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Routine (an)isotropic crystallite size analysis in the double-Voigt
approximation done right?
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In this study, the application of (an)isotropic size determination using a recently proposed model for
the double-Voigt approach is demonstrated and validated against line profile simulations using the
Whole Powder Pattern Modelling approach. The fitting of simulated line profiles demonstrates that
the attained crystallite sizes and morphologies are in very reasonable agreement with the simulated
values and thus demonstrate that even in routine application scenarios credible size and morphology
information can be obtained using the double-Voigt approximation. The aim of this contribution is to
provide a comprehensive introduction to the problem, address the practical application of the devel-
oped model, and discuss the accuracy of the double-Voigt approach and derived size parameters.
Mathematical formulations for the visualization of modeled morphologies, supporting the application
of the recently developed macros, are additionally provided. © 2017 International Centre for
Diffraction Data. [doi:10.1017/S0885715617000070]
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I. INTRODUCTION

The topic of obtaining accurate crystallite sizes and the
average morphology of the coherent scattering domains with
size distributions is still a rather controversial topic. After
almost a century (Scherrer, 1918) of continuous develop-
ments, in technical-oriented studies frequently the “crystallite
sizes” are still derived by applying apparently random
“Scherrer constants” to measured full-widths at half-
maximums (FWHMs). In spite of numerous proofs of the
inferiority of such approaches, because of the lack of a direct
physical meaning of the derived apparent crystallite sizes
(Langford and Wilson, 1978), the popularity is probably
given by the apparently easy application and the fact of inclu-
sion of such methods in basic X-ray diffraction textbooks. The
derived “sizes” may still be a very rough approximation of the
magnitude of “crystallite sizes”; however, very few times the
appropriate meaning, especially in case of size distributions
(Langford and Wilson, 1978) is stated. The term “crystallite
sizes” critically depends on what exact type of “crystallite
size” is reported and should always be clearly defined on a
physical basis. Also to consider that the derivation of just
one moment quotient of a size distribution is a very unreliable
measure of the underlying size distribution, as Scardi (2008;
Figure 1) stressed.

State-of-the-art methods such as the Whole Powder
Pattern Modelling (WPPM) approach (Scardi and Leoni,
2002) and advanced line profile approximations as the
double-Voigt approach (Langford, 1980; Balzar and
Ledbetter, 1993) for Rietveld refinements, with proven phys-
ical backgrounds receive however less attention in practical
studies.

An additional “problem” in real samples during powder
diffraction experiments is often anisotropic peak broadening
owing to the morphology of the coherent scattering domains.
The effect of the morphology and size on the line profile is
very well established (e.g., Langford and Wilson, 1978). Yet
Rietveld compatible approaches are however either based on
phenomenological models (Stephens, 1999) originally devel-
oped for anisotropic microstrain [Note that the commonly
encountered terminology “microstrain/strain” is technically
misleading, only the resulting distortions are measureable
owing to the introduced order dependent broadening contribu-
tion.] broadening or limited in the choice of geometric models
(Balic ́ Žunic ́ and Dohrup, 1999) and not very straight forward
in the interpretation nor very stable for the application in com-
plex mixtures.

Recently a fully physically sound approach was devel-
oped (Ectors et al., 2015a, b) for the double-Voigt approxima-
tion, enabling a rapid, stable, and reliable treatment of such
effects even in complex cementitious systems and in situ
experiments (Ectors, 2016; Hurle et al., 2016).

The following paragraph is intended to provide a compre-
hensive introduction to the physical background of the mea-
sures of “crystallite sizes” in the focus of Rietveld refinements.

II. CRYSTALLITE SIZES – NUTS AND BOLTS

Assuming a theoretical spherical single crystallite of a
defined size (e.g., diameter), the theoretical line profile can
easily be calculated. The experimentally observed peaks how-
ever will be a convolution of the theoretical line profile and
instrumental contributions. Therefore either a line profile stan-
dard, typically LaB6, is measured to correct for the instrumen-
tal contribution or a convolution/fundamental parameter
approach (Cheary and Coelho, 1992) is used to deconvolute
the physical line profile from the experimental line profile.
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Direct deconvolution methods such as the prominent method
of Stokes (1948) are less common nowadays since only non-
overlapping peaks can be deconvoluted reasonably and an
implementation of such methods in Rietveld compatible
approaches is not easily possible.

