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Scaling and modelling of turbulence in
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We derive an alternative formulation of the turbulent kinetic energy equation for flows
with strong near-wall density and viscosity gradients. The derivation is based on a
scaling transformation of the Navier–Stokes equations using semi-local quantities. A
budget analysis of the semi-locally scaled turbulent kinetic energy equation shows
that, for several variable property low-Mach-number channel flows, the ‘leading-order
effect’ of variable density and viscosity on turbulence in wall bounded flows
can effectively be characterized by the semi-local Reynolds number. Moreover, if
a turbulence model is solved in its semi-locally scaled form, we show that an
excellent agreement with direct numerical simulations is obtained for both low- and
high-Mach-number flows, where conventional modelling approaches fail.

Key words: compressible boundary layers, turbulence modelling, turbulent boundary layers

1. Introduction

Turbulent flows with variable thermophysical properties are common in nature
and engineering applications. For example, the density or viscosity significantly
changes in flows of supersonic aircraft, rocket propulsion systems, heat exchangers,
chemically reacting flows, the Earth’s core or the flow in the Sun’s convection zone.
In general, strong thermophysical property variations alter the conventional behaviour
of turbulence and cause scaling laws of constant property flows to fail (Bradshaw
1977; Lele 1994; Coleman, Kim & Moser 1995; Duan, Beekman & Martin 2010; Lee
et al. 2013; Modesti & Pirozzoli 2016). From past studies, it is known that differences
between adiabatic supersonic boundary layers and incompressible isothermal flows can
be corrected by simply accounting for mean density variations – an example is the
van Driest velocity transformation – as long as the turbulent Mach number remains
small, M′ < 0.3 (Smits & Dussauge 2006). This is known as Morkovin’s hypothesis
(Morkovin 1962). However, for flows with strong wall heat transfer, the van Driest
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velocity transformation fails to provide a reasonable collapse (Duan et al. 2010;
Modesti & Pirozzoli 2016). Recently, Trettel & Larsson (2016) and Patel, Boersma &
Pecnik (2016) have proposed a transformation that provides a collapse for supersonic
channel flows with isothermal walls, and low-Mach-number volumetrically heated
channel flows, respectively. Nevertheless, despite the universal scaling law for the
mean velocity, it is still not clear how these recent advances can be used to inform
models for the prediction of turbulent statistics. For example, turbulence models
still remain incapable of providing reasonable results for wall bounded flows with
strong heat transfer (Huang, Coleman & Bradshaw 1995; He, Kim & Bae 2008).
This has been mostly attributed to effects caused by compressibility, expressed by the
dilatational dissipation, pressure work, pressure dilatation and diffusion, etc. Most of
these compressible effects, however, remain small in compressible wall bounded flows
(Huang et al. 1995; Duan et al. 2010), and the reason for the failure of turbulence
models is yet unknown.

In our recent work (Patel et al. 2015), we provided a mathematical basis for the
application of semi-local scaling laws as proposed by Huang et al. (1995). It was
based on rescaling the Navier–Stokes equations using semi-local quantities (e.g. local
mean values of density, ρ, and viscosity, µ, etc.), after which an evolution equation
for the turbulent velocity fluctuations was derived. In this equation, the viscous
terms scale with the semi-local Reynolds number and the production of turbulent
fluctuations is governed by the gradient of the density-weighted velocity, i.e. the van
Driest velocity transformation. The semi-local Reynolds number is defined as

Re?τ ≡
√
〈ρ〉/ρw

〈µ〉/µw
Reτ , (1.1)

where 〈·〉 denotes Reynolds averaging, the subscript w indicates quantities at the
isothermal wall (no averaging at the wall is required) and Reτ = ρwuτwh/µw is the
friction Reynolds number based on the friction velocity, uτw , and a characteristic
length, h. The van Driest velocity transformation (in differential form) is given by

d〈uvD
〉 =
√
〈ρ〉/ρw d(〈u〉/uτw). (1.2)

