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ABSTRACT

We investigate the application of natural hedging strategies for long-term care
(LTC) insurers by diversifying both longevity and disability risks affecting LTC
annuities. We propose two approaches to natural hedging: one built on a mul-
tivariate duration, the other on the Conditional Value-at-Risk minimization of
the unexpected loss. Both the approaches are extended to the LTC insurance
using a multiple state framework. In order to represent the future evolution of
mortality and disability transition probabilities, we use the stochastic model of
Cairns et al. (2009) with cohort effect under parameter uncertainty through a
semi-parametric bootstrap procedure. We calculate the optimal level of a prod-
uct mix and measure the effectiveness provided by the interaction of LTC stand
alone, deferred annuity and whole-life insurance. We compare the results ob-
tained by the two approaches and find that a natural hedging strategy for LTC
insurers is attainable with a product mix of LTC and annuities, but including
low proportion of LTC.
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1. INTRODUCTION

Long term care (LTC) insurance has reached a global relevance due to the in-
creased number of elderly in the world, which generate a higher demand for LTC
services. In fact, most of the LTC recipients are over 65 years of age and around
60% are women because of their higher life expectancy combined with a higher
prevalence of disability in old age (OECD, 2013). Consequently, public expen-
diture on LTC continues to grow significantly, weighing on government budgets
and debt levels in developed countries. In Italy, public expenditure on LTC as a
share of GDP was estimated at 1.9% in 2013 (of which about two-thirds paid to
people aged 65 and over) and could achieve 3.3% of GDP by 2060 (RGS, 2014).
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In Italy, public LTC benefits and services are provided by Institutions of dif-
ferent nature and structure, i.e., the Municipalities, Local Health Authorities,
Nursing homes and theNational Institute of Social Security (IstitutoNazionale
Previdenza Sociale, INPS). Thus, the funding and the management of LTC ser-
vices are spread over local, regional and central state authorities, with differ-
ent principles and eligibility criteria fixed in the institutional models of each
region (Tediosi and Gabriele, 2010). Where the public provision of care services
is partial, fragmented (as in Italy) or not available, care is mostly financed out-
of-pocket. In this context, private LTC insurance can play an important role,
providing solutions integratedwith the governments and health care institutions
services.

However, insurance companies are conservative by nature and this is partic-
ularly true for LTC insurance underwriting, for the presence of risk elements
such as the uncertainty with disability rates and the uncertainty in mortality
improvement that can affect their underwriting profit. Developing effective risk
management strategies can help insurance companies to underwrite LTC poli-
cies, resulting in lower premiums and leading to an expansion of the market.

From a technical point of view, disability benefits are affected by biometric
risks (longevity and disability risks). While longevity risk has been widely and
accurately defined in the insurance literature, the same cannot be said for dis-
ability risk. In the Solvency II Directive (2009/138/EC), the latter is described
as the risk of adverse changes in the value of insurance liabilities, resulting from
changes in the level, trend or volatility of disability rates. Both of these risks are
systematic as they arise from the uncertainty of future development of mortality
and disability rates and expose LTC insurers to potential unexpected losses.

Insurers can use different approaches to protect themselves from the effect
of biometric risks: they can internally reduce the risk exposure using stochastic
mortality forecastingmodels and natural hedging or they can decide to partially
transfer the risk through traditional reinsurance or via mortality-linked secu-
rities traded on the financial market. However, mortality-linked securitization
covers only longevity risk, while there are no specific tools for disability risk on
the market.

Our paper focuses on the application of natural hedging for LTC insurers by
examining the effects of portfolio diversification, which is essential for the pur-
poses of both risk management and solvency capital requirements for longevity
and disability risks under Solvency II. Specifically, our paper addresses the
changes in the level of longevity and disability rates, while it does not consider
changes in trend or volatility.

Natural hedging of LTC insurance is obtained by diversifying both longevity
and disability risks through a suitable mix of insurance benefits within a policy
or a portfolio. The main advantages of a natural hedging approach are it does
not require the insurer to find counterparties, there are no transaction costs and
it is an internal tool for insurers to diversify biometric risks.

In the context of life insurance, natural hedging can be defined as “an in-
teraction of life insurance and annuities in response to a change in mortality
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to stabilize the cash flow for insurers” (Wang et al., 2009); in a more general
case, natural hedging consists in adapting the insurance portfolio in order to
minimize the overall exposure to a well-defined risk (or risks). The literature
on this topic shows that natural hedging can considerably reduce the sensitivity
of an insurance portfolio against longevity risk. See, for example, Cox and Lin
(2007) that introduced natural hedging for the mortality risk management, Tsai
et al. (2010) that propose a Conditional Value-at-Risk (CVaR) minimization
approach to obtain an optimal product mix for insurance companies who want
to hedge against systematic mortality risk; and Wang et al. (2009) that propose
an immunization model, including a stochastic mortality dynamic, to calculate
the optimal life insurance-annuity product mix ratio to hedge against longevity
risk. In addition, Zhu and Bauer (2014) pointed out that higher order varia-
tions in death rates may affect the performance of natural hedging and consider
a non-parametric mortality model to better capture the shifts in mortality rates
at different ages. Recently, Li and Haberman (2015) consider multi-population
mortality models such as the correlated Poisson Lee–Carter model and Poisson
common factor model to provide an assessment of the effectiveness of natural
hedging between annuity and life products.

In the context of LTC insurance, very few papers have addressed the interac-
tion of life insurance and LTC insurance. For example, Rickayzen (2007) inves-
tigates a special type of annuity, the “disability-linked annuity” compared with
the corresponding traditional whole life annuity and concludes that longevity
andmorbidity risks included in the product work in opposite directions and this
fact “should make the overall risk more controllable”. Maegebier and Gatzert
(2014) analyze the diversification benefits within an insurance portfolio due to
the different types of biometric risks, measuring the effectiveness of natural
hedging between annuity, disability and term life insurance and taking into ac-
count assets and liabilities.

We extend the existing literature on diversification of longevity risk and dis-
ability risk, adopting two different approaches to natural hedging. The first one
uses the multivariate duration to study the sensitivity of the portfolio value to
the change in the transition probabilities. The idea of a multivariate duration
has been proposed in Reitano (1991) to study the interest rate sensitivity of the
price of a portfolio of assets and liabilities, when the yield curve shifts are mul-
tivariate. In our paper, this concept is widened to the case of a LTC portfolio
where the liabilities are sensitive to the changes of mortality and disability tran-
sition probabilities. Therefore, we define a multivariate duration based on the
transition probabilities underlying the multiple state model that describe the
insurance benefits and we propose an immunization model in a stochastic en-
vironment that combines disability and life benefits in an optimal proportion.
However, the multivariate duration matching approach is based on the restric-
tive assumption that the future transition probabilities changes are produced
by parallel shifts and it does not allow to consider parameter risk, which is con-
sidered fundamental for addressing biometric risk. To overcome this limitation,
we consider a second approach based on the CVaR minimization criterion (see
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Tsai et al. 2010 that use this criterion to find the optimal product mix in life
insurance companies). We apply the CVaR minimization approach to the natu-
ral hedging of LTC insurance involving both mortality and disability risk. This
latter approach allows us to base the analysis on comprehensive simulation of
future transition probabilities. We then provide a numerical application of both
these approaches to natural hedging and make a comparison of the results.

Even if natural hedging could be useful for insurers, it should be noticed
that it is sometimes impossible to realized or inconvenient. Cox and Lin (2007)
already observed that for corporate pension plan or annuity writer it may not
be legal to issue life insurance and that for an insurer specialized in annuities
entering in the insurance business is not practical. Wang et al. (2009) underline
the difficulties to implement natural hedging strategies: first, for the differences
in duration between annuities sold to older policyholders and life insurance sold
to younger policyholders; second, because the natural hedging requires a change
in business composition that may induce the insurers to reduce or increase the
price of their annuity or life insurance products in order to change their attrac-
tiveness, producing adverse effects. Similarly, to other papers on this topic (see,
e.g., Zhu and Bauer 2014) we assume that there are not demand-side effects
when we increase the supply of insurance products, nonetheless such limitation
could engender doubt on natural hedging effectiveness.

This paper is organized as follows. Section 2 introduces the stochastic model
proposed for LTC insurance: the multiple state model and the LTC expected li-
abilities. Section 3 discusses the natural hedging strategy for LTC insurers based
on a multivariate duration analysis and on the CVaR minimization approach.
Section 4 shows the results of a numerical application to the Italian dataset.
Finally, Section 5 reports conclusions.

2. A STOCHASTIC MODEL FOR LTC INSURANCE

2.1. The multiple state model

We consider an LTC insurance contract that pays an annuity benefit if the poli-
cyholder is disabled as long as he remains disabled. In the literature, a three-state
model is generally applied to LTC insurance to reproduce the following states
of a policyholder: active, disabled and dead. The disabled state may be split in
more than one state according to different disability degrees, but requires a wide
range of statistical data, often not available. The database we refer to allows to
consider only one level of disability.

Let {S(τ ); τ = 0, 1, 2, . . . ,T} be a Markovian process describing the de-
velopment of a single policy in discrete time, where the random variable S(τ )

represents the state of the process at time τ and [0,T] be a fixed finite time hori-
zon. The LTC insurance is modeled by a multiple state model with a finite state
space S={1 = healthy, 2 = disabled, 3 = dead} and a set of transitions according
to Figure 1 (see Haberman and Pitacco (1999) for a review of multiple state
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FIGURE 1: Set of states and set of transitions for LTC insurance.

models in LTC insurance). We assume that at initial time the policyholder is
healthy and we disregard the possibility of recovery from the disabled state
due to the usually chronic character of disability for elderly. This assumption
is consistent with the empirical evidence emerging from our dataset, where LTC
benefits are paid only to individuals who have a severe disability. During the
observation period, the annual average rate of decrements other than death is
3.4%. Note that decrements other than death include both recoveries and un-
due benefits, while the INPS database do not allow to deduce the proportion
between these two causes of decrement.

