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Previous research shows that volatility in oil prices has tended to depress output, as
measured by nonresidential investment and GDP. This is interpreted as evidence in support
of the theory of real options in capital budgeting decisions, which predicts that uncertainty
about, for example, commodity prices will cause firms to delay production and investment.
We continue that investigation by analyzing the effect of oil price uncertainty on monthly
measures of U.S. firm production related to industries in mining, manufacturing, and
utilities. We use a more general specification, an updated sample that includes the
increased oil price volatility since 2008, and we control for other nonlinear measures of
oil prices. We find additional empirical evidence in support of the predictions of real
options theory, and our results indicate that the extreme volatility in oil prices observed in
2008 and 2009 contributed to the severity of the decline in manufacturing activity.
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1. INTRODUCTION

Elder and Serletis (2010) find that volatility in oil prices has tended to depress
some components of aggregate investment. The motivation for their analysis is
based on “real option” models, also known as investment under uncertainty. That
is, real option theory predicts that some firm expenditures—expenditures that have
uncertain future return, that are costly to reverse, and for which there is flexibility
in timing—may tend to be delayed or abandoned as uncertainty about that reward
increases. See, for example, Bernanke (1983), Brennan and Schwartz (1985), Madj
and Pindyck (1987), Brennan (1990), Gibson and Schwartz (1990), and Dixit and
Pindyck (1994).

Many firm expenditures fall in this category, in addition to capital budgeting
decisions regarding fixed investment in large manufacturing facilities, such as
investment in an automobile plant. For example, firm decisions about the level
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of production may involve nonrecoverable costs associated with the hiring and
training of labor. These decisions may also involve expenses for equipment that
does not have a well-functioning secondary market, because of, for example, the
inability to observe quality perfectly. In addition, firms might choose to lower
production, rather than completely abandon an existing investment, if abandon-
ment would make the investment unusable or obsolete in the future. For more
details, see Dixit and Pindyck (1994) and the summary in Bredin et al. (2010).
Because oil prices tend to be highly correlated with other energy prices, we might
therefore expect volatility in oil prices to dampen current production, particularly
in manufacturing-related industries, which tend to be energy-intensive.

At the micro level in the oil industry, these effects are estimated precisely by
Kellog (2010), who finds that oil drilling activity varies with uncertainty about en-
ergy prices in a manner consistent with the theory of investment under uncertainty.
It is worthwhile to note that Kellog’s data set includes very small investments in
drilling equipment (with some wells costing as little as a few thousand dollars) and
that his measure of irreversible investments includes labor and capital. In addition,
the time horizon for the drilling investments considered by Kellog is very short,
being measured in days, with well depletion beginning, on average, at about seven
months.

Interest in the potential negative effects of oil price volatility surged as oil
prices fluctuated in 2008 from $90 per barrel to more than $130 per barrel, before
dropping to $40. Consider, for example, the following headlines: “Uncertainty
Clouds Outlook for Oil Sector” (New York Times, May 18, 2009), “We Must
Address Oil-Market Volatility” (by Gordon Brown, the former prime minister of
the United Kingdom, and Nicolas Sarkozy, the president of France, in the Wall
Street Journal, July 8, 2009) and “Coping with Oil Price Volatility” (The World
Bank, August 2008). Motivated by the increased volatility in oil prices, the Chicago
Board Options Exchange recently created an index of oil price volatility derived
from options on oil futures, and started trading futures contracts on this volatility
index.

In this paper, we continue the empirical investigation of Elder and Serletis (2010)
by extending their analysis in several aspects. First, we use higher-frequency
data that are more focused on manufacturing production and the production of
durables goods. In particular, we use the index of industrial production compiled
by the Federal Reserve Board, which concentrates on production in manufacturing,
mining, and utilities. This measure of output excludes many services, and so may
tend to be more closely linked to energy prices than broader measures of output,
because they either use or produce relatively large amounts of energy. Compiled
at a monthly frequency, this index tends to be relatively responsive to current
economic conditions.