Using several direct numerical simulations (DNS) of turbulent channel flows
with fluids that have different constitutive relations for density and viscosity, we
showed that for cases with similar Re?τ profiles, similar turbulent statistics are
obtained. Moreover, in Patel et al. (2016), it was shown that the viscous stress
is a universal function in the inner layer, which, expressed in semi-local parameters,
is 〈τ(y)〉 = 1/Re?τ (d〈u

vD
〉/dy). Therefore, the van Driest velocity is not an independent

quantity and the main parameter that governs turbulence in variable property flows is
Re?τ .

Here, we aim to extend the semi-local scaling framework to derive a semi-locally
scaled (SLS) evolution equation for the turbulent kinetic energy (TKE). We will
show that also for the SLS TKE equation the viscous terms scale with Re?τ and
the turbulence production is governed by the gradient of the van Driest velocity.
We will then use the SLS TKE in conjunction with a turbulence model to simulate
several fully developed turbulent flows, ranging from volumetrically heated flows at
low Mach (Ma) numbers to a fully compressible Ma = 4 case in a channel with
isothermal walls provided by Trettel & Larsson (2016).
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2. The SLS TKE equation

As in Patel et al. (2015), we apply a semi-local scaling transformation to the
Navier–Stokes equations for density ρ, dynamic viscosity µ, velocity ui and pressure
p, defined as

ρ̂ = ρ/〈ρ〉, µ̂=µ/〈µ〉, ûi = ui/u?τ and p̂= p/(〈ρ〉u?τ
2
), (2.1a−d)

where 〈ρ〉, 〈µ〉 and u?τ are the Reynolds-averaged values of local density, local
viscosity and semi-local friction velocity u?τ =

√
τw/〈ρ〉, with τw the averaged wall

shear stress. The spatial coordinates are normalized as x̂= x/h. Applying the scaling
transformation to the continuity equation and assuming that the averaged wall shear
stress τw is constant or changes slowly in the streamwise direction, we obtain (cf.
appendix A)

t?τ
∂ρ̂

∂t
+
∂ρ̂ûi

∂ x̂i
+ ρ̂ûi

1
2〈ρ〉

∂〈ρ〉

∂ x̂i︸ ︷︷ ︸
di

= 0, (2.2)

with t?τ = h/u?τ . The additional term, di, is the result of the semi-local scaling
transformation, which contains the gradient of the Reynolds-averaged density.
Accordingly, the SLS momentum equations in non-conservative form are given
as (cf. appendix B)

t?τ ρ̂
∂ ûi

∂t
+ ρ̂ûj

∂ ûi

∂ x̂j
− ρ̂ûiûjdj =−

∂ p̂
∂ x̂i
+
∂τ̂ij

∂ x̂j
−
∂D̂ij

∂ x̂j
+ ρ̂ f̂i, (2.3)

with the stress tensor τ̂ij = µ̂/Re?τ [(∂ ûi/∂ x̂j + ∂ ûj/∂ x̂i)− 2/3(∂ ûk/∂ x̂k)δij]. If compared
with the conventional form, two additional terms appear, namely ρ̂ûiûjdj and ∂x̂jD̂ij,
where D̂ij = µ̂/Re?τ [(ûidj + ûjdi) − 2/3(ûkdk)δij]. It should be noted that the effective
viscosity in τ̂ij is proportional to 1/Re?τ ; f̂i is a normalized arbitrary body force.

