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Abstract

The signature of a coherent system has been studied extensively in the recent literature.
Signatures are particularly useful in the comparison of coherent or mixed systems under
a variety of stochastic orderings. Also, certain signature-based closure and preservation
theorems have been established. For example, it is now well known that certain stochastic
orderings are preserved from signatures to system lifetimes when components have
independent and identical distributions. This applies to the likelihood ratio order, the
hazard rate order, and the stochastic order. The point of departure of the present
paper is the question of whether or not a similar preservation result will hold for the
mean residual life order. A counterexample is provided which shows that the answer
is negative. Classes of distributions for the component lifetimes for which the latter
implication holds are then derived. Connections to the theory of order statistics are also
considered.
Keywords: Coherent system; mixed system; signature; stochastic ordering; mean residual
life order; decreasing failure rate; order statistics; spacings
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1. Introduction

Consider a coherent system with n binary components as studied, e.g. in the monograph by
Barlow and Proschan [3]. Suppose that the component lifetimes X1, . . . , Xn are independent
and identically distributed (i.i.d.) with cumulative distribution function F. Let X1:n ≤ X2:n
≤ · · · ≤ Xn:n be their ordered values, and let T be the lifetime of the system. Samaniego
[24] introduced the signature, s = (s1, . . . , sn), of the system which, when F is continuous,
is given as

si = P(T = Xi:n) for i = 1, . . . , n. (1)

A key property of system signatures is that s depends only on the system structure and does
not depend on the distribution F of component lifetimes. Moreover (see [25, Theorem 3.1]),
the survival function of the lifetime T of the system can be represented as a function of s and
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F as follows:

P(T > t) =
n∑

i=1

siP(Xi:n > t) =
n∑

i=1

si

i−1∑
k=0

(
n

k

)
(F(t))k(F̄(t))n−k. (2)

By changing the order of summation and changing the summation variable k to j = n − k in
(2), we may write

P(T > t) =
n∑

j=1

( n∑
i=n−j+1

si

)(
n

j

)
F̄(t) jF(t)n−j =

n∑
j=1

aj

(
n

j

)
F̄(t) jF(t)n−j, (3)

where

aj =
n∑

i=n−j+1

si for j = 1, . . . , n. (4)

As shown in [5],

aj = # path sets of size j(n
j

) .

It follows that the aj can be interpreted as the probability that the system functions when j
components function. Hence, in particular, we have an = 1. Coolen and Coolen-Maturi [7]
introduced the term survival signature for the vector a = (a1, . . . , an). Note that there is a 1–1
correspondence between the signature vector and the vector defining the survival signature.
As will become clear, representation (3) for the survival function of a system lifetime will
be fundamental in the approach of the present paper. Note that (2) and (3) are valid for both
discrete and continuous distributions F. In the discrete case we will no longer have (1), but, as
noted by Kochar et al. [15], we may write

sk = # of orderings of components for which the kth failure causes system failure

n!
.

The considerations so far are restricted to coherent systems. It is, however, useful to extend
the class of systems to include so-called mixed systems; see [25, pp. 28–31]. In the following,
we shall refer to a system with n components as an n-system. A mixed n-system is a stochastic
mixture of a number of coherent n-systems. It is easily verified that results (2) and (3) continue
to hold for mixed systems; see [25, p. 30]. Note that any probability vector s = (s1, . . . , sn) can
serve as the signature of a mixed system. One possible representation of such a mixed system
is the one which gives weight si to an i-out-of-n system for i = 1, . . . , n.

Samaniego [25, Chapters 4 and 5] demonstrated the utility of signatures in various reliability
contexts. For example, signatures have been shown to be useful in establishing certain closure
and preservation theorems in reliability, and they can play a useful role in the comparison
of coherent or mixed systems. One example of the former is the IFR closure problem
that was first considered by Samaniego [24]. Samaniego [25] also presented a collection
of preservation theorems, showing that certain types of orderings of signatures imply like
orderings of the corresponding system lifetime distributions. Since the calculation of the
lifetime distributions of complex systems is often challenging, the utility of comparing
the much simpler indices for system designs in the form of signature vectors should be
evident. To be more specific, Samaniego [25, Chapter 4] presented preservation results of this
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kind for stochastic comparisons with respect to likelihood ratio, hazard rate, and stochastic
ordering. For example, the preservation result for stochastic ordering states that if a system
has a signature s which is stochastically smaller than the signature t of another system, the
former system will have a stochastically smaller lifetime, whatever the distribution F of
the component lifetimes. Samaniego [25] showed that similar results hold for the other two
orderings mentioned above.

The point of departure of the present paper is the question of whether or not a similar
preservation result will hold for the mean residual life order, i.e. whether system lifetimes will
be ordered with respect to the mean residual life order if this ordering holds for the system
signatures. As we shall see, the answer to this question is negative. A simple counterexample,
essentially involving easy hand calculations, is given in Section 2. The example shows that
there are indeed systems with signatures which are ordered according to the mean residual life
order, but where the system lifetimes are not similarly ordered for some specific component
distribution. Sections 3 and 4 are devoted to the description of nested classes of component
distributions, depending on the system size n, for which the preservation of the mean residual
life order takes place. For example, one finds that any decreasing failure rate distribution is
contained in each of these classes. Further, it is shown that these classes can be characterized
by properties of spacings of order statistics.

The importance of the mean residual life order as a way of comparing components’ or
systems’ performance has been highlighted in the recent reliability literature. It is well known
that the hazard rate order implies the mean residual life order, but as illustrated by Belzunce
et al. [4], in practical applications it is often seen that the hazard rate order does not hold, while
the mean residual life order does obtain. They demonstrated this by considering Weibull dis-
tributions with different shape parameters, as well as by an empirical study of daily return data
from two Spanish companies, an electric utility company and a banking company. In a recent
paper, Navarro and Gomis [21] obtained comparison results for the performance of coherent
systems with respect to the mean residual life order, while Mirjalili et al. [18] considered the
mean residual life of a coherent system with a cold standby component. Ghitany et al. [11]
treated an application to finance which shows how the mean residual life function is used in
risk measurements appropriate for the evaluation of market risk or credit risk of a portfolio.

This paper is organized as follows. In Section 2 we define the different orders to be
considered in the paper, with emphasis on the mean residual life order. In addition, the
definitions of the orders in terms of signature vectors are given. Finally, a necessary and
sufficient condition for the mean residual life ordering of system lifetimes is given, together
with an example where two systems have signatures that are ordered with respect to the mean
residual life order, while the system lifetimes are not. In Section 3 we study the classes of
component lifetime distributions F for which the mean residual life ordering is preserved. In
particular, the sufficiency of their defining property is proved. In Section 4 we examine the
case where the distributions F are absolutely continuous and in Section 5 we consider the
connection between our results on the mean residual life ordering of system lifetimes and
the theory of order statistics. In Sections 6 and 7 we provide additional examples and some
concluding remarks.

