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Group scattering of point vortices on an
unbounded plane
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Group scattering of an initially compact two-dimensional configuration of N point
vortices with strengths of different signs in an unbounded ideal fluid is investigated. This
phenomenon manifests itself in a permanent increase of the vortex cloud, accompanied
by mixing, clustering and emission of vortices. Possible mechanisms for such an evolution
are considered, and the necessary condition is formulated. An invariant function of relative
motion, F, is introduced, which is a combination of the first integrals of the system and
can be expressed through 2(N−2) independent phase variables. We use this function
to construct vortex equilibria and to investigate their nonlinear stability. Cases of N = 3
and N = 5 (for vortex configurations which possess central symmetry), when F depends
on two variables only, are examined in detail. In addition to the familiar self-similar
scattering (or collapse), we found a regime of asymptotically self-similar scattering (but
not collapse) which occurs from any trajectory inside a certain finite domain in the
phase space. A similar domain exists also for the case of dipole emission. A periodic
absolute motion consisting of alternating stages of expansion and convergence of vortices
is discussed. These mechanisms also work during group scattering. Simple examples
of this phenomenon are given for the case of five vortices. Finally, group scattering is
demonstrated for an initially compact cloud of 1009 vortices with strengths randomly
distributed in the range (−1, 1). The area of the main part of the vortex cloud grows with
time according to an almost linear law characteristic of self-similar motion.

Key words: nonlinear instability, vortex dynamics

1. Introduction

Point-vortex decomposition of the vorticity field in two-dimensional flows of ideal
incompressible fluid was introduced firstly by Helmholtz in 1858, and later this problem
was formulated in Hamiltonian form by Kirchhoff in 1877. Although the notion of a point
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vortex is an idealization, it is directly related to real vortex flows. As Kizner (2014) writes
‘A point vortex can be thought of as a limit, in which, say, a Gaussian vortex shrinks into
a point while retaining the net vorticity (or potential vorticity). The point-vortex concept
becomes particularly suitable when it comes to exploring the interactions between remote
vortices. By employing this concept we replace a continuous dynamical system, which
describes a vortical flow, by a discrete one’. In other words, this approach is supposed
to work well when the separation between the vorticity patches is large enough compared
with the sizes of the patches. This is exactly the case in vortex scattering, which is the focus
of this paper. An example of a successful oceanographic application of a configuration
with a small number of point vortices is the explanation for the complex behaviour of the
anticyclone eddy observed in the Bay of Biscay in 1990, given in terms of the movement
of a strongly perturbed vortical tripole with a significant separation between the core and
satellite eddies (Kizner et al. 2017). In this work, the results obtained with point-vortex
tripoles barely differed from those obtained with grid simulations.

Within the point-vortex approach, numerous studies, including generalizations to
spherical geometry, domains with boundaries and fluid with layered stratification, were
carried out ever since (see e.g. reviews in Aref et al. 1988; Aref, Rott & Thomann 1992;
Newton 2001, 2014; Borisov & Mamaev 2005; Sokolovskiy & Verron 2014). A more
sophisticated extension of the point-vortex concept to singular vortices embedded in a
regular flow in the presence of the β-effect was discussed in a few publications dealing
with both single-layer (barotropic) and multi-layer models (Reznik 1992; Reznik & Kizner
2007a,b, 2010; Kravtsov & Reznik 2019). But even with conventional single-layer vortices
that are considered in this present paper, in general, the problem is non-integrable for
more than three vortices. The non-trivial case of three vortices was first investigated by
Gröbli (1877). Synge (1949) used trilinear coordinates for the description of the dynamics
of three vortices, having analysed, in particular, singular and stationary points of the phase
space. Works of Novikov (1975) and Aref (1979) gave rise to intensive studies of various
aspects of the point-vortex dynamics. Linear stability analysis for relative equilibria of
three vortices was performed by Tavantzis & Ting (1988) and Aref (2009). The dynamics
of four vortices with zero total intensity and impulse (when the problem is integrable)
was studied by Eckhardt (1988) and Aref & Stremler (1999). Many papers deal with
finding equilibria (not only symmetrical) of more than three vortices and analysis of their
stability (e.g. Aref & Vainchtein 1998; Aref et al. 2003; Aref 2007; Chen, Kolokolnikov
& Zhirov 2013; Kurakin, Ostrovskaya & Sokolovskiy 2016). In particular, Roberts (2013)
and Hampton, Roberts & Santoprete (2014) presented stationary configurations of four
vortices comprising of two pairs with equal strengths, including collinear configurations,
rhombuses, isosceles trapezoids, kite-like structures and a set of asymmetric stationary
states. Considering two-layer quasi-geostrophic flows, Kizner (2006) introduced the
concept of a hetonic quartet, a collinear ensemble of two point-vortex hetons, and studied
their nonlinear stability. Nonlinear stability of point-vortex multipoles in the barotropic
and two-layer fluid was investigated by Kizner (2011, 2014), who based his analysis on two
invariants of motion which depend on intervortical distances only.

The phenomenon of self-similar collapse or expansion (when the initial geometrical
form is preserved and only the size of the configuration decreases or increases) was
discovered by Gröbli (1877) for three vortices and then it was studied in detail (see e.g.
Synge 1949; Novikov & Sedov 1979; Kimura 1990; Borisov & Lebedev 1998; Newton
2001), including cases with a large number of vortices (Demina & Kudryashov 2014;
Kudela 2014). It is known (Synge 1949) that intervortical distances are bounded if the
strengths of all the vortices have the same sign. Otherwise, vortex scattering can occur,
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characterized by the fact that some intervortical separations increase to infinity. Two
evident examples (and probably mechanisms) of scattering are: emission of a dipole and
a self-similar complete extension, which take place even in the simplest case of three
vortices. For more vortices, clustering into relatively separated groups is possible.

The main objective of this paper is the investigation of possible mechanisms of group
scattering of vortices (as a certain analogue of molecular diffusion) on the unbounded
plane. In these processes, only the relative motion of the vortices matters, therefore in § 2
we introduce an invariant function of relative motion which depends on the intervortex
separations only and is a combination of the first integrals of the system. A general
necessary condition of scattering as an asymptotic process is also formulated. Considering
only the geometrical form of an ensemble of N vortices, one can express the invariant
function through 2N−4 independent variables in a polar coordinate system. This function
can be used to construct stationary configurations, i.e. relative equilibria, and to investigate
their nonlinear stability. In § 3 we apply this approach to three vortices, where the invariant
function depends on two variables only, namely, the ratio of the lengths of any of two sides
of the vortex triangle and the angle between them. The periodic absolute motion of three
vortices, which consists of two alternating stages of expansion and convergence of the
vortex ensemble, is considered in § 4. Scattering of three vortices (including emission of a
dipole) is examined in detail in § 5; in particular, an asymptotically self-similar scattering
is described, and sufficient conditions for such a regime are formulated. Application of the
invariant function to analyse the evolution of centrally symmetric configurations of five
(or four) vortices is considered in § 6, where the relevance of this restriction to real vortex
flows is briefly discussed. Possible mechanisms of group scattering are demonstrated in § 7
with the example of five vortices. In § 8 an example of group scattering of 1009 vortices
with strengths randomly distributed in the interval (−1, 1) is discussed. The absolute
motion of N point vortices was calculated using the fourth-order Runge–Kutta method
with adaptive time step control (Press et al. 1996).

