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Abstract

In this paper, I study how pay-as-you-go pension systems of the notional defined
contribution type can be designed such that they remain financially stable in the presence of
increasing life expectancy. For this to happen three crucial parameters must be set in an
appropriate way: the notional interest rate, the adjustment rate and the annuity conversion
factor. I show that there exist two main approaches to implement a stable system. The first
uses period-specific annuitization and indexation rates that correct for labor force increases,
which are only due to rises in the retirement age which are necessary to ‘neutralize’ the
increase in life expectancy. The second approach uses cohort-specific annuitization and
indexation rates that are larger than in a stationary situation. This is due to the fact that a
continuously increasing life expectancy leads to higher internal rates of return that can be
passed on via the indexation.

JEL CODES: H55, J1, J18, J26
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1 Introduction

Pension systems around the world have come under severe pressure from the two-
sided demographic development: declining fertility rates and increasing life expect-
ancy. The latter aspect is of particular interest, since it represents an ongoing process
with considerable and far-reaching budgetary consequences. For the European Union
(EU)-countries, e.g., life expectancy at birth is projected to increase over the next 50
years by about 7.5 years. This increase is one of the main factors behind the projected
rise in the old-age dependency ratio from 27.8% in 2013 to 50.1% in 2060 (European
Commission, 2015). This development is a particular challenge for pay-as-you-go
(PAYG) pension systems. In their traditional organization PAYG systems are
based on the implicit assumption of a stationary age structure while ideally they
should be designed in such a way as to automatically react to the steady increases

* 1 thank two anonymous referees for valuable comments and suggestions. The views expressed in this
paper do not necessarily reflect those of the Oesterreichische Nationalbank.
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in longevity. This has been emphasized recently by the Organization for Economic
Co-operation and Development (OECD), which states that these life-expectancy
adjustments have ‘a strong claim to be the most important innovation of pension pol-
icy in recent years’ (OECD, 2011, p. 82).

Despite this claim there does not exist much empirical and — even less though — the-
oretical work on the basic functioning, the appropriate design and the main properties
of these automatic life-expectancy-adjustments. In this paper, I study the effects of
increasing life expectancy for notional defined contribution (NDC) systems (cf.
Holzmann and Palmer, 2012). NDC systems are a natural starting point to analyze
the linkage between life expectancy and retirement age since they are explicitly
designed in a way such as to react to demographic changes and since they are the
most popular variant of automatically adjusting PAYG systems. NDC systems
take increases in life expectancy into consideration when the notional capital — i.e.,
the accumulated contributions — are annuitized. Longer life expectancy will, ceteris
paribus, decrease pension benefits, while later retirement will increase them.

In order to study the issue in a systematic way, I use a stylized economic and demo-
graphic model that is presented in Section 2. In Section 3, I describe the basic struc-
ture of NDC systems. I emphasize that it is important to determine the details of the
NDC system in an appropriate manner in order to guarantee a self-stabilizing system.
In particular, there are three important parameters that determine the financial stabil-
ity of a NDC system: (i) the ‘notional interest rate’ (or the ‘rate of return’) that spe-
cifies how past contributions to the pension system are revalued over time; (ii) the
adjustment rate that determines how ongoing pensions are indexed over the years
of retirement; (iii) the ‘annuity conversion factor’ that is used to calculate the first pen-
sion benefit at the time of retirement. The prevailing opinion on this topic is that one
should use the growth rate of the wage bill (or, to be precise, the sum of total contri-
butions) for indexation (i.e., as notional interest and adjustment rates)! and the cohort
(i.e., forecasted) life expectancy in order to determine the size of the pension annuity.?

In Section 4 of this paper, I show that the conventional wisdom is accurate in a situ-
ation with a constant mortality structure and with constant or constantly changing
cohort sizes. For decreasing mortality rates and increasing longevity, however, the
conventional wisdom fails. This is demonstrated in Section 5, where I use a model
with rectangular survivorship, i.e., a situation where every member of a cohort
reaches the cohort-specific maximum age that is increasing over time in a linear fash-
ion (cf. Oeppen and Vaupel, 2002). I show that no combination of the standard
choices for the three crucial parameters is able to implement a stable NDC system
if the retirement age is either constant or proportional to life expectancy.

! “To maintain financial equilibrium, the notional interest rate [...] should be equal to the growth of the
covered wage bill, which reflects average wage growth and changes in the labor force”
(Chton-Dominczak et al., 2012, p. 52). Similar quotes can be found in Borsch-Supan (2003, p. 38) or
Palmer (2012, p. 315).

2 “The second main mechanism, after the correct choice of the notional interest rate, for ensuring the solv-
ency of an NDC scheme involves the application of the correct (future) remaining cohort life expect-
ancy” (Holzmann and Palmer, 2012, p. 24). Similar quotes can be found in Chlon-Dominczak et al.
(2012, p. 43) or Palmer (2012, p. 310).
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In Section 6, I present two alternative specifications of the two indexation rates that
can be used to establish a stable system. The first alternative takes the budget con-
straint of the pension system as a starting point and is thus based on a period perspec-
tive. This is first reflected in the fact that the annuity is calculated by using period
(remaining) life expectancy. Furthermore, I argue that the use of the growth rate of
the wage bill is not appropriate in the case of increasing life expectancy. The reason
for this is straightforward. When average longevity increases then the retirement age
has to rise as well just in order to keep the dependency ratio constant. This ‘neutral-
izing’ postponement of retirement, however, increases by itself the total size of the
labor force even if the size of cohorts is constant. Using the growth rate of the
wage bill would thus grant an ‘excessive’ rate of return. The appropriate notional
interest and adjustment rates have to be corrected for this effect. I show that a com-
bination of these corrected indexation rates and period life expectancy (PLE) as the
annuity conversion factor establishes a self-stabilizing social security system.

A second alternative specification is based on the cohort perspective. In particular,
it can be shown (Knell, 2016) that increasing longevity gives rise to a positive internal
rate of return. A NDC system that uses cohort life expectancy (CLE) as the annuity
conversion factor can use this internal rate of return for indexation without violating
the budget constraint. I show that this approach is also related to the ‘turnover dur-
ation’ (i.e., the difference between the average ages for active and retired individuals) —
a concept that is used in the Swedish NDC system.

The paper mainly uses rather stylized assumptions in order to be able to derive ana-
Iytical results that are useful in discussing the consequences of increasing longevity
and to understand the intuition behind the findings. In particular, I mostly use the
assumptions of rectangular survivorship and I look at two polar cases for the devel-
opment of retirement age (a constant retirement age or a retirement age that moves in
proportion to increasing longevity). In Section 7, I study a number of extensions of the
basic model. Most importantly, I analyze the case of non-rectangular survivorship.
Using numerical simulations it can be shown that the conventional wisdom also
fails under these demographic assumptions while the two alternative approaches
(based on the period and the cohort view, respectively) will again manage to imple-
ment a stable (or at least approximately stable) system. Section 8 concludes.

The related literature includes empirical analyses, simulation studies and also a
small number of theoretical papers. Whitehouse (2007), OECD (2011) and OECD
(2012) contain information about the links between life expectancy and various para-
meters in existing pension systems of OECD countries. Alho et al (2005) and
Auerbach and Lee (2009) use stochastic simulation models in order to evaluate and
compare the risk-sharing characteristics of alternative public pension schemes.
Since these models allow for a stochastic development of mortality rates they also —
implicitly — show how different systems react to changing life expectancy. On the
other hand, these papers do not include a systematic discussion on the working and
the different design features of automatic life expectancy adjustments. Shoven and
Goda (2008) and Heeringa and Bovenberg (2009) are related papers that study how
‘life expectancy indexation’ could be used to stabilize the budget of the public pension
systems in specific countries (the USA and the Netherlands, respectively). The latter
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work also contains a stylized model of the use of changes in the retirement age in
order to balance increases in longevity. The paper, however, does not compare differ-
ent formulations of such an indexation. Andersen (2008), on the other hand, uses a
two-period model to derive that a ‘social security system cannot be maintained by
simply indexing pension ages to longevity’. This contrast to the results of the present
paper has to do with a different modelling of the life cycle. Ludwig and Reiter (2010)
study the optimal policy response of a social planner in the presence of demographic
shocks. Valdés-Prieto (2000) discusses the ability of NDC system to run on ‘auto-
pilot’ but he mainly focuses on the role of changing fertility patterns. Settergren
and Mikula (2005) and Palmer (2012) present results that are related to the ones of
the present paper but they also lack an explicit treatment of the case with constantly
increasing life expectancy.