Let x(x ≥ 0) be the entry age at time t; the transition probabilities of a
policyholder being in state j at age x+ τ , given that the policyholder is in state
i at age x are defined as follows:

τ p
i j
x,t = P

{
S(t + τ) = j

∣∣S(t) = i
}

i, j ∈ S, i �= j, (2.1)

while the probability of a policyholder being in state i at age x to remain in the
same state up to age x+ τ is

τ piix,t = P {S(t + z) = i for all z ∈ [0, τ ], S(t) = i} . (2.2)

To help understanding of the definitions presented below, the following no-
tation is used:

• Di j
x,t: observed number of transitions from state i to j (i �= j ) in 1 year for

policyholders aged x in year t in the reference population.
• l ix,t: number alive in state i at age x in year t in the reference population.
• Ei

x,t: number of person years lived in state i in 1 year for policyholders aged
x in year t in the reference population.

According to this notation, the annual probabilities pi jx,t for i �= j and piix,t are,
respectively, estimated by

pi jx,t = Di j
x,t

l ix,t
, (2.3)

piix,t = l ix+1,t+1

l ix,t
. (2.4)
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2.2. LTC expected liabilities

We consider an insurance company offering LTC stand alone (ltc) policies pay-
ing an annuity at rate b2t in year t if the insured is disabled (state 2). We denote
by nit the number of annuitants in state i at time t and refer to an insurance
portfolio consisting of n10 annuitants (all in state 1) aged x at time t = 0. Since
we consider one cohort only, age can be omitted.

The expected liabilities at time t for a policyholder in state 1, V1
t , and state

2, V2
t , are given by

V1
t = b2t · a12x+t, (2.5)

V2
t = b2t · a22x+t, (2.6)

where

ai jx+t =
ω−x∑
h=1

h pi jx · d(0, h) ∀i, j ∈ 1, 2, (2.7)

where d(0, t) is the discount factor (for simplicity, the interest rate is assumed
to be deterministic) and ω the maximum attainable age. We consider single
premium coverages. Single premium is calculated according to the equivalence
principle and is denoted by π0 = V1, where V1 is the present value (at time
0) for the healthy beneficiaries of all cash flows of the contract until the maxi-
mum attainable age. The portfolio premium income at initial time is therefore
�0 = n10 · π0. While the portfolio expected liabilities at time t are calculated as
follows:

Vt =
∑
i∈1,2

nit · Vi
t . (2.8)

3. NATURAL HEDGING STRATEGY FOR LTC INSURERS

Natural hedging occurs when the liabilities of different insurance productsmove
in opposite directions in response to a change in the underlying key variables. It
is a diversification strategy that allows to stabilize aggregate liability cash flows
offsetting risks involved in different lines of business (LOB). In this paper, we
consider the risk situation of an insurance company offering LTC and life poli-
cies. For this insurer, natural hedging employs the interaction of life (e.g., whole
life or annuity) and LTC insurance in response to a change in the transition
probabilities set to stabilize the cash flows. These insurance products do not
necessarily move in opposite directions, but rather in different directions that
anyway could allow for a diversification of risks. Therefore, the insurance com-
pany may change the portfolio composition to realize a potential hedge arising
from the mix of policies liabilities.

In the following, we analyze a product mix including whole life, annuity and
LTC insurance and study the effectiveness of natural hedging between these
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types of benefits. First, natural hedging is realized according to the multivariate
duration matching approach that is simple to implement and based on the as-
sumption that the future transition probabilities changes are produced by par-
allel shifts and does not take into account parameter risk. To overcome this
limitation, we then consider the approach based on the CVaR minimization
criterion that allow to include a comprehensive simulation of future transition
probabilities and parameter uncertainty in the model.

Considering an insurance portfolio composed of different products or LoB,
the insurer’s expected total liability of the product mix at initial time is the sum
of the expected liabilities of each LoB in the portfolio:

Vmix(p̂) =
∑
LoB

VLoB(p̂), (3.1)

where p̂ = ( p̂13, p̂23, p̂12) is the expected transition probabilities vector at initial
time defined by the multiple state model in Figure 1 and VLoB(p̂) is then a mul-
tivariate function of p̂ = E(p) (note that for simplicity, age has been omitted).

In order tomeasure the hedge effectiveness, we define the present value of the
unexpected cash flows from each LoB and from the product mix, respectively,
as

XLoB = VLoB(p) − VLoB(p̂), (3.2)

Xmix = Vmix(p) − Vmix(p̂), (3.3)

where VLoB(p) and Vmix(p) represents the realized total liability of each LoB and
of the product mix, respectively, for example, after experiencing a shock on the
transition probabilities.

The corresponding proportion of present value of the unexpected cash flows
are defined as

xLoB = VLoB(p) − VLoB(p̂)
VLoB(p̂)

, (3.4)

xmix =
∑
LoB

ωLoB · xLoB, (3.5)

where ωLoB = VLoB(p̂)
Vmix(p̂)

is the liability proportion of each LoB on total portfolio
liability.

3.1. Multivariate duration (MD) approach

As described in the introduction, Wang et al. (2009) proposed an immunization
strategy based on a one-variable duration analysis as they study the mortality
rate sensitivity of the value of a life insurance portfolio considered as a function
of mortality rate. They analyze the situation of an insurer selling both life insur-
ance and annuities and measure the effect of mortality changes on liabilities by
defining an “effective mortality duration” under the assumption of a constant
force of mortality, μ, as follows: DV

eμ = V+−V−
2V�μ

, where V is the expected total
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liability from the portfolio, �μ is the change in the mortality curve, V+ and V−
are the insurance liabilities value at highermortalityμ+�μ and lowermortality
μ − �μ, respectively. Then, they find the optimal proportion of life insurance,
ω∗
life, that realize natural hedging between life insurance and annuities, through

the effective mortality duration. The idea of mortality duration was introduced
by Coughlan (2007) through the “q-duration” denoting the sensitivity of the
value of insurance liabilities for a change in future mortality rates. It was then
applied by, e.g., Li and Hardy (2011) and Plat (2011).

In the context of LTC insurance, where themodel framework comprisesmul-
tiple states, the portfolio value depends on a set of transition probabilities and
a single variable duration is not sufficient to catch the portfolio liability value
changes. Therefore, amultivariate duration analysis is necessary to represent the
portfolio sensitivity to changes in a set of transition probabilities. Amultivariate
approach has been proposed in Reitano (1991) to study the interest rate sensitiv-
ity of the price of a portfolio of assets and liabilities, where the yield curve shifts
are multivariate, i.e., when the yield curve moves in different directions for each
maturity. Moving from these considerations, we extend the idea of a multivari-
ate duration to the case of an LTC insurance portfolio and define a multivariate
duration depending on mortality and disability transition probabilities. Then,
we propose a natural hedging strategy based on it.

In the following, we adopt a notation in line with the one used by Reitano
(1991). We denote by �ps the shift on the transition rate p̂s , with s ∈ (1 →
3, 2 → 3, 1 → 2), therefore �p = (�p13, �p23, �p12) is the vector of the shifts
on the transition probabilities affecting the expected total liability of the insurer.

V(p̂+�p) viewed as a function of �p, reflects the sensitivity of the insurers’
total liability to shifts of the transition probabilities. LetVs(p̂) denote the partial
derivative of V(p̂) respect to the transition probability p̂s and V′(p̂) the vector
of partial derivatives. We define the total (modified) duration vector, D(p̂), for
V(p̂) �= 0 as follows:

D(p̂) = −V′(p̂)
V(p̂)

. (3.6)

The total duration vector is composed of the partial durations, Ds(p̂) = −Vs (p̂)
V(p̂) :

D(p̂) = (
D13(p̂), D23(p̂), D12(p̂)

)
. (3.7)

Using the first-order Taylor series approximation, the insurer’s total liability
variation can be approximated through the total duration as follows:

V(p̂+ �p) − V(p̂)
V(p̂)

≈ −D(p̂) · �p. (3.8)

As a consequence, it can be expressed as a function of the partial durations as

V(p̂+ �p) − V(p̂)
V(p̂)

≈ −
∑
s

Ds(p̂) · �ps . (3.9)
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In a multiple state framework, the ability of an immunization model to predict
the sensitivity of the total liability of an insurance portfolio depends on the va-
lidity of the underlying transition probabilities assumption. First, we assume
parallel shifts on transition probabilities, where shifts are the same for each age
of the transition probabilities curves, but not necessary the same for each tran-
sition probability. Besides, if we assume that each transition probability changes
of the same size, �, Equation (3.9) becomes as follows:

V(p̂+ �p) − V(p̂)
V(p̂)

≈ −�
∑
s

Ds(p̂). (3.10)

Similarly to interest rate effective duration, we can define the total effective du-
ration, that can better capture the transition probabilities dynamics respect to
the total (modified) duration:

De(p̂) = −V(p̂+ �p) − V(p̂− �p)
2V(p̂)�p

, (3.11)

where V(p̂ + �p) and V(p̂ − �p) denote the insurance liabilities value with a
positive and a negative shift, respectively.

The total effective duration vector is a vector consisting of the partial effec-
tive durations, Ds

e(p̂) = −V(p̂+�ps )−V(p̂−�ps )
2V(p̂)�ps .

To neutralize the effects of the transition probabilities changes on the insur-
ance portfolio liability, we define a natural hedging strategy based on the effec-
tive duration. Considering the Taylor first-order approximation, the difference
V(p̂+ �p) − V(p̂) becomes zero when∑

s

Ds(p̂) · �ps = 0. (3.12)

However, shifts may have different sign and size, therefore a sufficient condition
for the sum in Equation (3.12) to be zero is that each partial duration is zero:

Ds(p̂) = 0 ∀s ∈ (1 → 3, 2 → 3, 1 → 2). (3.13)

However, if we assume that each transition probability changes of the same size,
the change in the expected total liability becomes zero when the sum of the par-
tial durations in Equation (3.10) is zero:∑

s

Ds(p̂) = 0. (3.14)

This approach allows to reduce the biometric risks (longevity and disabil-
ity risk) affecting an insurance portfolio through the construction of a natural
hedging based on the total duration. Clearly, it does not realize a Redington
immunization, as it does not consider the constraint on the convexity.
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The partial durations of the insurance portfolio are defined as follows:

Ds
mix(p̂) =

∑
LoB

ωLoB · Ds
LoB(p̂), (3.15)

where Ds
LoB(p̂) is the partial duration of the LoB respect to the transition prob-

ability s. A budget constraint is added to ensure that the portfolio weights’ sum
is equal to 1,

∑
LoB ωLoB = 1.