2. Relative motion of point vortices

2.1. The invariant function
For unbounded ideal fluid, planar motion of an ensemble of N point vortices with strengths
γn and coordinates (xn, yn) occurs with conservation of the Hamiltonian H (i.e. interaction
energy), combined invariant M and the total vortex momentum L

H = − 1
4π

N−1∑
n=1

N∑
k=n+1

γnγk log(r2
nk), (2.1)

M = Γ J − I2
x − I2

y =
N−1∑
n=1

N∑
k=n+1

γnγkr2
nk, (2.2)

L = 2π

N∑
n=1

γn(xn dyn/dt − yn dxn/dt) =
N−1∑
n=1

N∑
k=n+1

γnγk, (2.3)

where rnk are intervortex separations. Here, Γ = ∑N
n=1 γn is the total circulation, J =∑N

n=1 γn(x2
n + y2

n) is the angular momentum, Ix = ∑N
n=1 γnxn, Iy = ∑N

n=1 γnyn are the
components of the linear momentum; all are conserved quantities. Note that M = Γ J
when the origin of the coordinates system lies in the centre of vorticity (Ix/Γ, Iy/Γ ).

911 A24-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1035


V.G. Makarov

The system of 2N equations γn dxn/dt = ∂H/∂yn, γn dyn/dt = −∂H/∂xn describes the
absolute motion of N vortices.

Considering relative motion as the evolution of the geometrical form of an ensemble
of vortices, we can use polar coordinates with origin at the position of any vortex (the
first for definiteness) and a reference polar axis that contains the segment r12 (again
for definiteness). Choosing then the magnitude of r12 as a variable space scale, one
can introduce 2(N−2) independent variables: polar angles ϕn and scaled radii ρn =
r1n/r12, n ≥ 3, which uniquely define geometrical form (but not its size, position and
orientation in space) of the vortex configuration at any time.

For rnk = r12r̃nk, n = 1, . . . , N, k > n, where r̃nk are the normalized intervortex
separations, the expressions (2.1) and (2.2) become H = H̃ − L log(r2

12)/(4π) and M =
r2

12M̃, where H̃ = H(r̃nk), M̃ = M(r̃nk). Thus, the invariants of motion (2.1)–(2.3) can
be combining into one invariant function of relative motion which depends on the
above-defined normalized phase variables only

F = −4πH − L log |M| = −4πH̃ − L log |M̃|

= γ1

N∑
n=3

γn log(ρ2
n) +

N−1∑
n=2

γn

N∑
k=n+1

γk log[ρ2
n + ρ2

k − 2ρnρk cos(ϕn − ϕk)] − L log |R|,

(2.4)

where a scaled function

R = M̃ = M/r2
12 =

N∑
n=2

γn(Γ − γn)ρ
2
n − 2

N−1∑
n=2

γnρn

N∑
k=n+1

γkρk cos(ϕn − ϕk), (2.5)

is introduced and ϕ2 = 0, ρ2 = 1. The cosine rule is used here to express the intervortex
separations rnk at n > 1, k > n.

The invariant function F, in fact, represents the Hamiltonian H restricted to a level
surface of the invariant M. An isoline of this function represents the evolution of
geometrical shapes of a vortex ensemble, but not of its sizes (because of the normalization
on r12). More rigorously, from this point on, we are discussing the behaviour of a
new dynamical system with the phase space (ϕ3, ρ3, . . . , ϕN, ρN), in which the absolute
motion and orientation of a vortex ensemble are ignored and geometrically similar
configurations of vortices are indistinguishable. Only in this sense shall we talk below
of phase trajectories, stationary points (or equilibria) and their stability. For example,
now not only conventional relative equilibria, but also a self-similarly expanding or
collapsing vortex ensemble becomes represented in this phase space by a stationary point,
whose stability/instability may be interpreted as stability/instability of the non-stationary
self-similar motion. A solution of a set of equations ∂F/∂ϕn = 0, ∂F/∂ρn = 0 gives
stationary points in the phase space, i.e. equilibrium configurations. The type of these
points (maximum/minimum or saddle) defines the nonlinear stability of the corresponding
stationary state. To do this, it is enough to calculate the eigenvalues of the Hessian, a square
matrix of second-order partial derivatives of the invariant function.

2.2. Necessary condition for group scattering
In addition to stationary points in the phase space (ϕ3, ρ3, . . . , ϕN, ρN), there are also
singular points induced by the logarithmic terms in the invariant function. The set of
these points determines the topology of the phase space and (qualitatively) the evolution
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of a given vortex configuration depending on its initial location in this space. If the
phase trajectory touches some singular point (or curve), the initially N-vortex system
asymptotically splits into certain independent groups of vortices. When not all of the
circulations of the individual vortices have the same sign, some intervortical distances may
increase to infinity. For example, an N-vortex system during the well-known self-similar
motion can either break up to N infinitely distant vortices (within infinite time), or collapse
in one point within finite time (with the velocity growing to infinity). In the case of three
vortices (see e.g. Newton 2001) the necessary and sufficient condition for self-similar
complete scattering/collapse is simultaneous vanishing of the invariants L and M (or R).
Nevertheless, at any N, the invariant function remains finite, as directly follows from its
definition (2.4).

A necessary condition for complete group scattering can be derived as follows. Let
N vortices cluster during the evolution into K groups (1 < K ≤ N) with the circulations
Γk (the sum of strengths of all vortices belonging to kth group). Clustering and the
hypothetical scattering of the groups mean that the intervortex separations remain finite
within each group only. Therefore, the invariants of motion H and M will remain finite
only if the summarized contribution of the terms in (2.1) and (2.2) tending to infinity is
zero. After regrouping the terms, the sought-for necessary condition for group scattering
takes the form

LG =
K−1∑
k=1

K∑
m=k+1

ΓkΓm = 0. (2.6)

Here, LG is the group analogue of the total vortex momentum L. Condition (2.6) is also
valid in the case of emission of inseparable groups with zero group circulation.

3. Relative motion of three vortices revisited

3.1. Invariant function and singular points
Consider now three vortices with strengths γ1 = γ, γ2 = α, γ3 = β (see figure 1).
Setting ϕ3 = ϕ, ρ3 = b/a = q in formulae (2.4) and (2.5), we will obtain the following
expression for the invariant function

F(ϕ, q) = −L log |R(ϕ, q)| + βγ log q2 + αβ log P(ϕ, q), (3.1)

where

P(ϕ, q) ≡ c2/a2 = q2 − 2q cos ϕ + 1, (3.2)

R(ϕ, q) = β(α + γ )q2 − 2αβq cos ϕ + α(β + γ ), (3.3)

L = αγ + βγ + αβ. (3.4)

The invariant function is 2π-periodic and symmetric relative to the vertical axis
ϕ = π. Except for the cases where emission or complete scattering can occur, all phase
trajectories are either 2π-periodic or closed (see examples in figure 2). Periodicity of phase
trajectories, however, does not mean strict periodicity of the absolute motion on the (x, y)
plane.