After this fundamental step one can either try to simulate
and match the physical line profile, for instance with the
WPPM method or measure the line profile breadth using dif-
ferent methods. While there is considerable effort to imple-
ment the full power of the WPPM approach in Rietveld
compatible approaches there are however without doubt still
situations where physical line profile simulation is not the
method of choice, e.g. in complex multiphase refinements
with highly overlapping peak contributions. At the moment
also the choice of anisotropic geometries in the WPPM
approach is rather limited and restricted to some high-
symmetric crystal systems owing to the complex nature of
the CVFs (common volume functions) required for the simu-
lation of accurate physical line profiles. To note that discrete
geometries can however be considered numerically by the pro-
posed algorithm of Leonardi et al. (2012).

The later “measurement” methods have a long history of
application in line profile analysis. The most commonly
derived are the measure of the integral breadth (von Laue,
1936) and the variance (slope) (Tournarie, 1956a, b; Wilson,
1962a) equivalent to the Fourier (Bertaut, 1949a, b) derived
“size”. The attained values, the so-called apparent crystallite
sizes of such measurements, have direct physical meanings
and in most cases differ from each other. The apparent crystal-
lite size εβ derived from the measure of the integral breadth
represents a volume-averaged mean thickness through the
crystallite measured parallel to the scattering vector hkl. On
the other hand, the apparent crystallite size εK from the mea-
sure of the variance slope (or from the Fourier method) repre-
sents a surface or area averaged mean thickness through the
crystallite measured parallel to the scattering vector hkl (e.g.,
Langford and Wilson, 1978). These two measures are thus
directly connected to a size parameter of the crystallite. Both
measures can be related to the diameter of the crystallite
D = 4/3*εβ orD = 3/2*εK. The situation changes when consid-
ering a size distribution of spherical crystallites. Then still the
relations hold 〈DV〉 = 4/3*εβ and 〈DA〉 = 3/2*εK (e.g.,
Langford et al., 2000) but 〈DV〉 is the so-called volume-
weighted diameter and 〈DA〉 is the so-called area (or surface)-
weighted diameter. Those two diameters represent different
moment quotients of the diameter distribution (thus produce
different diameters or size parameters) and can be used to
derive the later distributions if a certain distribution function
type is assumed (e.g., the frequently observed or imposed log-
normal distribution, Langford et al., 2000).

So far, only spherical crystallites are discussed here. The
complexity rises by considering a large fraction of the crystal-
lites to follow a certain morphology (e.g., an ellipsoid, a cyl-
inder, or a cuboid). Numerous examples can be found
concerning so-called nanorods, nanocubes, etc. in the nano-
particle area. Very often the orientation of such morphology
is in equilibrium with the symmetry of the crystal system.

If the crystallites exhibit a certain morphology other than a
sphere and a non-random orientation in the reciprocal lattice,
then the apparent crystallite sizes εβ and εK will be dependent
on the hkl (or more specific be a function of hkl) of the respec-
tive Bragg peak since as stated earlier the average thicknesses

are measured parallel to the scattering vector and will be dif-
ferent for each “direction” of view. This will effectively pro-
duce different breadths (and different physical line profiles)
in dependence of hkl, known as anisotropic (size) peak broad-
ening. Indeed powder diffraction using the Bragg peaks as
information is the only non-imaging technique to provide
such directional size information in contrast to small angle
scattering and PDF (pair distribution function) techniques. A
more detailed yet comprehensive discussion on the apparent
crystallite sizes and influences on the physical line profile is
available, e.g. in Wilson [1962b; chapter IV].

The basic mechanism of the here discussed previously
developed model (Ectors et al., 2015a, b) is to calculate on
the fly both εK and εβ in dependence of the main radii rx, ry,
and rz of geometric shapes (Figure 1) in reference to spherical
coordinates. The corresponding spherical coordinate system is
then oriented in the reciprocal crystal system by defining two
orthogonal reciprocal vectors hkl. In this way, all common
crystal systems can be treated with the exact same approach.
Once the orthogonal coordinate system of the geometric
shape is properly oriented, the corresponding apparent crystal-
lite sizes for each hkl are calculated constrained to the chosen
geometrical shape and orientation.

