Bull. Aust. Math. Soc. **104** (2021), 302–307 doi:10.1017/S0004972720001525

A BIJECTION OF INVARIANT MEANS ON AN AMENABLE GROUP WITH THOSE ON A LATTICE SUBGROUP

JOHN HOPFENSPERGER

(Received 16 November 2020; accepted 2 December 2020; first published online 18 January 2021)

Abstract

Suppose *G* is an amenable locally compact group with lattice subgroup Γ . Grosvenor ['A relation between invariant means on Lie groups and invariant means on their discrete subgroups', *Trans. Amer. Math. Soc.* **288**(2) (1985), 813–825] showed that there is a natural affine injection ι : LIM(Γ) \rightarrow TLIM(*G*) and that ι is a surjection essentially in the case $G = \mathbb{R}^d$, $\Gamma = \mathbb{Z}^d$. In the present paper it is shown that ι is a surjection if and only if G/Γ is compact.

2020 Mathematics subject classification: primary 43A07; secondary 22F30.

Keywords and phrases: amenable groups, Følner nets, invariant means, lattices.

1. Introduction

Let *H* be a closed subgroup of the locally compact group *G*. The subgroup *H* is called *cofinite* if G/H carries a *G*-invariant probability measure and *cocompact* if G/H is compact. After the recent paper of Bader *et al.* [1], *G* is said to have property (*M*) if every cofinite subgroup is cocompact. The letter *M* is for Mostow, who proved that solvable Lie groups have property (*M*).

A discrete subgroup Γ is called a lattice if it is cofinite. Cocompact lattices are better known as *uniform* lattices. Nonuniform lattices are not too hard to come by, but the most famous examples are nonamenable. For example, $SL_2(\mathbb{Z})$ is a nonuniform lattice in $SL_2(\mathbb{R})$, which is not amenable because $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}$ generate a free subgroup. In fact, [1, Theorem 1.7] states that every finite direct product of amenable linear groups has property (*M*). Hence, every lattice in such a group is uniform.

When G is amenable, a paper of Grosvenor [3] constructs a natural affine injection ι from the invariant means on a lattice subgroup Γ into the topological invariant means on the whole group G. Grosvenor proved that ι is surjective when G is an abelian Lie group with finitely many connected components. In light of the results of [1], it is natural to suppose ι might be surjective when Γ is uniform. This is precisely what the present paper proves.

^{© 2021} Australian Mathematical Publishing Association Inc.

2. Definitions

Let *G* be a locally compact group. Define left-translation by $l_x f(y) = f(xy)$ for $f \in L_{\infty}(G)$ and $x, y \in G$. The set of left-uniformly continuous functions on *G* is LUC(*G*) = { $f \in L_{\infty}(G) : \lim_{x \to e} ||f - l_x f||_{\infty} = 0$ }. Let *S* be either $L_{\infty}(G)$ or LUC(*G*). The set of means on *S* is $M(S) = {\mu \in S^* : \mu \ge 0}$ and $\mu(\mathbb{1}_G) = 1$ }, endowed with the w^* -topology to make it compact. The set of left-invariant means on *S* is LIM(*S*) = { $\mu \in M(S) : (\forall x \in G) (\forall f \in S) \mu(f - l_x f) = 0$ }. LIM(*G*) is shorthand for LIM($L_{\infty}(G)$). We say *G* is amenable if LIM(*G*) is nonempty. If *G* is amenable, so are all its closed subgroups.