Second, we use a more fully specified four-variable model rather than a bivariate
model. The four-variable model is more general, and is less likely to suffer from
bias due to omitted variables and more likely to produce realistic estimates of
uncertainty about oil prices. The four-variable model also isolates the aggregate
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price level from nominal oil prices, reducing measurement and contamination
issues associated with combining the two variables. We should note, however, that
some authors would clearly argue that the four-variable system is not preferred in
all circumstances. Our main results, however, persist in a bivariate version of our
model.

Third, we use an updated sample that includes the extreme increase in the
volatility of oil prices associated with the recession of 2008.

Importantly, we also examine whether oil price uncertainty explains variation
in industrial production after controlling for other nonlinear variables that have
previously been shown to affect output. For example, Hamilton (2003, 2009) finds
that a measure he calls the “net oil price increase (NOPI)” captures the tendency
of output to respond to sustained increases in oil prices. Lee et al. (1995) find
that the price of oil deflated by its current standard deviation (in order to shrink
shocks that occur in periods of higher volatility) also captures this same effect.
By including these variables as regressors in our empirical analysis, we assess the
marginal predictive power of volatility in oil prices.

We find that the tendency of volatility in oil prices to suppress manufacturing
output is stronger in monthly industrial production data than in quarterly data,
that the effect is stronger for durables production, that the effect persists after
controlling for popular nonlinear measures of oil prices, and that the effect persists
in an updated sample that covers the period of extreme volatility in oil prices since
2008.

In addition to providing evidence in support of the predictions of real options
theory, our results also have a bearing on the current debate about whether the
response of output to higher oil prices is symmetric with respect to the response of
output to lower oil prices. Our results indicate that volatility in oil prices increases
when oil prices either rise or fall; and that oil price volatility tends to significantly
depress output. Therefore, oil price volatility will tend to exacerbate the decline in
production associated with higher oil prices, and dampen any immediate increase
in production associated with lower oil prices.

2. STRUCTURAL VAR WITH MULTIVARIATE GARCH-IN-MEAN

The primary empirical model is developed in Elder (2004), and is based on the
structural VAR with modifications for conditional heteroskedasticity in the para-
metric form of multivariate GARCH-in-Mean. This section reviews the empirical
model briefly, as more details are available in Elder (2004) and Elder and Serletis
(2010). The basic assumption is that the structural system can be represented as

Bzt = C + Γ1zt−1 + Γ2zt−2 + · · · + Γpzt−p + Λ
√

H t + et , (1)

where dim(B) = dim(Γi ) = dim(Λ) = (n × n), et | �t−1 ∼ i.i.d. N(0, H t ),
0 is the null vector, and �t−1 denotes the information set at time t − 1, which
includes variables dated t − 1 and earlier. This specification allows the matrix of
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conditional standard deviations, denoted
√

H t , to affect the conditional mean, so
we test whether oil price volatility affects real economic activity by examining the
appropriate element of Λ.

Elder (2004) suggests imposing the common identifying assumption that the
structural disturbances are contemporaneously (and conditionally) uncorrelated,
which implies that the conditional variance matrix H t is then diagonal. In a
dynamic setting, the assumption that the errors are conditionally uncorrelated
is stronger than necessary, but the result is a considerable simplification in the
multivariate variance function, because the conditional covariances do not need to
be modeled. Of course, the reduced form errors will, in general, be correlated, but
we can avoid modeling these correlations by estimating the structural parameters
of the model directly. Following this reasoning, the multivariate GARCH variance
function is simply

ht = diag (H t ) = Cv +
J∑

j=1

F j diag
(
et−je

′
t−j

) +
I∑

i=1

Gidiag (H t−i ), (2)

where diag is the operator that extracts the diagonal from a square matrix. We also
have the baseline assumption that the conditional variance of zi,t depends only
on its own past squared errors and its own past conditional variances, so that the
parameter matrices F j and Gi are also diagonal. The MGARCH-M VAR model
can be estimated by full information maximum likelihood (FIML).

Kilian and Vigfusson (2011) note concern that the underlying GARCH model
utilized by Elder and Serletis (2010), and consequently in this paper, may not be
the most appropriate measure of uncertainty about oil prices. There are, of course,
many possible measures of uncertainty about impending oil prices, but one might
think a very reasonable alternative would be a statistical measure of the dispersion
in the conditional forecast of next period’s oil price, generated by a model that
provides a good statistical fit to the data. That, of course, describes precisely the
metric we use.