2. Ordering of lifetimes and signatures: a counterexample

The likelihood ratio order, the hazard rate order, and the stochastic order are the most studied
orderings among random variables. Of these, the two last mentioned will be the most relevant
in the present paper. Their definitions, given below, apply both for discrete and continuous
pairs of random variables (X, Y).
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Note that we will use increasing to mean nondecreasing and decreasing to mean nonin-
creasing. In the paper, we will also let a/0 = ∞ for a > 0, while 0/0 is indeterminate, but,
when occurring, will correspond to cases without relevance.

Definition 1. Let X and Y be nonnegative random variables with corresponding survival
functions F̄ and Ḡ. Then X is smaller than Y in the stochastic order, denoted by X ≤st Y , if
and only if F̄(x) ≤ Ḡ(x) for all x; in the hazard rate order, denoted by X ≤hr Y , if and only if
Ḡ(x)/F̄(x) is increasing in x.

In the present paper, our main concern is with a different order, the mean residual life order;
see [27, Chapter 2.A]. Recall that if X is a positive random variable with a survival function F̄
and a finite mean, then the mean residual life function of X at t ≥ 0 is defined as

m(t) =E(X − t | X > t) for t ≥ 0. (5)

The definition of the mean residual life ordering of two random variables is given below.

Definition 2. Let X and Y be nonnegative random variables with corresponding survival
functions F̄ and Ḡ, and corresponding mean residual life functions m(t) and l(t). Then X is
smaller than Y in the mean residual life order, denoted by X ≤mrl Y , if and only if

m(t) ≤ l(t) for all t > 0,

or, equivalently, X ≤mrl Y if and only if∫ ∞
t Ḡ(u) du∫ ∞
t F̄(u) du

is increasing in t > 0.

It is well known ([27, Chapters 1, 2]) that

X ≤hr Y �⇒ X ≤st Y and X ≤hr Y �⇒ X ≤mrl Y . (6)

However, neither of the orders ‘≤st’ and ‘≤mrl’ implies the other.
Let s and t be the signature vectors of two systems. Following common notation, we

shall let s ≤order t in a specific order (st, hr, or mrl) mean that the corresponding discrete
random variables are ordered in this way. Although Definitions 1 and 2 cover both discrete
and continuous distributions, we find it convenient to have separate definitions for orderings
of signature vectors, which will be given in terms of properties of the corresponding survival
signatures.

Definition 3. Let s and t be signature vectors for two n-systems with corresponding survival
signatures given respectively by a and b as defined in (4). Then s is smaller than t in the

• stochastic order, s ≤st t, if and only if bi/ai ≥ 1 for all i,

• hazard rate order, s ≤hr t, if and only if bi/ai is decreasing in i,

• mean residual life order, s ≤mrl t, if and only if
(∑k

i=1 bi
)
/
(∑k

i=1 ai
)

is decreasing in k.

Theorems 4.3 and 4.4 of [25] state that if s and t are the signatures of two mixed n-systems
having components with i.i.d. lifetimes and common distribution F, and if S and T are the
respective system lifetimes, then we have

s ≤st t �⇒ S ≤st T, (7)

s ≤hr t �⇒ S ≤hr T . (8)
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The present paper is concerned with the question of whether, or possibly under what
conditions, the following implication can be added to those in (7) and (8) above:

s ≤mrl t �⇒ S ≤mrl T . (9)

Throughout the paper, the component lifetime distributions F are assumed to have support
in [0, ∞) and to have finite expectation. Letting F denote cumulative distribution functions,
we let F̄ = 1 − F be the corresponding survival function. We have also found it convenient to
allow discrete distributions F to have a positive point mass at 0. In the absolutely continuous
case, the corresponding probability density function will be denoted by f , and will be assumed
to have a support set which is a closed subinterval of [0, ∞). This ensures that the distribution
function F is strictly increasing in this subinterval. For later reference, the resulting subclass
of absolutely continuous distributions will be denoted by C.

By combining Definition 2 and (3) for the survival function of a system lifetime, we obtain
the following result giving a necessary and sufficient condition for S ≤mrl T .

Proposition 1. Let s and t be the signatures of two mixed n-systems, and assume that s ≤mrl t.
Suppose that the systems have components with i.i.d. lifetimes with common distribution F. Let
S and T be the respective lifetimes of the systems. Then S ≤mrl T if and only if

∑n
i=1 bi

(n
i

) ∫ ∞
t F̄(u)iF(u)n−i du∑n

i=1 ai
(n

i

) ∫ ∞
t F̄(u)iF(u)n−i du

is increasing in t ≥ 0, (10)

where a and b are the respective survival signatures corresponding to s and t, as defined in (4).

Suppose that s ≤mrl t and that also s ≤hr t. By (8), we then have S ≤hr T , which, by (6),
implies that S ≤mrl T . Thus, the conclusion in (9) holds for any component lifetime distribution
F if s, t satisfy both s ≤mrl t and s ≤hr t. The remaining case of interest is therefore when s ≤mrl t
and s �≤hr t. Since the orders st, hr, and mrl are equivalent for signatures of 2-systems (see
Definition 3), we need only consider n ≥ 3.

The following simple example shows that (9) does not hold in general, in the sense that,
for some n, there are signatures s and t with s ≤mrl t for which (10) does not hold for all
distributions F. In view of this somewhat surprising and disappointing result, we turn our
attention to the characterization of classes of component lifetime distributions F for which
(10) holds, for given n, for any pair of systems with signatures satisfying s ≤mrl t.

Example 1. (A counterexample.) Let n = 3, and consider signature vectors

s =
(1

4
,

1

4
,

1

2

)
, t =

(3

8
, 0,

5

8

)
, (11)

with corresponding survival signatures

a =
(1

2
,

3

4
, 1

)
, b =

(5

8
,

5

8
, 1

)
.

From Definition 3, we note that s ≤mrl t, while neither of the orderings hr and st hold between
s and t.

Let the component lifetime distribution F be a discrete distribution giving mass p at time
0 and q = 1 − p at time 1, where 0 < p < 1. Let S and T be the lifetimes of the systems with
signature s and t, respectively. Then also S and T have only two possible values, 0 and 1.
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For this simple F, we obtain, directly from the definition of mean residual life (5),

S ≤mrl T if and only if P(S = 1) ≤ P(T = 1). (12)

It also follows from (3) that, for n-systems with the component lifetime distribution F above,

P(S = 1) =
n∑

j=1

aj

(
n

j

)
qjpn−j = pn

n−1∑
j=1

aj

(
n

j

)(q

p

)j + qn.