For any set of strengths, the phase diagram necessarily includes a singular point with
coordinates (0, 1) for which P(ϕ, q) = 0. In this point two of the three vortices ‘merge’
into one ‘vortex’ and the initial problem reduces to N = 2. So, hereinafter we will refer to
this type of singularity as S2. The same reduction occurs also at q = 0 and q = ∞. In the
phase diagrams presented in figure 2 points S2 appear as centres.
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Figure 1. Parameters of three vortices in the plane; a, b and c are dimensional, 1 and q, normalized sizes.
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S2 S2
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S1
S2

(a) (b) (c)

Figure 2. Phase diagrams of the relative motion of three vortices at (a) α = β = γ = 1 (Γ = 3, L = 3);
(b) α = 0.5, β = −1.5, γ = 1 (Γ = 0, L = −1.75); (c) α = 1, β = −0.75, γ = 1 (Γ = 1.25, L = −0.5).
Black solid circles mark the stationary points representing collinear equilibria at ϕ = 0, π and the equilateral
triangle at ϕ = π/3, q = 1; dashed bold lines, the separatrices passing through the saddle points. Grey circles
mark the singular points S2; bold solid line in (c), singular curve S1. Arrows indicate the direction of motion
in the phase trajectories.

Singular points of another type, S1 (when the initial problem may reduce to N = 1,
see below), fill the curve described by the equation R(ϕ, q) = 0. The condition for the
existence of the singular curve S1 is easily derived using (3.3):

s = γΓ/(αβ) < 0. (3.5)

If the strengths of all vortices have the same sign (figure 2a), curve S1 does not exist. If
Γ = 0 (figure 2b), S1 consists of one point which is the stationary point (0, −α/β) at
α/β < 0 or (π, α/β) at α/β > 0. In the phase diagram, this point is represented by the
centre. Generally (see figure 2c), the curve S1 consists of a set of points, in each of which
the local infinite extremum of the invariant function is reached, while the Hamiltonian of
the system is finite.

At L = 0 the curve S1 (where R = 0) presents a set of initial vortex configurations, for
which the motion becomes self-similar, i.e. either total scattering or collapse occurs. At
L /= 0 curve S1 in the phase diagram represents a special line in which the absolute motion
is periodic. We will discuss some features of such a motion in § 4.

3.2. Nonlinear stability of equilibria
Stationary states, or equilibria, of three vortices and their linear stability were investigated
earlier by Tavantzis & Ting (1988) and Aref (2009). Here we search for equilibria and
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analyse their nonlinear stability using the invariant function F. Its partial derivatives are

Fϕ = Aq sin ϕ, Fq = A(q − cos ϕ) + Cq, (3.6a,b)

Fϕϕ = Aq cos ϕ − Bq2 sin2 ϕ, (3.7a)

Fqq = A + C − B(q − cos ϕ)2 − Dq2 + 2Eq(q − cos ϕ), (3.7b)

Fϕq = Fqϕ = [A − Bq(q − cos ϕ) + Eq2] sin ϕ, (3.7c)

where

A = 2αβ

(
1
P

− L
R

)
, B = 4αβ

(
1

P2 − αβL
R2

)
, C = 2βγ

(
1
q2 − L

R

)
,

D = 4βγ

(
1
q4 − βγ L

R2

)
, E = 4αβ2γ L

R2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

As seen from (3.6) and (3.8), the condition of vanishing Fϕ and Fq determining the
stationary points is

q(R − LP) sin ϕ = 0,

αq(q − cos ϕ)(R − LP) + γ P(R − Lq2) = 0.

}
(3.9)

When a stationary point is found, its type and hence the nonlinear stability of the
corresponding equilibrium is defined by the sign of the Hessian determinant

G = FϕϕFqq − FϕqFqϕ. (3.10)

At positive (negative) G, a stationary point in the phase plane is a centre (saddle), and the
corresponding equilibrium is stable (unstable).

Two cases follow from the first equation in (3.9): either R − LP = 0 or sin ϕ = 0. In the
first case, (3.9) take a simple form

R − LP = 0,

R − Lq2 = 0.

}
(3.11)

At L /= 0 the system has a single solution ϕ = π/3, q = 1; that is an equilateral triangle
which is the relative equilibrium existing at any set of strengths (see figure 2). For
this solution P = 1 and R = L, coefficients A and C in (3.8) are equal to zero, and
the Hessian determinant (3.10) is easily calculated, G = 0.75(BD − E2) = 12(αβγ )2/L.
Thus, equilateral triangles are unstable at L < 0 and are nonlinearly stable at L > 0 (in
particular, equilateral triangles with zero total circulation are all unstable). The same result
was obtained using trilinear coordinates by Synge (1949). Also, the nonlinear stability of
the equilateral triangle with equal strengths of vortices was shown by Kizner (2014). At
L = 0 the equilateral triangle is stable according to Aref (2009). Some details of this case
will be considered in § 5.
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In the second case, when sin ϕ = 0, two sets of the stationary points (at ϕ = 0 and
ϕ = π) satisfy (3.9), both corresponding to collinear vortex equilibria. Let

σ = cos ϕ =
{+1, ϕ = 0,

−1, ϕ = π.
(3.12)

Then, with the exception of singular solutions, the cubic equation

(α + γ )q3 − σ(2α + γ )q2 − (2β + γ )q + σ(β + γ ) = 0, (3.13)

can be derived for determination of the collinear stationary states. Positive real roots of
(3.13) define equilibria at given strengths. A similar equation (obtained in a different way)
already appeared in Tavantzis & Ting (1988) for the case σ = 1 and in Aref (2009) for the
case σ = −1 (see also Borisov & Lebedev 1998). Note that for collinear configurations
the second term in the Hessian determinant (3.10) vanishes due to (3.7c).

In some special cases, relationship (3.13) can be simplified. For example, at α = β = γ

one obtains three stationary saddle points (0, 0.5), (0, 2) and (π, 1) in the phase diagram
(see figure 2a). Direct calculation shows that the Hessian determinant is negative in
these points. In fact, these three stationary points represent the same symmetric collinear
configuration. Topologically, however, all three points are important since the separatrices
divide the phase space into areas with different behaviours of phase trajectories.

When two vortices have equal (e.g. unit) strengths, there are two symmetric collinear
equilibria in the points (0, 0.5) and (π, 1), for which the central vortex can be of arbitrary
strength λ. The Hessian determinant (3.10) for both stationary points is proportional to
−(4λ+ 5)[λ/(λ+ 2)]2. From here the necessary and sufficient condition λ < −1.25 for
nonlinear stability is obtained. The same result was obtained earlier by Kizner (2014),
who used another nonlinear approach, and by Aref (2009) and Kurakin et al. (2016) within
the linear stability analysis. Note that in the interval −1.25 < λ < −0.5 the equilateral
triangle and one of the collinear configurations can both be unstable (see figure 2c).