A related issue noted by Kilian and Vigfusson (2011) is that this measure of
uncertainty about the price of oil may not capture the long-run uncertainty in oil
prices that might be most relevant for large investment decisions. This may or may
not be true, because the quantity of interest is not directly observable, but it might
well be the case that if markets are highly uncertain about next month’s realization
of oil prices, then they may also be highly uncertain about oil prices two years
hence.

Kilian and Vigfusson also commit a reductive fallacy by asserting that irre-
versible investment decisions apply only to large-scale fixed investment, such as
automobile plants. Dixit and Pindyck (1994) are quite clear that many irreversible
investment decisions occur with much shorter time horizons, such as the hiring
and training of workers, as summarized previously. The study by Kellog (2010),
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mentioned previously, highlights the varied nature and short horizon of many such
investments.

3. SPECIFICATION

The model we estimate is a very general four-variable simultaneous equations
system that is generally consistent with, for example, Bernanke et al. (1997), Elder
(2004), Hamilton and Herrera (2004), and many others. Our four-variable VAR
uses monthly observations of inflation, the growth rate of industrial production, the
growth rate of nominal oil prices, and a short-term nominal interest rate, and is very
similar to that of Bredin et al. (2010). Our price series is the personal consumption
expenditures (PCE) price index, excluding food and energy. Excluding food and
energy ensures that the role of energy prices will be attributed to our oil price
variable.

Production is measured by the index of industrial production compiled by the
Federal Reserve Board, which captures the output in energy-intensive sectors such
as mining, manufacturing, and gas and electric utilities. Manufacturing output, in
particular, includes the industries specified by the North American Industry Classi-
fication System, plus the logging and publishing industries. Kilian and Vigfusson
(2011) express concern that the measures of output used by Elder and Serletis
(2010) are not weighted by the share of energy in value added. Although we have
not estimated our model with such measures of output, we do not believe this
issue to be material. As noted by Kilian (2008, p. 875), “while not trivial, the
observed fluctuations in the energy share in value added are largely immaterial for
estimates of energy price shocks, because the share does not fluctuate enough on a
quarter-to-quarter basis. Weighted and unweighted quarterly energy price changes
have a correlation of 99 percent.”

The price of oil is measured by the spot West Texas Intermediate (WTI) crude
oil price at Chicago. We use the nominal price of oil in our model, rather than the
real price of oil, to better segregate uncertainty about oil prices from the aggregate
price level. We understand that there is not universal agreement on whether the
nominal price of oil or the real price of oil is more appropriate. Although this
issue is not important for our primary empirical results, we use the nominal price
of oil rather than the real price of oil, because the real price of oil introduces
an additional component of measurement error into our estimated measure of oil
price uncertainty, which would then capture uncertainty about both nominal oil
prices and whichever measure of aggregate inflation we use. See also Hamilton
(2008) regarding this issue.

The short-term interest rate is the federal funds rate. Inclusion of the federal
funds rate facilitates identifying the effects of oil shocks, as it controls for the
endogenous response of monetary policy, which Bernanke et al. (1997) have
argued to be empirically important. We should also note that the inclusion of
the federal funds rate is not central to our primary results, which also hold in a
bivariate version of the model.
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TABLE 1. Data description

Series Transformation Description

Infl 100 × ln(PCEt/PCEt−1) Personal conumption
expenditures (PCE) price
index, less food and energy,
seasonally adjusted

Production 100 × ln(IPt/IPt−1) Industrial production index,
seasonally adjusted

Durables 100 × ln(IPDURt/IPDURt−1) Industrial production — durables
manufacturing, seasonally
adjusted

Oil 100 × ln(Pt/Pt−1) West Texas Intermediate crude
oil price

Funds None Daily average of fed funds rate,
not seasonally adjusted

NOPI 12 max

[
0, ln

(
Pt

max (Pt−1, · · ·, Pt−12)

)]
Net oil price increase over one

year, as defined by Hamilton
(2003)

NOPI 36 max

[
0, ln

(
Pt

max (Pt−1, · · ·, Pt−36)

)]
Net oil price increase over three

year, as defined by Hamilton
(2003)