A corresponding result holds for P(T = 1) if the aj are replaced by bj. Hence by (12) we have
S ≤mrl T if and only if

n−1∑
j=1

aj

(
n

j

)(q

p

)j ≤
n−1∑
j=1

bj

(
n

j

)(q

p

)j
. (13)

Now let n = 3 and let the survival signatures be given as in (11). Calculating each side of
(13), with c = q/p ( > 0), we see that S ≤mrl T if and only if

1

2
· 3 · c + 3

4
· 3 · c2 ≤ 5

8
· 3 · c + 5

8
· 3 · c2,

which after simplification is equivalent to c2 ≤ c or c ≤ 1. Hence, S ≤mrl T does not hold if
c > 1, i.e. if p < 1

2 . (In this case, we have T ≤mrl S.)

3. The main result

Theorem 1 defines, for given n, a class Fn of distributions F such that (9) holds for all
n-systems whenever F is in Fn. The theorem is the main result of the present paper and will
be proved through a series of lemmas. Although the case n = 2 has already been settled in
Section 2, where it is concluded that in this case (9) holds for any distribution F, we shall find
it convenient to include n = 2 in the definition and treatment of the classes Fn.

Theorem 1. For n ≥ 2, let

Fn =
{

F :

(
n

i

) ∫ ∞

0
F̄(u)iF(u)n−i du is decreasing in i = 1, 2, . . . , n

}
. (14)

Then, for any two n-systems with signatures s and t satisfying s ≤mrl t, and with i.i.d. component
lifetimes with common distribution F ∈Fn, the corresponding system lifetimes are ordered as
S ≤mrl T.

The classes Fn are strictly nested, Fn ⊂Fn−1 for all n ≥ 3, and have a nonempty
intersection.

Lemma 1. For any distribution F and n ≥ 2, we have F ∈Fn if and only if
(

n

i

) ∫ ∞

t
F̄(u)iF(u)n−i du is decreasing in i = 1, . . . , n for all t ≥ 0. (15)

Proof. Define gi(t) as the difference between (15) for i + 1 and i, i.e. let

gi(t) =
(

n

i + 1

) ∫ ∞

t
F̄(u)i+1F(u)n−i−1 du −

(
n

i

) ∫ ∞

t
F̄(u)iF(u)n−i du.
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Thus, (15) is equivalent to gi(t) ≤ 0 for i = 1, . . . , n − 1 and all t ≥ 0. It is straightforward to
obtain

gi(t) = n!

i! (n − i − 1)!

{ ∫ ∞

t
F̄(u)iF(u)n−i−1

[ F̄(u)

i + 1
− F(u)

n − i

]
du

}
. (16)

Observe first that limt→∞ gi(t) = 0 for all i. This follows by considering (15) and showing that

lim
t→∞

∫ ∞

t
F̄(u)iF(u)n−i du = 0 for all i = 1, 2, . . . , n.

This is a consequence of the fact that∫ ∞

t
F̄(u)iF(u)n−i du ≤

∫ ∞

t
F̄(u) du for i = 1, . . . , n,

where the right-hand side tends to 0 because F has a finite expectation.
Now consider the derivative g′

i(t) for t ≥ 0. This is found by putting t = u in the integrand of
(16) and changing the sign. Using the fact that F̄ = 1 − F in the expression in square brackets
in (16), it follows that g′

i(t) > 0 when F(t) > (n − i)/(n + 1) and g′
i(t) < 0 when F(t) < (n − i)/

(n + 1). Since limt→∞ gi(t) = 0, it is apparent that gi(t) ≤ 0 for all t ≥ 0 if and only if gi(0) ≤ 0.
But this is equivalent to the statement of the lemma, and thus the proof is complete. �
Lemma 2. For any distribution F and for n ≥ 2, it follows that∫ ∞

t F̄(u)iF(u)n−i du∫ ∞
s F̄(u)iF(u)n−i du

(17)

is decreasing in i = 1, 2 . . . , n for any fixed s and t such that 0 ≤ s < t.

Proof. Considering the difference between (17) for i + 1 and i we find that the difference is
negative if and only if

(∫ ∞

t
F̄(u)i+1F(u)n−i−1 du

)(∫ ∞

s
F̄(u)iF(u)n−i du

)

≤
(∫ ∞

t
F̄(u)iF(u)n−i du

)(∫ ∞

s
F̄(u)i+1F(u)n−i−1 du

)
.

Utilizing the fact that
∫ ∞

s = ∫ t
s + ∫ ∞

t , and cancelling terms, we see that the above is
equivalent to

(∫ ∞

t
F̄(u)i+1F(u)n−i−1 du

)(∫ t

s
F̄(u)iF(u)n−i du

)

≤
(∫ ∞

t
F̄(u)iF(u)n−i du

)(∫ t

s
F̄(u)i+1F(u)n−i−1 du

)
. (18)

Fix t > 0 and define hi(s) for 0 ≤ s ≤ t to be the difference obtained by subtracting the right-
hand side from the left-hand side of (18). We need to show that hi(s) ≤ 0 for 0 ≤ s ≤ t. Clearly,
hi(t) = 0. Furthermore, by differentiation of hi(s) with respect to s, for all 0 ≤ s ≤ t,

h′
i(s) = F̄(s)iF(s)n−i−1

∫ ∞

t
F̄(u)iF(u)n−i−1[F(u)F̄(s) − F̄(u)F(s)] du. (19)

The expression in square brackets in (19) equals F(u) − F(s), which is nonnegative for all u ≥ t
since s < t. But then h′

i(s) ≥ 0 for 0 ≤ s ≤ t. Since hi(t) = 0, this implies that hi(s) ≤ 0 for all
0 ≤ s ≤ t, and the lemma follows. �
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In the proof of Theorem 1, we will make use of a result given in [6]. For distributions F and
G on R, Caperaa [6] defined the order F >(+) G (F is uniformly stochastically larger than G) if
and only if (1 − G)/(1 − F) is decreasing. Caperaa showed the following result as a corollary
of his main result.

Lemma 3. (Caperaa [6].) Let F and G be two distributions on R. Then F >(+) G is a necessary
and sufficient condition for ∫ ∞

−∞ α(x) dF(x)∫ ∞
−∞ β(x) dF(x)

≥
∫ ∞
−∞ α(x) dG(x)∫ ∞
−∞ β(x) dG(x)

(20)

to hold for all functions α and β, integrable with respect to F and G, such that β is nonnegative,
and α/β and β are nondecreasing.

For distributions on [0, ∞), the ordering ( + ) is the same as the hazard rate ordering hr (see
Definition 1). Note that Joag-Dev et al. [13] cited Caperaa’s theorem and sketched a proof. We
will use the following version of Lemma 3 which applies to discrete positive distributions.

