non-adjusting regimes will be
λ1/3L0.

As discussed in § 2.2, the motion of a speading current which drains under gravity
can be described by the same equation as a non-draining current by using a modified
time coordinate τ = [1 − exp (−λt)]/λ in place of t. We therefore expect some
correspondence between the two kinds of flow. In particular, the adjustment is still
characterized by two quantities, τadj and Ladj, and the target solution can still be
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described by a single parameter, τ0. We note from (2.13), however, that the target
solution must also have an ‘initial’ volume per unit width V0 = exp (λt0) = (1−λτ0)

−1,
in order that the volume per unit width as well as the length of the analytical solution
coincides with that of the current at tadj.

An immediate consequence is that the run-out length, L∞, can be evaluated as a
function of τ0,

L∞ =

(
9V0

λ

)1/3

=

(
9

λ(1− λτ0)

)1/3

. (3.2)

The situation is further complicated by the fact that τ only reaches a finite limit 1/λ
as t → ∞. Consequently, if the initial distribution of fluid requires a time τadj > 1/λ
to adjust, then the flow will not fully converge to the analytical solution before it has
all drained away.

Numerical calculations were carried out, starting from a rectangular initial condition
of volume per unit width 1, with length L0 in the range 0.5 to 5.0, and with the
parameter λ taking values in the range 0.02 to 0.5. For each experiment, the quantities
tadj and Ladj were measured, and t0 was determined from these by fitting L(t+t0) = Ladj.

The results for cases where convergence did occur are rather similar to those for
the non-draining case:

τ0 = (0.21± 0.015)L3
0, Ladj = (1.69± 0.01)L0, τadj = (0.32± 0.02)L3

0. (3.3)

Our scaling estimate for τadj allows us to obtain an upper bound for the region
where it is possible for convergence to occur. As t → ∞, τ → 1/λ, and so for
convergence we require τadj < 1/λ, or, approximately, λL3

0 < 3.13. This is a stronger
convergence criterion than that supplied by L0 < L∞(λ), which, using our empirical
result for V0(λ), corresponds to λL3

0 < 4.76. This is to be expected: in the latter case
we merely stipulate that the initial length be less than the maximum possible run-out
length of the analytical solution, while in the former case, we allow for the increase
in length as the current slumps towards the analytical form. We note, however, that
this criterion is still only an upper bound. It depends on the choice of δ such that
|Γ − 2/3| < δ defines complete adjustment, and we may expect that for λL3

0 close to
3.13, estimates for L∞ based on the assumption of complete adjustment will become
inaccurate. (This can be observed in figure 10, where the estimate becomes poor for
λ1/3L0 > 1.)

The evolution of the current profile is illustrated in figures 7 and 8, which show,
respectively, the case λ = 0.1, L0 = 3.0 for which the current does adjust to the
analytical solution, and the case λ = 0.1, L0 = 5.0 for which the current does not
adjust. The most obvious difference is to be seen near the tail of the current: in the
non-converging case, the tail is much flatter. In figure 9, Γ (t) is plotted for the same
currents.

In the regime of very large L0, the run-out length is dominated by the initial length,
and an argument considering the Heaviside problem (see Appendix B) suggests that
L∞ ∼ L0 + 1.238(L0λ)

−1/2. This estimate is in accord with the results of numerical
runs for values of L0λ

1/3 as small as about 1, even though the model is only strictly
valid for large values of L0λ

1/3.
In figure 10, the scaled quantity λ1/3L∞ is plotted as a function of λ1/3L0, for various

λ. We compare this with a semi-empirical result L∞ = (9/λ(1 − 0.21λL3
0))

1/3, which
is derived by substituting our empirical scaling for τ0, equation (3.3), into equation
(3.2), and with the numerically derived asymptotic result L∞ ∼ L0 + 1.238/(λL0)

1/2

for large L0λ
1/3. The estimates are seen to provide a very good description in their
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0.2

0.1

0 1 2 4 5
x

h(x, t)

3

0.3

6

Figure 7. Gravity-driven drainage with λ = 0.1, L0 = 3.0: profiles of the current, h, as a function
of x, at t = 0, 4, 8, 16, 24 (Γ ≈ 1, 0.72, 0.69, 0.68, 0.67 respectively).