2 The model
2.1 General set-up

I work with a model in continuous time. In every instant of time 7 a new cohort is
born. The maximum age that a member of cohort ¢ can reach is denoted by o (¢).
The superscript ‘¢’ is used to distinguish the cohort-specific maximum age of cohort
t from the maximum age observed in period ¢, which is denoted by &’ (¢). S(a,?)
gives the probability that a member of cohort ¢ survives to age «. It holds that S(0, ¢)
=1, S(w (), ©)=0 and that survivorship declines with age, i.e., dS(a, t)lda <0 for
a€l0, o (1)). The mortality hazard rate of cohort 7 at age « is given by
dS(a,t) 1

da S, b’
mortality rates, which is the reason why S(a, f) and u(a, f) are not only age-specific
but also include a cohort-specific time index. It holds that:

wa, ) = — In line with the empirical evidence, I allow for changing

ffy(x,t)dx
S(a, ) = eo . (D

As far as remaining life expectancy is concerned one has to distinguish between CLE
and PLE. The first concept uses the cohort-specific mortality rates (which have to be
forecasted in real-world estimations) in order to calculate life expectancy, while the lat-
ter concept is based on current (cross-section) mortality rates that can actually be
observed in period ¢. The formulas for remaining life expectancy at age z are given by3:

o) ¢ ,
filu(x’ ) & Jm v S(aa t) da
‘ = : —Jz TV UTE 5
e(z, 1) j e da o ’ o0
(@) )
Pz f) = e[ —u(x, t—x)dx o fj” (©) S(a, t —a)da o)
o T SGi-2

z

3 These expressions are well-known from the demographics literature. See, e.g., Keyfitz and Caswell (2005)
or Goldstein (2006). For details see also appendix A.

ssaud Ais1anun abpriquie) Ag auljuo paystiand 922000912777 LS/L1L0L 0 L/BIo 10p//:sd1ny


https://doi.org/10.1017/S1474747216000226

174 Markus Knell

where CLE ¢ (z, 1) refers to the cohort born in time ¢ (and thus to period ¢+ z)
while PLE ¢ (z, ¢) refers to period ¢ (and thus to the cohort born in time ¢ — z).

The size of cohort ¢ at age a is given by N(a, t) = N(0, 1)S(a, t), where N(0, ) stands
for the initial size of the cohort. The total population size in period ¢ can then be writ-
ten as:

P40) w’ (1)
N(t) = J N(a,t— a)da = J N, t —a)S(a, t — a)da. 3)
0 0

All members of generation ¢ start to work as soon as they are born and the surviv-
ing members remain in the labor market for R (f) periods, earning a wage W(t + a)
during each of these working periods ,a €[0, R (¢)].* The growth rate of wages
is denoted by g(f), i.e., W(t) = W(0)edo*P% . T abstract here from the existence of
an age-earnings profile and all workers are assumed to earn the same wage at each
point in time. Furthermore, I also abstract from intragenerational differences in
wages and in the retirement age. The only dimension in which members of the
same cohort might differ is their length of life. While working, individuals pay con-
tributions to the PAYG pension system at a fixed rate z. After retirement, they receive
a pension benefit P(a,1) in each period of retirement a € [R° (1), »° (¢)] (given that they
survive that long).

The retirement age is assumed to be non-decreasing over time, i.e., R (¢ + df) > R¢ (¢).
This makes it possible to express all aggregate values in a compact form without the
use of ‘indicator variables’. While R¢ (¢) stands for the retirement age of cohort 7 the
variable R” (¢) denotes the number of working years of the generation that retires in
period ¢. In general it will be the case that w” (f) # »° (¢) and R? (f) # R (¢).

Using these assumptions the total size of the active population L(z) and the retired
population M(¢) in period ¢ can be written as:

R (1) R (1)

L(t) = j N(a, t— a)da = J N, t — a)S(a, t — a)da, 4)
0 0
P (1) P (1)

M) = J N(a,t— a)da = j N@Q, t—a)S(a, t — a)da. ®)
R(D) R(D)

Note that from (3) to (5) it follows that N(¢) = L(z) + M(2).
For later reference it is also useful to look at the average age 4, (f) at which a mem-
ber of cohort ¢ pays the pension contributions and at the average age 4%(¢) at which he

4 This is a short-cut that allows for more compact expressions. In fact, I assume that all individuals start to
work at the same age A and that all members of a cohort reach this starting age, i.e. S(4, #)=1 for
a € [0, A] where a stands for the biological age while ¢ = & — 4 measures the “adult age”. This assump-
tion seems appropriate for developed countries where more than 99% of each generation reach the adult
age while it is more problematic for developing countries with high child and youth mortality rates.
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receives the pension benefit:
(1)
aN(a, t)da o aN(a, H)da
(@04 o = o 0D ©)
R N(a, t)yda

RE(1)
A5 (1) ==

¥ N(a, nda

In contrast, the variables 47, (7) and 4%(f) measure the average age of contributors
and pensioners in period z. They are defined as:

» LI)WZ) aN(a,t —a)da ZI,Eg aN(a,t — a)da
A W(t) = Rp(t) ’ AP(I) = (/)[’(t) . (7)
o N(a,t—a)da R},(r)N(a,t—a)da

2.2 Specific demographic assumptions

In the following analysis, I will often make use of specific assumptions concerning the
development of the crucial demographic processes.

2.2.1 Cohort sizes

Concerning the development of the size of initial cohorts a popular assumption is that
they evolve in an exponential manner:

N(O, ) = N(0, 0)e" = Ne™. 8)

2.2.2 Mortality rates

As far as survivorship is concerned, I make a number of simplifying assumptions that
allow for analytical solutions while at the same time being broadly in line with observable
demographic trends. First, I assume that the development of mortality follows a deter-
ministic process that is perfectly known by all agents. Important issues that arise in
the case of aggregate and idiosyncratic longevity risk are discussed in Alho et al. (2012).

Second, in order to model mortality developments, I use a simple survivorship
curve that resembles a ‘modified de Moivre function’ (Bruce and Turnovsky, 2013):

J
a
S(a, t) = (1 - a)‘—(t)> for a € [0, °(?)], ©)

0 for a > w°(?),

where A > 0. This is a quite flexible specification that contains a number of interesting
nested cases. For /=0, e.g., one gets a ‘rectangular’ survivorship function where
S(a,t) =1 for a €[0, o (¢)]. For this case there are no premature deaths and all cohort
members reach their cohort-specific maximum age w* (¢). In the following I will use
this (unrealistic but convenient) extreme case quite frequently in order to establish
benchmark results. For 2=1, on the other hand, one has the original linear
de Moivre survivorship curve.> Note that for (9) the mortality rates are given by

5> In the demographics literature the cases with A< 1, A=1 and A>1 are called “Type I” (typical for
humans and other large mammals), “Type II” (typical for many species of large birds and fish) and
“Type III” curves (most insects and invertebrates), respectively. Bruce and Turnovsky (2013, p. 1618)
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wa, =M (f)—a). One can use this expression in (2a) to derive that
(see Appendix A):

. (1) — 2
6(271‘):17—}—/1

(10a)

This means that life expectancy depends linearly on the development of the maximum
age o° (7). Note that life expectancy at birth is given by ¢ (0, £) = w° (¢£)/(1 + A) while the
length of life conditional on having reached age z is larger and given by ¢ (z, f) + z =
(0 () + A2)I(1 + 7).