Given (2.2) and (2.3), we can now derive the SLS TKE equation using a standard
procedure by first multiplying the momentum equation (2.3) with the Favre fluctuating
velocity û′′i and then Reynolds averaging the product. To highlight distinct differences
in the derivation when using the SLS Navier–Stokes equations, this procedure is
outlined for the terms on the left-hand side of (2.3), while the derivation of the
other terms closely follows the standard procedure and is thus not shown. The
Favre decomposition is used for the velocity, while the Reynolds decomposition
is used for all other quantities, which for an arbitrary quantity φ are given as
φ = {φ} + φ′′ and φ = 〈φ〉 + φ′ respectively. It is important to note that the Favre
mean is {φ}= 〈ρφ〉/〈ρ〉, which, with the locally scaled density, can also be expressed
as {φ} = 〈ρ̂φ〉; an identity we will use throughout the derivation of the SLS TKE
equation. In addition, 〈ρ̂φ′′〉 = 0.

Multiplying the first term in (2.3) by û′′i and Reynolds averaging the product gives

t?τ

〈
û′′i ρ̂

∂ ûi

∂t

〉
= t?τ

∂

〈ρ̂k̂〉={k̂}︷ ︸︸ ︷〈
1
2 ρ̂û′′i û′′i

〉
∂t

−

(I)︷ ︸︸ ︷〈
k̂t?τ
∂ρ̂

∂t

〉
, (2.4)

with the definition of the TKE k̂= û′′i û′′i /2. For the convection term, we obtain〈
ρ̂û′′i ûj

∂ ûi

∂ x̂j

〉
= {û′′i û′′j }

∂{ûi}

∂ x̂j
+

∂

∂ x̂j
({ûj}{k̂} + {û′′j k̂})−

〈
k̂
∂ρ̂ûj

∂ x̂j

〉
︸ ︷︷ ︸

(II)

. (2.5)
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The first term on the right-hand side of (2.5) represents turbulence production as a
function of SLS quantities. As we will see later, it is crucial to express the partial
derivative of the SLS mean velocity in terms of the density-weighted partial derivative
of velocity using the van Driest transformation given by (1.2). With the additional
relation

√
ρwuτw =

√
〈ρ〉u?τ , this leads to

∂{ûi}

∂ x̂j
=

∂
{ui}

u?τ
∂ x̂j
=

∂

√
〈ρ〉

ρw

{ui}

uτw

∂ x̂j
=

√
〈ρ〉

ρw
∂
{ui}

uτw

∂ x̂j
+

{ui}

uτw

∂

√
〈ρ〉

ρw

∂ x̂j
=
∂{uvD

i }

∂ x̂j
+ {ûi}dj. (2.6)

The turbulence production in (2.5) can then be written as the sum of two terms,
namely

{û′′i û′′j }
∂{ûi}

∂ x̂j
= {û′′i û′′j }

∂{uvD
i }

∂ x̂j︸ ︷︷ ︸
−P̂k

+ {û′′i û′′j }{ûi}dj︸ ︷︷ ︸
(III)

, (2.7)

with P̂k as the product of Reynolds stress and van Driest velocity gradient, and an
additional term (III) that can be large in magnitude, as it is the product of Reynolds
stress, Favre-averaged velocity and density gradient. However, as we will see later, this
term will cancel. The third term in the momentum equation, multiplied by û′′i , gives

−〈û′′i ρ̂ûiûj〉dj =−{û′′i û′′j }{ûi}dj︸ ︷︷ ︸
(IV)

−2{ûj}{k̂}dj − 2{û′′j k̂}dj. (2.8)

We can now proceed and sum the individual terms. For example, the addition of
(I)+ (II) allows us to substitute the continuity equation (2.2) and we obtain

−

〈
k̂
(

t?τ
∂ρ̂

∂t
+
∂ρ̂ûj

∂ x̂j

)〉
= {ûj}{k̂}dj + {û′′j k̂}dj. (2.9)

As mentioned earlier, term (III) cancels with (IV) since we expressed the velocity
gradient in the turbulence production as a function of the van Driest velocity.
Summing up all remaining terms, including the conventional decomposition for the
pressure and the viscous terms we omitted earlier, results in the SLS TKE equation,
given as

t?τ
∂{k̂}
∂t
+
∂{k̂}{ûj}

∂ x̂j
= P̂k − ε̂k + T̂k + Ĉk + D̂k, (2.10)

with production P̂k =−{û′′i û′′j }∂{u
vD
i }/∂ x̂j, dissipation per unit volume ε̂k = 〈τ̂