0.08

0.04

0 1 2 4 5
x

h(x, t)

3

0.16

76

0.12

0.20

Figure 8. Gravity-driven drainage with λ = 0.1, L0 = 5.0: profiles of the current at
t = 0, 8.5, 17, 34, 50 (Γ ≈ 1, 0.79, 0.76, 0.75, 0.75 respectively).

respective regimes. Hence, for any initial length of release, we have a simple estimate
of the maximum runout.

3.3. Drainage driven by background flow

The situation in which the drainage is driven by a background flow is rather more
complicated. There are two main differences from the case of gravity-driven drainage.
First, it cannot be mapped to the non-draining problem as it could in § 3.2. Secondly,
the run-out length, Lmax, no longer corresponds to the long-time limit L∞: rather, the
current reaches a maximum length in a finite time, before retreating and eventually
draining out entirely.

Our object is again to determine how the maximum extent of the current, Lmax,
varies with L0. In order to do this, we must consider the adjustment process in some
detail. There are now three quantities which characterize the convergence: tadj, Ladj
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0.90

0.75

0 10 20 40
t

C (t)

30

0.95

0.80

0.85

0.70

Figure 9. Γ (t) for the cases λ = 0.1 and: —, L0 = 3.0 (adjustment occurs); · · · · ·, L0 = 5.0
(adjustment does not occur). Note that in the second case, Γ (t) tends to a limit 6= 2/3. This is the
value that Γ (τ) has reached by τ = 1/λ; the value is different from 2/3 for currents which do not
converge to the analytical solution Γ = 2/3.

2.4

0 0.5 1.0 2.0

k1/3 L0

1.5

3.6

2.8

3.2

2.0
2.5 3.0

k1/3 L∞

(a)

(b)

(b)(a)

Figure 10. The scaled run-out length λ1/3L∞ as a function of λ1/3L0 for λ = 0.5, 0.2, 0.1, 0.05, 0.02:
numerical results (+) compared with semi-empirical (curve a) and asymptotic (curve b) results.

and Vadj; and two which characterize the target solution: t0 (as before); and V0, the
virtual initial volume parameter, which cannot now be expressed as a function of t0
alone.

We note that it is possible to scale ε out of the problem by transforming to variables
t′ = tε3/4, x′ = xε1/4 and h′ = hε−1/4, and that the critical parameter will therefore be
ε1/4L0.

Numerical calculations were carried out for a range of values of ε from 0.001 to
0.2, for a rectangular initial distribution of fluid, with L0 ranging between 0.5 and 8.0.
The evolution of the currents was followed until the point when |Γ (t)− 2/3| < 0.015,
as before.
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0.10

0.05

0 1 2 4 5
x

h(x, t)

3

0.20

6

0.15

0.25

Figure 11. The evolution of the current from a rectangular initial condition when drainage is driven
by a background flow (L0 = 4.0, ε = 0.005): profiles of the current at t = 0, 3, 6, 12, 18 (Γ ≈ 1.0,
0.79, 0.74, 0.7, 0.68 respectively)
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x

h(x, t)
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8

0.16

76

Figure 12. The evolution of the current from a rectangular initial condition when drainage is driven
by background flow (L0 = 7.0, ε = 0.005): profiles of the current at t = 0, 10, 20, 25 (Γ ≈ 1.0, 0.84,
0.81, 0.8 respectively). Note that in this case, convergence does not occur.

Figures 11 and 12 illustrate the evolution of currents which, respectively, do and
do not adjust to the analytical solution before draining out entirely. As in § 3.2, it is
evident that the tail of the current is much flatter in the non-adjusting case, since the
change of shape has not fully diffused back from the nose.

It was not possible to obtain simple expressions, analagous to equations (3.3), for
the adjustment parameters L′adj and t′adj. Figure 13 shows the quantity L′adj plotted as
a function of L′0, along with the empirical result Ladj = 1.64L0 for the non-draining
case. This plot illustrates why adjustment and run-out length in this case are harder
to describe than in the case of gravitationally driven drainage: for sufficiently large
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0.8

0.4

0 0.4 0.8

ε1/4L0

1.2

1.6

1.6

1.2

ε1/4Ladj

Figure 13. ε1/4Ladj plotted as a function of ε1/4L0, with Ladj ∼ 1.64L0 also shown.
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Figure 14. ε1/4Lmax as a function of ε1/4L0 for ε = 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.002, 0.001.

values of L′0, the nose of the current is retreating by the time it has adjusted, and the
analytical solution is useless in predicting L′max.