A straightforward way to capture increasing life expectancy is to assume that the
maximum age increases in a linear fashion.® As a third mortality assumption I there-
fore assume that:

@“(t) = v(0) + yt, (11

where 0 <y <1. This assumption is in line with the empirical literature. Oeppen and
Vaupel (2002), e.g., analyze ‘record female life expectancy’ (i.e., the highest value for
female life expectancy reported in any country for which data are available) from
1840 to 2000 and they show that it follows an almost perfect linear development.”
From assumption (11) one can calculate the period maximum life-span ” () from
the relation: o° (t — o’ (¢)) = @” (f). This implies that o (f) — yo” (f) = &’ (f) which
leads to:
IR0
Sy

@’ (1) (12)

For assumption (9) this can be used in (2b) to derive an expression for remaining
PLE:

_U+n@® -2 _o@-0+y)z

ez, t =
0 47+ [

(10b)

The increase in PLE is thus given by de” (z, 1)/dt =y/(1 +y+ 1).8 Empirical studies
(Oeppen and Vaupel, 2002, Lee, 2003) suggest a linear increase in PLE between 1.5

argue that a “realistic” parameter to capture the concave human survivorship would be 4 = 1/2. The most
realistic survivorship function for humans is arguably the Gompertz-Makeham distribution (see Heijdra
and Romp, 2009) that is, however, less analytically tractable than the modified de Moivre function used
in this paper.

Empirically, the increase in life expectancy is not only due to an increase in the maximum age w°(#) but
also due to changes in the shape of the mortality function. For specification (9) this “rectangularization”
of mortality could be captured by a decrease in the parameter A over time. Strulik and Vollmer (2013)
have shown, however, that from the second half of the 20th century onwards improvements in life expect-
ancy have been driven to a large part by expansions of the maximum age.

This finding was, however, challenged by Vallin and Meslé (2009) who —using an enriched dataset—
concluded that the original Oeppen—Vaupel straight line must be divided into several segments that
are characterized by different slopes where each segment corresponds to a major advance in the health
transition. We stick to the constant linear trend in order to simplify the exposition. In Section 7.2, I come
back to this issue.

In the demographic literature there exist a number of papers that have studied the relation between dif-
ferent life expectancy concepts in standard mortality models. Goldstein (2006) and Missov and Lenart
(2011) show, e.g., that under special assumptions (like a “linear shift model” or a Gompertz mortality
model with constant yearly improvements at all ages) period and cohort life expectancy increase in a lin-
ear fashion. The formulation in (11) captures these results in a stylized fashion.

=N

<

=3
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months and 3 months per calendar year, i.e., a slope between 0.15 and 0.25. Using the
midpoint 0.2 of this interval suggests a value of y = 0.25 (for 2 = 0) and y = 0.375 (for 2
=1/2).°

2.2.3 Retirement age

For later discussions, I will often use specific assumptions concerning the development
of the cohort-specific retirement age R (¢): either a retirement age that is proportional
to cohort-specific longevity or a constant retirement age, i.e.:

R(t) = yo' (1), (13a)

or
R() =R (13b)
These processes for retirement behavior are interesting since they allow for closed
form solutions. Using equation (11) one can calculate R” (¢), i.e., the retirement age

in period ¢. It holds that R (t — R” (¢)) = R” (¢) and thus for (13a) one can derive
that R” (1) = (w/(1 + yy)) ©° (¢) while for (13b) one has trivially that R”(f) = R.

2.3 Budget of the pension system

The total revenues /(¢) and the total expenditures E(¢) of the pension system in a cer-
tain period ¢ are:

I()) = tW()L(), (14)
E(1) = P()M(1), (15)
where P(f) is the average pension in time ¢ given by:
@ (1)
- 1
P = M—(t) j P(a,t —a)N(a,t — a)da.

Re(1)

The total deficit (or surplus) is denoted by D(¢) = E(¢) — I(¢) while the deficit ratio d(¢)
is written as:

E
(1) =%. (16)

A balanced budget thus requires that the following condition is fulfilled:
WL = POM(D) (17)
or — equivalently — that D(f)=0 or d(¢) =1, Vt.

® These values are too high when compared with empirical estimations. Wilmoth and Robine (2003), e.g.,
found a rate of increase in the maximum age at death of approximately 1.1 years per decade, which cor-
responds to a value of roughly y =0.1. This indicates that the expansion of the maximum age is not the
only factor that has been responsible for the observed improvements in life expectancy. The rectangular-
ization of mortality (that could be captured by a decrease of 1) certainly also played a role. I abstract
from these second driving force for reasons of simplicity.
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3 A NDC pension system

Thus far I have left open how the pension levels P(a, t — a) of the various retired cohorts
at a certain period ¢ are determined. In the real-world one can observe a wide variety of
alternative approaches including flat demogrants, defined benefit and defined contribu-
tion systems. In this paper, I focus on the NDC system that has been implemented first
in Sweden and has later been also adapted by a number of additional countries like
Italy, Poland, Latvia, Mongolia, Turkmenistan etc. It is now also often used as a bench-
mark PAYG model by international institutions like the World Bank (Holzmann and
Hinz, 2005), the OECD (2011) or the European Commission (2015).1°

3.1 Formal expression of a NDC system

The contributions in a NDC system are credited to a notional account and in period ¢
they are revalued with a ‘notional interest rate’ p(a, ) (that is allowed to change over
time ¢ and across age groups a). The total value of this account is called the ‘notional
capital’ that accumulates over the working periods of an insured person. When the
surviving members of cohort ¢ retire at age R (¢) the final notional capital is given by:

R(t) RE(1)
. p(s,t+s)ds
K(R(D), 1) = j tW(t+ x)e > dx, (18)
0
. Ko (s,t+s)ds . 4. . .
where the cumulative factor ef » P indicates how the contribution tW/(¢ + x)

that is paid into the pension system in period (z+ x) is revalued when calculating
the final amount of the notional capital in period (¢ + R(¢)), i.e., the period of retire-
ment. The notional interest rate is a crucial magnitude in a NDC system and I will
discuss alternative specifications below.

The first pension P(7) that is received by a (surviving) member of cohort ¢ is given
by:
K(R(1), 1)

Fpy = ¢ =
PR = PR 0 = T reny

(19)
The first pension is calculated by taking the final notional capital K(RC (¢), ) and
turning it into an annual pension payment by using the annuity conversion factor
I'(R® (¢), t), which is based on remaining life expectancy. One can use either CLE
or PLE to calculate this annuity conversion factor, which is again an important par-
ameter choice in NDC systems to which I will return later.!!
Existing pensions are adjusted according to:

( (s, t+s)ds
P(a, t) = PF(t)eo , (20)

10 Detajled descriptions can be found in Palmer (2012) or Chton-Dominczak et al. (2012).

"' Tn order to keep the analysis simple, I abstract here from the issue of front-loading as is currently used in
Sweden. Under this regime a real growth rate of 1.6% is used to “frontload” part of the expected pension
adjustments thereby increasing the initial pension. Existing pensions are then only adjusted with the dif-
ference between the actual growth rate and this stipulated growth rate of 1.6%.
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for a € [R° (7), o° (1)], where 3(x, ¢) stands for the adjustment rate in period ¢ for the
cohort that is x years old and the cumulative adjustment factor exp (f‘;e( ( I)S(s, t + 5)ds)
indicates how the first pension P” (¢) is adjusted to give the pension payment in period
t+a.

Inserting equations (18), (19) and (20) into (15) and using N(a, t) = N(0, )S(a, 1)
and (1) leads to the following expression of total pension expenditures E(f) =

o .

f R,,Eg P(a,t — a)N(a, t — a)da (see Appendix B):
R¢(t—a)

R(t—a) f (p(s,t—a+s)—g(t—a+s))ds

ool [ e dx
E(t) =tW(t 0
(= j T(R(— a), 1 — ) )
e 1)
f (I(s,t—a+s)—g(t—a+s))ds j‘(f;t(x,tfa))ds
ereia N, t — a)e® da.

3.2 Crucial choices in NDC systems

Expression (21) for E(¢) indicates that a NDC system requires the setting of three
parameters: the notional interest rate p(«, ¢), the adjustment rate 3(«, ¢) and the annu-
ity conversion factor I'(a, t). The question is, whether these parameters can be defined
in a simple and transparent way such that (21) is equal to the revenues of the pension
system given by (14), i.e., I(¢) = tW(¢)L(z). 1 focus first on the choices that are discussed
in the related literature and that are used in real-world systems.