Lemma 4. Let n ≥ 2 be given, and let K and L be two probability distributions on {1, 2, . . . , n}
satisfying K ≤hr L. Let k(i) and l(i) denote the point mass functions of the distributions K and
L, respectively. Furthermore, let α(i) and β(i) for i = 1, . . . , n be numbers such that β(i) is
positive, and α(i)/β(i) and β(i) are increasing in i = 1, 2, . . . , n. Then∑n

i=1 α(i) l(i)∑n
i=1 β(i) l(i)

≥
∑n

i=1 α(i) k(i)∑n
i=1 β(i) k(i)

. (21)

Now, let a be the survival signature for a mixed n-system. Let ãi = ai/
∑n

i=1 ai for
i = 1, . . . , n. Thus we have normalized the ai so that the ãi sum to 1. Now define the cumulative
distribution function K on {0, 1, . . . , n} by K(0) = 0 and

K(i) = ãn + ãn−1 + · · · + ãn−i+1, i = 1, . . . , n, (22)

so that K(n) = 1. Let the survival function corresponding to K be K̄ = 1 − K. Thus, K̄(n) = 0
and

K̄(i) = ã1 + ã2 + · · · + ãn−i, i = 0, 1, . . . , n − 1. (23)

For another survival signature b, let b̃i = bi/
∑n

i=1 bi for i = 1, . . . , n, and define the
cumulative distribution function L and survival function L̄ similarly, with b̃i replacing ãi for
i = 1, . . . , n in (22) and (23). Thus,

L(i) = b̃n + b̃n−1 + · · · + b̃n−i+1, i = 1, . . . , n, (24)

We now prove the following lemma.

Lemma 5. Suppose that a and b are the respective survival signatures of systems with
signatures s and t, and let the distributions K and L be defined by (22) and (24). Then s ≤mrl t
if and only if K ≤hr L.

Proof. As found in [27, Chapter 1.B], K ≤hr L if and only if L̄(i)/K̄(i) is increasing in i, i.e.
if and only if

b̃1 + b̃2 + · · · + b̃n

ã1 + ã2 + · · · + ãn
≤ b̃1 + b̃2 + · · · + b̃n−1

ã1 + ã2 + · · · + ãn−1
≤ · · · ≤ b̃1

ã1
.
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The latter inequalities will of course hold if the ãi are replaced by ai and the b̃i are replaced
by bi. Then this is exactly the definition of s ≤mrl t as given in Definition 3. This proves the
lemma. �

Proof of Theorem 1. Let s and t be signatures of n-systems satisfying s ≤mrl t. We will show
that (10) holds when it is assumed that F ∈Fn (see (14)). Given the survival signatures a and b
corresponding to s and t, let the cumulative distribution functions K and L be defined as before
Lemma 5. The corresponding point masses are

k(i) = an−i+1, l(i) = bn−i+1, i = 1, . . . , n.

For 0 ≤ s < t and i = 1, . . . , n, let

α(i) =
(

n

n − i + 1

) ∫ ∞

t
F̄(u)n−i+1F(u)i−1 du, (25)

β(i) =
(

n

n − i + 1

) ∫ ∞

s
F̄(u)n−i+1F(u)i−1 du. (26)

Then, by Lemma 1, β(i) is increasing in i, and, by Lemma 2, α(i)/β(i) is increasing in i.
(It should here be noted that we have reversed the order of the terms in (15) and (17) in defining
α( · ) and β( · ).) Since K ≤hr L by Lemma 5, it follows that the conditions of Lemma 4 are
satisfied. Substitution in (21) and reversing the order of the terms in the sums gives

∑n
i=1 bi

(n
i

) ∫ ∞
t F̄(u)iF(u)n−i du∑n

i=1 bi
(n

i

) ∫ ∞
s F̄(u)iF(u)n−i du

≥
∑n

i=1 ai
(n

i

) ∫ ∞
t F̄(u)iF(u)n−i du∑n

i=1 ai
(n

i

) ∫ ∞
s F̄(u)iF(u)n−i du

.

This implies (10) since s and t were arbitrarily chosen, subject only to the restriction 0 ≤ s < t.
The first part of Theorem 1 thus follows.

The inclusion statement at the end of Theorem 1 is proved as follows. Let

cn,i =
(

n

i

) ∫ ∞

0
F̄(u)iF(u)n−i du (27)

for i = 1, . . . , n. Then suppose that F ∈Fn. By using the identity 1 = F̄(u) + F(u) and
multiplying the integrand of cn−1,i by this sum, it is seen that, for i = 1, 2, . . . , n − 1,

cn−1,i =
(

n − 1

i

) ∫ ∞

0
F̄(u)i+1F(u)n−i−1 du +

(
n − 1

i

) ∫ ∞

0
F̄(u)iF(u)n−i du

= i + 1

n
cn,i+1 + n − i

n
cn,i. (28)

In order to prove that F ∈Fn−1, we need to show that cn−1,i+1 − cn−1,i ≤ 0 for i = 1, . . . , n −
2. From (28), we get

cn−1,i+1 − cn−1,i = i + 2

n
cn,i+2 + n − i − 1

n
cn,i+1 − i + 1

n
cn,i+1 − n − i

n
cn,i

= i + 2

n
(cn,i+2 − cn,i+1) + n − i

n
(cn,i+1 − cn,i),

which is less than or equal to 0 by the assumption that F ∈Fn. Hence, F ∈Fn−1 as well, so
Fn ⊂Fn−1.
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To see that these inclusions are strict, we consider Example 1. For the discrete distribution
F of that example, we have, by (27), cn,i =

(n
i

)
qipn−i. From this,

cn,i+1 − cn,i =
(

n

i

)
(i + 1)−1qipn−i−1[n − i − (n + 1)p], (29)

which implies that cn,i+1 − cn,i ≤ 0 for all i = 1, . . . , n − 1, and hence that F ∈Fn, if and only
if p ≥ (n − 1)/(n + 1). Hence, if p is chosen so that

n − 2

n
≤ p <

n − 1

n + 1
, (30)

we have F ∈Fn−1, while F �∈Fn. Thus, Fn ⊂Fn−1.
In order to prove that the intersection of the classes Fn is nonempty, we show that the

standard exponential distribution, for which F(t) = 1 − e−t, is contained in Fn for all n. Now,
for i = 1, . . . , n,(

n

i

) ∫ ∞

0
F̄(u)iF(u)n−i du =

(
n

i

) ∫ ∞

0
e−iu(1 − e−u)n−i du = 1

i
,

where we substituted z = e−u in the second integral and used the well-known formula for the
beta integral. The result is clearly decreasing in i, so F ∈Fn by (14). The proof of Theorem 1
is hence complete. (Note that we show more generally, in Theorem 3, that F ∈Fn for all n
whenever F has a decreasing density.) �

4. Absolutely continuous F

Let C denote the set of absolutely continuous F as defined in Section 2. The following
proposition is a corollary to Proposition 1 for the case when the component lifetime distribution
F is in C.