The respective apparent crystallite sizes can then be used to
directly calculate corresponding parameters of the size-
Voigt-approximation (Ectors et al., 2015b). In this context, it is
important to stress the important benefit of the double-Voigt
approach allowing separate treatment of size and strain by two
individual Voigt functions and the possibility to evaluate both
the respective volume- and area-weighted apparent crystallite
sizes simultaneously. Commonly available integral breadth
methods require a combinationwith Fourier methods tomeasure
both volume- and area-weighted apparent sizes and therefore
depend critically on the accuracy of the two individual methods.

The previously developed model was implemented in the
TOPAS (Bruker AXS Inc., Madison, WI, USA) Rietveld envi-
ronment as an automated macro and is available free of charge
in the supplemental material of Ectors et al. (2015b) (see
TOPAS macros file).

The next paragraph is intended to give practical advice
how to properly parameterize and orient the geometric models
in different crystal systems.

Figure 1. (Color online) Geometric models (1) triaxial ellipsoid (2) elliptic
cylinder (3) cuboid currently implemented in the AnisoCS and AnisoCSg
macro with indicated directions of the main radii rx, ry, and rz (figure
created with OpenSCAD available at http://www.openscad.org).
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III. APPLICATION OF THE MODEL IN THE TOPAS

ENVIRONMENT

The former macro is most conveniently stored in the local.
inc file of the TOPAS environment. The framework consists of
two refinement macros (AnisoCS and AnisoCSg) and two
optional output macros. AnisoCS is the fundamental macro
to call instead of the built-in macros for the isotropic size treat-
ment (CS_L, CS_G, or LVol_FWHM_CS_G_L). AnisoCS cal-
culates the area- or surface-weighted apparent crystallite sizes
for each hkl of a structure (str) or the so-called hkl-phase in
dependence of the chosen geometric model and refineable
main radii in respect to the chosen orientation in the reciprocal
lattice of a phase. For each hkl thus the Lorentzian integral
breadth is strictly coupled to the refinement parameters. The
additional AnisoCSg macro adds the Gaussian component to
the Voigt size function in dependence of a refineable distribu-
tion parameter τ (see Ectors et al., 2015b for more details).

Since the Lorentzian part of the Voigt function always
dominates the size broadening (Balzar and Ledbetter, 1993),
this order is meaningful. Indeed for practical application the
consideration of the Lorentzian part only is frequently suffi-
cient to dramatically improve the fit in case of anisotropic
(size) broadening.

The correct input parameters for the macro are of huge
importance for physical sound results. Therefore, the meaning
of the respective refinement parameters will be discussed in
detail.

The AnisoCS macro is for example called by:
AnisoCS(1, 0, 0, 1, 1, 0, 0, rx, 5, ry, 10, rz, 15, !pc, 0, !tc,

0, !nc, 0, 0).
The first number “AnisoCS(1”, is the choice of geometric

model; 1 for an triaxial ellipsoid; 2 for an elliptic cylinder; 3
for a cuboid (rectangular parallelepiped). One should first con-
sider a symmetry following model.

The following vector “AnisoCS(1, 0, 0, 1,” is the hkl vec-
tor of the Z-axis of the geometric model here (001). The Z-axis
is also the special direction for the flat face of the cylinder
model. The following vector “AnisoCS(1, 0, 0, 1, 1, 0, 0,”
is hkl vector of the X-axis of the geometric model here
(100). One has to make sure that both vectors are orthogonal
to each other since the considered geometric models are
orthogonal.

“AnisoCS(1, 0, 0, 1, 1, 0, 0, rx, 5, ry, 10, rz, 15,” are the
variable names and initial values of the corresponding refine-
able main radii of the models. The parameter names can be
freely chosen or coupled like for example “rx, 5, rx, 5, rz,
15”, in order to restrict the model here to a biaxial ellipsoid.
Constraints can be applied in the normal TOPAS notation,
e.g. “rx, 5 min=1; max=10.” One should again consider the
symmetry of the crystal system.

“AnisoCS(1, 0, 0, 1, 1, 0, 0, rx, 5, ry, 10, rz, 15, !pc, 0, !tc,
0, !nc, 0, 0)” are the variable names and values of additional
rotation of the model and the last “0”) is an orientation help
in triclinic systems. These parameters and values should in
conventional refinements not be modified or refined without
the full awareness of the symmetry and possible cross-
correlations (see Ectors et al., 2015a for details).