As far as the annuity conversion factor is concerned, there exist two possibilities. It
can be based on cohort (forecasted) or on period (cross-section) life expectancy:

I'(a, 1) = e(a, 1) (22a)
or
[(a, 1) = e’(a, t + a), (22b)

where I'(a, ) stands for the annuity conversion factor for cohort # when it retires at age a.

As far as the notional interest rate is concerned the proposed definitions are typic-
ally related to three elements: First, to the growth rate of productivity (or of average
wages), second to the growth rate of the labor force and third to the ‘inheritance gains’
(i.e., to the distribution of the account values of deceased cohort members). 1 will
focus on two benchmark definitions: an indexation with the growth rate of average
wages and one with the growth rate of the wage bill. Both notional interest rates
also correct for the inheritance gains u(a, t — a):

pla, t) =g" (1) + ula, t — a) (23a)
or

pla, ) =g" () + g"(0) + ua, t — a, (23b)
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where g (1) = W))W (1), g-(t) = L(t)/L(t), W(t) = dW(t)/dt and L(t) = dL(t)/dkt.

From the definition of W(f) = W(O)ef 0¥ 3¢ follows that " (1) = ().

For the adjustment of ongoing pensions 3(«, ), I will look at two variants that are
parallel to the notional interest rate formulas in equation (23). The only difference is
that in these cases there are no inheritance gains and thus the formulas reduce to:

Sa, ) =g" () (24a)
or

a, v =g" )+ gh). (24b)

It will often be insightful to focus on cases where the adjustment rate is equal to the
notional interest rate (except the inheritance gains), i.e., 3(a, t) = p(a, 1) — u(a, t — a).
In Section 5, I show that there exists no combination of equation (22), (23) and (24)
that leads to a generally stable system for increasing life expectancy. In Section 6, 1
therefore go beyond the standard specifications and I present two additional specifi-
cations of the notional interest rate ((23c) and (23d)) and the adjustment rate ((24c)
and (24d)) that can be used to implement a stable NDC system.

Obviously, the development of the retirement age R° (¢) is also a crucial determin-
ant of the stability of NDC systems. It is, however, the result of individual decisions
that can only be influenced but not entirely selected by the policy-makers. I therefore
do not treat the retirement age as a policy variable but rather analyze the evolution of
the budget under the two polar assumptions of a constant retirement age (13b) and a
retirement age that increases in proportion to the increases in life expectancy (13a).
An appropriate NDC system should be able to cope with both retirement patterns.

4 Constant longevity

A natural starting point for discussing the financial stability of NDC systems is a sta-
tionary demographic situation with constant (or constantly changing) cohort sizes, a
constant retirement age, constant longevity and stable survivorship and mortality
rates. The latter assumptions imply that it does not matter whether remaining life
expectancy is based on cohort or on period values and that the two annuity conver-
sion factors (22a) and (22b) coincide. The following proposition summarizes under
which conditions a NDC system will remain stable in a stationary demographic
constellation.

Proposition 1 Assume that the maximum age is constant (o (f) = o’ (1) = w), the
mortality rates are time-independent (u(a, t) = u(a)), the cohort size is constant or con-
stantly changing (N(0, {) = Ne™) and the retirement age is constant R° (f)= R. In this
case a NDC system will be in continuous balance (d(t) = 1, Vt) if the notional interest
rate and the adjustment factor are set according to (23b) and (24b), i.e., p(a, t)=g" (1) +
g" (1) + p(a) and 3(a, ) = g" (1) + g-(0).

Proof. For a complete proof see Appendix C.

Here, I want to sketch the proof for rectangular survivorship (assumption (9) with
A =0) since it is also instructive for understanding the challenges NDC systems face
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in the presence of increasing life expectancy. For A =0 assumption (8) implies that
g% (1) =n and one can write equation (21) as:

w R I

j-R EL ndsdx Jl”ds

E() = er(l) Oa)—R er e "N(0, 1) da
_ _——
” Adjustment Size of
Factor cohort t—a
First
Pension

(&)

=tW({@®N(Q, 1) j
R

R n(R—x)
fO ¢ X en(a—R)e—na da

e an

= d
w—R “

— tW()N(O, 1)

X —— 8

R
=tW({)N(, t)je_"xdx =tWQ)LG) = 1(0),
0

where the last equality follows from the definition of L(¢) = N(O, t) IOR e "dq. ™

The constantly balanced budget is due to the fact that under the assumptions of a
stationary demographic structure various terms in the formulas for expenditures E(7)
and revenues /(¢) cancel. First, the total pension volume is the same for each retired
cohort. This follows from the fact that each cohort starts with a first per-capita pen-
sion P’ (7) that is in later retirement period adjusted to yield P* (1)e"“~®. But since
older cohorts are smaller (for n > 0) the total volume of pension payments P* (r)e"“~®
e N(0, £)= PF (t)e™"® N(0, 1) is the same for each of the (w — R) retired cohorts. The
notional capital, on the other hand, depends (via the notional interest rate) on the
growth rate of the labor force during the R working periods. It is given by: 7 W (¢) x
fg e dx and this just happens to be proportional to the size of the current labor
force (which is due to the assumption of a constant population growth rate n).
Finally, remaining life expectancy (that is used to calculate the first pension P* (7)) is
(w — R) and this is just equal to the number of retired cohorts (which is due to the
assumptions of constant retirement age and constant life expectancy). In the
Appendix, I show that the same logic also holds true for a constant mortality pattern
u(a) while, on the other hand, it does not hold if the notional interest rate is based
on the growth rate of average wages.

The financial sustainability of a benchmark NDC system, however, is only true for
the specific assumptions of proposition 1, i.e., only for the stationary demographic
environment (possibly with # # 0) and it no longer holds if, e.g., cohort sizes or retire-
ment ages are determined in an irregular manner.!? Finally, and most importantly,
financial stability of a standard NDC system is no longer guaranteed if life expectancy
increases, which will be discussed in the next section.

12 This has already been emphasized in an early article on the financial (in)stability of the NDC system by
Valdés-Prieto (2000). See also the comment by Breyer (2004).
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5 Increasing longevity

In this section, I am going to analyze whether the conventional choice, i.e., the use of
the growth rate of the wage bill for indexation, also guarantees financial sustainability
in the scenario with increasing longevity. In order to focus clearly on the issue of
increasing life expectancy, I will assume in the following that the size of birth cohorts
is constant, i.e., n =0 or N(0, )= N (see assumption (8)). Furthermore, I will start
with the most simple case of mortality and assume a rectangular survivorship func-
tion, (i.e., assumption (9) with 4 =0). In this case all members of cohort ¢ reach the
cohort-specific maximum age w (f). This assumption leads to simple expressions
for the central demographic variables: the size of the employed and retired population
L(t)=R? (t)N and M(¢) = (o’ (t) — R? (¢))N, life expectancies ¢ (z, 1) = o (t) — z and
& (z, H=(@° ()= (1+yp)2)(1+y)=e” (f)—z and the indexation rates p(a,t) =
Ha, 1) = g"(¢) (for the average wage concept) and p(a, ) = %(a, 1) = g (H) + g~ (9
(for the wage bill concept). In Section 7.1, I deal with the case where survivorship
is non-rectangular (1 > 0).

In the next subsection it is shown that the use of the growth rate of the wage bill will
not safeguard financial stability and that in fact no combination of the standard par-
ameter choices will lead to a balanced budget for different patterns of retirement. In
Section 5.2, I will provide intuition for this result from two angles: one based on the
period view (of the system) and one based on the cohort view (of the insured individ-
ual). These considerations will then be used in Section 6 to derive rules for the deter-
mination of the notional interest rate, the adjustment factor and the annuity
conversion factor such as to implement a stable NDC system

5.1 Failure of standard NDC systems

Proposition 2 Survial curves are assumed to be rectangular (assumption (9) with 2.=0).
If the maximum age and life expectancy increase (assumption (11) with y> 0) then there
exists no combination of the two notional interest rates ((23a) or (23b)), the two adjust-
ment factors ((24a) or (23b)) and the two annuity conversion factors ((22a) or (22b))
that leads to a constantly balanced budget when retirement ages can develop either accord-
ing to process (13a) or to process (13b).