Equation (3.13) can be written in an alternative form

R(σ )(q)

(
q − σ

γ

Γ − β

)
− L

Γ + β

Γ − β

(
q − σ

Γ − α

Γ + β

)
= 0, (3.14)

where R(σ )(q) = β(Γ − β)q2 − 2αβσq + α(Γ − α) is derived from (3.3) using (3.12).
At L = 0 and R(σ ) /= 0 from (3.14) follows the solution q = −σβ/α representing the
known fixed (i.e. motionless) collinear equilibrium (see e.g. Newton 2001). Direct
substitution of this solution in (3.7) gives Fϕϕ = −2γ 2 < 0, Fqq = 2(αγ /β)2 > 0,
therefore, all fixed collinear equilibria are unstable. This statement was earlier proved in
the linear approximation by Aref (2009).

At zero total circulation, Γ = 0, the single solution following from (3.14) is the singular
solution S1 (see figure 2b). For this solution, R = 0, therefore, it is necessary to use
asymptotic analysis for estimation of the sign of the Hessian determinant. Since the
coefficient at the term L/R2 in the expression for Fqq vanishes, the leading terms in Fϕϕ

and Fqq which define the sign of G are 2α2L/R and 2β2L/R, respectively. The product of
these two infinite quantities is always positive, therefore, any collinear equilibrium with
zero total circulation is nonlinearly stable. Earlier, Aref (2009) proved the linear stability
of such configurations, and Kizner (2011, 2014) proved their nonlinear stability at α = β.
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Figure 3. Isolines of (a) the invariant function F(ϕ, q), and (b) the Hamiltonian ER(ϕ, a) at α = −0.45, β =
γ = 1 (L = 0.1). The bold cross labels the initial configuration (ϕ0 = 0.6175π, q0 ≈ 1.608, a0 = 1) used in
the simulation presented in figure 4. Arrows and numbers indicate the direction of motion and the values of
the function on the isolines. The vertical dashed lines (ϕ ≈ 0.985) mark the point where parameter a takes
its maxima on the isolines of ER. In (a) black solid circles mark stationary points; dashed bold lines are
the separatrices passing through saddle points; grey solid circle marks the singular point S2; bold solid line,
singular curve S1. In (b) dashed bold line is the isoline of ER passing through the initial state; grey domain
marks the range of ER values.

4. Periodic absolute motion of three vortices

Periodicity of absolute motion with Γ /= 0 means the synchronous return of all vortices
to the initial position on the (x, y) plane within some time Ta. The absolute (physical)
vortex trajectories are closed in this case, however, can be intricate. The simplest example
of such a motion is solid-state rotation of a stable relative equilibrium when vortices move
along circular orbits. More complicated periodic absolute motion is executed in the case
when the combined invariant M (or, R) of the ensemble of vortices is zero. In addition,
due to definition (2.2), at Γ /= 0 the linear and angular momenta calculated with respect
to the vorticity centre are also zero. Some examples of periodic absolute motion (but
without a direct declaration about it) in a case where two vortices have equal strengths,
were considered by Leoncini et al. (2001).

The manifold of points (ϕ, q), in which R = 0, is the singular curve S1. Thus, a
necessary condition for periodic absolute motion is condition (3.5), i.e. the value of
s = γΓ/(αβ) should be negative. At s ≤ −1 the curve S1 is a 2π-periodic function (see
examples in figures 2c and 3a). At −1 < s < 0 the closed in this case curve S1 is defined
on the interval −ϕlim < ϕ < ϕlim if γ /α > −1, and on the interval π − ϕlim < ϕ <

π + ϕlim at γ /α < −1, where ϕlim = arccos
√

s + 1. The period of the absolute motion
Tα is always multiple to the period of the relative motion Tr, the time during which the
vortex configuration takes again the initial geometrical form.

Although the invariant function at L /= 0 keeps an infinite value on S1, this curve (bold
line in figure 3a) is not a phase trajectory because the finite value taken by the Hamiltonian
H is not constant, being dependent on the position of the initial point on S1. Topologically,
curve S1 is a barrier that divides the phase plane into domains with opposite directions of
traveling along trajectories. The Hamiltonian on S1 can be regarded as proportional to a

911 A24-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1035


V.G. Makarov

function of two variables only, ϕ and one of the intervortical distances, say, a (see figure 1)

ER(ϕ, a) = −4πH(ϕ, a) = L log a2 + βγ log q2
R(ϕ) + αβ log PR(ϕ), (4.1)

where qR(ϕ) is the positive solution of the equation R = 0, PR = −γ [βq2
R(ϕ) +

α]/αβ /= 0. The behaviour of ER is shown in figure 3(b), where parameter a is scaled
with its initial value a0. The straight line a = 1 in figure 3(b) represents the set of vortex
configurations lying on S1 in figure 3(a). In other words, for any initial point with ϕ = ϕ0,
the intervortical distance a is defined by the isoline crossing the straight line a = 1 at
ϕ = ϕ0 in figure 3(b).

From the equation of this isoline, ER(ϕ, a) = ER(ϕ0, 1), an explicit expression for the
distance a is obtained

a(ϕ;ϕ0) = {[qR(ϕ0)/qR(ϕ)]γ [PR(ϕ0)/PR(ϕ)]α/2}β/L. (4.2)

Since ∂a/∂ϕ = −aβ(2γ PR∂qR/∂ϕ + αqR∂PR/∂ϕ)/(2LqRPR), the extremum condition
for the function a(ϕ;ϕ0) takes the form (∂qR/∂ϕ)(PR − q2

R) = 0. At ∂qR/∂ϕ = 0 we
obtain ϕex = 0 or ϕex = π and, respectively, qR = αβ(σ ± √−s)/(L − αγ ), where σ is
defined by formula (3.11) and the sign is chosen so that qR > 0. At PR = q2

R we find
ϕex = arccos(0.5/qR), where q2

R = αγ/(αγ − L). That is, the extremum is reached either
on collinear configurations or on isosceles triangles. Note that the ratio of the maximal
value of a to its minimal value, As = a(ϕmax;ϕ0)/a(ϕmin;ϕ0) = a(ϕmax;ϕmin), depends
on the vortex strengths only. The values ϕ = ϕex divide the straight line a = 1 and,
respectively, the curve S1 (see figure 3) into areas where a monotonically increases or
decreases. That is, periodic absolute motion (see figure 4) consists of the alternate stages of
expansion and convergence of vortices. Absolute trajectories of vortices in both stages have
spiral form. The space and time scales within the stages of the motion can significantly
differ depending on the value of As. For the case presented in figures 3 and 4 where
L = 0.1, we have As ≈ 37.2; when L = 0.01 the magnitude of this parameter exceeds
1015. Some phase trajectories with non-zero M can be partly attracted by the curve S1;
thus, the absolute motion corresponding to these trajectories can include stages of sizeable
expansion and compact convergence of vortices. Expansion prevails in time.

A result of numerical simulation of the absolute motion is shown in figure 4(a) only
for the physical trajectory of the geometrical centre of three vortices; individual vortex
trajectories have similar forms. The behaviour of intervortex separations is shown in
figure 4(b).