′

ij∂ û′i/∂ x̂j〉,
diffusion (decomposed into viscous diffusion, turbulent transport and pressure
diffusion) T̂k = ∂(〈û′iτ̂

′

ij〉 − {û
′′

j k̂} − 〈p̂′û′j〉)/∂ x̂j, compressibility Ĉk = 〈p̂′∂ û′j/∂ x̂j〉 −

〈û′′j 〉∂〈p̂〉/∂ x̂j + 〈û′′i 〉∂〈τ̂ij〉/∂ x̂j, and terms related to the mean density gradient D̂k =

({ûj}{k̂} + {û′′j k̂})dj − 〈û′′i ∂D̂ij/∂ x̂j〉. The result is an evolution equation in which the
varying density has been absorbed into the van Driest velocity for the production
P̂k, and the semi-local Reynolds number into the dissipation ε̂k and viscous diffusion.
The TKE equation is thus essentially equivalent to its incompressible form, except
for the additional terms D̂k and Ĉk, which both can be considered to be small, as
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Density

Viscosity
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Viscosity
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Viscosity
1

2
(a) (b) (c)

0.50 0.80

0.71 0.98

0.15 0.45

1.14 2.85

1.00 1.00

0.15 0.45

GL

FIGURE 1. Contour plots of instantaneous density ρ (top) and dynamic viscosity µ
(bottom) for cases CRe?τ (a), GL (b) and LL (c).

Case ρ/ρw µ/µw Re?τw Re?τ c

CP 1 1 395 395
CRe?τ (T/Tw)

−1 (T/Tw)
−0.5 395 395

GL (T/Tw)
−1 (T/Tw)

0.7 950 137
LL 1 (T/Tw)

−1 150 943
T&L (Mb = 4) ∝ p(T/Tw)

−1 (T/Tw)
0.75 1017 203

TABLE 1. The investigated cases: CP, constant property case with Reτ = 395; CRe?τ ,
variable property case with constant Re?τ (=395) across the channel; GL, case with gas-like
property variations; LL, case with liquid-like property variations; T&L, fully compressible
turbulent channel flow with a bulk Mach number of 4 from Trettel & Larsson (2016).
The columns report the constitutive relations for density ρ and viscosity µ as a function
of temperature T . The semi-local friction Reynolds numbers at the wall and channel centre
are given by Re?τw and Re?τ c respectively.

we will see later. Since the van Driest velocity is not an independent variable (Patel
et al. 2016), this derivation suggests that the ‘leading-order effect’ on turbulence in
variable property flows can be characterized by Re?τ .

Another intriguing observation is that the TKE equation can be used in its
‘incompressible’ form to model variable property turbulent channel flows. To do
so, the velocity in the TKE production term and the viscosity in the viscous terms
have to be replaced by the van Driest transformed velocity and the semi-local
Reynolds number respectively. Both hypotheses will be tested on flow cases that will
be introduced next.

3. Turbulent channel flows with variable properties

Table 1 summarizes five turbulent channel flows. The first case, CP, corresponds
to a reference flow with constant properties at Reτ = 395. The next three cases have
been obtained by solving the low-Mach-number approximation of the Navier–Stokes
equations, whereby the flows have been volumetrically heated (constant volumetric
heat source in the energy equation) and both walls are kept at a constant temperature.
Different constitutive relations for density, ρ, and viscosity, µ, as a function of
temperature, T , were used. The case CRe?τ corresponds to a flow for which density
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FIGURE 2. Averaged profiles for density (a), viscosity (b), semi-local Reynolds number
(c), velocity (d), van Driest transformed velocity (e) and universal velocity scaling ( f ) for
the DNS cases presented in table 1.