If each transition probability changes of the same size, fromEquation (3.15),
the proportion of the liability respecting Equation (3.14), ωMD

LoB, under the bud-
get constraint, is the solution of the following system of linear equations:∑

s

∑
LoB

ωLoB · Ds
LoB(p̂) = 0

∑
LoB

ωLoB = 1.
(3.16)

If the system has a solution and the equations are independent, the solution
is unique if and only if variables (LoB) are two. If we consider more than two
insurance products other constrains should be added to the system to have a
unique solution.

Otherwise, if each transition probability changes of different sizes, the pro-
portion of the liability respecting Equation (3.13), ωMD

LoB, under the budget con-
straint, is the solution of the following system of linear equations:∑

LoB

ωLoB · D13
LoB(p̂) = 0,

∑
LoB

ωLoB · D23
LoB(p̂) = 0,

∑
LoB

ωLoB · D12
LoB(p̂) = 0,

∑
LoB

ωLoB = 1.

(3.17)

If the equations of the above system are independent, we need at least four vari-
ables (LoB) to have a solution. As we consider less than four insurance prod-
ucts, the system should be reduced by removing one or more equations to find a
solution.

As long as the insurer continues to hold a liability proportion of each LoB
in the portfolio mix, ωMD

LoB, he obtains a natural hedge of longevity and disability
risk.
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3.2. Conditional VaR minimization approach

As explained in the introduction, the natural hedging of longevity risk based on
the multivariate duration has some limitations. For this reason, Tsai et al. (2010)
proposed a criterion based on a risk measure minimization in the context of the
natural hedging of longevity risk. In particular, they choose to minimize the
CVaR of the portfolio loss for the well-known better properties of the CVaR
than VaR. We apply the CVaR minimization approach to the natural hedging
of LTC insurance involving two biometric risks: longevity and disability.

We find the liability proportion of each LoB on total portfolio liability,
ωCVaR
LoB , minimizing the CVaR of xmix under the budget constraint, by solving

the following optimization problem:

min
ωLoB

E [xmix | xmix ≥ xmix(ε)]∑
LoB

ωLoB = 1,
(3.18)

where E [xmix | xmix ≥ xmix(ε)] is the conditional expectation of the proportion
of the present value of the unexpected cash flows from the product mix exceed-
ing the threshold xmix(ε) with a ε confidence level. Following Tsai et al. (2010),
to calculate xmix, we firstly apply the forecasting model to simulate the distribu-
tion of VLoB(p), then obtaining the distribution of xLoB and xmix by Equation
(3.5). Several algorithms, written in various computer program languages, are
available for solving the optimization problem in Equation (3.18). Specifically,
we use the R package “DEoptim” (Mullen et al., 2011).

4. NUMERICAL APPLICATION

This section concerns the application of our hedging model, introduced in the
previous section, to Italian disability data. In Italy, LTC insurance offered by
insurance companies is not very widespread and data on disability claims are
still poor and inadequate for pricing. However, the ItalianGovernment has been
paying since 1980 a disability benefit, called “indennita’ di accompagnamento”,
to individuals residing in Italy who have suffered a disability which leaves them
non-self-sufficient or unable to work. It is a universal cash benefit unconnected
to a means’ test and not subject to age limitations. Therefore, in the numerical
application, we use data on people qualified to the “indennita’ di accompagna-
mento”, collected by the Italian National Institute of Social Security (INPS).

4.1. Dataset description and analysis

The INPS database provides standardized information on this disability benefit
only from 2002. To be eligible to receive the “indennita’ di accompagnamento”,
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beneficiaries must be assessed of being 100% invalid and non-self-sufficient ac-
cording to the activities of daily living (ADL) criterion, evaluating the individ-
ual’s ability to perform daily activities essential for independent living. More-
over, beneficiaries must not reside in institutions with costs charged to the public
administration. Since gender differences in disability among elderly are remark-
able, the model is tested on both the genders. Specifically, our analysis focuses
on Italian males and females using data from 2002 to 2012 for ages 40 to 89.
The dataset is structured as follows:

• Deaths among disabled.
• Number of disabled.
• Inceptions on disabled state.

As the disability benefit paid by INPS is universal and the reference population
well represented by the Italian general population, the number of healthy people
can be calculated as the difference between the Italian general population, taken
from the Italian National Institute of Statistics (ISTAT), and Italian disabled
population given by the INPS dataset. The reference sample has the following
size: the number of people becoming disabled from 2002 to 2012 for ages 40 to
89 is 1.1 million for males and 1.7 million for females. While the corresponding
number of exposures to risk is from 13.4 million in 2002 to 15.2 million in 2012
for males, and from and 15.3 million in 2002 to 16.9 million in 2012 for females.

4.2. The forecasting of transition probabilities

Recently, Levantesi and Menzietti (2012) proposed to use stochastic models of-
ten applied in mortality projections (such as the Lee–Carter model (Lee and
Carter, 1992) and the Cairns, Blake and Dowd model (Cairns et al., 2006))
to forecast the transition probabilities defining a multiple state model for LTC
insurance. Following this idea, in this paper, we compare the fitting results of
the seven stochastic models considered by Cairns et al. (2009) using the INPS
database. The goodness-of-fit is measured by the Bayes Information Criterion
(BIC). We find that an extension of the CBD model including a cohort compo-
nent (M8 model) fits Italian data very well. It has the highest BIC value for all
the transition probabilities for females. As regards the males, it is the first one
for p13x,t, the second one (but very close to the first one) for p23x,t and the third one
for p12x,t. The BIC values for all models fitted are displayed in Table 1 for males
and Table 2 for females.

The transition probabilities pi jx,t according to M8 are described by the fol-
lowing equation:

logit(pi jx,t) = ln

(
pi jx,t

1 − pi jx,t

)
= i j k(1)

t + i j k(2)
t (x− x̄) + i jγ (3)

c (xc − x) , (4.1)

where x is the age, x̄ the mean age in the sample age range (in our analysis
x̄ = 64.5), t the time, c = t−x the cohort and xc a constant parameter that does
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TABLE 1

BIC STATISTIC AND RANK FOR EACH MODEL, AGES 40–89 AND YEARS 2002–2012, ITALIAN MALES.

p13x,t p23x,t p12x,t

BIC BIC BIC
Model (Rank) (Rank) (Rank)

Lee–Carter Model (M1) −3098 (4) −2861 (5) −3282 (6)
Renshaw–Haberman Model (M2) −3217 (6) −2917 (6) −3040 (5)
Currie Age–Period–Cohort Model (M3) −3041 (3) −2604 (4) −2794 (4)
Original Cairns–Blake–Dowd (CBD) Model (M5) −5080 (7) −4040 (7) −5248 (7)
CBDModel with a Cohort Effect (M6) −3123 (5) −2586 (3) −2708 (2)
Quadratic CBDModel with Cohort Effect (M7) −2959 (2) −2442 (1) −2703 (1)
CBDModel with an Age-Dependent Cohort Effect (M8) −2943 (1) −2445 (2) −2791 (3)

TABLE 2

BIC STATISTIC AND RANK FOR EACH MODEL, AGES 40–89 AND YEARS 2002–2012, ITALIAN FEMALES.

p13x,t p23x,t p12x,t

BIC BIC BIC
Model (Rank) (Rank) (Rank)

Lee–Carter Model (M1) −2996 (5) −2625 (4) −3938 (5)
Renshaw–Haberman Model (M2) −3102 (6) −2790 (5) −3118 (3)
Currie Age–Period–Cohort Model (M3) −2934 (4) −2505 (3) −3074 (2)
Original Cairns–Blake–Dowd (CBD) Model (M5) −11071 (7) −8766 (7) −22133 (7)
CBDModel with a Cohort Effect (M6) −2860 (3) −2910 (6) −4214 (6)
Quadratic CBDModel with Cohort Effect (M7) −2730 (2) −2442 (2) −3306 (4)
CBDModel with an Age-Dependent Cohort Effect (M8) −2720 (1) −2413 (1) −2957 (1)

not vary with age or time (in our analysis xc = 65). To avoid any identifiability
problem, we introduce the constraint

∑i j
c γ (3)

c = 0.
Model parameters are estimated separately for each transition probability as

a trivariate CBDmodel. The maximum-likelihood estimates of the CBDmodel
parameters are shown in Appendix A.1.

To forecast transition probabilities, we model the parameters i j k(1)
t , i j k(2)

t
and i jγ (3)

c through a multivariate ARIMA time series model. The multivariate
ARIMAmodel can be expressed as Ks+1 = Ks +φ (Ks−2 −Ks−1)+ δ +C Zs+1,
where Ks is a 9×1 vector of parameters at the step s, s is the time or the cohort
depending on the parameter; φ is a 9×1 vector of parameters of the autoregres-
sive part of the model; δ is a 9×1 vector of the drifts of the model; C is a 9×9
constant upper triangular matrix so that CC′ is the covariance matrix and Z is
a 9×1 vector of standard normal random variables.

The choice of ARIMA process for the nine parameters has been made
mainly according to Information Criteria as Akaike Information Criterion
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FIGURE 2: Forecasted central transition probabilities on log scale, years 2013–2043. Males.

FIGURE 3: Forecasted central transition probabilities on log scale, years 2013–2043. Females.

(AIC), Schwartz Information Criterion (SIC) and Hannan and Quinn (HQ)
and to the analysis of residuals. The selected ARIMA models and the corre-
sponding parameters (σ 2: variance of the error terms; δ: drift; φ: autoregressive
parameter) are reported in Appendix A.1.

As usual in the models with cohort effect, we assume that the cohort effect
has dynamics that are independent of the period effect (see, e.g., Cairns et al.
2011), therefore i jγ (3)

c is not correlated with i j k(1)
t and i j k(2)

t . For the fitted cor-
relation matrices ρ, see Appendix A.1.

Parameter uncertainty is incorporated in the forecasting of the CBD model
through a semi-parametric bootstrap procedure as proposed by Brouhns
et al. (2005). We generate B bootstrap samples of the number of transitions
Di j (b)
x,t , b = 1, 2, . . . , B by sampling from the Poisson distribution with mean

D̂i j
x,t (under the assumptions that the number of transitions follows a Poisson

distribution) that is fitted to real data by the CBD model.
The resulting forecasted transition probabilities on log scale are shown in

Figures 2 and 3 for males and females, respectively.

4.3. Natural hedging strategy under MD approach

In the numerical application, we study the interaction of the following LoB:
LTC stand alone (ltc), deferred annuity (annuity) and whole life (life). In Ta-
ble 3, we describe the policy conditions and the interest rate assumption for
the three LoB. The risk-free term structure used in the calculations is provided
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TABLE 3

INSURANCE PRODUCTS CHARACTERISTICS.