5. Scattering of three vortices

5.1. Complete scattering
Consider now a case where functions R and L both vanish. In this case, (3.9) turn into
identities, thus all points of the singular curve S1 become stationary points where the
geometrical form of three vortices remains unchanged with time. On the other hand, the
solutions at R = 0 considered in § 4 cease being periodic in the limit L → 0 and only
expansion or convergence of vortices are possible for each point on S1 except for points
corresponding to the relative equilibria. Such kind of motion is known as self-similar
motion (Gröbli 1877; Synge 1949; Newton 2001; Aref 2010).

At L = 0, condition (3.5) for the existence of the singular curve S1 is automatically
satisfied, and equation for determining the configurations that expand or collapse
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Figure 4. Periodic absolute motion of three vortices at R = 0 in simulation starting from the point ϕ0 =
0.6175π, q0 ≈ 1.608 at α = −0.45, β = γ = 1 (L = 0.1). (a) Trajectory of the geometrical centre of three
vortices. (b) Time dependences of intervortex separations (dotted line for a) during one period Ta ≈ 1971.13.
Black solid circles show initial and final positions on the plots.

self-similarly takes the form

R = q2 − 2(μ + 1)q cos ϕ + μ = 0, μ = β/α. (5.1)

At different points of the line S1, function F now takes different finite values, and each
isoline that crosses S1 is divided in the crossing point into parts with opposite directions
of passing through (compare figures 3a and 5). The crossing points in which the two parts
of an isoline converge (diverge) represent a vortex configuration that expands (collapses)
self-similarly. The points on S1 which correspond to relative equilibria (dark solid circles
in figure 5) divide S1 into segments within which only collapse or expansion occurs. The
relative equilibria on S1 are the equilateral triangle in points (±π/3, 1), and two collinear
states at ϕ = 0 and/or ϕ = π with positive q = σ(μ + 1) ±

√
μ2 + μ + 1.

At L → 0 and R → 0 one can derive from (3.7), (3.8) that Fϕϕ → k2
ϕϕL/R2, Fqq →

k2
qqL/R2, Fϕq → kϕϕkqqL/R2, where kϕϕ = 2αβq sin ϕ and kqq = −2α(γ q + β cos ϕ).

Hence, within these limits, the Hessian determinant (3.10) vanishes. But, since in points on
S1 that corresponds to self-similar expanding (or collapsing) states the phase trajectories
converge (or diverge), these states are stable (or unstable). Relative equilibria are stable.
The same results were earlier obtained using linear approximation by Tavantzis & Ting
(1988), Kimura (1990) and Aref (2010). At L = 0, in the phase diagrams (figure 5) there are
also a singular point S2 (presented by centre) and a saddle point (0, −β/α) or (π, β/α);
the latter corresponds to an unstable fixed collinear equilibrium (Aref 2009; see also § 3.2).

Curve S1 and all phase trajectories that cross it lie completely in the domain (shaded
by grey in figure 5) which is bounded by the isolines of F passing through the points
representing the equilateral triangle and one of the collinear states. Starting the motion
from any interior point (with R /= 0) of this domain we will asymptotically approach some
point Z on S1 (note that the phase diagram is symmetric about the straight line ϕ = π).
In the absolute motion, this appears as asymptotic scattering: all intervortex separations
increase to infinity, but the changing geometrical form of the configuration tends to the
triangle at the point Z. It is clear also that R → 0 at t → ∞. Thus, the necessary condition
for asymptotic scattering is L = 0, and the sufficient condition is belonging of the initial
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Figure 5. Phase diagrams of relative motion of three vortices at L = 0 and (a) α = −0.5, β = γ = 1;
(b) α = −3, β = −1.5, γ = 1. Bold white line, singular curve S1; grey solid circle, singular point S2. Dark
solid circles, stationary points. The scattering domain is shaded by grey. Bold dark lines pass through stable
relative equilibria; bold dashed lines are saddle point separatrices. Dotted lines show phase trajectories obtained
in numerical simulations presented in figure 6; cross and hollow triangle mark the starting and the ending
points.

state to the above-mentioned domain which can be called the scattering domain. The
collapse is more delicate; it can occur for self-similar motion only when both R and L
vanish.

It is known (e.g. Newton 2001; Aref 2010) that the trajectories of the vortices in a
self-similar motion are similar logarithmic spirals, and the intervortex separations increase
or decrease in proportion to (1 + τ t)κ with κ = 1/2, where parameter τ depends on the
initial vortex configuration. Our numerical simulations show that, in general, this is correct
with good accuracy for the asymptotically self-similar scattering too.

Two examples of asymptotic scattering are presented in figure 6(a,b) for the
combinations of strengths as in figure 5(a,b) respectively. In the first case, the initially
collinear (but not stationary) state asymptotically transforms into an equilateral triangle
(dotted curve in figure 5a). The initial point (0, q0) in the phase plane (the cross in
figure 5a) is located at the lower boundary of the scattering domain, where q0 ≈ 0.618 is
the solution of the equation F(0, q0) = F(π/3, 1) = 0. In the second example, the initial
point (ϕ0, 1), where ϕ0 ≈ −1.402 is the solution of the equation F(ϕ0, 1) = F(0, qs), is
placed at the phase trajectory passing through the point (0, qs) which corresponds to the
collinear equilibrium with qs = 0.5(3 + √

7). In this case, where the initial state is an
isosceles triangle, the configuration asymptotically transforms into a collinear state (dotted
curve in figure 5b).

Some features of motion when both L and R are small but not equal to zero are discussed
in Leoncini et al. (2000) for the case of two equal strengths.

5.2. Emission of a translating dipole
The necessary condition for emission of a dipole translating to infinity is vanishing of
its total circulation. Under this condition L becomes negative, hence the stationary point
(π/3, 1), which corresponds to equilateral triangle on the phase plane, is a saddle point.
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Figure 6. Asymptotic scattering at L = 0 (but R /= 0) for combinations of strengths and initial vortex
configurations as in figures 5(a) and 5(b) respectively. Trajectories of the absolute motion of three vortices
(dotted line, the vortex with the strength α) are shown. Black solid circles and arrows show the initial and the
final (at t = 3000) positions.
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Figure 7. (a) Collinear relative equilibria at α + β = 0 on the (η = α/γ, q) plane; solid (dotted) lines
represent solutions at ϕ = 0 (ϕ = π). Vertical dashed lines A, B and C pass through η = 0.75, 1 and 1.1,
respectively. (b) Invariant function F calculated over collinear equilibria with ϕ = 0. Solutions on bold solid
lines are unstable; blank circle is the point in which stability changes to instability.

The stationary points corresponding to collinear equilibria are defined at α + β = 0 by
the equation (q − σ)[(η + 1)q2 − σηq + (η − 1)] = 0, where η = α/γ . In addition to the
singular solution S2, this equation describes two branches of collinear equilibria (at σ =
±1) which exist at |η| ≤ 2/

√
3 (see figure 7a). At σ = −1 (when ϕ = π), the Hessian

determinant G is always positive, hence, the corresponding equilibria are stable. At σ =
1 (when ϕ = 0) G takes negative values in the interval 2 − √

3 < q < 2 + √
3. In the

points where η = ±2/
√

3, Fqq = 0, and the plot of the invariant function F calculated
over stationary points changes its behaviour here (figure 7b). Since q(−η) = 1/q(η) and
F(−η) = F(η) the plots in figure 7 are presented for positive η only.