and viscosity are decreasing away from the wall (figure 1a), such that the semi-local
Reynolds number Re?τ is constant across the whole channel height, meaning that
√
〈ρ〉/ρw = 〈µ〉/µw. Although this case has arbitrary thermophysical properties, it is

worthwhile to mention that it bears similarities to supercritical fluids, for which both
density and viscosity decrease when heated across the pseudo-critical temperature
(Nemati et al. 2016; Peeters et al. 2016). Cases GL and LL (figure 1b,c) are flows
with gas-like and liquid-like property variations that both have large gradients in
Re?τ . More details on the governing equations and the numerical scheme can be
found in Patel et al. (2015, 2016). The last case in table 1 (case T&L) is a fully
compressible turbulent channel flow with isothermal walls, a bulk Mach number of 4
and a wall-based friction Reynolds number of 1017 (Trettel & Larsson 2016).

The largest decrease of density (ρw/〈ρc〉 ≈ 8.5) is obtained for case CRe?τ , while
for cases GL and T&L the density decreases approximately by factors of 5 and
3.6 respectively (figure 2a). The profiles for viscosity are shown for the sake
of completeness in figure 2(b). However, the most important parameter for the
characterization of variable property flows is the semi-local Reynolds number shown
in figure 2(c). It can be seen that the cases GL and T&L show similar decreasing Re?τ
profiles, while Re?τ for case LL increases. The case CRe?τ has a constant Re?τ profile
by construction and collapses with the constant property case CP. The streamwise
velocity profiles are shown in figure 2(d–f ). It should be noted that, even if the
velocity 〈u〉 for case CRe?τ is considerably higher than for case CP, the van Driest
velocity transformation is capable of providing a collapse with the constant property
universal velocity profile. This is not the case for flows that have gradients in Re?τ
(GL, LL and T&L) since the viscous scales for these cases are changing. On the
other hand, the universal velocity scaling proposed by Trettel & Larsson (2016), and
later independently derived by Patel et al. (2016), provides a good collapse for all
cases (figure 2f ). It should be noted that the normalized wall-normal coordinates are
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FIGURE 3. The SLS TKE budgets, equation (4.1). (a) Cases CP (symbols) and CRe?τ
(lines), (b) case GL and (c) case LL.

y+=Reτy/h, and y?=Re?τy/h. Since in Patel et al. (2016) the universal transformation
has been derived by rescaling the Navier–Stokes equations using local mean properties
(similarly to the SLS TKE equation), the universal velocity transformation can also
be expressed in terms of the van Driest velocity and the semi-local Reynolds number,
as 〈u?〉 =

∫ uvD

0 (1+ (y/Re?τ ) dRe?τ/dy) d〈uvD
〉.

4. The SLS TKE budgets

The budget equation for the SLS TKE for fully developed turbulent channel flows
can be written as

P̂k − ε̂k + T̂k + Ĉk + D̂k = 0. (4.1)

The budgets for the cases CP, CRe?τ , GL and LL are shown in figure 3, where they
have been scaled by Re?τ . Despite the large variations in density and viscosity for
case CRe?τ , P̂k and ε̂k are overlapping with case CP (symbols in figure 3a), since for
both cases the Re?τ profiles are constant and equal. This confirms that also turbulence
production and dissipation are similar for cases with similar Re?τ profiles (Patel et al.
2015). However, the diffusion is slightly affected by strong property gradients at the
location of the production peak at y? ≈ 12. In general, however, Ĉk and D̂k are small
for cases CRe?τ and GL, and for cases CP and LL they are zero, since the density
is constant. Based on this observation, we can assume that the additional terms, D̂k

and Ĉk, have a minor effect on the evolution of the SLS TKE for the cases presented
herein. In general, it is accepted that for wall bounded flows, the compressibility term
Ck in the traditional budget equation is negligible if compared with the other terms
(Morinishi, Tamano & Nakabayashi 2004; Duan et al. 2010).