Proposition 2. Let s and t be the signatures of two mixed n-systems, for which s ≤mrl t.
Suppose that the systems have components with i.i.d. lifetimes with common absolutely
continuous distribution F ∈ C and density f . Let S and T be the respective lifetimes of the
systems. Then S ≤mrl T if and only if

∑n
i=1 bi

(n
i

) ∫ u
0 (zi(1 − z)n−i/f (F̄−1(z))) dz∑n

i=1 ai
(n

i

) ∫ u
0 (zi(1 − z)n−i/f (F̄−1(z))) dz

is decreasing in u for 0 < u < 1, (31)

where a and b are the respective survival signatures corresponding to s and t.

Proof. The result follows by substituting z = F̄(u) in the integral in (10), which gives

∫ ∞

t
F̄(u)iF(u)n−i du =

∫ F̄(t)

0

zi(1 − z)n−i

f (F̄−1(z))
dz.

�
We now state the version of Theorem 1 that is valid for the absolutely continuous case.

Theorem 2. For n ≥ 2, let

F̃n =
{

F ∈ C :

(
n

i

) ∫ 1

0

zi(1 − z)n−i

f (F̄−1(z))
dz is decreasing in i = 1, 2, . . . , n

}
. (32)
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Then, for any two n-systems with signatures s and t satisfying s ≤mrl t, and with i.i.d. component
lifetimes with common distribution F ∈ F̃n, the corresponding system lifetimes satisfy S ≤mrl T.

The classes F̃n are strictly nested, F̃n ⊂ F̃n−1 for all n ≥ 3, and have a nonempty
intersection.

Proof. The conclusion of the mean residual life ordering of S and T follows by substituting
z = F̄(u) in (14), as in the proof of Proposition 2.

The proof of inclusions F̃n ⊆ F̃n−1 is identical to that of the corresponding property in
Theorem 1, now restricting to absolutely continuous F.

To prove that the inclusions are also strict in the absolutely continuous case, we consider
the corresponding part of the proof of Theorem 1. Thus, let F be the discrete distribution that
assigns probability p to t = 0 and q = 1 − p to t = 1, where 0 < p < 1. Now, for any ε > 0, we
can find an absolutely continuous distribution Fε ∈ C, with support in [0, 1], such that

lim
ε→0

Fε(t) = F(t) for all 0 < t < 1.

One possible choice is to let

Fε(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
p

ε

)
t for 0 ≤ t ≤ ε,

max

{
p + ε(t − ε), 1 + t − 1

ε

}
for ε ≤ t ≤ 1.

Following (27), define

cε
n,i =

(
n

i

) ∫ 1

0
F̄ε(u)iFε(u)n−i du.

It follows by the bounded convergence theorem that

lim
ε→0

cε
n,i = cn,i =

(
n

i

)
qipn−i

for each fixed n and i. Hence, by fixing n and choosing a p with strict inequality to the left in
(30), we see from (29) that by choosing ε > 0 small enough we have

cε
n−1,i+1 − cε

n−1,i < 0 for i = 1, . . . , n − 2,

while

cε
n,2 − cε

n,1 > 0.

For such an ε, Fε ∈ F̃n−1, but Fε �∈ F̃n, so Fn ⊂Fn−1.
That the intersection of the F̃n is nonempty follows from the proof of Theorem 1, where

it was shown that the standard exponential distribution is contained in all the Fn, or from the
more general result Theorem 3 to be given below. This completes the proof of Theorem 2. �

The proof of Theorem 3 below uses the following lemma.

Lemma 6. Let g(x) be a function defined on [0, 1] such that, for some 0 < c < 1, g(x) ≤ 0
for x ∈ [0, c) and g(x) ≥ 0 for x ∈ [c, 1], and such that

∫ 1
0 g(x) dx = 0. If h(x) is a nonnegative

decreasing function defined on (0, 1], then
∫ 1

0 g(x)h(x) dx ≤ 0.
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Proof. Note first that, since g(x) ≤ 0 on [0, c), and h(x) is decreasing, we have g(x)h(x) ≤
g(x)h(c) when x ∈ (0, c). Furthermore, since g(x) ≥ 0 on [c, 1], and h(x) is decreasing, we have
g(x)h(x) ≤ g(x)h(c) also when x ∈ [c, 1]. But then

∫ 1

0
g(x)h(x) dx ≤ h(c)

∫ 1

0
g(x) = 0.

�
Theorem 3. If F ∈ C has density f (t) which is decreasing in t, a property that is implied by the
condition that F is a decreasing failure rate (DFR) distribution, then F ∈ F̃n for all n ≥ 2.

Proof. Let F ∈ C have a decreasing density f . For given n, let di be the difference between
the integral expression in (32) for i + 1 and i. Then a straightforward calculation gives

di = n!

i! (n − i − 1)!

∫ 1

0

zi(1 − z)n−i−1

f (F̄−1(z))

(n + 1)z − (i + 1)

(i + 1)(n − i)
dz

= n!

i! (n − i − 1)!

∫ 1

0
vi(z)w(z) dz (33)

for i = 1, 2, . . . , n − 1, where

vi(z) = zi(1 − z)n−i−1[(n + 1)z − (i + 1)]

(i + 1)n − i
, w(z) = 1

f (F̄−1(z))
.

Using the beta integral, we get

(
n

i

) ∫ 1

0
zi(1 − z)n−i dz = 1

n + 1
,

which does not depend on i. Hence, it is seen from (32) that di, by its definition as a difference,
would equal 0 if w(z) ≡ 1 in (33). Consequently,

∫ 1
0 vi(z) dz = 0, and it is furthermore seen that

vi(z) < 0 if and only if z < (i + 1)/(n + 1). Since f (t) is decreasing in t, f (F̄−1(z)) is increasing
in z. Thus, w(z) is a decreasing function of z. Lemma 6 with g = vi and h = w hence implies
that di is nonpositive for all i. This proves that F ∈ F̃n by (32).

Although it is well known that a DFR distribution has a decreasing density, we give the
following simple argument for the sake of completeness. Let F be DFR with density f (t)
and hazard rate λ(t). Then f (t) = λ(t)F̄(t), which is decreasing in t since both λ and F̄ are
decreasing. This completes the proof of Theorem 3. �

5. Connections to results on order statistics

Representation (3) for the survival function of a system lifetime may alternatively be given
in terms of order statistics as follows. Let X1, . . . , Xn be an i.i.d. sample from the component
lifetime distribution F and let X1:n, X2:n, . . . , Xn:n be the corresponding order statistics. Note
that in (3),

(n
i

)
F̄(t)iF(t)n−i can be interpreted as the probability that exactly i components are

working at time t. If this is expressed by the order statistics of the component lifetimes, we
have the identity (

n

i

)
F̄(t)iF(t)n−i = P(X(n−i):n ≤ t < X(n−i+1):n) (34)
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for any fixed n and i = 1, . . . , n. From this, we obtain a characterization of the class Fn in
terms of order statistics as given in the following proposition. Let

Di,n = Xi:n − X(i−1):n for i = 1, . . . , n

define the sample spacings between the order statistics, with X0:n ≡ 0.