In the case of emission of a dipole the singular curve S1 always exists, and at α + β = 0
its form is described by the equation R = (η + 1)q2 − 2ηq cos ϕ + (η − 1) = 0, which
also has the singular solution of S2 type in the point (0, 1). In the special case, η = 1 or
η = −1, when there exist two pairs of vortices with zero group circulation, the equation
R = 0 reduces to equalities q = cos ϕ or q cos ϕ = 1, which describe a set of rectangular
triangles. In these cases curve S1 either goes to infinity, asymptotically approaching the
straight line ϕ = ±π/2, or it tends to approach the point (±π/2, 0). The points at q = ∞
or q = 0 are the singular points of S2 type by its definition in § 3.1 Thus, in all cases, S1
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Figure 8. Phase diagrams of relative motion of three vortices at α + β = 0, γ = 1. (a) α = 0.75 (line A in
figure 7a); (b) α = 1 (line B); and (c) α = 1.1 (line C). Shaded is the emission domain. Bold dark (dashed)
lines pass through the saddle points corresponding to the equilateral triangle (collinear equilibrium). Other
notations as in figures 2 and 5.

asymptotically approaches the singular point S2, in which the dynamics of three vortices
actually turns into the dynamics of two vortices. In terms of absolute motion, this directly
implies the emission of a dipole. In the phase plane not only singular curve S1 is attracted
by the point S2; there also exists a manifold of trajectories that are attracted by S2 and are
entirely located inside some domain, which will be termed the emission domain. Outside
this domain, the phase trajectories are closed or periodic.

Examples of phase diagrams are presented in figure 8. At |η| < 1 (figure 8a) the
boundaries of the emission domain are 2π-periodic. At 1 < |η| < 2/

√
3, the finite

emission domain is multiply connected (figure 8c) because of the existence of two
branches in the family of collinear equilibria at ϕ = 0 (see figure 7a). At |η| > 2/

√
3

there is only one equilibrium, the unstable equilateral triangle, and the emission domain is
bounded by a closed branch of the separatrix described by the equation F(ϕ, q) = α2 ln α2.
The aforementioned special case η = 1 (i.e. α = −β = γ ) is presented in figure 8b. Note
that if the starting point is set on S1, the absolute motion of the individual vortices is
executed along parallel straight lines while the vortex triangle remains rectangular. An
example of such an evolution (but only its initial stage without mentioning of emission)
was considered by Gröbli (1877); see also Aref et al. (1992).

In a dipole, which translates to infinity, the intervortical distance tends to d =
a0q1/η

0

√
q2

0 − 2q0 cos ϕ0 + 1. This can be derived by equating the Hamiltonians of the
limiting dipole and the initial configuration of three vortices.

6. Vortex configurations with central symmetry

6.1. Relative motion and stability of five vortices
Consider now a centrally symmetric configuration in which four vortices are located in
the vertices of a parallelogram, and the fifth is located in the geometrical centre. Vortices
at the opposite ends of diagonals are assumed to have the same strengths (see figure 9).
In general, the invariant function F depends on six phase variables (see § 2.1). However,
often, in numerical simulations and laboratory experiments, unstable vortex ensembles,
initially possessing central symmetry, practically retain it in the course of their evolution,
even when no special restrictions are imposed (e.g. Trieling, van Heijst & Kizner 2010).
The assumption of keeping the central symmetry makes it possible to reduce the dimension
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Figure 9. Scheme of the relative arrangement of five vortices with central symmetry; a, b, c and d are
dimensional, 1 and q, normalized sizes.

of the phase space to two. Kizner (2011, 2014) proposed such a consideration for the case
where four or three peripheral vortices have equal strength. In our case, one can derive the
expression for the invariant function F which depends on two variables only. Using the
designations q = b/a, p = c/a, h = d/a (by analogy with the case N = 3) we obtain

F(ϕ, q) = −L log |R(q)| + β(β + 2γ ) log q2 + 2αβ log P(ϕ, q), (6.1)

where now

P(ϕ, q) ≡ p2h2 = q4 − 2q2 cos 2ϕ + 1, (6.2)

R(q) = α + βq2, (6.3)

L = 2(αγ + βγ + αβ) + (α + β)2. (6.4)

In expression (6.1) the term CF = −L log |Γ | + [2(α2 + β2) − L] log 2 with Γ = γ +
2(α + β), is omitted as a constant. Due to the symmetry, M is presented by the angular
momentum only, and the function R is independent of ϕ. The invariant function F is
π-periodic and symmetric with respect to ϕ = π/2.

On the phase plane (ϕ, q) there are singular points with coordinates (0, 1), (ϕ, 0) or
(ϕ, ∞). These points (of S3 type) represent the limiting symmetric tripole resulting either
from pairwise ‘merger’ (collapse) of the peripheral vortices (of the original configuration),
which creates the two satellites of the tripole, or from the ‘merger’ of two peripheral
vortices and the central vortex (of the original configuration), which creates the central
vortex of the tripole. The singular curve S1 (where R = 0) has the same sense, as in the
case of three vortices, representing either limiting transition to five independent vortices, or
collapse to one vortex, both at L = 0. According to (6.3), S1 is a straight line q = √−α/β

and exists when α and β have opposite signs. At L /= 0 line S1, as for three vortices,
represents a locus of initial vortex configurations which are periodic in absolute motion
(when the central symmetry is kept).

Since Fϕ = 8αβq2 sin 2ϕ/P, equilibria with central symmetry can be only collinear
configurations, at ϕ = 0, or rhombuses with a central vortex, at ϕ = π/2. Designating

σ = cos 2ϕ =
{+1, ϕ = 0,

−1, ϕ = π/2,
(6.5)

from the equation Fq = 0 we derive the relation for both families of stationary points

R[(α + 2γ )q2 − σ(2Γ − 3α)] − L(q2 − σ) = 0. (6.6)
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Figure 10. Symmetrical scattering of five vortices. Phase diagrams for (a) emission of two dipoles at α =
1, β = −α, γ = 1; and (b) complete scattering at L = 0 and α = 1, β = −3 + √

6, γ = 1. Notations as in
figures 2, 5 and 8.

Since Fϕq = Fqϕ = 0 at the stationary points, a function

g = −4R2 − σL(q2 − σ)2, (6.7)

which completely defines the sign of the Hessian determinant, can be derived. From
consideration of (6.7) it is seen that rhombuses at L ≤ 0 and collinear states at L ≥
0 are unstable. In particular, at α = β for a square (when ϕ = π/2, q = 1) direct
substitution to (6.7) gives the instability condition α(α + 2γ ) < 0 obtained earlier (in
a different way) by Kizner (2011, 2014). In case of zero total circulation (when L
is always negative) all rhombuses are unstable, but collinear equilibria can be stable
relative to perturbations which obey the central symmetry; from here, however, stability to
unrestricted perturbations does not follow.