It should be noted that the key difference, if compared with the conventional
semi-local scaling of the budget terms as given in Foysi, Sarkar & Friedrich (2004),
Morinishi et al. (2004) and Duan et al. (2010), is that here we do not scale the
individual terms, but we evaluate the budget terms in the TKE equation using SLS
variables (e.g. k̂, ρ̂, µ̂, etc.). It is possible to show that for the production, both
approaches are equivalent, since Pk/(〈ρ〉u?τ

3/δ?v) = P̂k/Re?τ , with δ?v = h/Re?τ and Pk
the production term in the traditional TKE equation. However, for the other terms,
the conventional semi-local scaling approach and the one presented herein are not
equivalent. The SLS TKE equation additionally allows us to clearly distinguish effects
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related to different distributions of Re?τ from effects that are reflected in the terms Ĉk

and D̂k (in situations where these terms are larger).

5. Turbulence modelling

Most turbulence models are based on the k–ε model. However, the standard k–ε
model gives unacceptable results for the turbulent shear stress in the near-wall
region. Numerous remedies (damping functions, etc.) have been proposed, but these
corrections usually negatively affect the accuracy of the modelled TKE. A model
that preserves the accuracy of the TKE and also provides accurate results for the
turbulent shear stress is the model proposed by Durbin (1995), Lien & Kalitzin
(2001). Besides the TKE k and the dissipation ε, this model solves two additional
equations, namely a transport equation for the wall-normal velocity fluctuation, v′2,
which is an appropriate velocity scale for turbulent transport towards the wall, and
an elliptic relaxation equation that essentially models the pressure strain correlation
that appears in the evolution equation of v′2. For a fully developed turbulent flow
in a channel, the equations for k, ε, v′2 and f read (the notation of the averaging
operators is omitted for brevity)

−∂y
[
(µ+µt/σk) ∂yk

]
= Pk − ρε, (5.1)

−∂y
[
(µ+µt/σε) ∂yε

]
=

1
T
(Cε1Pk −Cε2ρε) , (5.2)

L2∂2
y2 f − f =

1
T

[
(C1 − 6)

v′2

k
−

2
3
(C1 − 1)

]
−C2

Pk

ρk
, (5.3)

−∂y
[
(µ+µt/σk) ∂yv

′2
]
= ρkf − 6ρv′2

ε

k
, (5.4)

with T = max(k/ε, 6
√
µ/(ρε)), L = 0.23 max(k3/2/ε, 70 4

√
(µ/ρ)3/ε) and the eddy

viscosity µt=Cµρv
′2T . Using the Boussinesq approximation, the turbulent shear stress

is approximated by 〈ρu′′v′′〉 =−µt∂y〈u〉 and the production can be expressed as Pk =

µt(∂yu)2. The wall boundary condition for the dissipation is εw = (µw/ρw)∂
2
y2k, while

all other quantities are set to zero. The model coefficients are Cµ = 0.22, σk = 1.0,
σε = 1.3, C1 = 1.4, C2 = 0.3, Cε1 = 1.4(1+ 0.045

√
k/v′2) and Cε2 = 1.92.

The corresponding Reynolds/Favre-averaged streamwise momentum equation, using
the Boussinesq assumption to approximate the turbulent shear stress, reads

∂y[(µ+µt)∂yu] =−ρfx. (5.5)