Oilnorm Oilnorm = Oil(t) − Inf l(t)√
Ĥ3,3(t)

Volatility adjusted real oil price,
as defined by Hamilton (2003)

Oilnorm+ max (Oilnorm, 0) Volatility adjusted real oil price,
positive values only, as defined
by Hamilton (2003)

Table 1 provides a description of the data. Our sample begins in 1979:1, when
oil prices began to exhibit increased volatility. Prior to 1979, oil prices remained
unchanged for considerable periods and then adjusted rapidly. Our starting date is
roughly consistent with the dates of structural change utilized by Hamilton (2008).
We terminate our sample in 2009:12, which includes the most recent recession
and the episode of greatest volatility in oil prices.

As noted by Elder (2004), the proper approach to estimating the multivariate
GARCH-in-Mean VAR is to difference the variables that are integrated. Therefore,
in our model, we use the first difference of the log of the PCE price index, denoted
by Infl, the first difference of the logged oil price, denoted by Oil, and the first
difference of the log of the industrial production index, denoted by Production.
The mnemonic for the federal funds rate is Funds.

Identification of the underlying structural parameters in equations (1) and (2)
is achieved with exclusion restrictions on B and the assumption that the struc-
tural disturbances are conditionally uncorrelated. The exclusion restrictions are
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generally consistent with economic priors. In particular, we assume that Oil shocks
and Funds shocks affect output and inflation with a lag. Oil and Funds are derived
from prices in unregulated markets, so it is natural to put them at the bottom of
the ordering. In particular, Oil is an unregulated commodity price with a deep
and active futures market that adjusts rapidly to new information. We therefore
allow Oil to respond to contemporaneous innovations in both Infl and Production.
We allow Funds to respond to contemporaneous innovations in Infl, Production,
and Oil. With one remaining free parameter, we allow Production to respond to
contemporaneous innovations in Infl. These identifying restrictions imply that B
is lower triangular with the ordering Infl, Production, Oil, and Funds, although
triangularity of B is not required by our estimation scheme or computer programs.
We should also note that our results tend not to be affected by the choice of order-
ing, such as putting Production prior to Infl; the motivation for putting Infl prior
to Production is based on the proposition that aggregate prices are “sticky,” or
somehow slow to respond to current macroeconomic conditions.

Uncertainty about oil prices is measured by the conditional standard deviation
of Oil, which is

√
H3,3(t) in this model. As noted by Elder (2004), this is the

standard deviation of the one–period ahead forecast error, in this case for Oil,
conditional on the contemporaneous information set. That is, var(et | �t−1) =
H3,3(t). It is therefore a statistical measure of how uncertain markets are about the
impending realization of Oil. Because we are interested in measuring the effect of
Oil uncertainty on Production, we allow Oil uncertainty to enter the Production
equation, and estimate the appropriate element of Λ (that is, �2,3) in equation (1).

Relative to the bivariate model in Elder and Serletis (2010), this four-variable
model has several important advantages. First, the four-variable model has fewer
parametric restrictions, and is therefore less likely to suffer from omitted variable
bias. Second, the four-variable model conditions on more information, and so our
measure of oil price uncertainty is likely to be more realistic. Third, by including
separate variables for the nominal price of oil and the aggregate price level,
we isolate the effects of oil prices from those of aggregate prices, diminishing
measurement and contamination issues that might be associated with using the
real price of oil.

Consistent with Elder and Serletis (2010), we include a full year of lags, given
the arguments advanced by Hamilton and Herrera (2004) and Edelstein and Kilian
(2007). These authors stress that the primary effect of oil prices on real output
occurs at or before one year, and so emphasize the importance of including at least
one year of lags.