Insurance Product LTC Annuity Life Annuity Whole Life

Gender Male; Female Male; Female Male; Female
Term Structure CEIOPS 2007 CEIOPS 2007 CEIOPS 2007
Payout Benefit €2 (per year) €1 (per year) €10
Premium Payment Single Premium Single Premium Single Premium
Deferred Period − − −
VLoB (Entry Age 40) 0.4082; 0.1480 3.7342; 4.5493 1.2211; 0.3892
VLoB (Entry Age 50) 0.5192; 0.1659 5.8286; 6.9607 1.8078; 0.6847
VLoB (Entry Age 65) 0.7805; 0.2545 12.3531; 14.3038 3.3025; 1.4191

TABLE 4

EXPECTED LIABILITY VARIATION, ENTRY AGE: 65.

Males Females

V+ LTC Annuity Life LTC Annuity Life

V+
p̂13 −1.3023% −1.0095% 2.2782% −0.8225% −1.1406% 8.6331%

V+
p̂23 −0.2332% −0.0074% 0.0156% −0.3055% −0.0027% 0.0137%

V+
p̂12 8.8717% −0.6880% 1.6902% 38.1023% −0.7943% 6.8554%

by CEIOPS (CEIOPS, 2010) in the fifth quantitative impact study. Considering
that most of the LTC recipients are over 65 years of age, we analyzed single
premium coverages written for a male/female policyholder aged 65 (in 2013) as
a benchmark case.

To ensure perfect comparability between insurance contracts, life insurance
is modeled using the same multiple state model of LTC insurance. Therefore,
the generic probability of death qx,t required for the computation of Vlife and

Vannuity is calculated as qx,t = l1x,t
lx,t
p13x,t + l2x,t

lx,t
p23x,t.

In Table 4, we show the percentage variation of the expected liability,VLoB, of
the insurance products in case of a 0.001 positive shift of transition probabilities.

From this table, we observe that the changes in the death probability of
healthy people, p̂13, have a positive impact on life insurance and a smaller nega-
tive impact on LTC and life annuity for both males and females; the changes in
the death probability of disabled, p̂23, have a very small impact on the portfolio
liabilities for both genders and the changes in the transition probabilities from
healthy to disabled state, p̂12, have a strong positive impact on LTC (especially
for females) and a positive impact on life insurance, while have a negative ef-
fect on life annuity for both genders. From these results, it can be guessed that
a mixed portfolio could compensate positive and negative effects of different
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TABLE 5

TOTAL EFFECTIVE DURATIONS, ENTRY AGE: 65.

Males Females

Duration LTC Annuity Life LTC Annuity Life

D13
e (p̂) 13.1393 10.1696 −22.9923 8.2795 11.5005 −87.2707

D23
e (p̂) 2.3372 0.0738 −0.1562 3.0640 0.0273 −0.1373

D12
e (p̂) −89.3275 6.9324 −17.0646 −383.888 8.0117 −69.3304∑
s D

s
e(p̂) −73.8510 17.1758 −40.2131 −372.5445 19.5395 −156.7384

( )
( )
( )

( )
( )
( )

( )
( )
( )

FIGURE 4: Partial durations by entry age 40, 50 and 65, males.

( )
( )
( )

( )
( )
( )

( )
( )
( )

FIGURE 5: Partial durations by entry age 40, 50 and 65, females.

shifts on transition probabilities. In Table 5, we show the total effective duration
vector, De(p̂) = (

D13
e (p̂), D23

e (p̂), D12
e (p̂)

)
, for the analyzed insurance products.

Moreover, we perform a sensitivity analysis of partial durations by entry
age and gender, results are plotted in Figures 4 and 5 for males and females,
respectively. We observe that D23

e (p̂) continues to be negligible at all the ages.
Results on D12

e (p̂) show that the insurance products are less affected by shifts of
p̂12 when the entry age increases. For life annuity and life insurance, results on
D13
e (p̂) lead to similar conclusion of D12

e (p̂), while values of D13
e (p̂) are minimal

for LTC.
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TABLE 6

MIX OF TWO LoB: OPTIMAL PROPORTION OF THE LoB IN THE PRODUCT MIX. MD APPROACH.

Mix 1 Mix 2 Mix 3
ωMD
ltc ωMD

ltc ωMD
life

Age Males Females Males Females Males Females

40 12.37% 4.86% −60.40% −123.40% 27.27% 8.46%
50 17.09% 5.26% −90.68% −82.65% 30.24% 10.94%
65 18.87% 4.98% −119.55% −72.63% 29.93% 11.08%

The natural hedging strategy is obtained by a product mix that is a combi-
nation of two LoB: ltc and life, ltc and annuity or a combination of three LoB:
ltc, life and annuity, as follows:

• Deferred annuity and LTC stand alone (mix 1).
• Whole life and LTC stand alone (mix 2).
• Whole life and annuity (mix 3).
• Deferred annuity, LTC stand alone and whole life (mix 4).

The third product mix has been considered for comparative purposes with the
model of Wang et al. (2009) based on the mortality duration. To make results
comparable, we set the liability of each productmix to the same amount of 1,000
monetary units.

4.3.1. MD approach with shifts of the same size. When each transition proba-
bility changes of the same size, �, the proportions of insurance liability optimal
according to the multivariate duration approach, ωMD

LoB, are obtained from the
solution of the system of linear equations 3.16. As previously stated, this sys-
tem has a unique solution when the LoB are two. The proportions of insurance
liability, ωMD

LoB, are shown in Table 6.
The optimal proportion for natural hedging of LTC in the mix 1 is in the

range of 12%–19% for males and increases as the entry age becomes higher,
while it is about 5% for females for all the entry ages. In terms of number of
policies, e.g., at age 65, considering the expected liabilities of each LoB, the LTC
proportion of 18.87% (4.98%) is equivalent to hold 241.7 (195.8) LTC policies
and 65.7 (66.4) annuities for males (females). In the second mix, that combines
LTC and life insurance, the optimal proportion of LTC is negative, which im-
plies a proportion of life insurance that exceeds 100% as these two LoB do not
really offset. Looking at the optimal portfolio composition in terms of number
of policies at age 65, the product mix should be composed of−1531.6 (−2853.8)
LTC policies and 664.8 (1216.4) life insurance policies for males (females). Fi-
nally, the optimal proportion of life insurance in the mix 3 is in the range of
27%–30% for males and 8%–11% for females. In terms of number of policies at
age 65, the insurer has to hold 90.6 (78.1) life insurance policies and 56.7 (62.2)
annuities for males (females).
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TABLE 7

MIX OF TWO LOB: PRESENT VALUE OF THE UNEXPECTED CASH FLOWS. MD APPROACH. SHIFTS OF THE
SAME SIZE. MALES.

Age Shift Xmix1 Xmix2 Xmix3 Xltc Xannuity Xlife

40 −0.001 0.67 −0.68 0.44 −487.93 69.66 −184.16
0.001 0.64 −0.60 0.43 464.98 −64.92 174.72

50 −0.001 0.22 −0.68 0.08 −233.32 48.36 −111.31
0.001 0.21 −0.63 0.08 223.98 −45.91 106.18

65 −0.001 −0.03 −0.13 −0.05 −75.10 17.42 −40.95
0.001 −0.03 −0.12 −0.05 72.63 −16.93 39.49

TABLE 8

MIX OF TWO LOB: PRESENT VALUE OF THE UNEXPECTED CASH FLOWS. MD APPROACH. SHIFTS OF THE
SAME SIZE. FEMALES.

Age Shift Xmix1 Xmix2 Xmix3 Xltc Xannuity Xlife

40 −0.001 0.86 −13.83 0.31 −1000.00 74.60 −803.14
0.001 0.81 −12.74 0.30 1371.69 −69.20 751.99

50 −0.001 0.29 −5.31 −0.04 −926.76 51.81 −422.28
0.001 0.28 −4.98 −0.04 886.93 −48.99 398.62

65 −0.001 −0.04 −0.90 −0.10 −379.44 19.86 −160.16
0.001 −0.04 −0.86 −0.09 365.79 −19.23 153.40

Tomeasure the hedge effectiveness, wemake a sensitivity test setting the shift
for all probabilities to a negative value of −0.001 and a positive value of 0.001
and calculate the present value of the unexpected cash flows X according to
Equations (3.2) and (3.3), where V(p) is the realized total liability after the shift
on the expected transition probabilities vector (see Tables 7 and 8).

Our numerical analysis based on the multivariate duration approach under
the assumption of parallel shifts of the same size shows that mix 1 is able to
strongly reduce the sensitivity of the portfolio to longevity and disability risks
respect to the individual LoB, especially with respect to the LTC insurance that
has the highest risk level. Similar results can be achieved from mix 3, where,
however, there are no LTC benefits. Numerical results from mix 2 show that
the combination of life insurance and LTC are not so good as the other mixes,
especially for females.We recall that mix 2 requires negative proportions of LTC
insurance. In product mix 1, the pooling of longevity risk in the life annuity with
the disability risk in the LTC insurance reduces the aggregate risk for the insurer
since the two risks do notwork in the same direction.Actually, as stated byRick-
ayzen (2007) for the disability-linked annuities, “the longer an individual stays
healthy and receives the standard life annuity, the lower the present value of the
LTC annuity enhancement; whereas, the earlier the individual becomes severely
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TABLE 9

MIX OF THREE LOB: OPTIMAL PROPORTION OF EACH LOB IN THE PRODUCT MIX 4. MD APPROACH.

Males Females

Age ωMD
ltc ωMD

annuity ωMD
life ωMD

ltc ωMD
annuity ωMD

life

40 1.33% 74.35% 24.33% 0.49% 91.90% 7.60%
50 0.90% 70.47% 28.63% 0.25% 89.34% 10.41%
65 −0.43% 69.81% 30.63% −0.26% 88.60% 11.65%

disabled [...], the shorter the overall term of the annuity since the individual’s life
expectancy is likely to be compromised by the illness”. Our results are consistent
with this statement and the multivariate duration approach allows to obtain the
proportions that achieve a significative risk compensation under the assumption
of parallel and same size shifts.