Proposition 3. Let n ≥ 2, and let Fn be the class of distributions defined in Theorem 1. Then
F ∈Fn if and only if E[Di,n] is increasing in i = 1, 2, . . . , n.

Proof. Using (34), we have

∫ ∞

0

(
n

i

)
F̄(u)iF(u)n−i du =

∫ ∞

0
P(X(n−i):n ≤ u < X(n−i+1):n) du

=
∫ ∞

0
P(X(n−i+1):n > u) du −

∫ ∞

0
P(X(n−i):n > u) du

=E[X(n−i+1):n − X(n−i):n]

=E[Dn−i+1,n]. (35)

It is interesting to note that David [8, p. 50] attributed this identity to a classic paper by Francis
Galton [10]. Now, by Theorem 1, F ∈Fn if and only if the term on the left-hand side of (35) is
decreasing in i. This is as claimed in the proposition. �

A careful examination of the arguments above shows that the proposition is also valid for
discrete distributions F. For example, if t is a value to which F assigns a positive probabil-
ity, then the event {exactly i components are functioning at time t} means that {X(n−i):n ≤ t <

X(n−i+1):n} (cf. (34)). Expressed differently, this is the event where exactly i components are
‘at risk’ immediately after time t. If, on the other hand, we restrict attention to absolutely
continuous F, then it is clear that Proposition 3 holds if Fn, as defined in (14), is replaced by
F̃n, defined in (32).

There is an extensive literature on the properties of sample spacings and their usage,
particularly in goodness-of-fit testing and in reliability applications (see, e.g. [19], [28], and the
references therein). Barlow and Proschan [2] proved that if F is DFR then the corresponding
successive normalized spacings (n − i + 1)Di,n are stochastically ordered. Kochar and Kirmani
[14] strengthened this result by proving a similar result for the hazard rate order. Later, Misra
and van der Meulen [19] showed that a corresponding result holds for the nonnormalized
spacings {Di:n, i = 1, . . . , n}. The following result is a special case of their Theorem 4.2.

Proposition 4. (Misra and van der Meulen [19].) Suppose that F is absolutely continuous and
DFR. Then, for n ≥ 2,

Di,n ≤hr Di+1,n for i = 1, 2, . . . , n − 1.

Thus, under the condition of Proposition 4, the inequality E[Di,n] ≤E[Di+1,n] holds for
i = 1, . . . , n − 1. By Proposition 3, this implies that any DFR distribution F is in Fn for all n.
This is of course in accordance with Theorem 2. Under a weaker condition than that in
Proposition 4, Theorem 2 also implies the following result.
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Proposition 5. Suppose that F is absolutely continuous with a decreasing density f . Then, for
given n ≥ 2,

E[Di,n] ≤E[Di+1,n] for i = 1, 2, . . . , n − 1.

6. Examples

Example 2. (The power function distribution.) This distribution has cumulative distribution
function given by F(t) = (t/θ )α for 0 ≤ t ≤ θ , where α, θ > 0. In the following, we consider the
case θ = 1 in illustrating some aspects of the theoretical results obtained in preceding sections.

Let Fα(t) = tα for 0 ≤ t ≤ 1, where α > 0. The density of Fα is fα(t) = αtα−1, 0 ≤ t ≤ 1,
which is decreasing if and only if α ≤ 1. It follows that Fα ∈ F̃n for all n if α ≤ 1.

Since the property of decreasing density is only a sufficient condition for F ∈ F̃n, one
may want to check the condition in (32) directly. Note then that F̄−1(z) = (1 − z)1/α , so that
f (F̄−1(z)) = α(1 − z)1−1/α . The integral in (32) thus becomes

yi = α−1
(

n

i

) ∫ 1

0
zi(1 − z)n−i−1+1/α dz = α−1

(
n

i

)
�(i + 1)�(n − i + 1/α)

�(n + 1 + 1/α)
,

where we used the beta integral. Noting that �(i + 1) = i!, and using the identity �(k + 1) =
k�(k), we obtain

yi+1 − yi = α − 1

α2

n!

(n − i)!

�(n − i − 1 + 1/α)

�(n + 1 + 1/α)
.

This difference is nonpositive if and only if α ≤ 1, and, hence, for each n, we have Fα ∈ F̃n if
and only if α ≤ 1.

Recall now that F ∈ F̃n is only a sufficient condition for S ≤mrl T . Thus, the case α > 1 is
still undecided. A computer study has, however, indicated that even for α > 1 very close to 1
there are s and t with s ≤mrl t for which S �≤mrl T .

For illustration, we use the necessary and sufficient condition for S ≤mrl T given in
Proposition 2. When adapted to the power function distribution, we find that, for given n, s,
and t with s ≤mrl t, we have S ≤mrl T if and only if

∑n
i=1 bi

(n
i

)
B(u; i + 1, n − i + 1/α)∑n

i=1 ai
(n

i

)
B(u; i + 1, n − i + 1/α)

(36)

is decreasing in u for 0 < u ≤ 1, where

B(u; c, d) =
∫ u

0
zc−1(1 − z)d−1 dz for c, d > 0

is the incomplete beta function.
In Figure 1 the ratio in (36) is plotted as a function of u for two examples of s and t

with n = 3, where s ≤mrl t. The curves for α ≤ 1 are, as guaranteed by Theorem 2, seen to
be monotonically decreasing. This is not the case, however, for the plotted curves for α > 1.
Thus, by Proposition 2, we do not have S ≤mrl T in the latter cases.

Example 3. (The Weibull distribution.) The Weibull distribution with scale parameter 1 and
shape parameter α > 0 has density function fα(t) = αtα−1e−tα , which is decreasing if and only
if α ≤ 1. Hence, F ∈ F̃n for all n if α ≤ 1.
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FIGURE 1: The plots show the function (36) when n = 3, survival signatures are a = (0.03, 0.58, 1) and
b = (0.22, 0.39, 1.00) (which satisfy the mrl order), for component lifetime distributions given by F(t) =

tα for different values of α.

In a study of the case α > 1, we will use the representation of Fn given in Proposition 3 in
terms of expected sample spacings. If X1:n, . . . , Xn:n is an ordered sample from Fα , it is well
known that Xα

1: n, . . . , Xα
n:n is an ordered sample from the standard exponential distribution.

Thus, for i = 1, . . . , n, we have

E[Xα
i ] −E[Xα

i−1] = 1

n − i + 1
. (37)

For a distribution to be contained in F̃n, Proposition 3 requires that E[Di,n] =E[Xi] −E[Xi−1]
is increasing in i. By (37), this holds for the Weibull case if α = 1, with strict inequalities. Thus,
for a fixed n, by continuity with respect to α of the left-hand side in (37), we conclude that the
increasing property of the E[Di:n] will hold also for some α > 1, sufficiently close to 1. Hence,
each set F̃n will contain Weibull distributions with shape parameter strictly larger than 1, and
thus include densities which are not everywhere decreasing.