Let $P_1(G) = \{p \in L_1(G) : p \ge 0 \text{ and } \|p\|_1 = 1\}$. The set of topological left-invariant means on *S* is TLIM(*S*) = $\{\mu \in M(S) : (\forall p \in P_1) \ (\forall f \in S) \ \mu(f - p * f) = 0\}$. Pick any $p \in P_1(G)$ and $\mu \in \text{LIM}(\text{LUC}(G))$. There is exactly one way to extend μ to $\widetilde{\mu} \in \text{TLIM}(L_{\infty}(G))$, given by $\widetilde{\mu}(f) = \mu(p * f)$ for $f \in L_{\infty}(G)$. This works because every left-invariant mean on LUC(*G*) is topological left-invariant (see [2, Lemma 2.2.2]). The map $\mu \mapsto \widetilde{\mu}$ is an isometry from LIM(LUC(*G*)) onto TLIM($L_{\infty}(G)$). Thus it is common to associate the two sets of means and write TLIM(*G*) for both.

Let $\mathscr{C}(G)$ be the compact symmetric neighbourhoods of e in G. For $F \in \mathscr{C}(G)$, define the mean μ_F on $L_{\infty}(G)$ by $\mu_F(f) = (1/|F|) \int_F f(x) dx$, where |F| is the Haar measure of F. For $E, F \in \mathscr{C}(G)$,

$$\|\mu_E - \mu_F\| = \left\|\frac{\mathbb{1}_E}{|E|} - \frac{\mathbb{1}_F}{|F|}\right\|_1 = \frac{|E \setminus F|}{|E|} + \frac{|F \setminus E|}{|F|} + \left|\frac{1}{|E|} - \frac{1}{|F|}\right|.$$
(2.1)

The pair (K, ε) always signifies $K \in \mathscr{C}(G)$ and $\varepsilon > 0$. We say $F \in \mathscr{C}(G)$ is (K, ε) -invariant if $|KF \setminus F| < \varepsilon |F|$. A net $\{F_{\alpha}\}$ in $\mathscr{C}(G)$ is called a Følner net if it is eventually (K, ε) -invariant for any (K, ε) . See [5, Theorem 4.13] for a proof that every amenable group admits a Følner net satisfying this definition.

The following well-known result is due to Weil [7, Section 9]. Suppose H < G is any closed subgroup. The coset space G/H admits a G-invariant Radon measure λ if and only if $\Delta_H = \Delta_G|_H$. In this case, λ is determined up to normalisation by

$$\int_{G} f(g) dg = \int_{G/H} \int_{H} f(xh) dh d\lambda(xH), \quad f \in C_0(G).$$
(2.2)

If (2.2) holds, λ is said to satisfy the *standard normalisation*.

Henceforth, let $\Gamma < G$ be a lattice subgroup and let $\pi : G \to G/\Gamma$ be the quotient map. By definition of a lattice, Γ is discrete and the coset space G/Γ admits a *G*-invariant Radon probability measure λ . Assume that $d\gamma$ is the counting measure on Γ and that λ satisfies the standard normalisation. It is a well-known corollary of Weil's theorem that *G* must be unimodular to admit a lattice (see [6, Remark I.1.9]).

LEMMA 2.1 [4, Theorem 5.9]. Suppose *G* is unimodular and amenable. For each $\mu \in \text{TLIM}(G)$, there exists a Følner net $\{F_{\alpha}\}$ such that $\lim_{\alpha} \mu_{F_{\alpha}} = \mu$.

J. Hopfensperger

3. The nonuniform case

Given $m \in \text{LIM}(\Gamma)$, define $P_m : \text{LUC}(G) \to C(G/\Gamma)$ by

$$P_m f(x\Gamma) = \langle m, (l_x f)|_{\Gamma} \rangle, \quad f \in \text{LUC}(G).$$
(3.1)

Then $P_m f$ is well defined because *m* is left-invariant and it is continuous because $f \in LUC(G)$. It satisfies $P_m(l_v f) = l_v(P_m(f))$ because $l_x l_v = l_{yx}$, and it is onto because

$$P_m(h \circ \pi) = h, \quad h \in C(G/\Gamma). \tag{3.2}$$

Define $\iota : \text{LIM}(\Gamma) \to \text{TLIM}(G)$ by

$$um(f) = \int_{G/\Gamma} P_m f \, d\lambda, \quad f \in \text{LUC}(G).$$
 (3.3)

The map ιm is linear, positive, unital and left-invariant because m and λ are. By [3, Theorem 3.2], ι is injective, but the following proof is somewhat simpler.