In figure 14, L′max is plotted as a function of L′0: as before, the data are taken for a
range of ε between 0.001 and 0.2. In the regime L′0 � 1, the current converges almost
instantaneously to the analytical solution with V0 = 1, and so Lmax ≈ 1.278ε−1/4. The
constant in this relation, (8/3)1/4 ≈ 1.278, is obtained from the analytical solution,
equation (2.25).

Considering the regime in which L′0 � 1, it is intuitively clear that the run-out
length will be dominated by the initial length, and that, the longer and thinner the
current, the less opportunity it will have to spread before draining entirely: this allows
us to obtain an asymptotic bound for Lmax in the regime L′0 � 1. First we note that the
time before the current drains out entirely is smaller than (L0ε)

−1, and the maximum
distance it could advance in that time is given approximately by 1.238L

−1/2
0 (L0ε)

−1/2
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(see Appendix B). This allows us to make the estimate Lmax 6 L0 + 1.238ε−1/2L−1
0 for

large L′0. In fact, for all our data, this upper bound is a considerable overestimate for
Lmax. It is likely that our data, which only extend to ε1/4L0 ≈ 1.7, simply do not reach
the regime where the asymptotic result is a good approximation.

3.4. Comments on the generality of our solutions

The main conclusion to be drawn from this series of numerical experiments is
that there is an important difference between our analytical solutions for draining
currents and the similarity solutions for non-draining currents. While our solutions
are attracting, in the sense that a flow will adjust towards them from more general
initial conditions, the adjustment time may exceed the time taken for the current
to drain out entirely. Hence our solutions can only be regarded as intermediate
asymptotics for a restricted range of initial conditions, and only in this regime can
they be used to predict quantities such as run-out length.

4. Experiments
Motivated by the model results, we have conducted a series of experiments which

examine the motion of gravity currents through a Hele-Shaw cell with a small gap at
the base. This provides an analogue experimental system for modelling gravity-driven
flow through a layer of permeable rock underlain by a layer of lower permeability,
with a permeable lower boundary. The cell had height 30 cm and length 50 cm, with
a gap width of 9 mm, corresponding to an effective permeability of 6.75 mm2. The
permeable lower boundary had a gap width of 3 mm, corresponding to an effective
permeability of 0.75mm2, and was 21 mm deep.

We examined the spreading into air of finite-volume currents of golden syrup,
released from a rectangular source located behind a lock gate. Although the viscosity
of golden syrup is highly temperature-dependent, the time taken for the experiments
was sufficiently short (of the order of 5 minutes) that the room temperature could be
regarded as constant. Estimates of the fluid density (≈ 1400 kg m−3) and the viscosity
(≈ 20 kg m−1 s−1) give Reynolds numbers of the order of 10−3 to 10−2 for these
experiments.

Figure 15 shows photographs of the current which illustrate its development as it
spread and drained. The length L(t) of the current was recorded at regular intervals.

There are two simple tests we can make of the model. First, the run-out length
L∞ = (9VKb/Kb)

1/3 does not depend on the fluid viscosity, and can be compared with
the actual distance reached by the experimental current. It can be seen from table 1
that the theoretical prediction is reasonably accurate, although it systematically over-
estimates the actual run-out length. This is discussed below. Secondly, we consider the
quantity log [1− (L(t)/L∞)3], which is plotted in figure 16. Equation (2.18) suggests
that this should decrease linearly with time, and it can be seen from the figure that
this is a good description for at least the main part of the motion, after the current
has adjusted to a self-similar form but before it reaches its full run-out length.