4. EMPIRICAL RESULTS

The system we estimate is therefore a 12-lag multivariate GARCH-in-Mean VAR
with monthly observations on Infl, Production, Oil, and Funds over a usable
sample of 1980:1–2009:12. Table 2 reports the point estimates for the multivariate
GARCH variance function parameters. There are strong GARCH effects in both
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TABLE 2. Estimates of variance function of the multivariate GARCH-In-
Mean VAR, equations (1)–(2)

Equation Conditional variance Constant e2
i (t − 1) Hi,i (t − 1)

Infl H1,1(t) 0.001∗ 0.484∗ 0.232
(3.411) (3.08) (1.42)

Production H2,2(t) 0.002∗ 0.861∗ 0.000
(14.68) (6.60) (0.00)

Oil H3,3(t) 0.037 0.369∗ 0.613∗

(1.89) (6.65) (11.06)

Funds H4,4(t) 0.004∗ 0.685∗ 0.310∗

(4.07) (8.17) (3.76)

Notes: These are the parameter estimates for the free elements in F and G from the model given by equations
(1) and (2) with et ∼ N(0, H t ). Each row in the table represents an equation from the associated multivariate
GARCH-in-Mean VAR. Asymptotic t-statistics are in parentheses. A coefficient of 0.000 indicates that the
nonnegativity constraint is binding.
∗Significance at the 5% level.

Oil and Funds, with the coefficients on the lagged squared errors and the lagged
conditional variances both being highly significant, and the volatility processes
being very persistent. There is also evidence of ARCH in Production and Infl over
this sample period.

The effect of the conditional volatility in Oil on Production is reported in
Table 3 as model (1). In model (1), the point estimate on this coefficient is
−0.015, with an asymptotic t-statistic of 3.48. Our model therefore indicates that
after controlling for the effects of lagged output, the price level, oil prices, and the
short-term interest rate, the conditional volatility of oil prices has tended to cause
industry production to decline. This result is stronger than the comparable result
in a similar model with quarterly GDP data reported in Elder and Serletis (2010).
This should not be surprising, given that the real GDP data include sectors of the

TABLE 3. Coefficient estimates for oil uncertainty in the output equation of
model (1)–(2)

Coefficient on
Model Variables Sample

√
H3,3(t)

(1) MGARCH-M VAR {Infl, Production, 1980:1–2009:12 −0.015∗∗

Oil, Funds} (3.48)

(2) MGARCH-M VAR {Infl, Durables, 1980:1–2009:12 −0.026∗

Oil, Funds} (2.52)

Notes: These are estimates for the free element in from the model given by equations (1) and (2) with et | �t−1 ∼
iid N(0, H t ).

√
H3,3(t) denotes the conditional standard deviation of Oil. Absolute asymptotic t-statistics are in

parentheses.
∗Significance at the 5% level.
∗∗Significance at the 1% level.

https://doi.org/10.1017/S1365100511000630 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000630


AN INVESTIGATION OF REAL OPTIONS 387

economy, such as service sectors, that are not likely to be very sensitive to oil
prices, whereas our production data derive primarily from energy-intensive areas.

The first three panels of Figure 1 plot industrial production (the year-over-year
growth rate is shown), oil prices, and the conditional standard deviation of Oil over
the 1980:1–2009:12 sample, with NBER recessions shaded. These plots are similar
to those of Elder and Serletis (2010), but the additional granularity provided by the
higher-frequency data is informative, as is the extended sample. For example, in
monthly data, the increase in oil price volatility in 1980 and 1982 is more clear, as
well as the general pattern of oil price volatility being high when oil prices make
large moves either up or down. As in Elder and Serletis (2010), the spike in oil
price volatility during the mid-1980s is evident, as is the elevated volatility in oil
prices, but without spikes, from 2002 to 2005, as oil prices rose steadily. Because
increases in oil price volatility tend to cause production to decline, these results
provide at least a partial explanation for why manufacturing activity did not surge
during the mid-1980s as oil prices collapsed, and why the slow but steady rises
in oil prices since 2002 were less disruptive than the rapid price increase during,
for example, the 1990 recession. For other, more detailed, interpretations of this
period, see Hamilton (2009).

During the recession of 2008, manufacturing production and oil prices both
collapsed. Without doubt, the collapse in oil prices during 2008 was partially due
to a decline in the demand for oil. Our model should capture this effect to the extent
that it is captured by the relationship between oil prices and current and lagged
manufacturing activity. Our estimates suggest that, after accounting for the decline
in the demand for oil, the surge in the conditional volatility of oil prices further
contributed to the decline in manufacturing activity. This at least lends credence
to the popular view among policymakers at that time that oil price volatility had
significant and substantial effects on the real economy. See, for example, “We
Must Address Oil-Market Volatility,” by Gordon Brown and Nicolas Sarkozy
(Wall Street Journal, July 8, 2009).