Proof: See online Appendix D.

The failure of conventional NDC systems can be gauged by looking at Tables 1 and 2
where I report the implied deficit ratio d(f) for each of the eight possible combinations
of the crucial parameters.!3 In Table 1, T use the assumption that the retirement age is
proportional to cohort-specific longevity, as expressed in assumption (13a), i.e., R (£) =
ww' (f). This seems to be a ‘natural’ and intergenerational equitable reaction to the con-
tinuous increase in life expectancy where for every generation the proportion of retire-
ment years to working years stays constant at (w° (£) — R (£))/(R° () = (1 — y)ly.

13 In the tables, I sometimes report first-order approximations around y = 0. This is a crude approximation
(presented for illustrative purposes) since empirically plausible values are in the range between y=0.2
and y=0.3. In the Appendix, I also report second-order approximations and numerical evaluations.
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Table 1. The deficit-ratio for an increasing retirement age (A =0)

Cohort life expectancy Period life expectancy

Notional interest rate

Average wages Wage bill Average wages Wage bill
Adjust. rate
Average wages /(1 +y) 1 —R2)2—-vw) 1 ~1+GR)y
Wage bill ~1—@2)1+y) ~1—(y2) ~ 1+ 2) (1 —y) ~1+72)

Note: The table shows the deficit ratio d(¢) = E(¢)/1(t) for various assumption about the notional
interest rate, the adjustment rate and the annuity conversion factor. The annuity conversion fac-
tor based on cohort (period) life expectancy is defined as in (22a) [(22b)]. The notional interest
rate is given by (23a) or (23b) and the adjustment rate by (24a) or (24b). Furthermore, it is
assumed that retirement age increases in a linear fashion according to R¢ (1) = yw® (?).

Table 2. The deficit-ratio for a constant retirement age (A=0)

Cohort life expectancy Period life expectancy

Notional interest rate

Average wages Wage bill Average wages Wage bill

Adjust. rate
Average wages In(1+yply=1—(2) (1 +pIn(1 + )y~ 1+ (y/2)
Wage bill

Note: The table shows the deficit ratio d(¢) = E(¢)/I(¢) for a annuity conversion factor that is
based on either CLE or PLE as defined in (22a) and (22b). The notional interest rates
and the adjustment rates are the same for the average-wage and the wage-bill concept since
g¥ () =0. This is due to the assumption that the retirement age is constant, i.e., R°(f) = R.

Only one of the eight combinations is associated with a balanced budget and a sta-
tionary deficit ratio of d(¢) = 1. This is the constellation where the notional interest rate
and the adjustment rate follow the growth rate of average wages and the annuity con-
version factor is based on PLE. This is an interesting contrast to the recommendations
in the literature that suggest that the most appropriate NDC design involves a com-
bination of CLE (cf. (22a)) and the growth rate of the wage bill (cf. (23b) and (24Db)).
The use of this combination, however, would lead to a deficit ratio that is approxi-
mately equal to d(f)~1—(y/2). This is a non-trivial magnitude. For a realistic
value of y=0.25 it would amount to a deficit ratio of about 0.875 or — in other
words — to a permanent surplus of 12.5%. A similar (somewhat larger) surplus of
d(t) ~ (1/(1 + vy)) arises if one uses CLE together with average wage growth. The use
of CLE (as frequently recommended for NDC systems) is thus ‘overambitious’ as it
will lead to excessively small annuities that cause a permanent surplus in the budget.
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The intuition for this result is the following. CLE is a forward-looking measure while
the budget of the social security system is a period, non-forward-looking measure. Put
differently, the budget is related to current and not to future pension payments and it
is thus sufficient to use PLE for the calculation of the annuity if this is combined with
an appropriate notional interest rate. I will elaborate on this issue in Section 5.2,
where I will also explain why for this example the appropriate notional interest rate
corresponds to the growth rate of average wages.

It is certainly an optimistic scenario to assume that retirement age always adjusts in
lockstep with the increases in life expectancy. As the opposite (very ‘pessimistic’)
extreme one could also assume that the retirement remains constant despite the
advances in longevity as expressed in assumption (13b), i.e., R°(f) = R. Note that
in this case the labor force is constant (g~ ()= 0) and thus the two notional interest
rates and adjustment factors coincide and are given by p(a,t) = Xa, t) = g% (®).
Therefore Table 2 just contains two cases, one for an annuity conversion factor
based on PLE and one based on CLE. Neither of these two cases is associated
with a balanced budget. Using PLE one can calculate that d(f)~ 1+ (y/2). This
seems to confirm the belief that the use of PLE is not enough to keep a NDC system
in balance. The use of CLE (22a), however, as is often suggested as the better alternative
is also not appropriate as it leads to a permanent surplus with d(f)~ 1 — (y/2). The
punchline of this consideration is that in the case of constant retirement ages and a
notional interest rate p(a, 1) = 9(a, 1) = g"(£) both methods of calculating the remain-
ing life expectancy for annuitization at the time of retirement lead to an unbalanced
budget. The first method is too ‘generous’ causing persistent deficits while the second
method is too ‘harsh’ leading to ongoing surpluses.

Taking together, the results of Tables 1 and 2 thus complete the proof of propos-
ition 2. None of the analyzed combination of the three crucial parameters is compat-
ible with a constantly balanced budget if the retirement age can evolve either
according to R° (¢) =y (¢) or according to R‘(f) = R. In fact, it can be shown
that the same result holds if retirement age is a linear combination of (13a) and
(13b), i.e., R(t) = cp‘(t) + (1 — R, for 0 < ¢ < 1.

5.2 Intuition

There are two ways to provide intuition for the failure of the conventional wisdom in
the presence of increasing longevity. One is based on the viewpoint of the system — the
period perspective — while the other is based on the viewpoint of the insured individual
— the cohort perspective. I am going to discuss both approaches in the following.

5.2.1 Period perspective

Why is it the case that for assumption (13a) with R® (f) = yw° (¢) the use of average
wage growth as indexation and PLE for annuity conversion leads to a balanced bud-
get with d(¢) = 1? In order to see this, one can use the balanced budget condition (17),
ie., tW()L(f) = P(t)M(?). This condition can be transformed to deliver a pension
payment that will (almost trivially) implement a constantly balanced budget for a
PAYG system. This ‘generic’ (i.e., non-NDC) pension simply assigns each retiree in
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period ¢ an identical benefit level P(a, t — a) = P(f) given by:
5 L(?)

POy=tW () ——. 25
() = W (1) M) (25)
For the case with R (f) = yw* () (see Table 1) the NDC system where the notional
interest and the adjustment rate are equal to average wage growth just implements
this flat ‘generic’ pension P(7). This can be seen by noting that for p(a, 7) = g(¢) the
first pension of the cohort born in (f—a) is given Dby

RY(1 —

Pi(t—a)y=tW(t— a)F(R"(t(—la),at)— 3 This reduces to P’T(l—a):rW(z—a)1 f{/j
. . - _ y(1+7y)

(when the conversion factor is based on CLE) or P'(t —a) =tW(t— a)li

(for PLE). On the other hand, the use of the adjustment rate 9(a, ) = g(¢) implies
that these initial pensions are indexed in such a manner that in period ¢ every
pensioner has an equal pension given by P(a,t—a) = rW(t)W(lli—i_;m where y=0
(for CLE) and y=1 (for PLE). Comparing these NDC pensions with the flat generic

oz L(2) p(d+y)
pension P(f) = TW([)M—(Z) =W () I~y
magnitudes are identical and thus that the use of PLE for annuity conversion will lead
to a constantly balanced budget.