The main difference between the behaviour of the experimental current and that
predicted by our model comes at large times, as the experimental current comes to
rest at a run-out distance Lmax < L∞. This may be largely due to the finite depth of
the lower boundary, which was not fully saturated with fluid near the nose of the
current, leading to an effectively smaller value of b and thus to increased drainage
near the nose and a reduced run-out length. Another effect which is not accounted
for in our model is that of basal drag, which may be expected to become significant
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5 s
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20 s 100 s

40 s

60 s

Figure 15. Sequence of photographs of the experiment described in § 4, illustrating the evolution
of the shape of an experimental current. The photos were taken 5, 10, 20, 40, 60 and 100 s after the
release. Some capillary effects are evident at the ‘tail’ of the current.
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Figure 16. Experimental results: log (1− (L(t)/L∞)3) plotted as a function of time, together with
linear best-fit line. Between 0 and 10 s, there is some evidence of adjustment, and after about 80 s,
the current is slowed by capillary effects and enhanced drainage (see text for details).

when the depth of the current is comparable with the width of the cell. The effect
of capillary forces can also be seen near the nose of the current, where there is a
tendency for the interface to form an obtuse (rather than an acute) angle with the
base of the cell.

Despite the divergence from the model solution at long times, the results of our
preliminary experiments are encouraging and support the present modelling approach.
We hope to be able in the future to carry out a more thorough experimental
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Length× height of lock Lmax (actual) L∞ (theoretical)
(mm×mm) (mm) (mm) Lmax/L∞

100× 92 231 265 0.92
100× 100 231 273 0.90
100× 110 228 281 0.86
100× 197 281 342 0.87
75× 150 237 267 0.89

100× 150 254 294 0.86

Table 1. Run-out length compared with theoretical predictions for various volumes
of the initial release.

investigation, varying parameters such as viscosity of the fluid and the widths both
of the cell and of the gap at the base.

5. Application to some physical situations
Although the drainage effects we have considered involve flows which are of small

magnitude compared to the horizontal spreading of the current, their effect on the
behaviour of the current can be significant. To illustrate this, we apply our model
for a planar, gravity-driven draining flow to the dispersal of contaminant and tracers
through an aquifer, and we apply our model for a particle-laden current spreading in
a fracture to the injection of propants into a fractured oil reservoir. In each case, our
analysis indicates that drainage effects are important over time scales of industrial
relevance.

5.1. Dispersal in an aquifer

It is difficult to obtain detailed information about the permeability structure of a
porous rock in its natural setting. Industries interested in flow through such permeable
rocks often conduct experiments in which tracer is injected in one well, and the outflow
from other wells is then monitored to determine the time and concentration of tracer
which re-surfaces at the environment. Hence it is possible to estimate the effective
bulk permeability of the rock. However, this study indicates the care with which such
data should be interpreted.

Many aquifers involve layers of different and sharply contrasting permeability. If
some contaminant or tracer is injected at one well, it is likely that the injected fluid
will be of different density to the host fluid, owing to differences in temperature and
natural dissolved minerals in the ambient fluid. The injectate will therefore tend to
spread out from the injection well, and once it has spread far enough, the motion
will be dominated by buoyancy forces (see e.g. Woods & Mason 2000). Initially
the injectate will tend to spread along the high-permeability layer, but if there is
an underlying lower-permeability layer, then, as it spreads laterally, the tracer will
gradually drain away. The effect of such drainage is to slow the lateral spreading of
the tracer, and it may ultimately arrest this motion, so that all the tracer drains into
a lower part of the formation.

For illustration, we present a model calculation in which we examine the gravita-
tional dispersal of a contaminant injected into an aquifer. We assume that a volume
Va of 1 m3 is injected at some initial time into a layer with permeability 10−12 m2.
We also assume that the lower boundary of this layer has permeability 10−14 m2, and
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Figure 17. The distance propagated by the current, R(t), as a function of time, for flow in an
aquifer: solid line is non-draining, dashed line draining case.

thickness 0.1 m, which is representative of some layered sandstones. In this case, the
parameter λa takes the value λa = 10−1. Assuming that the reservoir is laterally exten-
sive, and that the buoyancy of the injected water has reduced gravity g′ = 0.1 m s−2,
corresponding to a small difference in dissolved mineral content between the injected
and host fluids, then the parameter β has value β = 10−6 m s−1. Figure 17 illustrates
the distance the current will spread, in dimensional units, as a function of time, for
the case in which we account for the permeability and drainage into the lower layer
and the case in which we do not, following the analysis for an axisymmetric current
in § 2.4. We infer from this figure that, even if the lower boundary of the layer has
very small permeability compared to the main flow channel, the draining arrests the

propagation of the flow substantially after times of order V1/3
a /(βλa) ≈ 107 s (≈ 100

days) in comparison to the case in which the lower layer is impermeable.