In summary, for routine application one should decide or
test [In order to truly be able to differentiate between ellip-
soids, cylinders, and cuboids a good statistic of independent
observation directions (hkl) is needed.] the available models

with meaningful radii parameterization and orientation of
the geometric object according to the symmetry. However,
symmetry breaking cases can also be treated but require a
transformation of the crystal structure to the triclinic space
group P1 (see Ectors et al., 2015a for details) since the multi-
plicities of respective hkl will be broken.

A symmetry following choice can easily be derived from
basic crystallographic knowledge. An elegant way is however
to use the so-called normal_plot option of TOPAS Version 5+
to visualize the refined or modeled morphology directly in
order to judge if physical sound parameterization and orienta-
tion is present. For this purpose, the three considered geomet-
ric models have to be expressed mathematically in spherical
coordinates. What seems an easy task is not as obvious as
one might think for cylinders and cuboids. Derived from the
so-called “superformula” (Gielis, 2003) in two dimensions
and “superellipsoids” (e.g., Barr, 1981) in three dimensions
two adequate approximations were derived for the model
radius in dependence of θ and w as:

For an elliptic cylinder with the radii rx, ry, and rz:

r(u,w) = [|r−1
z cosw|10 + | sinw|10(|r−1

y sin u|2

+ |r−1
x cos u|2)5]− 1

10

(1)

and for a cuboid, respectively:

r(u,w) = [|r−1
z cosw|10 + | sinw|10(|r−1

y sin u|10

+ |r−1
x cos u|10)]− 1

10

. (2)

These formulas can be “tuned” to even better representa-
tions (of the edges) of the geometric models by multiplying
the magnitude of the exponents, but because of possible
numerical overflows the described equations are sufficient
approximations for displaying purposes.

For displaying the ellipsoid, the fact that εK of a triaxial
ellipsoid-shaped crystallite is just another smaller ellipsoid is
exploited in the following macro. For completeness a similar
equation for a triaxial ellipsoid is:

r(u,w) = [|r−1
z cosw|2 + | sinw|2(|r−1

y sin u|2

+ |r−1
x cos u|2)]− 1

2

. (3)

The additional new macro for directly displaying the
refined geometric model PlotAnisoCS for TOPAS reads:

macro PlotAnisoCS
{
‘ellipsoid
normals_plot = If(modx < 2, sizeL*(3/4),
‘cylinder
If(modx < 3,
1/((((Abs((1/cx)*cosphirot))^(10))+((Abs((sinphirot))^(10))*
(((Abs((1/bx)*sinthetarot))^(2)) + ((Abs((1/ax)*costhetarot))^
(2)))^(5)))^(1/10)),
‘cuboid
1/((((Abs((1/cx)*cosphirot))^(10))+((Abs((sinphirot))^(10))*
(((Abs((1/bx)*sinthetarot))^(10)) + ((Abs((1/ax)*costhetarot))
^(10)))))^(1/10))
));}
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Alongside with the Gaussian component (AnisoCSg)
which is important for the derivation of respective size distri-
butions a typical call of the macros for example for the refine-
ment of a biaxial cylinder in a trigonal/hexagonal system
would look like:

str
. . .
AnisoCS(2, 0, 0, 1, 1, 0, 0, rx, 5, rx, 5, rz, 10, !pc, 0, !tc, 0, !nc,
0, 0)
AnisoCSg(tau, 1)
AnisoCSgout(result.txt)
PlotAnisoCS

It is now indeed very simple to identify symmetry break-
ing parameterization of the geometric model and/or orienta-
tion as shown in Figure 2. Only proper parameterization and
orientation will display the expected geometric model and
thus will lead to sound results.

Clearly the normals_plot feature of TOPAS V5+ is not
only a visual benefit, but also a very educative tool since addi-
tionally the plotting feature is aware of orientation thus dis-
plays the orthogonal geometric model in reference to the
real-space lattice vectors (be aware that the orientation vectors
Z and X are always chosen in reference to the reciprocal lattice
vectors). Note also that the normal_plot option produces only
normalized morphologies.

IV. SAMPLE CASE

In order to demonstrate the benefit of a routine treatment
of pronounced anisotropic size peak broadening a commer-
cially acquired hydrated lime sample was measured on a lab-
oratory scale diffractometer and analyzed assuming an
isotropic size model and a cylinder model for the portlandite
phase. Effectively only one additional refinement parameter
was introduced in reference to the isotropic refinement

resulting in a severe drop of the Rwp factor and a clear
improvement of the fit quality as can be observed in Figure 3.