4.3.2. MDapproach with shifts of different sizes. When transition probabilities
change of different sizes, the proportions of insurance liability optimal accord-
ing to the multivariate duration approach, ωMD

LoB, are obtained from the solution
of the system of linear Equations (3.17). As mentioned in Section 3, if the linear
system equations are independent, we need at least four LoB to have a solution.
As the changes in the mortality of disabled, p̂23, have a very small impact on
the portfolio liabilities, we remove the second equation from the linear system
so that three LoB are sufficient to achieve a solution. Therefore, we set to 0 only
two partial durations, D13

mix(p̂) and D
12
mix(p̂).

In the following, we analyze an insurance portfolio consisting of three LoB:
deferred annuity, LTC stand alone and whole life (mix 4). The optimal pro-
portions for natural hedging for the product mix 4 are shown in Table 9. The
numerical analysis shows that the optimal proportion of LTC is close to 0, as
the best hedging is obtained by combining life and annuity for both the genders.
The contribution of LTC insurance is then residual in the product mix 4. How-
ever, from the point of view of insurers selling LTC benefits, the natural hedging
strategy can be realized by setting a constraint on the minimum share of LTC
in the system of linear equations 3.17.

To evaluate the hedge effectiveness, we carry out the following sensitivity
tests:

• Sensitivity test 1: we suppose that each transition probability can shift of
±0.0005 and ±0.001 producing 43 different cases. Results are shown in
Table 10.

• Sensitivity test 2: to realize a sensitivity test close to the real shifts experienced
by the transition probabilities over time, we use historical shifts detected by
each transition probability on the period 2002–2012. Note that in this case,
shifts are not only of different sizes but also non-parallel. Results are shown
in Table 11.
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TABLE 10

SENSITIVITY TEST 1: STATISTICAL PARAMETERS OF THE PRESENT VALUE OF THE UNEXPECTED CASH FLOWS.
MD APPROACH. SHIFTS OF DIFFERENT SIZES.

Males Females

Age Xmix4 Xltc Xannuity Xlife Xmix4 Xltc Xannuity Xlife

40 Min 0.19 −544.10 −181.90 −299.40 0.33 −1000.00 −193.00 −864.40
Mean 6.77 290.80 −15.87 60.45 4.43 888.70 −31.23 378.00
Max 23.05 1593.00 136.70 498.40 11.00 4275.00 88.85 2118.00
Var 39.15 615799.10 7717.03 52699.04 9.21 4488505.00 6693.88 772190.70

50 Min −0.10 −505.50 −130.90 −288.60 −0.19 −1000.00 −139.20 −739.10
Mean 1.18 73.37 −2.65 8.36 0.86 431.10 −13.42 113.00
Max 4.48 836.70 128.70 304.40 3.24 2796.00 92.59 1131.00
Var 1.56 219847.10 4953.03 26681.64 1.27 2291899.00 4315.17 287043.60

65 Min −0.48 −311.70 −49.39 −127.50 −1.56 −992.70 −55.89 −476.40
Mean −0.12 −2.44 0.64 −1.87 −0.40 32.38 −0.03 −2.54
Max 0.02 317.20 53.82 114.30 0.00 1197.00 58.03 441.20
Var 0.02 41481.43 771.45 4181.73 0.19 647052.70 959.74 60834.64

TABLE 11

SENSITIVITY TEST 2: STATISTICAL PARAMETERS OF THE PRESENT VALUE OF THE UNEXPECTED CASH FLOWS.
MD APPROACH. SHIFTS OF DIFFERENT SIZES.

Males Females

Age Xmix4 Xltc Xannuity Xlife Xmix4 Xltc Xannuity Xlife

40 Min −0.65 −57.05 −1.24 −88.23 −18.66 −317.46 −14.21 −532.35
Mean 2.16 −34.98 10.64 −61.29 −5.13 −205.22 11.12 −426.36
Max 11.37 153.98 41.41 16.23 14.58 385.55 32.18 352.17
Var 10.84 5078.04 143.16 1019.29 96.95 61766.57 245.52 80174.39

50 Min −6.26 −68.68 −2.29 −95.96 −24.39 −383.22 −13.06 −422.65
Mean −0.54 −52.34 10.25 −66.69 −11.01 −280.78 9.86 −347.10
Max 5.95 172.81 40.95 25.86 18.25 467.87 30.43 282.82
Var 12.98 6876.43 144.37 1338.65 157.54 95126.45 211.80 51443.20

65 Min −8.85 −96.92 −1.16 −89.20 −23.82 −628.73 −11.22 −351.89
Mean −5.80 −75.40 7.58 −63.63 −14.11 −482.98 5.87 −301.34
Max 7.02 195.66 33.46 25.45 17.70 714.45 28.66 242.00
Var 23.61 10525.55 100.09 1260.86 159.72 214946.01 153.93 37320.85

As regards the sensitivity test 1 (see Table 10), results indicate a very high
variability of LTC insurance, high variability of the whole life and a lower
one of the annuity. Note that the product mix 4 almost completely cancels the
variability of the individual LoB, as evidenced by the narrow range between
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TABLE 12

SENSITIVITY TEST 2: RELATIVE RISK REDUCTION OF THE PRODUCT MIX RESPECT TO EACH LoB. MD
APPROACH.

Males Females

Age Rmix,ltc Rmix,annuity Rmix,life Rmix,ltc Rmix,annuity Rmix,life

40 99.79% 92.43% 98.94% 99.84% 60.51% 99.88%
50 99.81% 91.01% 99.03% 99.83% 25.62% 99.69%
65 99.78% 76.41% 98.13% 99.93% −3.76% 99.57%

minimum and maximum values of the distribution of X and the corresponding
variance.

Concerning the second test (see Table 11), results confirm the variability
characteristics of the individual LoB (highest for LTC, medium for whole life
and lowest for annuity). The values for mix 4 show a strong volatility reduction
for males, while the same is not true for females.

To better understand the level of variance reduction, we calculate an indica-
tor of relative risk reduction, R, given by

Rmix,LoB = 1 − σ 2(Xmix)

σ 2(XLoB)
. (4.2)

Natural hedge is said to be effective if the distribution of Xmix is significantly less
variable than the distribution of each product mix component XLoB. Therefore,
a higher value of the relative risk reduction R indicates a better hedge effective-
ness. The Rvalues obtained by the ratio between the variance of the distribution
of X from the product mix 4 and from the single product are shown in Table 12.
The analysis demonstrates that natural hedging between ltc, annuity and life
is very good for males with values of relative risk reduction higher than 99%
respect to ltc, higher than 98% respect to life and higher than 75% respect to
annuity. Concerning females, the values of R are similar for ltc and life, while
values for annuity are not satisfactory, in particular at age 65.

It appears clearly from these results that the MD approach is not always ef-
fective to construct natural hedging when the shift of the transition probabilities
are non-parallel, such as those experienced in the observation period 2002–2012.

4.4. Natural hedging strategy under CVaR minimization (CVaRM) approach

Similarly to the application ofMDapproach, in this case, we also consider prod-
uctmixes of two and three LoB and evaluate the hedging effectiveness according
to the variability level of the distribution of the present value of the unexpected
cash flows (X) from the single LoB respect to the product mix.

To investigate the natural hedging under the CVaRM approach, we simu-
late 10,000 realizations of the future transition probabilities and calculate the
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TABLE 13

MIX OF TWO LoB: OPTIMAL PROPORTION OF EACH LoB. CVARM APPROACH.

Mix 1 Mix 2 Mix 3
ωCVaRM
ltc ωCVaRM

ltc ωCVaRM
life

Age ε Males Females Males Females Males Females

40 95.0% 14.78% 2.58% −43.18% −49.68% 28.72% 8.37%
99.0% 13.63% 2.16% −39.76% −75.93% 29.22% 7.65%
99.5% 13.19% 2.04% −38.66% −79.99% 29.85% 7.35%

50 95.0% 11.14% 2.68% −41.97% −41.59% 25.57% 9.08%
99.0% 9.99% 2.43% −36.35% −63.23% 25.94% 8.45%
99.5% 9.60% 2.28% −37.37% −74.11% 25.90% 8.22%

65 95.0% 3.32% 1.22% −19.98% −35.92% 19.81% 6.81%
99.0% 2.61% 1.05% −17.76% −45.62% 19.61% 6.37%
99.5% 2.32% 0.88% −17.26% −48.92% 19.76% 6.34%

simulated distribution of X for the all product mixes previously analyzed. We
find the liability proportion of each LoB on total portfolio liability that mini-
mize the CVaR of xmix by solving the optimization problem in Equation (3.18).
The values of liability proportions ωCVaRM

LoB are calculated according to different
confidence levels: ε = 99.5%, 99% and 95%.

The values of the optimal proportion under the CVaRM approach are cal-
culated using forecasted transition probabilities incorporating parameter un-
certainty through a semi-parametric bootstrap procedure as described in Sec-
tion 4.2. First, we draw one set of CBDmodel’s parameters for determining the
portfolio optimal proportions then we evaluate the performance of the portfolio
through another set of parameters. Therefore, we assess the performance of the
natural hedging by out-of-sample values of the loss distribution.

For the product mixes that are a combination of two LoB (mix 1, mix 2 and
mix 3), the values of ωCVaRM

LoB are shown in Table 13, while the corresponding
CVaRM values in Table 14 for males and Table 15 for females. The values of
liability proportions obtained through the CVaRM approach are very different
from those calculated according to theMD approach. Formales, the differences
increase with increasing age due to the behavior ofωltc that works in the opposite
direction under the CVaRM approach.

The CVaR values obtained from mix 1 and mix 3 are lower than those cal-
culated on the single LoB, especially for mix 3 which however does not include
LTC insurance. Finally, the productmix 2 produces CVaR values better than the
ltc and life, but worse than the annuity. It is thus confirmed (as in the MD ap-
proach) thatmix “life + ltc” is not effective in terms of natural hedging. Looking
at the number of policies and considering, e.g., product mix 1 with entry age 65
and 99.5% confidence level, the LTC proportion of 2.32% (0.88%) is equivalent
to hold 29.7 (34.8) LTC policies and 79.1 (69.3) annuities for males (females).
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TABLE 14

MIX OF TWO LoB: OUT-OF-SAMPLE CVAR VALUES. MALES.