5.2. Particle injection in a fracture

A second process for which the present analysis has some relevance concerns the
dispersal of particle-laden fluid through fractures. For example, particle-laden fluid is
sometimes injected into oil reservoirs to hold open the fracture and maintain relatively
high-permeability flow paths (e.g. Pearson 1984). The actual process is highly complex,
owing to the different constituent fluids involved. In order to gain some insight into
part of the process, it is of interest to examine the effect of particle fallout on the
distance over which a gravity-driven flow, whose buoyancy arises from the presence
of the particles, may carry the particles. We consider a fracture of width 0.1 m and an
ambient fluid of kinematic viscosity 10−3 m2 s−1; the injected fluid contains particles
with settling velocity 10−4 m s−1, the reduced gravity of the suspension is g′ = 0.1 m s−2,
and the volume of injectate per unit width is of order 1 m2. In this case, β has a value
of order 10−1 m s−1 and the parameter ε is of order 10−3. From (2.24), we deduce
that the particles will spread laterally for a time of order 103 s, reaching a maximum
distance of order 10 m, before they have settled from the flow. Again, for comparison,
we illustrate the propagation distance of the current in the case that the particle
settling is neglected in figure 18. In this example, the figure illustrates the importance
of the settling in arresting the flow after a time of order 500 s.
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Figure 18. The distance propagated by the current, L(t), as a function of time for flow in a
fracture, as described in § 5: solid line is sedimenting, dashed line non-sedimenting case.

6. Discussion and conclusion
We have developed a model which describes the propagation of a current of

dense fluid through a saturated layered porous medium. We have examined motion
along one high-permeability channel, including the effects of drainage through a
thin underlying layer of much smaller permeability. The governing partial differential
equations were derived in the limit that the current is long and thin, and hence that
the pressure is locally hydrostatic.

We have presented exact analytical solutions in both planar and axisymmetric
geometries for a fixed-volume release of fluid, in the cases that (i) there is no loss of
fluid through the less-permeable layer; (ii) there is a drainage of fluid through the
less-permeable layer, driven by hydrostatic pressure in the upper layer; and (iii) there
is a drainage of fluid driven by an imposed vertical flow in the ambient fluid. In
the first case, the length or radius of the current increases as t1/3 (planar geometry)
or t1/4 (axisymmetric geometry); in the second case, it tends to a run-out length or
radius which depends on the volume of the current relative to the thickness of the
less-permeable layer, and on the permeability contrast between the two layers; and in
the third case, the current advances to a maximum length or radius and then retreats
before draining out completely. We have also presented steady-state solutions for
cases (ii) and (iii) in which a steady flux at the origin matches the draining flow from
a finite region of the high-permeability layer.

These analytical solutions have been reproduced by numerical integration of the
governing partial differential equations. These numerical solutions suggest that with
arbitrary initial conditions, the flow evolves towards the analytical solutions, when
possible. For the case of fixed-volume releases in a planar geometry, this conver-
gence process has been investigated in more detail, using a quantitative measure of
convergence. Estimates have been obtained for the time and distance over which
convergence takes place, for the parameter regime where convergence is possible, and
for the run-out length both in the case where convergence is possible and in the
case where the initial distribution of fluid is too long and shallow to converge to the
analytical solution. The analytical solution for the planar gravity-driven draining flow
has also been compared with some analogue laboratory experiments. Finally, we have
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considered the implications of our results for two physical situations: the spreading
of an injectate in an aquifer, and the injection of particle-laden fluid into a fracture.