To pursue a more formal study of the above phenomenon, we apply the formula for expected
values of order statistics of the Weibull distribution given in [16]. Using our notation, it is
known that

E[Xi:n] = n

(
n − 1

i − 1

)
�

(
1 + 1

α

) i−1∑
j=0

(−1) j−i+1
(

i − 1

j

)
1

(n − j)1+1/α
. (38)
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TABLE 1: Weibull and gamma distributions with shape parameter α > 1 contained in F̃n for

different values of α. The dashes mean that Fα �∈ F̃n for all n ≥ 2.

Weibull Gamma
α Fα ∈ F̃n if n ≤ Fα ∈ F̃n if n ≤

1.1 10 13
1.2 5 6
1.3 3 5
1.4 3 4
1.5 2 3
1.6 2 3
1.7 2 2

1.8–2.6 — 2
≥ 2.7 — —

For our purpose, we used (38) to calculate the differences �i,n =E[Di+1,n] −E[Di,n],
obtaining

�i,n =E[Xi+1:n] − 2E[Xi:n] +E[Xi−1:n]

=
(

n

i

)
�(1 + 1/α)

n − i + 1

i∑
j=0

( − 1) j−i
(

i

j

)
1

(n − j)1+1/α
[(n − i)(n − i + 1)]

+
(

n

i

)
�(1 + 1/α)

n − i + 1

i∑
j=0

( − 1) j−i
(

i

j

)
1

(n − j)1+1/α
[2(i − j)(n − i + 1)]

+
(

n

i

)
�(1 + 1/α)

n − i + 1

i∑
j=0

( − 1) j−i
(

i

j

)
1

(n − j)1+1/α
[(i − j)(i − j − 1)]

=
(

n

i

)
�(1 + 1/α)

n − i + 1

i∑
j=0

( − 1) j−i
(

i

j

)
n − j + 1

(n − j)1/α
. (39)

Clearly, Fα ∈ F̃n if and only if �i,n ≥ 0 for i = 1, . . . , n − 1. We have used expression (39) to
generate the Weibull part of Table 1, which shows, for some values of α > 1, the values of n
for which we have Fα ∈ F̃n.

Numerical experience with (39) clearly indicates that �i,n increases with i = 1, . . . , n − 1
for fixed α. We do not have, however, a formal proof of this monotonicity. Assuming that this
property holds, it would follow that Fα ∈ F̃n if and only if

α ≤ log (n/(n − 1))

log ((n + 1)/n)
,

which is approximately 1 + 1/(n − 1) for large n.
We also did a limited computer study to find Weibull distributions Fα with α > 1 such that,

for some n and signatures s and t with s ≤mrl t, we have S �≤mrl T . Considering for simplicity the
s and t of Example 1, for which n = 3 and a = ( 1

2 , 3
4 , 1), b = ( 5

8 , 5
8 , 1), we found that S �≤mrl T
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when the component distributions are Weibull with α ≥ 3.71. Considering n = 4 by adding a
zero at the beginning of the vectors a and b, we obtained S �≤mrl T for Fα with α ≥ 2.17. Adding
new zeros to a and b, to have n = 5 and n = 6, we obtained S �≤mrl T for α ≥ 1.77 and 1.59,
respectively.

Example 4. (The gamma distribution.) The gamma distribution with scale parameter 1 and
shape parameter α > 0 has density fα(t) = (�(α))−1tα−1e−t, which is decreasing if and only
if α ≤ 1. Hence, Fα ∈ F̃n for all n if α ≤ 1. In the same way as for the Weibull distribution, it
can be shown by using Proposition 3 that the F̃n will include gamma distributions with α > 1.
While Nadarajah [20] presented expected values of order statistics for the gamma distribution,
because of the complexity of the formula, we decided to calculate the expected values of order
statistics from the gamma distribution by simulation instead, using 100 000 iterations for each
simulated value. The results are shown in Table 1 and are very similar to what we obtained for
the Weibull distribution.

Example 5. (The relation to stochastically ordered signatures.) In the counterexample in
Example 1, as well as in the examples with S �≤mrl T in Examples 2 and 3, we considered
signatures with s ≤mrl t and s �≤hr t. By inspection, it is seen that, in all these cases, we had
s �≤st t. As noted in Section 2, the assumption that s ≤hr t would trivially imply that S ≤mrl T .
The question thus emerges whether the two conditions s ≤st t and s ≤mrl t together would imply
that S ≤mrl T for all distributions F.

First of all, no counterexample to such a claim can occur if F has support in two points as
in Example 1. This follows since (13) would hold for any values p if s ≤st t, since then aj ≤ bj

for all j. Thus, to search for counterexamples, we need to consider F with support in at least
three points. The following is the result of a computer search. Let F give positive mass to the
three time points {0, 50, 70}, with respective probabilities 0.35, 0.02, 0.63. Next, let n = 7, and
let two mixed 7-systems have survival signatures

a = (0.03, 0.53, 0.57, 0.67, 0.69, 0.74, 1.00), (40)

b = (0.44, 0.61, 0.61, 0.86, 0.92, 0.99, 1.00). (41)

In order to check the presence of the various stochastic orders for these signatures, we use
Definition 3. It is straightforward to show that s ≤mrl t and s ≤st t, but that s �≤hr t.

Let S and T respectively be the lifetimes of the two systems with the given F above. In
order to show that S �≤mrl T , we use the necessary and sufficient condition (10). This fraction,
when calculated at t = 0 and t = 50, respectively takes the values 1.2630 and 1.2621, and is not
increasing. Thus we conclude that S �≤mrl T .

The result might be even more convincing if we can find an absolutely continuous
F ∈ C which leads to the same conclusion. The above three-point distribution F suggests a
bathtub-shaped density for such a distribution. We therefore looked for beta distributions with
parameters α and β both being less than one. Our search identified several possible candidates,
two of which are described below.

In Figure 2 we plot the function (31) for the systems with survival signatures (40) and (41),
letting the component lifetime distribution F be beta distributions with respective parameters
(0.58, 0.05) and (0.13, 0.07). The curves show a clear nonmonotonicity.

The conclusion to be drawn is that the conditions s ≤mrl t and s ≤st t are not sufficient to
ensure that S ≤mrl T holds for any component lifetime distribution F. Thus, the ‘problem’ that
S ≤mrl T does not hold for all F cannot be resolved by additionally requiring the stochastic
ordering of the signatures.
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FIGURE 2: The plots show the function (31) when n = 7, survival signatures are a =
(0.03, 0.53, 0.57, 0.67, 0.69, 0.74, 1.00) and b = (0.44, 0.61, 0.61, 0.86, 0.92, 0.99, 1.00) (which satisfy
both the mrl order and st order), for two component lifetime distributions F, given by beta distributions

with different parameters.