LEMMA 3.1. The map ι is injective.

PROOF. Since Γ is discrete, let $U \subset G$ be a sufficiently small neighbourhood of e such that $U^{-1}U \cap \Gamma = \{e\}$. By Urysohn's lemma, there exists a continuous $h \ge 0$ with support contained in U, such that $||h||_1 = 1$. Define an embedding $\ell_{\infty}(\Gamma) \hookrightarrow LUC(G)$ by

$$\phi \mapsto \Phi$$
, where $\Phi(x) = \begin{cases} 0 & \text{for } x \notin U\Gamma \\ h(x\gamma^{-1})\phi(\gamma) & \text{for } x \in U\gamma \end{cases}$.

For $t \in U$, $||l_t \Phi - \Phi|| \le ||l_t h - h|| \cdot ||\phi||$, which shows $\Phi \in LUC(G)$. A direct computation shows $um(\Phi) = m(\phi)$.

THEOREM 3.2. If G is an amenable group with nonuniform lattice subgroup Γ , then ι is not onto.

PROOF. Pick compact sets $K, U \subset G/\Gamma$ with $\lambda(K) > 0$ and $K \subset U^{\circ}$. Let $\{F_{\alpha}\} \subset \mathscr{C}(G)$ be a Følner net for *G*. For each α , pick $y_{\alpha} \in G/\Gamma$ outside the compact set $F_{\alpha}U$. Thus $F_{\alpha}y_{\alpha} \cap U = \emptyset$.

Let $\delta(y) \in C(G/\Gamma)^*$ denote the point mass at y. Define μ_{α} by the weak integral

$$\mu_{\alpha} = \frac{1}{|F_{\alpha}|} \int_{F_{\alpha}} \delta(ty_{\alpha}) \, dt. \tag{3.4}$$

Thus, $\{\mu_{\alpha}\}$ is a net of means on $C(G/\Gamma)$ converging to *G*-invariance. Fix an accumulation point λ_2 of this net, so λ_2 is a *G*-invariant mean on $C(G/\Gamma)$. Choose $h \in C(G/\Gamma)$ with $\mathbb{1}_K \le h \le \mathbb{1}_U$. By construction, $\lambda_2(h) = 0$.

Pick any $m \in \text{LIM}(\Gamma)$. With P_m as in (3.1), define $\nu \in \text{TLIM}(G)$ by

$$\nu(f) = \langle \lambda_2, P_m f \rangle, \quad f \in \text{LUC}(G). \tag{3.5}$$

By (3.2), $\nu(h \circ \pi) = 0$, whereas $\iota \mu(h \circ \pi) = \lambda(h) > 0$ for each $\mu \in \text{LIM}(\Gamma)$.

Although amenable nonuniform lattices are hard to come by, they do exist. Suppose $\{q_n\}_{n\geq 0}$ is a sequence of prime powers with $\sum_n 1/q_n < \infty$. Let F_{q_n} be the finite field of order q_n , with multiplicative group $F_{q_n}^{\times}$. Form the groups $\Lambda = \bigoplus_n F_{q_n}$, $S = \prod_n F_{q_n}^{\times}$ and $G = \Lambda \rtimes S$. *G* is abelian-by-abelian, hence amenable. From [1, Theorem 1.11], *G* contains uncountably many pairwise noncommensurable nonuniform lattices.

4. The uniform case

Henceforth, let Γ be a uniform lattice.

LEMMA 4.1. G/Γ has a transversal T that is a precompact neighbourhood of e.