We reiterate that the models developed in this study are simplified, but provide
valuable insight into the limiting effects of draining on the propagation of gravity-
driven flows in porous rocks and fractures. We plan to continue this work by examining
the effects of capillarity and wetting on such draining, gravity-dominated displacement
flows. Further possible extensions of this work also include multiple layer systems,
where flow in the underlying high-permeability layer, or in a low-permeability layer
of non-negligible thickness, must be considered.

We are grateful to Vincent Miele and to Lynne Hatcher for assistance with the
experiments described in § 4, and to the anonymous referees for some extremely
constructive comments on the first version of this paper. D. P. acknowledges support
from EPSRC and HR Wallingford Ltd. under an EPSRC CASE studentship. A. J. H.
acknowledges support from the Nuffield Foundation (grant reference NUF-NAL).

Appendix A. Numerical method used in §§ 2 and 3
The equations (2.14) and (2.23) were solved numerically on a grid of 250 x-points

using a explicit (forward-time, centred-space) finite-element scheme (see Press et al.
1992),

hest = hi,t +
∆t

2(∆x)2
(h2
i−1,t − 2h2

i,t + h2
i+1,t), (A 1)

hi,t+∆t = hest − ε∆t or hi,t+∆t = hest(1− λ∆t), (A 2)

where hi,t ≡ h(i∆x, t). This scheme is second-order in space and first-order in time.
The heuristic criterion for stability of this type of scheme is given in Press et al. (1992)
as ∆t 6 minj [2(∆x)2/(hj + hj+1)], which does not guarantee stability near the nose of
the current where h becomes very small: however, no instability was evident in any
of our results.

At the nose of the current, the scheme (A 1) was modified to use backward-pointing
derivatives, effectively reducing it to first-order accuracy in this region. The drainage
terms (A 1) were only applied where hest > ε∆t or λhest∆t as appropriate.

The method was tested against the analytical solutions (2.17) and (2.24) for a range
of λ and ε, and found to be extremely accurate up to times when the current had
almost totally (more than 99%) drained out. Very small spurious oscillations in h, of
the order of 10−5, tended to occur within two or three grid points of the nose, but
these did not affect the rest of the solution.

Appendix B. Gravity-driven draining flow: the Heaviside problem
We consider the problem in transformed variables,

∂H

∂τ
=

∂

∂x

(
H
∂H

∂x

)
, (B 1)

in the context of a ‘Heaviside’ initial condition, H(x, 0) = H0 for x < 0, and H(x, 0) = 0
for x > 0. Intuitively, this condition should act as a model for the case of a very long,
thin initial condition for the current (where we will have H0 = 1/L0).

By analogy with the case of a linear diffusion problem, we seek a similarity solution
in terms of a variable ξ = xτ−1/2: this leads to an ODE in H(ξ). We can then simplify
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further by transforming to Ĥ = H/H0 and ξ̂ = ξH
−1/2
0 , so our governing equation

becomes

−1

2
ξ̂

dĤ

dξ̂
=

d2

dξ̂2
(Ĥ2). (B 2)

The equation (B 2) can now be integrated numerically, with the conditions that

Ĥ → 1 as ξ̂ → −∞ and that volume per unit width is conserved,∫ 0

−∞
[1− Ĥ(ξ̂)] dξ̂ =

∫ ξ̂F

0

Ĥ(ξ̂) dξ̂, (B 3)

where ξ̂F marks the ‘front’ of the current.

Numerical integration demonstrates that ξ̂F = 1.238, and thus ξF = 1.238H
1/2
0 .

In terms of the gravity-driven draining flow, in which the maximum value of τ is
1/λ, this means that the current will run out beyond x = 0 by a distance ξFλ

−1/2 =
1.238(L0λ)

−1/2.
We note that we can also quantify somewhat the condition for the Heaviside

problem to be a good model for a rectangular initial condition: we may expect this
to be the case when no significant disturbance has reached the ‘tail’ of the current
(at x = −L0 in our coordinates here) by the time the shape has finished evolving; in
other words when L0 > ξ0λ

−1/2 for some ξ0 defining the point on the profile where
significant disturbance can be seen. Since ξ0 = ξ̂0L

−1/2
0 for some ξ̂ independent of all

other parameters, this leads to the requirement that L0 > ξ̂
2/3
0 λ1/3; numerical results

suggest that ξ̂0 ≈ 1.
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