Next, we investigate the robustness of our results by using an alternative measure
of the level of economic activity. In particular, the theory suggests that uncertainty
about oil prices should affect production, investment, and consumption decisions
that are either irreversible or costly to reverse. We should therefore expect un-
certainty about oil prices to have a more pronounced effect on the production of
relatively illiquid durable goods than on a broader index of manufacturing output.
In Table 3 under model (2), we report the results from reestimating our model with
an index of the production of durable goods as the measure of output. Durables
manufacturing is a component of the industrial production index, representing
more than 40% of total manufacturing, mining, and utility output (as of 2003).
This index of durables manufacturing includes transportation equipment (e.g.,
automobiles, aircraft, and related parts, representing 11% of the total index),
computers and electronics (representing about 8%), machinery (e.g., construction
equipment representing about 6%), and fabricated metal products (e.g., tools,
representing about 6%).
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TABLE 4. Coefficient estimates for oil uncertainty in the output equation of model
(3)

Exclusion test
on NOPI

Coefficient and Oilnorm

Model Variables Sample on
√

Ĥ3,3(t) (p-value)

(1) VAR {Infl, Production, 1980:1–2009:12 −0.043∗∗ N/A

Oil, Funds} (3.92)

(2) VAR {Infl, Production, 1980:1–2009:12 −0.046∗∗ 0.05
Oil, NOPI 12, Funds} (3.03)

(3) VAR {Infl, Production, 1980:1–2009:12 −0.031∗ 0.01
Oil, NOPI 36, Funds} (2.52)

(4) VAR {Infl, Production, 1980:1–2009:12 −0.036∗∗ 0.33
Oil, Oilnorm, Funds} (3.18)

(5) VAR {Infl, Production, 1980:1–2009:12 −0.034∗∗ 0.15
Oil, Oilnorm+, Funds} (2.69)

(6) VAR {Infl, Production, 1988:1–2009:12 −0.045∗∗ N/A

Oil, Funds} (2.85)

(7) VAR {Infl, Durables, 1980:1–2009:12 −0.390∗ 0.28
Oil, NOPI 36, Funds} (2.45)

(8) VAR {Infl, Durables, 1980:1–2009:12 −0.468∗∗ 0.05
Oil, Oilnorm, Funds} (3.30)

(9) VAR {Infl, Durables, 1980:1–2009:12 −0.419∗∗ 0.18
Oil, Oilnorm+, Funds} (2.63)

(10) VAR {Infl, Production, 1980:1–2009:12 −0.023∗∗ N/A

Oil, Funds} (excluding outliers) (3.55)

Notes: These models are estimated as a standard VAR with contemporaneous Oil volatility,
√

Ĥ3,3(t) generated
from model (1) in Table 3, included in the conditional mean equation. The last column reports p-values for exclusion
tests of the nonlinear transformation of the price of oil. Absolute asymptotic t-statistics are in parentheses.
∗Significance at the 5% level.
∗∗Significance at the 1% level.

With the manufacture of durables as the measure of output, the point estimate for
the effect of Oil uncertainty on durables manufacturing is negative and significant
at the 5% level [reported as model (2) in Table 3]. This coefficient is greater
in magnitude, which may be because of the volatility characteristics of durables
manufacturing, or may suggest a more pronounced effect of uncertainty about oil
prices through the manufacture of durable goods.

We further investigate the robustness of our results by estimating different
specifications over different sample periods, with more concentrated measures of
production and various nonlinear transformations of the price of oil. The results
from these specifications are reported in Table 4.

Hamilton (2003, 2011) suggests that realized oil prices, corresponding with
their increased volatility since the late 1970s, are not the appropriate metric for
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capturing the effect of rising oil prices on real economic activity. In particular, he
shows that the effect of oil prices is nonlinear, with sustained increases in oil prices
having very different effects than transitory increases or sustained decreases in oil
prices. Hamilton (2003) and Lee et al. (1995) suggest several alternative measures
of oil prices that differentiate between transitory and sustained increases in oil
prices. In particular, Hamilton (2003) considers measuring the effect of sustained
increases in oil prices by the amount by which oil prices exceed their peak value
over the previous 12 or 36 months, referring to this metric as the net oil price
increase, which we denote by the mnemonics NOPI 12 and NOPI 36. NOPI 36
for our sample is plotted in the fourth panel of Figure 1.