Since the aim of this study is to investigate the effect of variable properties on
turbulent velocity scales, we do not consider the energy equation. Instead, we directly
prescribe the averaged density and viscosity profiles from DNS. This allows us
to study how variable properties affect turbulence, without including compounding
errors that originate from modelling the wall-normal turbulent heat flux in the energy
equation, commonly approximated by the ratio of the eddy viscosity and the turbulent
Prandtl number. It should be noted that if the eddy viscosity is accurately modelled
(as we will show below) and the turbulent Prandtl number is constant and known,
the energy equation will provide accurate profiles for density and viscosity. Equations
(5.1)–(5.5) can be solved to provide approximate solutions of turbulent statistics in
variable property channel flows – if the density and viscosity profiles are provided as
an input from the DNS.
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On the other hand, instead of using the conventional compressible formulation of
the turbulence model (5.1)–(5.4), we can solve it in its SLS form. For the channel
cases investigated here, we can assume that D̂k and Ĉk can be neglected (see § 4).
Moreover, following a pragmatic approach, we assume that, analogously to the TKE
equation (2.10), the supporting model equations for ε, v′2 and f can be expressed in
their semi-local formulation as well. We additionally make use of common modelling
assumptions, e.g. µ′ � 〈µ〉, and that the molecular and turbulent diffusion can be
approximated by the gradient diffusion hypothesis. Then, the only changes that need
to be made to solve a turbulence model in its SLS form for fully developed turbulent
channel flows are to

(i) set ρ = 1,
(ii) replace µ by 1/Re?τ (assuming that µ′�〈µ〉, such that µ̂= 1+µ′/〈µ〉 ≈ 1),

(iii) replace ∂u in Pk by ∂uvD

(iv) and, if a model makes use of y+, replace it by y?.

The corresponding momentum equation can be solved in either its conventional (5.5)
or its SLS form, i.e. ∂ŷ[(1/Re?τ + µ̂t)∂ŷuvD

] =−ρfx =−1. In the latter, it can be seen
that, indeed, the only parameter that governs the turbulence model and the momentum
equation is Re?τ . If the momentum equation is solved in its conventional form, the SLS
eddy viscosity µ̂t, which is provided by the turbulence model, has to be transformed
to the conventionally scaled form by µt = 〈ρ〉hu?τ µ̂t. This relation can be obtained
using the same normalization as introduced in (2.1). Nevertheless, it can be shown
that both formulations of the momentum equation lead to equivalent results.

The results of the conventional compressible form and the SLS form are presented
in figure 4 and compared with results from the DNS. Evidently, in contrast to the
conventional formulation of the turbulence model, the SLS formulation significantly
improves the results. For example, the conventional model fails to provide reasonable
results, even for a case with constant Re?τ (case CRe?τ ), which, compared with case
CP, has quasi-similar profiles of the viscous scales (see Patel et al. 2016) and the SLS
budgets (figure 3). Moreover, for case GL and the supersonic turbulent channel flow
case T&L, the results with the SLS formulation improve considerably. In particular,
the velocity 〈u?〉 and {k̂} close to the wall (rows 1 and 3) show a very good agreement
with DNS. Since the density is constant for case LL, both approaches give equivalent
results and agree well with DNS.

6. Conclusion

In summary, we have derived an alternative form of the TKE equation for wall
bounded flows with strong near-wall density and viscosity variations, which is based
on a simple scaling transformation of the Navier–Stokes equations using semi-local
quantities. The resulting SLS evolution equation clearly indicates that the ‘leading-
order effect’ of variable properties on turbulence can distinctively be characterized
by the semi-local Reynolds number, and that higher-order effects, such as solenoidal
dissipation, pressure work, pressure diffusion and pressure dilatation, are indeed small
and that they play a minor role in modulating turbulence for the cases investigated
herein. Moreover, if a turbulence model is solved in its SLS form, instead of its
conventional compressible form, we showed that an excellent agreement with DNS
can be obtained. We anticipate that the formulation of the SLS TKE equation also has
the potential to allow for better characterizations and improved turbulence modelling
of more complex flow configurations, such as developing supersonic boundary layers,
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or strongly heated or cooled flows with fluids close to their vapour–liquid critical point.
Yet, this will have to be explored in future studies, especially for general geometries.
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Appendix A. Derivation of the SLS continuity equation