PROOF. Pick any compact neighbourhood $U \subset G$ about *e* which is small enough so that $U^{-1}U \cap \Gamma = \{e\}$. Thus $\pi|_{tU}$ is injective for any $t \in G$. Note that *G* is covered by $\{tU : t \in G\}$, hence G/Γ is covered by $\{\pi(tU) : t \in G\}$. Let $\{\pi(t_1U), \ldots, \pi(t_nU)\}$ be a finite subcover. Without loss of generality, suppose $t_1 = e$. Let $T_1 = t_1U$. Inductively let $T_{k+1} = T_k \cup [t_{k+1}U \setminus T_k\Gamma]$. The desired transversal is T_n .

Suppose $S \subseteq T$. We have assumed λ satisfies the standard normalisation, hence

$$|S| = \int_{G} \mathbb{1}_{S} = \int_{G/\Gamma} \int_{\Gamma} \mathbb{1}_{S}(t\gamma) \, d\gamma \, d\lambda(t\Gamma) = \int_{G/\Gamma} \mathbb{1}_{\pi(S)} \, d\lambda = \lambda(\pi(S)). \tag{4.1}$$

In particular, |T| = 1. Let #(D) denote the cardinality of $D \subset \Gamma$. Since G is unimodular,

$$#(D) = \sum_{\gamma \in D} |T| = \sum_{\gamma \in D} |T\gamma| = |TD|.$$
(4.2)

Equation (4.1) also implies

$$\int_{G/\Gamma} F \, d\lambda = \int_T F(\pi(t)) \, dt, \quad F \in L_\infty(G/\Gamma).$$
(4.3)

When $m \in \text{LIM}(\Gamma)$, we can substitute the function $P_m f$ in (4.3) to conclude that the following definition of $\iota : \ell_{\infty}^*(\Gamma) \to \text{LUC}(G)^*$ extends the definition given in (3.3):

$$\iota m(f) = \int_{T} \langle m, (l_t f)|_{\Gamma} \rangle \, dt, \quad f \in \text{LUC}(G). \tag{4.4}$$

For $D \subset \Gamma$, we observe that

$$\iota\mu_D(f) = \frac{1}{\#(D)} \sum_{\gamma \in D} \int_T f(t\gamma) \, dt = \frac{1}{|TD|} \int_{TD} f(t) \, dt = \mu_{TD}(f). \tag{4.5}$$

LEMMA 4.2. The map $\iota : \ell_{\infty}^*(\Gamma) \to LUC(G)^*$ as defined in (4.4) is w^* -to- w^* continuous.

PROOF. Suppose $\lim_{\alpha} m_{\alpha} = 0 \in \ell_{\infty}^{*}(\Gamma)$. Pick $f \in LUC(G)$ and $\varepsilon > 0$. Partition T into precompact sets $\{T_k\}_{k=1}^n$ such that $\sup_{t,s\in T_k} |f(t) - f(s)| < \varepsilon$. For each k, pick $t_k \in T_k$.

Thus

306

$$\left|\iota m_{\alpha}(f) - \sum_{k=1}^{n} |T_{k}| \langle m_{\alpha}, (l_{t_{k}}f)|_{\Gamma} \rangle \right| < \varepsilon.$$
(4.6)

This implies $\lim_{\alpha} |\iota m_{\alpha}(f)| \leq \varepsilon$. Since ε was arbitrary, $\lim_{\alpha} m_{\alpha}(f) = 0$.

LEMMA 4.3. Suppose $\{F_{\alpha}\}$ is a Følner net for G, and let $D_{\alpha} = \{\gamma \in \Gamma : F_{\alpha} \cap T\gamma \neq \emptyset\}$. Then $\{D_{\alpha}\}$ is a Følner net for Γ and $\lim_{\alpha} ||\mu_{F_{\alpha}} - \mu_{TD_{\alpha}}|| = 0$.