Lee et al. (1995) suggest a different metric, based on the rate of change in
real oil prices standardized by the conditional standard deviation of oil prices.
They motivate this measure by arguing that a given change in oil prices should
have a smaller effect when the price change is believed to be transitory. Hamilton
(2003) finds empirical support for a similarly defined variable, which is based on
a variable we denote Oilnorm. In our notation, Oilnorm can be represented as

Oilnorm = Oil(t) − Inf l(t)√
Ĥ3,3(t)

.

This measure is comparable to that defined by Hamilton (2003 p. 379), but is a
modification of the metric calculated by Lee et al. (1995). These authors also use
a transformation of this variable, replacing negative values by 0. We denote this
transformation by Oilnorm+, and plot it in the fifth panel of Figure 1.

In order to assess whether our measure of oil price uncertainty affects Production
when controlling for these alternative measures of oil prices, we estimate VARs
with the following variables: Infl, Production, Oil, the alternative measure of oil

prices, and Funds. We then include our measure of Oil uncertainty,
√

Ĥ3,3(t),
generated from the multivariate GARCH-in-Mean VAR, equations (1) and (2), as
a right hand–side variable. This VAR can be represented as

Bzt = C +Γ1zt−1 +Γ2zt−2 +· · ·+Γpzt−p + D(L)xt +Λ
√

Ĥ3,3(t)+et , (3)

where et ∼ N(0, Φ) and xt is the additional regressor, in turn (12 lags of)
NOPI 12, NOPI 36, Oilnorm, and Oilnorm+. We adopt this approach because
attempting to estimate all the parameters simultaneously is either not possible or
very complex. The method is comparable to that of Hamilton [2003, equations
(3.2) and (3.3)] and Lee et al. (1995).

As a baseline, we first report the coefficient estimate and asymptotic t-statistic
on oil price uncertainty when it is included as a generated regressor in our baseline
VAR. The model is comparable to model (1) in Table 3, except that oil price
uncertainty is included as a generated regressor. This is reported as model (1) in
Table 4, and the coefficient is again negative and significant. We also estimated
this model using the Chicago Fed National Activity Index (CFNAI) in order to
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shed some light on the transmission channel of oil prices, as the CFNAI includes,
in addition to industrial production, other economic activity indicators such as
consumption and housing that are likely to be affected by increased uncertainty.
The resulting coefficient estimate is −0.262, with an absolute t-statistic of 2.98.
Although we cannot directly compare the magnitude of this coefficient to that of
the coefficient when Production is used, because of the construction of the index,
the coefficient is still negative and statistically significant.

The effects of Oil uncertainty on Production, controlling for each of NOPI 12,
NOPI 36, Oilnorm, and Oilnorm+ are reported in Table 4 as models (2) through
(5). In each case, the effect of Oil uncertainty is similar in magnitude to that in the
original model and is statistically significant, with the smallest (absolute) t-statistic
equal to 2.52 for the model with NOPI 36. These results reinforce our finding that
the effect of oil price uncertainty is in addition to any effects associated solely with
changes in the level of oil prices, as captured by these nonlinear transformations.

Elder and Serletis (2010) test whether oil price uncertainty affects output in more
recent samples, post 1986, recognizing Edelstein and Kilian’s (2007) suggestion
that apparent asymmetries in the response of output to oil prices may be due to the
Tax Reform Act of 1986. We also conduct that test here, by modifying the sample
in our VAR to 1988:1–2009:12. The result is reported as model (6) in Table 4.
Again, the effect of oil price volatility is negative and highly significant.

In models (7)–(9) in Table 4, we repeat these calculations with the production of
durables as our measure of output. The results are comparable, with the coefficient
on oil price volatility negative, larger in magnitude, and highly significant.