By applying the scaling transformation to the continuity equation, we may write

∂〈ρ〉ρ̂

∂t
+
∂(〈ρ〉ρ̂ u?τ ûi)

h∂ x̂i
= 〈ρ〉

∂ρ̂

∂t
+
〈ρ〉u?τ

h
∂ρ̂ûi

∂ x̂i
+
ρ̂ûi

h
∂〈ρ〉u?τ
∂ x̂i

= 0. (A 1)

With the definition of the semi-local friction velocity u?τ =
√
τw/〈ρ〉 and with the

assumption that the averaged wall shear stress τw is constant (valid for fully developed
channel flows), or that τw changes slowly in the streamwise direction, the spatial
derivative in the last term of (A 1) can be written as

∂〈ρ〉u?τ
∂ x̂i

=
√
τw
∂
√
〈ρ〉

∂ x̂i
=
√
τw
∂
√
〈ρ〉

∂〈ρ〉

∂〈ρ〉

∂ x̂i
=

1
2

√
τw
√
〈ρ〉

∂〈ρ〉

∂ x̂i
=

1
2

u?τ
∂〈ρ〉

∂ x̂i
. (A 2)

Substitution of the final expression of (A 2) into (A 1) and multiplication of the result
by h/(〈ρ〉u?τ ) gives the SLS continuity equation (2.2).

Appendix B. Derivation of the SLS momentum equation

By applying the scaling transformation to the non-conservative form of the
momentum equation, we may write

〈ρ〉u?τ ρ̂
∂ ûi

∂t
+ 〈ρ〉u?τ ρ̂ûj

∂u?τ ûi

h∂ x̂j
=−

∂〈ρ〉u?τ
2p̂

h∂ x̂i
+
∂σij

h∂ x̂j
+ 〈ρ〉ρ̂fi, (B 1)

with σij=〈µ〉µ̂/h[(∂(u?τ ûi)/∂ x̂j+ ∂(u?τ ûj)/∂ x̂i)− 2/3(∂(u?τ ûk)/∂ x̂k)δij] and fi an arbitrary
body force. Again making use of the assumption that τw is constant, it is first
convenient to express the spatial gradient of u?τ as

∂u?τ
∂ x̂i
=
√
τw
∂
√

1/〈ρ〉
∂ x̂i

=
√
τw
∂
√

1/〈ρ〉
∂〈ρ〉

∂〈ρ〉

∂ x̂i
=−

1
2

u?τ
〈ρ〉

∂〈ρ〉

∂ x̂i
=−u?τdi, (B 2)

with di = ∂x̂i〈ρ〉/(2〈ρ〉). Now, applying the product rule for the spatial derivative in
the advection term (second term in (B 1)) and using the result of (B 2), we can write

〈ρ〉u?τ ρ̂ûj
∂u?τ ûi

h∂ x̂j
=
〈ρ〉u?τ

2

h

(
ρ̂ûj

∂ ûi

∂ x̂j
− ρ̂ûiûjdj

)
. (B 3)

In a similar fashion, we may also use the product rule for the derivatives in σ̂ij and
use (B 2) to obtain

σij =
〈µ〉µ̂u?τ

h

[
∂ ûi

∂ x̂j
+
∂ ûj

∂ x̂i
−

2
3
∂ ûk

∂ x̂k
δij −

(
ûidj + ûjdi −

2
3

ûkdkδij

)]
. (B 4)
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Making use of (B 3) and (B 4), multiplying (B 1) by h/(〈ρ〉u?τ
2), and considering

that 〈ρ〉u?τ
2
= τw (such that it can be moved across derivatives), one obtains the SLS

momentum equation (2.3), where the viscous stresses (B 4) are scaled by 1/Re?τ ,
with Re?τ = 〈ρ〉u

?
τh/〈µ〉. It should be noted that the arbitrary forcing is normalized as

f̂i = fi(h/u?τ
2).
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