Put differently, the use of the growth rate of the wage bill g" (¢) + g" (¢) for index-
ation would be inappropriate since the increase in the labor force g” () is not due to
growing cohort sizes but rather a necessary reaction to increasing longevity in order to
hold the dependency ratio constant. On the other hand, however, the use of CLE for
annuity conversion is ‘overambitious’ to achieve budgetary balance in a NDC system.
By using CLE the NDC implicitly assumes that there are as many retired cohorts as
there are years of remaining life expectancy. In a stationary demographic constellation
this assumption is correct. For example, if w =60 and R=40 then remaining life
expectancy is 20 and at the same time there are always 20 retired cohorts. For increas-
ing longevity, however, this equivalence is no longer true and when the cohort with 20
remaining years retires there will be less (e.g., only 18) retired cohorts. By slicing the
notional capital in 20 pieces the NDC would do more than is necessary to achieve a
stable budget. The use of PLE works as if the conventional annuity calculation is aug-
mented by a factor of 1 + y to compensate for the gap between period and cohort mea-
sures. Similar arguments also hold for the case when R°(f) = R and I come back to
this discussion in Section 6.1.

one can conclude that for y =1 the two

5.2.2 Cohort perspective

A different way to look at this issue is by focusing on the individual perspective. For
the case with R () = ww° (¢) and assuming (for the sake of simplicity) that wages are
constant (W(¢) = W) the total contributions paid by a member of cohort ¢ are given by
TC(t) = tWR° (t) = tWyw° (). For the ‘generic pension system’ that pays a flat benefit
L) _ v+
M) 11—y

of P(1) = W the total benefits received by a member of cohort ¢
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come out as TB(7) = P(t)(w°(t) — R(1)) = tWy(l + p)w°(r). The ratio of total benefits
to total contributions is thus given by 1 + y. For increasing longevity (y > 0) the total
benefits received by insured individuals outstrip the total contributions they have paid.
This can be viewed as a special ‘biological interest rate’ as I have discussed in Knell
(2016).

One can also derive an approximation for the implied internal rate of return. For
this purpose assume that an individual born in ¢ pays all contributions at the average
age of working life 45, (f) and receives all pension benefits at the average age of retire-
ment A%(?) (see equation (6)). The cohort-based internal rate of return ¢° (¢) can then
be calculated from T'C(f)e” OUARO=4y ") = TB(¥) or:

 (TBO)
n(TCQD

A1) — A5, (1)

o(n) = (26)

For rectangular survivorship (A = 0) the average working age is R (1)/2, the average
retirement age (o () + R° (1))/2 and A%(1) — A5, (1) = w°(2)/2. For the case with R* (¢)
=y (t) where TB(¢)/TC(t) = 1 +y one can thus derive that ¢° () = 2In(1 + y)/w° (¢) ~

2ylw® (¢). For the case with R°(f) = R, on the other hand, the generic pension in period

L) =1 R —. For an individual born in time ¢ the
M(1) wP(t)— R

t amounts to 13(t) =t

ratio of total benefits to total contributions is given by TB(t)/TC(t) =

¢ R
“’”g/% @ = which reduces to TB@TC() = (1 +yin(l + ). The
T

internal rate of return can then be calculated as ¢° (¢) = 2In((1 + p)In(1 + )y ()~
ylw® (f). It is thus only half as large than for the case with an increasing retirement
age but still positive.

The reason for the positive internal rate of return even in the case of a constant
retirement age has again to do with the difference between PLE and CLE. Each pen-
sion benefit can be somewhat more generous than in a stationary situation since the
number of retired cohorts at the start of retirement is smaller than the remaining
life expectancy of the retiring cohort. For the case with R® (¢) = ww° (¢) there is the
additional advantage that the continuous postponement of retirement enlarges the
size of the PAYG system and thus produces ‘windfall gains’ that double the
internal rate of return of all cohorts. This is analyzed and explained in more depth
in Knell (2016).

The above derivation for the internal rate of return has been based on the generic
pension system with P(f). One would, however, conjecture that each NDC system that
manages to implement the same internal rate of return (¢ (¢) = 2y/w° (¢) for R° (f) =
wo (f) and o° () = ylo° () for R°(f) = R) might also be a candidate for a system with a
balanced budget. This is the topic of Section 6.2.
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6 Stable NDC systems

One can use the considerations from above to derive rules for stable NDC systems. |
will again distinguish between approaches that are based on the period and the cohort
perspective. The aim is to find general rules that subsume the solutions for the two
specific retirement assumptions as special cases.

6.1 A rule based on the period perspective

The starting point is the observation that with increasing longevity an increase in the
retirement age is a necessary requirement to keep the dependency ratio M(¢)/L(t) con-
stant. In general, this increase in the retirement age will also lead to an increase in the
labor force and it appears unjustified that this ‘necessary’ and ‘appropriate’ increase in
the labor force should lead to a higher notional interest rate as would be the case if
one uses the growth rate of the wage bill (cf. (23b)) as the relevant concept. It
seems more reasonable to propose a new concept that defines the notional interest
rate as the growth rate of the wage bill corrected for the necessary increase in retire-
ment age due to increasing life expectancy. This leads to an additional concept for the
determination of the notional interest rate and the adjustment rate:

pla, 1) = g" (1) + g“(0) + uia, 1 — a) — g% (0), (23¢)
Ya, 1y = g" @)+ g“ (1) — gX" (0, (24¢)

where g% " (¢) is the growth rate of the period retirement age R”” (¢) that is necessary
to hold the dependency ratio M(z)/L(¢) constant.

For the case with 1 = 0 the dependency ratio is given by M(z)/L(t) = («” (£) — R? (1))/
R? (7). A constant dependency ratio thus requires that the retirement age increases at
the same speed as life expectancy, i.e., g% (£)=g™ (1) = y/(1 +y)a" () = plo* (7). In
this case the two indexation rates are thus given by p(a, 1) = 3(a, ) = g"'(t) + g~ (1) —
(y/w* (1)) (the inheritance gains u(a, t — a) drop out of (23c) due to the fact that 1 =0).

One can derive the deficit ratios for these indexation rates together with an annuity
conversion factor based on PLE. For R () = o (¢) we already know the result since
in this case the individuals make the necessary adjustments in their retirement age
such as to keep the dependency ratio constant. This means that in this case g~ (1) =
(y/w° (¢)) and the rules (23c) and (24c) reduce to p(a, ) = Ha, t) = g" (1). As reported
in Table 1 the use of average wage growth indexation together with an annuity con-
version based on PLE leads to a balanced budget with d(¢) = 1. It is interesting to note
that this parameter constellation corresponds to the actual Swedish NDC system. It
has been argued that the Swedish system is unstable by design since it deviates
from the conventional wisdom and uses the growth rate of average wages (instead
of the wage bill) for indexation and remaining PLE (instead of CLE) as annuity con-
version factor. The result of this section, however, suggests that this constellation is in
fact the appropriate choice if the retirement increases in line with life expectancy.

For a constant retirement age (R°(f) = R) the labor force stays constant (g* () = 0)
and thus the corrected growth rate of the wage bill (23c) is given by
pla, ) = 9(a, ) = g"(t) — y/(w°(£)). When this indexation is combined with an
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annuity conversion factor based on PLE the deficit ratio is given by (see online
Appendix D.2):

d(t) =

R <(2 +pnd+y)

1)+1~1,
wP (1) 2y >+

where the approximation is around y = 0. As for the case of increasing retirement the
combination of (23c) and (22b) leads to a budget that is (approximately) balanced
in every period. The error of approximation in this equation is rather small.
Using y=0.25, R =45 and o° (0) =60 one gets an exact value of d(0)=1.0039,
i.e., expenditures exceed revenues by 0.39%. This is the amount that has to be chan-
nelled to the pension system from the general budget in order to keep it stable. This
is a rather modest amount, in particular when compared with the alternative meth-
ods. The use of PLE and the (uncorrected) growth rate of the wage bill leads to a
permanent deficit ratio of 11.6 % while the use of CLE gives rise to a permanent
surplus of 10.7%.

A constant retirement age in the presence of a continuously increasing life expect-
ancy is certainly an unrealistic assumptions that is mainly studied because it is the
extreme case of sluggish retirement behavior. As life expectancy increases the annual
pension benefit gets smaller and smaller and in the end the pension system stops to
fullfill its main purpose to provide sufficient resources for old age. This long-term
development implies that the case of constant retirement should be viewed as a
thought-experiment that is empirically relevant only in a short-run perspective.
Sooner or later the retirement age (or the contribution rate) has to increase in order
to counteract the increase in longevity.