PROOF. Pick $K \in \mathscr{C}(\Gamma)$ and $\varepsilon > 0$. If α is large enough that F_{α} is (TKT^{-1}, ε) -invariant, then

$$#(KD_{\alpha} \setminus D_{\alpha}) = |TKD_{\alpha} \setminus TD_{\alpha}| \le |TKT^{-1}F_{\alpha} \setminus F_{\alpha}| < \varepsilon |F_{\alpha}| \le \varepsilon #(D_{\alpha}).$$
(4.7)

In other words, D_{α} is (K, ε) -invariant. This shows $\{D_{\alpha}\}$ is a Følner net for Γ .

If α is large enough that F_{α} is (TT^{-1}, ε) -invariant, then

$$|TD_{\alpha} \setminus F_{\alpha}| \le |TT^{-1}F_{\alpha} \setminus F_{\alpha}| < \varepsilon |F_{\alpha}|.$$
(4.8)

Since $F_{\alpha} \subseteq TD_{\alpha}$, applying (2.1) gives

$$\|\mu_{TD_{\alpha}} - \mu_{F_{\alpha}}\| = \frac{|TD_{\alpha} \setminus F_{\alpha}|}{|TD_{\alpha}|} + \left(\frac{1}{|F_{\alpha}|} - \frac{1}{|TD_{\alpha}|}\right) < \varepsilon + \left(1 - \frac{1}{1 + \varepsilon}\right) < 2\varepsilon.$$
(4.9)

This proves $\lim_{\alpha} ||\mu_{TD_{\alpha}} - \mu_{F_{\alpha}}|| = 0.$

THEOREM 4.4. If G is an amenable group with uniform lattice subgroup Γ , then the map $\iota : \text{LIM}(\Gamma) \rightarrow \text{TLIM}(G)$ is surjective.

PROOF. Pick $\nu \in \text{TLIM}(G)$. By Lemma 2.1, *G* admits a Følner net $\{F_{\alpha}\}$ such that $\nu = \lim_{\alpha} \mu_{F_{\alpha}}$. Define $\{D_{\alpha}\}$ as in Lemma 4.3. Since the unit ball of $\ell_{\infty}^{*}(\Gamma)$ is compact, $\{\mu_{D_{\alpha}}\}$ admits a convergent subnet $\{\mu_{D_{\beta}}\}$. Evidently $m = \lim_{\beta} \mu_{D_{\beta}} \in \text{LIM}(\Gamma)$. Applying (4.5) and Lemmas 4.2 and 4.3,

$$\mu m = \lim_{\beta} \mu_{D_{\beta}} = \lim_{\beta} \mu_{TD_{\beta}} = \lim_{\beta} \mu_{F_{\beta}} = \nu.$$
(4.10)

Acknowledgement

The present paper will form part of the author's PhD thesis under the supervision of Ching Chou.

References

- U. Bader, P.-E. Caprace, T. Gelander and S. Mozes, 'Lattices in amenable groups', *Fundamenta Math.* 246(3) (2019), 217–255.
- [2] F. P. Greenleaf, *Invariant Means on Topological Groups and Their Applications* (Van Nostrand, New York, 1969).
- [3] J. R. Grosvenor, 'A relation between invariant means on Lie groups and invariant means on their discrete subgroups', *Trans. Amer. Math. Soc.* 288(2) (1985), 813–825.

[5]

A bijection of invariant means

307

- [4] J. Hopfensperger, 'When is an invariant mean the limit of a Følner net?', Preprint, 2020, arXiv:2003.00251 [math.FA].
- [5] A. L. T. Paterson, Amenability (American Mathematical Society, Providence, RI, 1988).
- [6] M. S. Raughunathan, Discrete Subgroups of Lie Groups (Springer-Verlag, Berlin, 1972).
- [7] A. Weil, L'Intégration dans les Groupes Topologiques et ses Applications (Hermann, Paris, 1953).

JOHN HOPFENSPERGER, Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA e-mail: johnhopf@buffalo.edu

[6]