6.2. Symmetrical scattering of five vortices
Consider first the situation when two dipoles formed by peripheral vortices move away
from the motionless central vortex in opposite directions. A necessary condition for
such a development is α + β = 0. Because this condition entails L = −2α2 and R =
α(1 − q2), all equilibria (rhombuses at q2 = (3η ± 2

√
2η2 + 1)/(2 + η) and collinear

states at q2 = (2 − η)/(2 + η) where η = α/γ ) are unstable due to (6.7), i.e. all stationary
points are saddles. The singular point S3 at β = −α formally represents an unstable
collinear equilibrium and lies on the singular line S1. Topologically (see figure 10a) this
point attracts all phase trajectories entirely located in the emission domain (shaded in the
plot), bounded by separatrices passing through stationary saddle points. Thus, the dipole
emission is only possible for the vortex configurations represented by the points lying
inside this domain.

For the complete scattering (where L = 0), from (6.7) it follows that all equilibria
described by relation (6.6) are unstable, except for the case R = 0. When both L and R
are zero, the singular line S1 is a set of isolated points for which self-similar motion with
keeping the position of the central vortex takes place. As for the case of three vortices,
on the phase plane (figure 10b) there exists the scattering domain where, for any interior
point, asymptotic scattering (without keeping form) occurs.
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6.3. Relative motion of four vortices
This case follows from the previous one under the assumption that γ = 0 in formulae
(6.1)–(6.7). Two families of equilibria (collinear states at σ = 1 and rhombuses at σ = −1)
are defined by the relation q4 − [(4 + σ) + (1 + 4σ)μ]q2 + σμ = 0 where μ = β/α.
From (6.7) it follows that the equilibria of both types are unstable at q2 < q2

1 = 2 − √
3

and q2 > q2
2 = 2 + √

3, and are stable (with respect to symmetrical perturbations) in
the interval (q2

1, q2
2). Similar results were reported by Roberts (2013) who constructed

and investigated for stability stationary solutions for rhombuses, thought in a different
way. Collinear equilibria of four vortices were considered by Hampton et al. (2014). As
follows from our general approach with the use of four phase variables in this case (not
presented here), rhombuses in the interval (q2

1, q2
2) remains stable also with respect to

general perturbations, but collinear equilibria do not.
The change from stability to instability (or vice versa) occurs at μ = μ1,2 = −2 ∓ √

3
(when L = 0) in the stationary points (0, q1,2) and (π/2, q1,2). In these points μq2 + 1 =
0 (i.e. R = 0), thus they lie on the line S1. All other points from S1 represent the
configurations that undergo self-similar scattering/collapse of four vortices. The same
criterion of self-similarity (q2 = −1/μ = 2 ± √

3) was derived earlier by Novikov &
Sedov (1979). The domain on the phase plane, in which all four-vortex configurations
undergo asymptotic scattering can be found by analogy with the case of N = 5.

For four centrally symmetric vortices, the necessary condition of dipole emission is zero
total circulation. Since the linear momentum is also equal to zero, the system becomes
integrable and can be reduced to the relative motion of three vortices (Eckhardt 1988; Rott
1990; Aref & Stremler 1999). The initial symmetry is kept in this case. At Γ = 0 there
are only unstable rhombus equilibria with q2 = 3 ± 2

√
2; separatrices passing through

corresponding saddle points bound the emission domain on the phase plane where any
initial vortex configuration eventually breaks up into a pair of dipoles moving in opposite
directions.

The invariant function depending only on two variables can be constructed also under
the condition that, for all times, the configuration can be obtained by mirror symmetry
reflection of a pair of vortices relative to a straight line, the physical interpretation of
this case being the motion of two vortices near an impenetrable solid wall. Clearly, the
four vortices form an isosceles trapezoid in this case. Relative equilibria of two pairs of
vortices with equal strengths considered by Roberts (2013) and Hampton et al. (2014) also
have this shape.

7. Group scattering of five vortices

We consider now examples of group scattering for the case of five vortices with three
different strengths (α, β, γ ) which initially form a centrally symmetric configuration. In
this case, the number of various scenarios of splitting into groups is 26, but not all of
them satisfy the necessary condition (2.6). In the case considered below with the strengths
(−1, 2, 1), there are only three different variants of group scattering: (A) emission of
a dipole (α, γ ) and possible scattering of the remaining three vortices (β, β, α) for
which L = 0; (B) emission of three vortices (α, β, α) with zero total circulation; and (C)
complete scattering of three groups in a combination β, (α, β, γ ), α or β, β, (α, α, γ ). In
case (C), both combinations give the same distribution of group strengths (2, 2, −1) for
which L = 0, while, for a group of three vortices, emission of a dipole (α, γ ) can occur,
which may end up as case (A). The specific type of evolution (including the scenario
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Figure 11. Trajectories of absolute motion for different scenarios of group scattering of five vortices at α =
−1, β = 2, γ = 1, which initially form a collinear configuration with ϕ = ϕ0 = 0 and q = q0. (a) Variant
(A): emission of a dipoile (α, γ ) and subsequent complete scattering of three vortices (β, β, α) at q0 = 0.685;
t = 150. (b) Variant (B): emission of a vortex triad (α, β, α) at q0 = 0.69; t = 50. (c) Variant (C): scattering of
three groups of vortices β, (α, β, γ ), α at q0 = 0.4; t = 3000. Solid grey circles and arrows indicate the initial
and final positions of vortices, except for the dipole in plot (a) that covers the distance of about 140 space units
within t = 150.
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Figure 12. Projections of phase trajectories (dotted lines marked by capitals) calculated from numerical
simulations with five vortices onto the phase plane of three vortices with strengths (ᾱ, β̄, γ̄ ) at (a) ᾱ = 2, β̄ =
2, γ̄ = −1; (b) ᾱ = 1, β̄ = −2, γ̄ = 1; (c) ᾱ = −1, β̄ = −2, γ̄ = 1. Capitals A and B correspond to triads
from variants (A) and (B); C and D correspond to the group scattering and a compact group of three vortices
from variant (C). Other notations as in figures 5 and 8.

at which scattering is not realized) depends on the initial geometrical configuration of
vortices.

All the three above-described scenarios of group scattering are shown in figures 11(a),
11(b) and 11(c), respectively. As initial states, collinear configurations with ϕ0 = 0 at
different values of q0 were chosen for these simulations. In all simulations, the initial
symmetry is lost and grouping is observed. Since in every scenario a vortex triad forms,
it is possible to use the three-vortex phase diagram as a tool for diagnostics of the motion.
To do so, we represent the group by its rotation centre. Projections of calculated phase
trajectories onto the phase plane of three vortices with group strengths (ᾱ, β̄, γ̄ ) are shown
in figure 12. For variants (A) and (C) these projections after some time arrive at the
scattering domain (see figure 12a). For the case of emission of three vortices (variant
B), the phase trajectory for this triad approaches asymptotically one of the periodical
isolines (figure 12b). In the variant (C) for vortex triad participating in scattering as a
group, the phase trajectory stabilizes near a closed isoline around the singular point S2,
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Figure 13. Complete scattering of four groups (α, α), β, β, γ emerged from a centrally symmetric collinear
configuration of five vortices with α = β = −0.8, γ = 1 and ϕ0 = 0, q0 = 0.6. Trajectories of absolute
motion at (a) 0 ≤ t ≤ 2100 and (b) 9500 ≤ t ≤ 20 000. (c) Maximal intervortex separation vs time. In (a,b),
notations as in figure 11.

outside the emission domain (see figure 12c). Therefore this triad robustly moves along a
spiral trajectory (figure 11c).