6.2 A rule based on the cohort perspective

A second possibility to implement a stable NDC system involves the combination of
an annuity conversion factor based on CLE and the cohort-based internal rate of
return as derived in Section 5.2.2. For the retirement pattern R° (¢) = ww® (f) and
2 =0 this means that the indexation rates are given by p(a, 1) = Xa, ) = g () +
2y/w°(t) while for R°(f) = R they are given by p(a, t) = ¥a, t) = " () + y/o (). In
the online Appendices D.1 and D.2 it is shown that this indexation leads to a
deficit ratio of d(z) =1 for the increasing retirement age and approximately d(f) =1
for the constant retirement age. The intuition behind this result is that by using the
internal rate of return as the indexation rates the system exactly distributes the avail-
able amount of resources such as to maintain financial stability.

One can also use a different line of thought to arrive at the same conclusion. This
approach is based on the concept of ‘turnover duration’ that is also employed in the
Swedish model. This approach is discussed in Settergren and Mikula (2005) who start
their analysis of NDC systems with the notion of the ‘pension liabilty’ defined as ‘the
present value of future pension benefits to all persons to whom the system has a liabil-
ity at the time of evaluation, minus the present value of future contributions by the
same individuals’ (p.119). They show that in a stationary situation it holds that
PL(t)= I(t)TD(t), i.e., total pension liabilities PL(t) of the system are equal to the
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product of total revenues I(¢) = tW/(¢)L(¢) and the ‘turnover duration’ TD(z). The latter
magnitude is defined as the difference between the average age of retirees and the
average age of contributors (see equation (7)), i.e., TD(t) = A%(t) — A4, (¢). “The turn-
over duration indicates the size of the pension liability that the present contribution
flow can finance, given the present income and mortality patterns’ (p.122). It corre-
sponds to the length of time it takes on average from the payment of pension contri-
butions to the receipt of pension benefits. In the online Appendix E, I derive the
expression PL(t) = I(t)TD(¢) for rectangular survivorship and increasing retirement
and maximum ages.

The growth rate of total pension liabilities is given by g©* () = g’ (1) + g"” (¢). Since
the revenues of the system grow at rate g’ (1) =g" (r) + g" (¢) this can be written as
g @=¢" @)+ g" ()+g"™ (7). One could thus conjecture (even for 4> 0) that a
stable NDC system can be implemented when both the notional interest rate and
the adjustment rate follow the development of total pension liabilities. This is cap-
tured in the following expressions:

pla, t) =g" () + ")+ wa, t — a) + g™ (1), (23d)
Na, ) =g" (@) +g"t)+ g™ ). (24d)

For the case of rectangular survivorship (A =0) it holds that TD(f) = «” (£)/2 and
g'? ()= @lo° (1)). For R° (1)=ww° (1) one has that g“ (1)=(/w’ (1)) and thus
pla, ) = 9(a, ) = g" (1) + 2y/w(1)). For R(f) = R, on the other hand, it holds that
g" (=0 and thus p(a, 1) = $a, £) = g" () + (y/w°(£)). These are exactly the expres-
sions stated above that lead to a balanced (or approximately balanced) NDC system.

6.3 Additional rules

The stable NDC systems of Sections 6.1 and 6.2 are characterized by the fact that the
adjustment rates are equal to the notional interest rates, i.e., ¥(a, 1) = p(a, t). It is inter-
esting to see whether there exist additional parameter constellations where this equal-
ity does not hold and that are also associated with a balanced budget. In particular, I
continue to focus on the case of rectangular survivorship and assume that p(a, ) =
g"” (1. T now look at a specification of the adjustment rate 9(a, 7) that is compatible
with a balanced system.

For R® ()= ww® (1), rectangular survivorship and an annuity conversion factor
based on PLE the answer is already known and contained in Table 1. In this case
an adjustment rate given by Xa, 1) = p(a, t) = g" (¢) leads to a stable deficit ratio of
d(t)=1. Using an annuity conversion factor based on CLE it can be shown (see the
online Appendix D.1) that a choice of 3(a, ) = g" () + 2y/(w(£) — R(1)) = g" (¢) +
2y/((1 — w)w“(1) leads to an approximately balanced budget. For R°(f) = R, on the
other hand, one can show (see the online Appendix D.2) that the same is true if
one chooses Ha,t)=g"({t)+y/(w(t)—R) (for CLE) and a,1)=g" () —
7/(0(t) — R) (for PLE).

In Tables 3 and 4, I summarize all methods discussed so far that lead to a stable or
an approximately stable system for rectangular survivorship (1=0). The results
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Table 3. Stable NDC systems for an increasing retirement age (A=0)

Annuity Notional Adjustment Deficit
conversion factor interest rate rate ratio
Method I(a, 1) pla,n=g" ()+... Ha, H=g" @) +... (1)
A PLE 0 0 1
B CLE ) 29lw° (1) 1
C CLE 0 29/((1 — w)w° (1)) ~1

Note: The table shows stable NDC systems, i.e., combinations of the notional interest rate, the
adjustment rate and the annuity conversion factor such that the deficit ratio d(z) is exactly or
approximately equal to one. PLE (CLE) stand for period (cohort) life expectancy. Retirement
follows R° (f) = o (¢) and survivorship is rectangular (A =0). Method A corresponds to the
use of (23c) and (24¢) and method B to the use of (23d) and (24d).

Table 4. Stable NDC systems for a constant retirement age (1. =10)

Annuity Notional Adjustment Deficit
conversion factor interest rate rate ratio
Method I'(a, t) pla,=g"@+... Na, ) =g" () + ... d(1)
A PLE —ylo’ (1) —ylo® (1)
B CLE ylw® (1) yw® (1) ~
Cl PLE 0 /(@ (t) — R) ~1
C2 CLE 0 y/(w(f) — R) ~

Note: The table shows stable NDC systems, i.e., combinations of the notional interest rate, the
adjustment rate and the annuity conversion factor such that the deficit ratio d(¢) is approximately
equal to one. PLE (CLE) stand for period (cohort) life expectancy. Retirement follows R°(f) = R
and survivorship is rectangular (A = 0). Method A corresponds to the use of (23c) and (24c) and
method B to the use of (23d) and (24d).

indicate that stable NDC systems are compatible with different paths for individual
pension benefits. Either the first pension payment P (7) is high and the adjustment
rate 3(a, t) low or the other way round. The first pension payment is influenced
both by the notional interest rate and by the annuity conversion factor. It will be lar-
ger if the latter is based on PLE. This implies that the first pension will be largest for
method A, second largest for method B and smallest for method C that uses CLE and
a notional interest rate of p(a, 1) =g" (). The choice between these different methods
will be influenced by the level of individual and social time preferences and by con-
siderations about horizontal and vertical equity.

7 Extensions

In Sections 5 and 6, I have worked with a number of stylized assumptions in order to
be able to derive clear-cut and analytical results. It is, however, interesting to study
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how the main results concerning the stability of NDC systems are changed by mod-
ifications of these assumptions. In this section, I briefly discuss the effects of changing
the assumptions concerning the mortality rates, the maximum age and the pattern of
retirement behavior.

7.1 Non-rectangular survivorship

The case with rectangular survivorship (4 =0) has been convenient to illustrate why
increasing life expectancy challenges the functioning of a traditional NDC system
and how the three crucial parameters could be determined in order to guarantee its
financial stability in the long-run. For the general case (1> 0) the discussion gets
more involved. Unfortunately, analytical results are no longer possible (or only for
specific assumptions) and one has to resort to numerical examples and simulations.
It would be highly informative to set up a numerical model with stochastic demog-
raphy as in Auerbach and Lee (2009, 2011) and study the budgetary implications
of various assumptions concerning p(a, t), 9(a, t) and I'(a, t). This would be particu-
larly interesting since the aforementioned papers looked at the case of mortality rates
that do not decrease over time and an analysis with increasing longevity would com-
plement their findings. As shown in Section 5 a constantly increasing longevity has a
positive effect on the internal rate of return and one would expect that this will also
show up in a stochastic simulation environment. This, however, would require an
entirely different set-up and I leave it as an exercise for future research.