Portlandite being a typical layered structure normal to c*
is often observed to crystallize in pseudo-hexagonal platy
prisms which is in good agreement with the displayed mor-
phology. The refined microstructure parameters indicate a
negligible strain (“maximum strain” e0 of 0.072%) and
respective area (or surface)-weighted cylinder diameter in
the (hk0) direction of 46.9 nm and height in (00l) of 9.6 nm
with volume-weighted counterparts corresponding to 76.0
and 15.6 nm, respectively. The high ratio (1.62) between the
volume- and area-weighted values indicate a rather broad
size distribution. These values and the resulting morphology
should without further evidence always be interpreted as
effective values and morphology, since it cannot be claimed
that the proportions of the aspect ratio is necessarily a constant
in real samples. Technically one would have to consider a dis-
tribution of diameters and heights separately still with the
assumption that the orientation and shape is invariant.

This sample demonstrates how the addition of only one
additional physical sound size parameter efficiently can
improve the fit dramatically as indicated by the reduction of
the Rwp from 7.16 to 4.78% and the RBragg of the used
(room temperature) portlandite structure [space group P�3m1,
refined lattice parameters a 3.5895(1) and c 4.9108(1) Å,
from Henderson and Gutowsky, 1962] from 2.26 to 0.86%.

For completeness the two used initial macro calls:

Isotropic:
str
. . .
AnisoCS(1, 0, 0, 1, 1, 0, 0, rx, 5, rx, 5, rx, 5, !pc, 0,
!tc, 0, !nc, 0, 0)
AnisoCSg(tau, 1)
PlotAnisoCS

For the anisotropic cylinder model:
str
. . .
AnisoCS(2, 0, 0, 1, 1, 0, 0, rx, 5, rx, 5, rz, 5, !pc, 0,
!tc, 0, !nc, 0, 0)
AnisoCSg(tau, 1)
PlotAnisoCS

V. ACCURACY

In this paragraph, the accuracy of the developed model to
physical line profiles is evaluated by fitting simulated data by
means of the WPPM approach as realized in the PM2K
(Leoni et al., 2006) software. In order to evaluate the accuracy
of the Voigt approximation to the line profile using a isotropic
case under common laboratory conditions three different log-
normal distributions widths, from narrow to broad, with three
individual size ranges were simulated in a cubic crystal system
with a step size of 0.01°2θ CuKα using the PM2K software.
Evaluation was done using TOPAS Version 5 with an appropri-
ated so-called hkl phase. The profile calculation and weighting
options of TOPAS were kept to the default setting. The refined
parameters in this casewere the respective radii rx for a spherical
model, the distribution parameter τ and individual scale factors
for the individual peaks. A total of nine simulated distributions
were evaluated with area-weighted sphere diameters of 10, 50,

Figure 2. (Color online) (a) A properly oriented and parameterized cylinder
in a trigonal crystal system. (b) The same cylinder with a wrong
(non-orthogonal) X vector choice. (c) Attempt to fit an elliptic cylinder
model in a trigonal crystal system. (d) Attempt to fit a cuboid model in a
trigonal crystal system.
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and 100 nm and corresponding volume-weighted counterparts
of 1.1 (called narrow), 1.3 (called medium), and 1.5 (called
broad) times the area-weighted diameters, respectively. The
reason to choose those two variation parameters is on the
one hand that approaching the 100 nm region the Bragg
peaks get very narrow frequently cited as being the limiting
“size” for reasonable evaluation. On the other hand, with
the lognormal distributions getting very broad the respec-
tive Gaussian contribution dramatically decreases, leading to
so-called super-Lorentzian peak shapes (Balzar and Ledbetter,
1993). Such behavior is not observed with the other frequently
assumed γ distributions (Popa and Balzar, 2002).

In general, we expect the size evaluation to be reasonable if
the deviation from the simulated value is within approximately
10% relative. Figure 4 displays the results of the derived area-
and volume-weighted sphere diameters. The error bars indicate
the 10% error range from the simulated values.