Scattering of four groups (one pair and three single vortices) is also possible when
the initial configuration of five vortices possesses central symmetry. Let α = β = δ and
γ = 1, then at δ = −0.8 the necessary condition for scattering (2.6) is satisfied if a
pair is formed by any two vortices with identical strengths. After loss of symmetry,
the vortex ensemble first undergoes the stage of chaotic motion. Then two closely
located vortices pair and, together with the three remaining vortices, participate in the
expansion/convergence process (figure 13a,c). The final stage of the scattering starts at
t ≈ 9500 (figure 13b,c). Performing the best fit procedure, we found that in the interval
9500 ≤ t ≤ 20 000 the distances between the groups grow practically as the square root
of time.

8. Group scattering of a large number of vortices with a random
distribution of strengths

The total number of variants for splitting of N vortices into K groups (1 ≤ K ≤ N) exceed
10N already at N ≥ 61; this can be calculated using the Bell numbers (Bell 1938). If not
all strengths have the same sign, one may anticipate that the necessary condition for group
scattering (2.6) will be satisfied with good accuracy in a number of various scenarios
where splitting can lead to expansion of an initially compact vortex configuration. To
examine this hypothesis, a numerical experiment was carried out (figure 14). 1009 vortices
were placed in the nodes of a square grid, which fall inside a circle of radius 8. The
strengths of the vortices were chosen to be randomly distributed in the range (−1, 1).

Initially, the almost circular cloud of vortices loses its shape and begins to spread in
space. This process akin to molecular diffusion is accompanied by emission of small
groups, mainly vortex pairs, which have near-zero circulation. The area of the vortex
cloud and the distances between separated groups grow with time, but the cloud shape
does not undergo any qualitatively significant changes. This behaviour is characteristic
of self-similarity (see simplest examples in §§ 5 and 7). Figure 14 shows the main part
(approximately 95 %) of the vortex cloud at different times. Trajectories of the absolute
motion of some vortices are shown in figure 15.

In figure 16, the rate of scattering is illustrated by the behaviour of quartiles (25 %, 50 %
and 75 %) in the ordered distribution of distances from individual vortices to the centre
of vorticity. A quartile, by definition, gives the radius of a circle enclosing 25 %, 50 % or
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Figure 14. Space distribution of 1009 vortices with random strengths uniformly distributed in the interval
(−1, 1), initially placed inside a circle (solid line in the first frame) centred at (0, 0) of radius 8 at
(a) t = 102, (b) t = 6 × 104, (c) t = 3 × 105 and (d) t = 2.4 × 106. Vortices with positive (negative) strength
are marked with a plus sign (empty circle), whose size symbolizes the relative absolute value of the strength.
The dashed circle whose centre (bold cross) is the centre of vorticity (4.35, −0.29) encloses half of the vortices
participating in the simulation.

Figure 15. Absolute trajectories of four individual vortices; the size of the square is 6000 × 6000
(in non-dimensional units), as in panel (d) in figure 14.

75 % of vortices. These graphs, therefore, characterize the mean intergroup separations,
or in other words, the size of the cloud. Both the median and the interquartile range (the
difference between the third and first quartiles) in general increase according to a power
law (1 + τ t)κ . The best fit of the median by a power function gives κ ≈ 0.545 (dotted line
in figure 16). This is quite close to κ = 0.5 characterizing self-similar expansion, i.e. the
area of the vortex cloud grows almost linearly with time. Note that this result is in good
agreement with that by Kizner, Khvoles & Kessler (2010), who showed analytically that
the size of a vorticity patch during viscous self-similar expansion increases according to
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Figure 16. Radius ρ(t) of circles enclosing 25 %, 50 % and 75 % of vortices (from bottom to top). Dotted

line, the best-fit power function ρ(t) ≈ 82(1 + 0.00009t)0.545 for the 50 % circle.

the square-root law. In our experiment, after 2.4 × 106 units of time, the area of the cloud
increased approximately by 105 times. During the scattering, stirring and regrouping take
place, so the asymptotically self-similar process is maintained due to the existence of a
large number of various variants of splitting into groups.

9. Conclusion

We introduced the invariant function of the relative motion of N point vortices, which
is a combination of four conserved quantities (interaction energy, the angular and two
components of the linear momenta) and can be expressed through 2(N−2) independent
phase variables. The isolines of the invariant function are phase trajectories of the relative
motion, which is determined by the changes in the geometry of the vortex configuration
during the evolution. Stationary points of the invariant function represent vortex equilibria,
while the type of these points (a centre or a saddle point) determines the nonlinear stability
of the corresponding relative equilibrium.

Singular points of the invariant function are related to scattering of the point vortices.
Some of them are related to emission of some groups of the vortices with zero total
circulation, and others, to complete scattering. We formulated a general necessary
condition for group scattering of N vortices, that is for clustering of the ensemble into
K groups that move apart and asymptotically (at large times) become independent.

Possible mechanisms of group scattering are elucidated via consideration of the
evolution of a small number of vortices. At N = 3 and N = 4, 5 (provided that the central
symmetry is kept) the invariant function depends on two variables only, which significantly
simplifies understanding of the motion and analysis of the nonlinear stability of relative
equilibria. Topologically (in the phase space), some of the singular points are centres, but
when the necessary condition for scattering is fulfilled, they become nodes that attract
phase trajectories located entirely within some finite domain. The boundaries of this
domain of scattering (or emission of a dipole) are fragments of separatrices that pass
through saddle points of the invariant function. When the point corresponding to the
initial configuration lies on the singular curve R = 0, the well-known self-similar extension
or collapse takes place. In the rest of the domain, the asymptotic-scattering (but not
collapse) trajectories originate. Emission of dipole takes place only from phase trajectories
which asymptotically approach the singular point where the relative distance between
vortices formed a dipole tends to zero. When neither scattering nor emission is possible,
at R = 0, periodic absolute motion is carried out, which consists of stages of expansion
and convergence of vortices. Evolution at small values of L and/or R has a similar feature
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(but without strict periodicity) and occurs with sufficiently large expansion/convergence
amplitudes. The expansion phase prevails in time during such a motion.

The mechanisms discussed above can also lead to a permanent expansion of a vortex
configuration at N > 3, when the necessary condition for group scattering is satisfied. The
simplest examples of the emission of two and three vortices and of complete scattering of
three and four groups of vortices have been discussed in § 7 for N = 5.

In the case of a large number of vortices with strengths of different signs and values,
numerous variants of splitting into groups of vortices exist. In many of them either LG is
almost zero (which makes possible of asymptotic group scattering), or the group analogue
of the invariant M nearly vanishes (which facilitates abrupt expansion/convergence cycles).
This leads to the increase in size of an initially compact vortex cloud; its area grows
almost linearly with time. This is in good agreement with the analytical results obtained
for self-similar motion of the point vortices in ideal fluid (Newton 2001; Aref 2010) and
for viscous self-similar expansion of the vorticity patches (Kizner et al. 2010).
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