CVaRε

Age ε xltc xannuity xlife xmix1 xmix2 xmix3

40 95.0% 1637.29 168.77 564.18 67.99 352.68 35.40
99.0% 2428.57 191.74 695.26 85.72 418.74 43.86
99.5% 2747.93 199.28 743.14 91.76 443.81 46.77

50 95.0% 1305.43 114.44 439.48 61.39 283.63 24.73
99.0% 1899.66 134.29 543.47 79.17 344.28 31.56
99.5% 2146.47 141.48 579.80 85.68 365.80 34.42

65 95.0% 1013.48 51.04 241.54 46.16 191.30 13.59
99.0% 1431.04 63.31 298.60 58.15 239.00 17.86
99.5% 1605.64 68.39 319.63 62.96 257.58 19.06

TABLE 15

MIX OF TWO LoB: OUT-OF-SAMPLE CVAR VALUES. FEMALES.

CVaRε

Age ε xltc xannuity xlife xmix1 xmix2 xmix3

40 95.0% 2014.32 39.96 1177.06 30.40 1060.94 9.85
99.0% 3212.41 46.00 2104.92 35.62 2027.97 14.16
99.5% 3806.16 48.04 2529.91 37.56 2459.84 16.20

50 95.0% 1521.83 31.05 700.96 24.16 545.05 8.32
99.0% 2453.66 36.67 1265.19 29.46 951.15 12.33
99.5% 2880.97 38.68 1539.34 31.36 1141.12 14.10

65 95.0% 1919.73 22.98 662.62 19.69 395.92 6.47
99.0% 2948.12 27.49 1106.57 24.58 565.37 8.92
99.5% 3303.37 29.02 1255.54 26.24 622.91 10.13

For the product mixes that are a combination of three LoB (mix 4), the pro-
portions of insurance liability are shown in Table 16, while the corresponding
CVaR values in Table 17 for males and Table 18 for females. These results are
then compared with those from the MD approach.

In the mix of three products, the proportions of insurance liability obtained
by the CVaRM approach are much more similar to the MD approach respect
to the mixes of two products. However, the differences are stronger at age 65.
For example, at age 65, the value of CVaR99.5% under the MD approach is 80%
higher compared to the CVaR value under the CVaRM approach for males,
while for females the value under theMD approach is 6.5 times higher than that
under the CVaRM approach. Under the CVaRM approach, the CVaR of the

https://doi.org/10.1017/asb.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.29


256 S. LEVANTESI AND M. MENZIETTI

TABLE 16

MIX OF THREE LoB: OPTIMAL PROPORTION OF EACH LoB IN THE PRODUCT MIX 4. CVARM APPROACH.

Males Females

Age ε ωCVaRM
ltc ωCVaRM

annuity ωCVaRM
life ωCVaRM

ltc ωCVaRM
annuity ωCVaRM

life

40 95.0% 3.80% 73.02% 23.17% 0.58% 91.44% 7.98%
99.0% 3.36% 72.39% 24.25% 0.53% 92.15% 7.33%
99.5% 3.25% 72.26% 24.49% 0.57% 92.47% 6.96%

50 95.0% 0.66% 74.69% 24.66% 0.46% 91.02% 8.52%
99.0% 0.22% 73.99% 25.78% 0.43% 91.64% 7.93%
99.5% 0.19% 74.00% 25.81% 0.45% 91.97% 7.58%

65 95.0% −1.46% 79.33% 22.13% −0.40% 92.73% 7.67%
99.0% −1.57% 79.37% 22.20% −0.45% 93.07% 7.37%
99.5% −1.75% 79.10% 22.65% −0.44% 93.20% 7.24%

TABLE 17

MIX OF THREE LoB: OUT-OF-SAMPLE CVAR VALUES. MALES.

CVaRε

Age ε xltc xannuity xlife xCVaRM
mix xMD

mix

40 95.0% 1637.29 168.77 564.18 31.25 34.81
99.0% 2428.57 191.74 695.26 39.97 43.44
99.5% 2747.93 199.28 743.14 42.96 46.79

50 95.0% 1305.43 114.44 439.48 24.53 27.61
99.0% 1899.66 134.29 543.47 31.49 34.06
99.5% 2146.47 141.48 579.80 34.38 36.34

65 95.0% 1013.48 51.04 241.54 11.15 25.10
99.0% 1431.04 63.31 298.60 14.59 28.28
99.5% 1605.64 68.39 319.63 16.05 29.26

product mix is consistently less than the CVaR of the single LoB, even for the
annuity. Therefore, the natural hedging turns out to be always effective, even
if the optimal hedging is obtained with very low LTC proportions (becoming
negative at entry age 65).

To provide a graphical representation of the level of risk reduction achieved
by both the approaches, we show in Figures 6–8 for the entry age 40, 50 and 65,
respectively, the distribution of the present value of unexpected cash flows from
the single LoB and the product mix 4 under MD and CVaRM approach with a
99.5% confidence level. The figures confirm the strong risk reduction obtained
by the product mix 4 under both MD and CVaRM approaches.
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TABLE 18

MIX OF THREE LoB: OUT-OF-SAMPLE CVAR VALUES. FEMALES.

CVaRε

Age ε xltc xannuity xlife xCVaRM
mix xMD

mix

40 95.0% 2014.32 39.96 1177.06 8.00 8.19
99.0% 3212.41 46.00 2104.92 12.49 13.08
99.5% 3806.16 48.04 2529.91 14.48 17.04

50 95.0% 1521.83 31.05 700.96 7.78 13.46
99.0% 2453.66 36.67 1265.19 11.91 29.68
99.5% 2880.97 38.68 1539.34 13.31 37.72

65 95.0% 1919.73 22.98 662.62 5.69 29.60
99.0% 2948.12 27.49 1106.57 7.66 49.12
99.5% 3303.37 29.02 1255.54 8.45 55.06
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FIGURE 6: Out-of-sample values of the loss distribution, mix 4. MD and CVaRM approach with a 99.5%
confidence level. Age 40. Left: males, right: females.

In order to measure how robust the choice of the portfolio optimal propor-
tions is under CVaRM approach, we simulate the values of the loss distribution
and then we calculate the optimal proportion of each LoB in the portfolio us-
ing different samples of CBDmodel’s parameters in the bootstrap procedure. A
comparison between in-sample and out-of-sample values is shown in Table 19
for males and Table 20 for females according to five samples and to a 99.5% con-
fidence level. The portfolio optimal proportions are calculated according to the
sample 1, thus the in-sample and the out-of-sample values of CVaR of the loss
distribution of the product mix are equal in this sample. Sample 2 is the sample
chosen for generating out-of-sample values of the distribution of X shown in
Tables 17 and 18. Looking at these results, the performance of the model is still
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FIGURE 7: Out-of-sample values of the loss distribution, mix 4. MD and CVaRM approach with a 99.5%
confidence level. Age 50. Left: males, right: females.
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FIGURE 8: Out-of-sample values of the loss distribution, mix 4. MD and CVaRM approach with a 99.5%
confidence level. Age 65. Left: males, right: females.

very good when changing the sample, and the values of the optimal proportions
ωCVaRM
LoB are not very sensitive to the sample’s change.

4.5. Testing the effectiveness of natural hedging for a portfolio mix with
different age profiles

When dealing with natural hedging between life insurance and annuities, it
is important to bear in mind that the buyers of these two products typically
have different initial age, e.g., 40 for life insurance and 65 for annuities. The
same consideration holds for LTC insurance that is usually sold to different
cohorts than annuities. In the following, we will study the effectiveness of nat-
ural hedging based on the CVaRM approach considering insurance products
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TABLE 19

MIX OF THREE LoB: OPTIMAL PROPORTION OF EACH LoB IN THE PRODUCT MIX 4 AND CVAR VALUES.
CVARM APPROACH WITH ε = 99.5%. MALES.

Out-of-Sample In-Sample
Age Sample ωCVaRM

ltc ωCVaRM
annuity ωCVaRM

life CVaRε(xCVaRM
mix ) CVaRε(xCVaRM

mix )

40 1 3.25% 72.26% 24.49% 42.02 42.02
2 3.12% 70.77% 26.10% 42.96 42.60
3 3.15% 71.59% 25.26% 41.39 41.35
4 3.25% 71.87% 24.88% 41.92 41.88
5 3.59% 72.06% 24.35% 41.79 41.68

50 1 0.19% 74.00% 25.81% 33.05 33.05
2 0.66% 74.89% 24.45% 34.38 34.30
3 0.70% 74.51% 24.79% 34.52 34.30
4 −0.18% 73.89% 26.30% 35.20 35.11
5 0.61% 75.10% 24.29% 34.13 33.92

65 1 −1.75% 79.10% 22.65% 16.18 16.18
2 −1.79% 79.19% 22.61% 16.05 16.04
3 −1.67% 79.81% 21.86% 16.32 16.24
4 −1.63% 79.83% 21.80% 16.61 16.49
5 −1.58% 79.56% 22.02% 16.18 16.14

TABLE 20

MIX OF THREE LoB: OPTIMAL PROPORTION OF EACH LoB IN THE PRODUCT MIX 4 AND CVAR VALUES.
CVARM APPROACH WITH ε = 99.5%. FEMALES.