It can be clearly observed from Figure 4 that all refined
sizes are very reasonably in the range of the simulated values.
Only the results from broad distributions are slightly outside
the 10% criterion. The highest deviation (13.5%) in the
area-weighted diameters is a refined 8.7 nm in respect to
the simulated 10.0 nm. The highest deviation (9.4%) in the
volume-weighted diameter being a refined 135.8 nm in respect

Figure 3. (Color online) (a) Refinement of the hydrated lime sample with an isotropic crystallite size model. Severe misfits are visible for the (010/012/110) peaks
of portlandite at approximately (28.7/47.1/50.8°2θ). Notably a Pawley-refinement does not solve the misfits. (b) Refinement of the hydrated lime sample with the
cylinder crystallite size model. A biaxial ellipsoid model was also tested but resulted in a slightly higher Rwp value of 4.94%. Rexp is 3.09% for both refinements.
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to the simulated value of 150.0 nm. In awareness of the
approximation of the physical line profile by a Voigt function,
the results can be considered very reasonable.

Of course, more interesting in the scope of this paper is
the accuracy when considering anisotropic crystallite sizes,
since the former results also can be obtained using the imple-
mented procedures in TOPAS or with the double-Voigt
approximation, still it is of course of importance to be aware
of the range of approximation of the double-Voigt approach.

In order to evaluate the accuracy of anisotropic cases,
including size distributions two sets of cylinders in a trigo-
nal/hexagonal crystal system were again simulated using the
WPPM approach as realized in PM2K. In this case, lognormal
distributions were chosen to reflect a ratio of 1.2 for the
volume-weighted to area-weighted cylinder diameters and
heights. The cylinder height (00l) to diameter (hk0) ratio
was varied from 0.25 up to 4. The two size ranges were eval-
uated, namely with area-weighted cylinder diameters of 10 nm
(referred to as the 10 nm series) and 50 nm (referred to as the
50 nm series). The fitting results are visualized in Figure 5.

Clearly the results of Figure 5 demonstrate that the refine-
ment method for anisotropic crystallites is in good agreement
with the simulated line profiles. The largest discrepancy in the
height on diameter is observed at the cylinder distributions
with area-weighted diameters of 50 nm with a corresponding
cylinder height of 200 nm (cylinder height on diameter 4).
This demonstrates that the practical limit for reasonable size
evaluation is as often cited in the range of 100–200 nm.

VI. ACCURACY IN PRESENCE OF ISOTROPIC STRAIN

So far, microstrain-free simulations have been evaluated.
The practical difficulty is however often the deconvolution of
size and strain effects. The double-Voigt approach is perfectly
suitable for such deconvolution without further analysis pro-
cedures required. In order to evaluate again in a practical
way the efficiency of the later approach the already considered
distributions of cylinders were resimulated with the inclusion
of isotropic microstrain. For that purpose one can understand
isotropic microstrain as a distribution of lattice parameters.
The simulated isotropic strain contribution was therefore

achieved by inclusion of a discrete symmetric triangular-like
function to the relative d-values as visualized in Figure 6.
The corresponding maximum deviation from the reference lat-
tice parameters is ±0.7% relative.

In Figure 7, the corresponding refined results with a
refined strain contribution (Gaussian & Lorentzian strain con-
tributions freely refined) are visualized.

While the results of 10 nm series display good agreement
the 50 nm series displays still acceptable results, only with the
very high cylinder height (200 nm) showing a deviation out-
side the defined criterion. This can be very well understood
since in the 10 nm series the size effect on the peak broadening
is dominating; however, in the 50 nm series the microstrain
broadening is a very dominant effect as shown in Figure 8.

When neglecting the cylinder distribution with area-
weighted diameters of 50 nm with a corresponding cylinder

Figure 4. (Color online) Results of the fitting of the AnisoCS and AnisoCSg
macros to simulated sphere distributions from the WPPM method. Error bars
indicate the 10% relative error range from the simulated values.

Figure 5. (Color online) Results of the fitting of the AnisoCS and AnisoCSg
macros to simulated cylinder distributions with different height-to-diameter
ratios from the WPPM method. Error bars indicate the 10% relative error
range from the simulated values. Black squares and red dots represent the
attained area- and volume-weighted cylinder diameters, respectively. The
height-to-diameter ratio on the x-scale is constant for both area- and
volume-weighted cylinder diameters (x-scale in log2 scaling for display
purposes).

Figure 6. The used d-value dispersion distribution in order to simulate an
isotropic strain contribution.
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height of 200 nm the results fit very well in the defined 10%
margin. The average derived “maximum strain” e0 of the
10 nm series is 0.19(1)% and for the 50 nm series 0.20(2)%,
which is in reasonable agreement of the expected value from
the simulation of 0.1875% in the e0(FWHM) definition used
by the TOPAS software.