7. Final remarks

Remark 1. The result of Lemma 5 was stated for the case of general distributions in the final
section of [13]. As we did in our approach, they suggested combining it with Caperaa’s result
in order to have a tool for studies of the mean residual life order.

Remark 2. In order to shed some light on the main idea of the proof of Theorem 1, it is
instructive to consider the proof of the implication s ≤hr t ⇒ S ≤hr T (see (8)) as given in [25,
Theorem 4.4]. While we use representation (3) for the survival function of a system lifetime T ,
the latter proof uses representation (2), which is given in terms of the signatures si themselves.
The proof then considers s and t with s ≤hr t and, in our notation, uses Lemma 4 with k(i) = si

and l(i) = ti. The corresponding cumulative distribution functions K(i) and L(i) will hence, by
assumption, satisfy K ≤hr L. Furthermore, the proof of Samaniego [25] uses α(i) = P(Xi:n > t),
β(i) = P(Xi:n > s), with s < t. These are shown to have the desired monotonicity properties
using known results on order statistics. Implication (8) then follows from Lemma 4.

The main difference in the proof of Theorem 1 of the present paper is that our proof is
based on cumulative signatures instead of the signatures themselves. The key to our approach
is the fact (established in Lemma 5) that s ≤mrl t implies that K ≤hr L, which allows the use
of Lemma 4. Finally, we note that the proof of the present paper involves more complex
expressions for α(i) and β(i) than those displayed above for the proof in [25]. In terms of order
statistics it is seen, following the proof of Proposition 3, that α(i) in (25) may be written as

α(i) =
∫ ∞

t
P(X(i−1):n ≤ u < Xi:n) du =

∫ ∞

t
[P(Xi:n > u) − P(X(i−1):n > u)] du,

while the expression for β(i) is similar with t replaced by s. Both proofs use, on the other hand,
the result of Lemma 4 to obtain the final conclusion.

Remark 3. Lemma 3, due to Caperaa, is formulated as a necessary and sufficient condition
for the given order between F and G. In Lemma 4, this would correspond to having K ≤hr L
if and only if (20) holds for all α(i) and β(i) satisfying the monotonicity requirements. Now,
in our application, K ≤hr L if and only if s ≤mrl t by Lemma 5. This might suggest that if (10)
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holds for all F ∈Fn, then s ≤mrl t. This would indeed be the case if all possible functions α(i)
and β(i) with β(i) increasing and α(i)/β(i) increasing can be represented as in (25) and (26)
for some F, s, and t. This is presumably not the case, but since one may, by varying F, s,
and t, obtain a fairly rich class of functions α(i), β(i), we can state the following result as a
conjecture.

Let there be given two n-systems, with signatures s and t, i.i.d. component lifetimes with
common distribution F, and system lifetimes denoted by S and T, respectively. If S ≤mrl T
whenever F ∈Fn, then s ≤mrl t. Equivalently, if s �≤mrl t then there is an F ∈Fn such that
S �≤mrl T.

Remark 4. The comparison of systems considered in the paper has been restricted to cases
where two systems with signatures s and t have the same size. Now suppose that we are
interested in comparing two systems that are not of the same size. Definition 3 can obviously
not be used directly to determine ordering properties of signatures of different sizes. The
approach taken by Samaniego [25, p. 32] is to ‘convert’ the smaller of two systems into an
equivalent system of the same size as the larger one, thus allowing the use of comparison
results for systems of the same size. Equivalent systems here means systems that have the
same system lifetime distribution, for any (common) component distribution F. Samaniego
[25, Theorem 3.2] gave an explicit formula for the signature of an (n + 1)-system which
is equivalent to a given n-system. This formula may be applied several times in succession
depending on the difference in size of the two systems. Lindqvist et al. [17] studied properties
of equivalent systems and showed, in particular, how to construct a system equivalent to a
given system of a different size.

Remark 5. Coolen and Coolen-Maturi [7] generalized (3) to the case where there are K > 1
types of components. Let there be nk components of type k, k = 1, 2, . . . , K, with

∑K
k=1

nk = n. Assuming that all component lifetimes are independent, where the lifetimes of
components of type k have distribution Fk, they obtained

P(T > t) =
n1∑

j1=0

· · ·
nK∑

jK=0

a(j1, . . . , jK)
K∏

k=1

(
nk

jk

)
F̄k(t)jk Fk(t)nk−jk . (42)

Here a(j1, . . . , jK) is the survival signature, which is the probability that the system functions
when jk of the nk components of type k function, while the product

K∏
k=1

(
nk

jk

)
F̄k(t)jk Fk(t)nk−jk

is the probability that exactly jk out of nk components of type k function at time t, for
k = 1, . . . , K.

The concept of survival signature has in the recent literature been used in various
applications. For example, Aslett et al. [1] presented an application to networks; Huang et al.
[12] used the survival signature in an analysis of phased mission systems, while Eryilmaz
et al. [9] studied joint reliability importance measures for system components. Samaniego and
Navarro [26] investigated methods for comparison of coherent systems with heterogeneous
components. They gave in particular a sufficient condition for stochastic ordering of the
lifetimes of two such systems which generalizes (7). Specifically, it is seen from (42)
that, if two systems have the same component types and corresponding component lifetime

https://doi.org/10.1017/jpr.2019.11 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.11


172 B. H. LINDQVIST ET AL.

distributions, as well as the same number of components of each type, then their lifetimes
are stochastically ordered if the survival signatures are ordered accordingly with respect to
the componentwise ordering of vectors. We are, however, not aware of similar generalizations
of (8) and (9) that would give sufficient conditions for the hazard rate and mean residual life
ordering of systems with heterogeneous components. Such conditions might possibly be found
in terms of suitable multivariate orders as considered, e.g. in [27, Chapter 6].

Remark 6. Throughout the paper we have considered the situation where the component
lifetimes X1, X2, . . . , Xn are i.i.d. As is clear from the literature on system signatures, many
results for the i.i.d. case can be extended to the case where X1, X2, . . . , Xn are exchangeable.
For example, Navarro et al. [23] proved that implication (8) for the hazard rate order holds
for exchangeable component lifetimes X1, X2, . . . , Xn provided X1:n ≤hr X2:n ≤hr · · · ≤hr Xn:n.
Navarro and Rubio [22] showed that corresponding reverse implications hold for the st, hr,
and lr orders. More precisely, they showed that the ordering of two system lifetimes for
all exchangeable component distributions, with similarly ordered order statistics, implies the
ordering of the respective signatures.

For the mean residual life order, it was proved in Navarro et al. [23] that, for two systems
with signatures s and t satisfying s ≤hr t, and with exchangeable component lifetimes satisfying
X1:n ≤mrl X2:n ≤mrl · · · ≤mrl Xn:n, the corresponding system lifetimes S and T satisfy S ≤mrl T .
Recall from the discussion in Section 2 that in the i.i.d. case, s ≤hr t implies that S ≤hr T and,
hence, trivially implies that S ≤mrl T .
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