Finally, given the extreme variation in the volatility of oil prices, it is worth-
while to examine whether our results are sensitive to a small number of extreme
observations. To investigate this issue, we estimate the VAR given by equation (3),
except that we exclude observations for which the residual in the output equation
is greater than one standard deviation. This drops the number of observations from
360 to 280. The parameter coefficient is reported in Table 4 as model (10). Again,
we find support for our finding that oil price volatility has had a negative and
significant effect on output. Similar results are obtained if residuals larger than
two, three, or four standard deviations are dropped.

5. IMPULSE–RESPONSE ANALYSIS

We next conduct impulse–response analysis for our multivariate GARCH-in-Mean
VAR. The method we use is described in Elder (2003, 2004). The procedure is
relatively straightforward, even though the impulse–response functions are non-
linear. As noted by Elder (2003), the impulse–response function consists of two
components—the effect of the shock on the conditional mean vector (analogous
to that of a standard linear VAR) and the effect of the shock on the conditional
volatility, which affects the conditional mean as detailed in equation (1). Gallant
et al. (1993) show that the linear–quadratic structure of GARCH models causes the
latter component to behave possibly less surprisingly than impulse responses of
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other nonlinear models, so that the persistence of this component is characterized in
the multivariate case by the terms derived in Elder (2003). In our parameterization,
the magnitude of the response of volatility also scales proportionally with the size
of the shock.

We simulate two responses of the growth rate of industrial production to an oil
shock, and report these in Figure 2. Kilian and Vigfusson (2011) express concern
about the size of the shock that Elder and Serletis (2010) use to simulate their
impulse responses. In particular, Elder and Serletis (2010) use the unconditional
standard deviation of the change in the price of oil rather than the unconditional
standard deviation of the residual. In practice, this is a distinction without a
difference, as the ratio of the latter to the former is about 0.99.

The dashed line reports the response of industrial production to an oil shock,
in which the uncertainty effect is ignored. This is comparable to the impulse–
response function for a standard VAR and is calculated by constraining Λ = 0 in
equation (1). This impulse–response function indicates that a (unconditional) one–
standard deviation increase in oil prices causes industrial production to fall, with
the response most severe between four and seven months after the shock. Next, we
simulate the effect of an increase in oil prices on industrial production, allowing
for the channel through which oil price volatility affects industrial production.
This is plotted as the solid line in Figure 2. Clearly, once the effect of oil price
volatility is considered, the decline in industrial production in response to higher
oil prices is decidedly more negative. In the “real options” view, the decline in
production is more precipitous, because of the firm’s increased uncertainty about
the future path of oil prices.

6. CONCLUSION

Real options analysis predicts that uncertainty about the return to a project will
induce firms to delay production and investment. Our empirical results are consis-
tent with this prediction, with uncertainty about oil prices having a significantly
negative effect on industrial production, after controlling for lagged oil prices,
lagged output, lagged inflation, and lagged interest rates. The most pronounced
effect of uncertainty about oil prices appears to be through the manufacture of
durable goods, including automobiles and other transportation equipment. Our re-
sult is robust to alternative specifications, controlling for other nonlinear measures
of oil prices, and various sample periods.

Our results suggest that the attention devoted by policy makers and the popular
press to the extreme increase in the volatility of oil prices during the recession of
2008 was not unwarranted. The volatility in oil prices during this time period likely
contributed to both the depth and severity of the decline in manufacturing activity,
as well as the failure of manufacturing activity to rebound more immediately as
oil prices fell.

Kilian and Vigfusson (2011) raise concerns that the models of Elder and
Serletis (2010), and consequently the ones in this paper, do not fit all the features
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FIGURE 2. Response of industrial production to oil shock with (solid) and without (dashed) uncertainty effect.
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of the data, and have some anomalous results, depending on the particular sample
period and data analyzed. We acknowledge that we have not identified the single
valid macroeconomic model that governs the relationship between oil prices and
real economic activity. But nobody else has either, and we believe that macroe-
conomists will continue to develop, estimate, and refine stylistic models that fit
salient features of the data. One test of whether such models are useful, however,
is whether they describe important features of the data out of sample. This paper
verifies this, by showing that the relationship identified by Elder and Serletis (2010)
continues to capture a negative relation between oil price uncertainty and output
growth after the most recent recession, which was preceded by an unprecedented
spike in oil price uncertainty.
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