When erroneously no strain is considered very visible
misfits were observed. Inclusion of the strain refinement, e.
g. of the 10 nm series lead to a drop of the Rwp in the range
of 43–88% relative.

The deconvolution of isotropic microstrain in the
double-Voigt approach critically depends on the presence of
at least one well-resolved second-order reflection. Fits without
second-order reflection in the 10 nm series produced maxi-
mum deviations of 43.2, 31.4, and 40.2% for the area-
weighted diameters, volume-weighted diameters, and cylinder

height on width, respectively. Inclusion of only one second-
order reflection reduced the maximum deviations down to
very reasonable 9.8, 4.0, and 5.6%, respectively. This demon-
strates the absolute need of an appropriate angular 2θmeasure-
ment range for meaningful microstructure analysis in general.

VII. LIMITATIONS OR A WORD OF WARNING

In microstructure analysis from powder diffraction meth-
ods, the degree of information available is always limited and
depends on the degree of approximation one is willing to
accept. The assumption that the line profile produced from
the size effect is a Voigt function of course does not hold. It
is a reasonable approximation in most practical cases but
will never be able to produce accurate results in all theoretical
cases. As far as the double-Voigt approximation is concerned
size and morphology effects can be treated with the proposed
model on a physical sound basis and even in the case of iso-
tropic strain deconvolution is reasonably successful. Yet, a
physical account for “anisotropic” strain contribution as intro-
duced e.g. by dislocations or non-uniform lattice parameter
deviations is at the moment not realized to the author’s knowl-
edge in a usable way in the double-Voigt approach though it
may, as far as the line profile approximation methods allow,
be the model of choice.

Even within the 10% relative error scale derived size
distributions can vary very noticeably if a certain distribution
function is postulated since the “measureable” area- and volume-
weighted parameters are ratios of the higher moments of the dis-
tribution. Therefore slight differences in derived distributions
should always receive very careful consideration and in the
best case should be validated against other microstructure anal-
ysis methods or transmission electron microscopy.

The intention of the demonstrated model for anisotropic
size treatment is to account in a physically sound, parameter
efficient, fast and stable way the considered effects in routine
Rietveld refinements.

VIII. CONCLUSION

We have demonstrated the application of the treatment of
anisotropic crystallite sizes with considerations of size distri-
butions and isotropic microstrain in the double-Voigt
approach. Within the area-weighted range of 10–100 nm the
refined results are very well within an approximated 10% rel-
ative error from the simulated values by means of the WPPM
method. In conclusion, this demonstrates that the deviation of
microstructure parameters from common routine laboratory
scale Rietveld refinements can provide meaningful physically
founded results in the double-Voigt approach. In practice
using laboratory scale measurements one can expect the
derived value to be at least within 10–20% relative error
from the “true” values with the proposed method if the
requirements of the data quality, not too broad uniform size
distributions and limiting sizes are met by the chosen experi-
mental measurement parameters and the sample under consid-
eration. Even better accuracy is expected with high-resolution
diffraction instruments, for instance at synchrotron beamlines,
with adequate instrument functions. We sincerely hope that
this article serves as a motivation to report meaningful micro-
structure parameters even in routine application of Rietveld
refinements in a sensitive way. Crystallite morphology, the

Figure 7. (Color online) Results of the fitting of the AnisoCS and AnisoCSg
macros to simulated cylinder distributions with different height-to-diameter
ratios and isotropic microstrain from the WPPM method. Error bars indicate
the 10% relative error range from the simulated values. Black squares and
red dots represent the attained area- and volume-weighted cylinder
diameters, respectively. The height-to-diameter ratio on the x-scale is
constant for both area- and volume-weighted cylinder diameters (x-scale in
log2 scaling for display purposes).

Figure 8. (Color online) Comparison of selected simulated diffraction
pattern of the 10 and 50 nm series displaying the effect of the isotropic
strain contribution. Note that the 10 nm series with and without strain
contribution is almost superimposed.
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size and distributions thereof are a valuable source of informa-
tion, almost exclusively attainable by powder diffraction, often
overlooked or treated in an inadequate way in routine evalua-
tions. The learning curve of the meaningful refinement of aniso-
tropic size effects is certainly greatly decreased with the
proposed macros and visual feedback using the normals_plot
functionality of the TOPAS framework.
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