Out-of-Sample In-Sample
Age Sample ωCVaRM

ltc ωCVaRM
annuity ωCVaRM

life CVaRε(xCVaRM
mix ) CVaRε(xCVaRM

mix )

40 1 0.57% 92.47% 6.96% 12.18 12.18
2 0.69% 92.80% 6.52% 14.48 13.96
3 0.73% 92.91% 6.35% 15.09 14.06
4 0.60% 92.76% 6.64% 13.30 13.08
5 0.81% 93.17% 6.02% 17.32 14.71

50 1 0.45% 91.97% 7.58% 10.59 10.59
2 −0.56% 93.14% 7.43% 13.31 12.28
3 0.63% 92.69% 6.67% 14.54 13.08
4 0.59% 92.55% 6.86% 13.46 12.58
5 0.53% 92.85% 6.62% 17.02 14.04

65 1 −0.44% 93.20% 7.24% 7.56 7.56
2 0.35% 92.45% 7.20% 8.45 8.34
3 −0.52% 93.22% 7.30% 8.10 8.03
4 −0.50% 93.37% 7.13% 8.83 8.60
5 −0.45% 93.55% 6.90% 10.60 9.70
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TABLE 21

BIC STATISTIC FOR M9, AGES 40–89 AND YEARS 2002–2012, ITALIAN POPULATION BY GENDER.

p13x,t p23x,t p12x,t

Model (Gender) BIC BIC BIC

M9 (Males) −2945 −2457 −2728
M9 (Females) −2735 −2410 −2960

with different age profiles. We consider a mix where life insurance and LTC
coverage are purchased at age 40, while annuities at age 65. The M8 used in
the forecasting of transition probabilities is characterized by low-dimensional
stochastic factors and not fully captures the different transition probabilities
evolution of each age group in the population. This could affect the natural
hedging effectiveness when a portfolio mix with different age profiles is consid-
ered. In order to overcome this limitation, but taking advantage of the opera-
tional simplicity of the forecasting model, we propose an extension of the M8
that includes a different factor for the older cohorts (suitable for annuities) that
does not affect the younger policyholders (suitable for life/LTC insurance). The
proposed model, denoted as M9, has a set of four stochastic factors for each
transition i j and the transition probabilities pi jx,t are described by the following
equation:

logit(pi jx,t) = ln

(
pi jx,t

1 − pi jx,t

)
= i j k(1)

t +i j k(2)
t (x−x̄)+i j k(3)

t (x− x̄)++i jγ (4)
c (xc−x) ,

(4.3)
where x is the age, x̄ the mean age in the sample age range (in our analysis x̄ =
64.5), (x− x̄)+ = max(x−x̄, 0), t the time, c = t−x the cohort and xc a constant
parameter that does not varywith age or time (in our analysis, xc = 65). To avoid
any identifiability problem, we introduce the constraint

∑i j
c γ (4)

c = 0.
The set of factors i j k(3)

t are added to capture the different dynamics of tran-
sition probabilities at lower rather than upper ages. The other parameters have
the same meaning of the M8 as described in Equation (4.1). Similarly to M8,
parameters are estimated separately for each transition probability.

The BIC values displayed in Table 21 are similar to those obtained fromM8.
The maximum-likelihood estimates of the M9 parameters are shown in Ap-

pendix A.2.
To forecast transition probabilities, the parameters i j k(1)

t , i j k(2)
t , i j k(3)

t and
i jγ (4)

c aremodeled through amultivariateARIMAmodel Ks+1 = Ks+φ (Ks−2−
Ks−1) + δ + C Zs+1. Where Ks is a 12×1 vector of parameters at the step s, s
is the time or the cohort depending on the parameter; φ is a 12×1 vector of
parameters of the autoregressive part of the model; δ is a 12×1 vector of the
drifts of the model; C is a 12×12 constant upper triangular matrix so that CC′
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TABLE 22

MIX OF THREE LoB: OPTIMAL PROPORTION OF EACH LoB IN THE PRODUCT MIX 4. AGE AT ISSUE: ltc AND
life: 40; annuity: 65. CVARM APPROACH. M8.

Males Females

ε ωCVaRM
ltc ωCVaRM

annuity ωCVaRM
life ωCVaRM

ltc ωCVaRM
annuity ωCVaRM

life

95.0% 1.05% 94.84% 4.10% −0.04% 98.10% 1.94%
99.0% 0.11% 94.18% 5.71% −0.10% 98.34% 1.76%
99.5% 0.27% 94.15% 5.58% −0.09% 98.51% 1.58%

TABLE 23

MIX OF THREE LoB: OPTIMAL PROPORTION OF EACH LoB IN THE PRODUCT MIX 4. AGE AT ISSUE: ltc AND
life: 40; annuity: 65. CVARM APPROACH. M9.

Males Females

ε ωCVaRM
ltc ωCVaRM

annuity ωCVaRM
life ωCVaRM

ltc ωCVaRM
annuity ωCVaRM

life

95.0% −0.39% 95.52% 4.87% 1.39% 96.96% 1.64%
99.0% −0.30% 95.91% 4.39% 1.20% 97.46% 1.34%
99.5% −0.69% 95.69% 5.00% 1.17% 97.65% 1.18%

is the covariance matrix; and Z is a 12×1 vector of standard normal random
variables.

As for M8, the choice of ARIMA process for the parameters has been made
mainly according to Information Criteria and to the analysis of residuals. The
selected ARIMAmodels and the corresponding parameters are reported in Ap-
pendix A.2.We assume that the cohort effect has dynamics that are independent
of the period effect; therefore, i jγ (4)

c is not correlated with i j k(1)
t , i j k(2)

t and i j k(3)
t .

For the fitted correlation matrices ρ, see Appendix A.2.
Also in this case, parameter uncertainty is incorporated in the model’s fore-

casting through a semi-parametric bootstrap procedure (see Section 4.2 for fur-
ther details).

In order to evaluate the natural hedging effectiveness, we only consider the
product mix 4 that is a combination of three LoB (LTC, life insurance and an-
nuity), where the entry age is 40 for life and LTC insurance and 65 for annuity.
We find the liability optimal proportions by solving the optimization problem
in Equation (3.18) with different confidence levels under the two forecasting
models, M8 (Table 22) and M9 (Table 23).

From the previous tables, we observe that the optimal portfolio is almost ex-
clusively composed of annuities. We can argue that when considering products
with different entry ages, the natural hedging is not really effective and the best
choice for the insurer is to sell the less risky product. In M9, the optimal pro-
portions are similar to those obtained by M8. Consequently, the CVaR of the
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TABLE 24

MIX OF THREE LoB: CVAR VALUES. AGE AT ISSUE: ltc AND life: 40; annuity: 65. M8.

sε (Males) CVaRε (Females)

ε xltc xannuity xlife xCVaRM
mix xltc xannuity xlife xCVaRM

mix

95.0% 1637.29 51.04 564.18 41.19 2014.32 22.98 1177.06 19.19
99.0% 2428.57 63.31 695.26 52.29 3212.41 27.49 2104.92 23.86
99.5% 2747.93 68.39 743.14 56.59 3806.16 29.02 2529.91 25.07

TABLE 25

MIX OF THREE LoB: CVAR VALUES. AGE AT ISSUE: ltc AND life: 40; annuity: 65. M9.

CVaRε (Males) CVaRε (Females)

ε xltc xannuity xlife xCVaRM
mix xltc xannuity xlife xCVaRM

mix

95.0% 1407.24 41.38 540.07 35.83 2319.14 47.09 1634.06 35.67
99.0% 2024.75 52.12 677.03 46.05 4001.39 55.21 2336.37 44.51
99.5% 2257.58 55.89 721.58 49.50 4747.18 58.20 2547.01 48.38

FIGURE 9: Out-of-sample values of the loss distribution, mix 4. CVaRM approach. Males. Left: M8,
right: M9.

product mix 4 is very close to the CVaR of the annuity for both M8 (Table 24)
and M9 (Table 25).

The level of risk reduction achieved by the mix of LTC, annuity and life
insurance respect to the single LoB can be deduced from the distribution of the
present value of unexpected cash flows shown in Figure 9 (males) and Figure
10 (females), where the entry age is 40 for life and LTC insurance and 65 for
annuity. The left plot is relative to M8, while the right plot to M9.
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TABLE 26

MIX 1: OPTIMAL PROPORTION OF EACH LoB. CVARM APPROACH.

M8 M9

ωCVaRM
ltc ωCVaRM

ltc

ε Males Females Males Females

95.0% 3.02% 0.79% 2.11% 2.61%
99.0% 2.62% 0.58% 1.86% 2.16%
99.5% 2.53% 0.47% 1.84% 1.90%

FIGURE 10: Out-of-sample values of the loss distribution, mix 4. CVaRM approach. Females. Left: M8,
right: M9.

On the other hand, given the difficulties of building a portfolio with three
different LoB for an insurer specialized in annuities, we analyze the product
mix 1 to be considered more practical for this type of insurers. The optimal
proportions of insurance liability for product mix 1 are shown in Table 26.

The LTC proportion is very low under both M8 and M9, suggesting that
the portfolio is composed almost exclusively of annuitants. However, consider-
ing the expected liability of each LoB, the LTC proportion of 2.53% (0.47%)
at age 65 for males (females) under M8 is equivalent to hold a portfolio of
61.9 (31.9) LTC policies and 78.9 (69.6) annuities. Therefore, the number of
LTC male (female) policyholders should be about 78% (46%) with respect to
the number of annuitants. Under M9, the LTC proportion of 1.84% (1.90%) at
age 65 for males (females) is equivalent to hold a portfolio of 38.0 (112.1) LTC
policies and 79.1 (69.3) annuities. In this latter case, the number of LTCmale (fe-
male) policyholders should be about 48% (162%) with respect to the number of
annuitants.
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5. CONCLUSIONS

As stated by Levantesi and Menzietti (2012), LTC stand alone contracts are
more risky than life annuities and enhanced pension due to the higher volatility
of the disability component that has a much greater importance in the LTC
contracts. In this paper, the high riskiness of LTC policies is recognized by the
higher values of the partial durations and CVaR, as well as by the longer tails of
the simulated distributions of the present value of unexpected cash flows related
to LTC benefits. Therefore, it seems crucial for insurance companies to identify
adequate tools to manage longevity and disability risk in this kind of insurance.

We propose a riskminimization strategy for LTC contracts based on two dif-
ferent approaches built in a multiple state framework. The first one is based on
the multivariate duration under restrictive assumptions on the transition proba-
bilities shifts, while the second one on theminimization of the CVaR that is valid
under a more general representation of the transition probabilities evolution.

Under theMD approach (that is shift-based), our analysis shows that where
the shifts are of the same size, good levels of natural hedging can be achieved
by combining LTC insurance and life annuity. This is the consequence of an
increase in the transition probability from healthy to disabled leading to higher
LTC benefits, but at the same time producing a reduction in life expectancy
and a decrease in the present value of the life annuity. In practice, longevity
and disability risks contained inside this product mix act in different directions
reducing the aggregate risk.

On the other hand, under the MD approach, in case of shifts of different
size, the natural hedging obtained by combining LTC, life annuity and whole
life appears to be effective respect to LTC stand alone and whole life, but less
effective respect to the life annuity.

The CVaRM approach produces very different optimal proportions respect
to the MD approach, when combining two LoB. If we consider a product mix
consisting of three LoB (LTC stand alone, whole life and deferred annuity), the
differences between the two approaches are less pronounced, but increase with
increasing entry age.

Our analysis demonstrates that LTC insurers can nevertheless reduce their
portfolio riskiness through a product mix but including very low proportion of
LTC. Disability risk is indeed more difficult to hedge through a combination of
LoB than longevity risk and this is true under both the approaches here con-
sidered. In order to investigate the validity of these conclusions, we consider a
more realistic product mix with different entry ages consisting of annuity, LTC
and life insurance. Therefore, we introduce a forecasting model of transition
probabilities including a stochastic factor that does not affect the younger ages,
in order to obtain transition probabilities evolution varying with ages. Our anal-
ysis introduces further perplexity about the effectiveness of natural hedging for
insurers having to deal with disability risk: the optimal product mix almost ex-
clusively consists of annuities and the CVaR values of the product mix are then
close to those of the annuity.
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On the other hand, if we consider the product mix 1 (annuities and LTC
insurance), which is a representative portfolio composition, e.g., for pension
funds, the optimal proportions’ results indicate a predominant weight of the
annuity in terms of expected liability, but with the number of annuitants on the
whole similar to that of the LTC policyholders. Therefore, we come to conclu-
sion that a natural hedging strategy for insurers specialized in LTC and annuities
and dealing with biometric risks, is feasible; although the level of risk reduc-
tion is not high compared to a portfolio only including annuities, the hedging
should be considered effective compared to a portfolio consisting of only LTC
policies.

Some aspects of our analysis require further research. First, our results re-
lies to a specific data set and to conventional stochastic models to represent the
evolution of the transition probabilities. The choice of conventional stochastic
models belonging to the CBD family, and built in a multivariate framework, has
been made for their parsimony, tractability and forecasting power. However, a
topic for further research could be the development of non-parametric models
in a multiple state framework to test the effectiveness of natural hedging as well
as the use of different data set. Moreover, further studies can be addressed on
alternative tools of risk management that might be more effective than natural
hedging. For example, it would be interesting to explore the possibility to con-
struct a swap written on the survival of disabled people and to measure their
hedge effectiveness.
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APPENDIX A. PARAMETERS
ESTIMATION OF THE CBD MODELS

A.1. Model M8

FIGURE A1: Estimated parameters of M8, ages 40–89 and years 2002–2012, males. Left: p13x,t , middle: p23x,t ,
right: p12x,t
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FIGURE A2: Estimated parameters of M8, ages 40–89 and years 2002–2012, females. Left: p13x,t , middle: p23x,t ,
right: p12x,t .

TABLE A1

FITTED PARAMETERS OF THE ARIMA MODELS. M8.

Males Females

Parameter ARIMA σ 2 δ φ ARIMA σ 2 δ φ

13k(1)
t (1,1,0) 0.000794 −0.042768 0.467670 (0,1,0) 0.001278 −0.037101 –

13k(2)
t (1,0,0) 0.000002 0.095892 0.485742 (0,0,0) 0.000003 0.093053 –

13γ (3)
c (1,0,0) 0.000008 −0.000016 0.890373 (1,0,0) 0.000021 −0.000042 0.862711

23k(1)
t (1,0,0) 0.002858 −0.447964 0.722562 (0,1,0) 0.003406 0.025897 –

23k(2)
t (0,1,0) 0.000018 0.012261 – (0,1,0) 0.000011 0.019070 –

23γ (3)
c (1,0,0) 0.000014 −0.000643 0.953314 (1,0,0) 0.000051 −0.000198 0.935790

12k(1)
t (1,1,0) 0.001880 0.021158 0.769094 (1,1,0) 0.001355 −0.010993 0.835668

12k(2)
t (1,0,0) 0.000001 0.169896 0.931216 (1,1,0) 0.000001 −0.011685 0.577086

12γ (3)
c (1,0,0) 0.000012 −0.000032 0.950738 (1,1,0) 0.000047 0.001426 0.469796
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TABLE A2

THE FITTED CORRELATION MATRIX ρ, MALES. M8.

1 0.585969 0 0.234900 0.408428 0 −0.631857 0.289442 0
0.585969 1 0 −0.044542 0.634420 0 0.153251 0.388055 0
0 0 1 0 0 0.354541 0 0 0.420511
0.234900 −0.044542 0 1 −0.280318 0 −0.284169 −0.426169 0
0.408428 0.634420 0 −0.280318 1 0 0.115349 0.561262 0
0 0 0.354541 0 0 1 0 0 0.665747

−0.631857 0.153251 0 −0.284169 0.115349 0 1 −0.028082 0
0.289442 0.388055 0 −0.426169 0.561262 0 −0.028082 1 0
0 0 0.420511 0 0 0.665747 0 0 1

https://doi.org/10.1017/asb.2017.29 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2017.29


270
S.L

E
VA

N
T
E
SI

A
N
D

M
.M

E
N
Z
IE

T
T
I

TABLE A3

THE FITTED CORRELATION MATRIX ρ, FEMALES. M8.

1 0.484591 0 −0.041576 0.324403 0 −0.525643 0.602555 0
0.484591 1 0 0.145906 0.687334 0 0.250951 0.278517 0

0 0 1 0 0 0.798916 0 0 0.731983
−0.041576 0.145906 0 1 0.291364 0 0.429681 −0.372514 0
0.324403 0.687334 0 0.291364 1 0 0.173947 0.119925 0

0 0 0.798916 0 0 1 0 0 0.733570
−0.525643 0.250951 0 0.429681 0.173947 0 1 −0.253267 0
0.602555 0.278517 0 −0.372514 0.119925 0 −0.253267 1 0

0 0 0.731983 0 0 0.733570 0 0 1
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A.2. Model M9

FIGURE A3: Estimated parameters of M9, ages 40–89 and years 2002–2012, males. Left: p13x,t , middle: p23x,t ,
right: p12x,t .
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FIGURE A4: Estimated parameters of M9, ages 40–89 and years 2002–2012, females. Left: p13x,t , middle: p23x,t ,
right: p12x,t .

TABLE A4

FITTED PARAMETERS OF THE ARIMA MODELS. M9.

Males Females

Parameter ARIMA σ 2 δ φ ARIMA σ 2 δ φ

13k(1)
t (1,1,0) 0.000591 −0.046061 0.567125 (1,1,0) 0.001261 −0.038679 0.046790

13k(2)
t (1,0,0) 0.000001 −0.000005 0.617498 (1,0,0) 0.002928 0.093169 0.174231

13k(3)
t (1,0,0) 0.000006 −0.001880 0.727019 (0,1,0) 0.001269 0.000347 –

13γ (4)
c (1,0,0) 0.000007 0.132043 0.877771 (1,0,0) 0.000019 0.075159 0.857923

23k(1)
t (1,0,0) 0.003318 0.096441 0.869012 (1,0,0) 0.000001 −0.000134 0.682577

23k(2)
t (1,1,0) 0.000002 −0.318211 −0.923826 (0,1,0) 0.000002 −0.671305 –

23k(3)
t (1,0,0) 0.000019 −0.000301 0.857469 (0,1,0) 0.000004 0.001407 –

23γ (4)
c (1,0,0) 0.000014 0.010350 0.955437 (1,0,0) 0.000047 −0.018765 0.935625

12k(1)
t (1,1,0) 0.002554 −0.000299 0.454729 (1,1,0) 0.000011 0.016809 0.837573

12k(2)
t (1,0,0) 0.000002 0.015220 0.809532 (1,0,0) 0.000024 −0.000944 0.911731

12k(3)
t (1,0,0) 0.000009 0.037086 0.883038 (0,1,0) 0.000005 −0.000227 –

12γ (4)
c (1,0,0) 0.000005 0.000197 0.954700 (1,1,0) 0.000047 0.001413 0.418683
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TABLE A5

THE FITTED CORRELATION MATRIX ρ, MALES. M9.

1 0.419779 0.334020 0 0.179146 −0.041772 0.112324 0 −0.848814 0.351991 0.005262 0
0.419779 1 −0.158944 0 −0.561929 0.395559 0.318140 0 −0.350001 −0.153184 0.584233 0
0.334020 −0.158944 1 0 0.433352 0.105553 −0.080144 0 −0.278235 0.311475 −0.237048 0

0 0 0 1 0 0 0 0.312528 0 0 0 0.390282
0.179146 −0.561929 0.433352 0 1 −0.623783 −0.517089 0 −0.315739 0.384321 −0.587268 0

−0.041772 0.395559 0.105553 0 −0.623783 1 0.516998 0 0.432181 −0.149640 0.458033 0
0.112324 0.318140 −0.080144 0 −0.517089 0.516998 1 0 0.162790 −0.200142 0.361882 0

0 0 0 0.312528 0 0 0 1 0 0 0 0.408692
−0.848814 −0.350001 −0.278235 0 −0.315739 0.432181 0.162790 0 1 −0.381819 0.142494 0
0.351991 −0.153184 0.311475 0 0.384321 −0.149640 −0.200142 0 −0.381819 1 −0.835778 0
0.005262 0.584233 −0.237048 0 −0.587268 0.458033 0.361882 0 0.142494 −0.835778 1 0

0 0 0 0.390282 0 0 0 0.408692 0 0 0 1
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TABLE A6

THE FITTED CORRELATION MATRIX ρ, FEMALES. M9.

1 0.497906 −0.230210 0 0.107373 −0.115650 0.184585 0 −0.568221 0.293340 −0.031216 0
0.497906 1 −0.046071 0 0.291867 −0.081447 0.535378 0 0.194905 0.233263 0.214784 0

−0.230210 −0.046071 1 0 −0.034635 0.338595 0.239645 0 0.064611 −0.164836 0.109473 0
0 0 0 1 0 0 0 0.802980 0 0 0 0.744265

0.107373 0.291867 −0.034635 0 1 0.374493 −0.303746 0 0.000938 −0.069284 −0.395483 0
−0.115650 −0.081447 0.338595 0 0.374493 1 −0.133120 0 0.185421 0.329399 −0.682235 0
0.184585 0.535378 0.239645 0 −0.303746 −0.133120 1 0 0.152179 −0.058808 0.482099 0

0 0 0 0.802980 0 0 0 1 0 0 0 0.774737
−0.568221 0.194905 0.064611 0 0.000938 0.185421 0.152179 0 1 0.173800 −0.005432 0
0.293340 0.233263 −0.164836 0 −0.069284 0.329399 −0.058808 0 0.173800 1 −0.551021 0

−0.031216 0.214784 0.109473 0 −0.395483 −0.682235 0.482099 0 −0.005432 −0.551021 1 0
0 0 0 0.744265 0 0 0 0.774737 0 0 0 1
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