In this section, I stick to the assumption of a deterministic development of mortality
rates but I now study the case of non-rectangular survivorship, i.e., 4> 0 in the ‘mod-
ified de Moivre function’ (9). To this end, I use numerical examples to calculate the
deficit ratio d(r) for two combinations of pension parameters that have shown to guar-
antee a stable (or approximately stable) NDC system for the rectangular case. The
first combination (method A in Tables 3 and 4) uses PLE for the annuity conversion
and the indexations (23c) and (24c¢) that are based on the corrected growth rate of the
wage bill. The second combination uses CLE together with the indexations (23d) and
(24d) that are based on the turnover duration (method B in Tables 3 and 4).

In order to calculate the indexation rates for the two methods one has to know the
growth rates of the labor force L(f), the turnover duration 7D(¢) and the dependency-
ratio-stabilizing retirement age R" ? (¢) for the case with 2> 0. As far as the first two
are involved one can show that they again grow (approximately) in lockstep with life
expectancy, i.e., g~ (1) ~ (/o (1)) and g’ () ~ (Yl (¢)). This means that for method
B the indexation rates are given by p(a, 1) = g(t) + u(a, t — a) + (2y/o° (¢)) and Ha, 1) =
g0+ 2y/w’(t)) for increasing retirement (R (f)=ww (¢)) and p(a, 1)=g(f)+
wa, t — a) + (ylo® (1)) and 9(a, 1) = g(t) + (y/w(?)) for constant retirement (R°(7) = R).

As far as the required retirement age R" ” (¢) is concerned, however, it is no longer
true that it is also proportional to life expectancy. The reason for this is that due to the
mortality after retirement the pension expenditures are reduced in every period and
thus the increase in the retirement age of the newly retiring cohorts can be less than
proportional in order to stabilize the aggregate dependency ratio. This is discussed
in the online Appendix F, where I show that the required retirement age can be
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expressed as R (1) = p(w° (1))'~*. The growth rate of the required retirement age is
thus given by: gR*p (=0 —2) (/o (£)). For the case with A=0 this implies that
gR*p (1) = (y/o* (¢)), which was the expression used in Section 6.1. For general 1> 0
the indexation rates for method A are given by p(a, ) = g(t) + u(a, t — a) + (Aylw® (1))
and 9(a, 1) = g(t) + (Ay/w* (1)) for increasing retirement (R® (¢) = yw° (f)) and p(a, 1)
=g(t)+u(a, t —a)— ((1 — Aylw® (1)) and Y(a, t) = g(¢) — (1 — V)y/w (1)) for constant
retirement (R°(f) = R).

In Table 5, T use a numerical example to calculate the deficit ratios for methods A
and B and various values of A. Furthermore, in order to illustrate the development
over time, I show the deficit ratios for two values of the maximum age (i.e., for
‘(1) = 60 and w°(¢) = 80). The use of method B leads to a stable NDC system. In par-
ticular, for an increasing retirement age the deficit ratio is exactly one. In the online
Appendix D.3, I prove this for the case of linear survivorship with A=1. For the
fixed retirement age method B leads to a deficit ratio that is very close to balance
(between 0.995 and 0.999) for all cases. Method A, on the other hand, is also in
line with an approximately balanced NDC systems for almost all cases considered.
Only for the case of linear survivorship (1= 1) the deficit ratio is above 1%.

7.2 An upper limit to longevity

So far, I have assumed that the maximum age ¢ (¢) and thus life expectancy increase
in a linear fashion (see (11)). This assumption is in line with the historic development
over the last century, but there exists a controversy whether or how long this process
might continue into the future. In particular, a group of demographers is arguing that
there exists a maximum human life span that cannot be extended. In order to study
the effects of this alternative viewpoint, I have also looked at a set-up where the max-
imum age hits an upper limit ™. In particular, it is assumed that o (£) = »“ (0) +y - ¢
for t <fand w‘(f) = w°(f) = & for t >1.

In order to study the budgetary developments of the pension system in this demo-
graphic scenario, I had to use numerical simulations. These simulations (not shown)
indicate that the parameter combinations that have been shown to lead to a stable
NDC system in Section 6 can again be employed to implement a budget that stabilizes
over time. Whether and how this automatic stabilization takes place depends, however,
crucially on the retirement behavior before and after the transition. In particular, it is
important to consider whether the demographic change is an expected event or whether
it comes as a surprise.

The above example where ageing stops abruptly after a long path of linear increases
is of course unrealistic. One would rather expect a continuous (or step-wise) slow-
down (cf. Vallin and Meslé, 2009) that approaches the upper limit asymptotically.
In the language of the model this could be captured by a time-varying y(f) where
(T) =0 for some time 7. I leave a thorough treatment of this case for future research.

7.3 Retirement behavior

A second modification concerns the assumption of the retirement behavior. So far, 1
have assumed that retirement is either proportional to the maximum age or constant
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Table 5. Stable NDC systems for non-rectangular survivorship

Deficit ratio d(z)

R (1) =y’ (1) R (=R

A Method o’ (f)=60 o’ (f)=80 o’ ()= 60 o’ (1)=80
A=0 A 1 1 1.003 1.003

B 1 1 0.995 0.996
A=0.25 A 0.99 0.99 0.991 0.997

B 1 1 0.996 0.996
A=0.5 A 0.997 0.997 0.997 1.004

B 1 1 0.997 0.997
A=1 A 1.024 1.024 1.023 1.029

B 1 1 0.998 0.999

Note: The table shows the deficit ratio for various assumptions concerning the retirement age R¢ (7),
the maximum age o (¢) and the shape of the survivorship curve 1. For increasing retirement age
the parameter y is set for each case of 1 such that retirement is a fixed proportion § of life
expectancy at birth, i.e., R(¢) = (0, 1) = §(w(1)/1 + A) which implies that y = §/(1 +2).
The parameters are given by y =0.25, »°(0) = 60, = 3/4 and R = yw°(0)/(1 + yy). Method
A (B) uses remaining period (cohort) life expectancy as the annuity conversion factor. The
indexation rates for method A are given by p(a, 1) = g(f) + u(a, t — a) + g= (1) — (1 — A) ylw® (2)
and Xa, t) = g(t) + g~ () — (1 — D)y/w(f). For method B the indexation rates are p(a, {)=g
() +pula, t—a)y+g" () +g"™ (1) and I(a, ) = g(t) + g (1) + g™P(1).

while real-world retirement patterns are less regular. In a previous version of the
paper, I used simulations to study the budgetary consequences when retirement fol-
lows a stochastic pattern and when the NDC system is based on either method A
or method B. The results show that in this case the pension system is unbalanced
in almost every year and the deficit ratios fluctuate widely. Over time, however, the
surpluses and the deficits counteract each other and the average deficit ratio over a
longer time span is approximately equal to one.

8 Conclusion

In this paper, I have studied how to design a NDC pension system that is able to sta-
bilize its budget in the presence of increasing life expectancy. I have shown that the
financial sustainability depends on the appropriate determination of three parameters:
the notional interest rate, the adjustment rate and the annuity conversion factor,
which is based on remaining life expectancy. The analysis has shown that there
exist various combinations of the three parameters that are associated with a balanced
budget. Two approaches turned out to be particularly interesting since they work
under a large variety of assumptions concerning the mortality structure and the retire-
ment patterns and since they can be formulated in general terms. The first approach
(method A) uses period (remaining) life expectancy for annuity conversion and a cor-
rected growth rate of the wage bill for indexation (i.e., for the notional interest and the
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adjustment rate) where the correction takes into consideration that the retirement age
and thus the labor force have to increase just to counterbalance the continuous
increase in life expectancy. The second approach (method B) uses CLE for the annuity
conversion and again a corrected growth rate of the wage bill for indexation where the
correction now adds the growth rate of the turnover duration. This correction
accounts for the fact that increasing life expectancy leads to a higher internal rate
of return, which can be distributed among the insured population without challenging
the stability of the system. These findings are a challenge to the conventional wisdom
on the appropriate design of NDC systems and none of the countries that are cur-
rently organized in such a way uses the combination of parameters that suggests itself
in the modelling framework of this paper. These findings might thus be useful for the
refinement of existing or the construction of future NDC systems.

The focus of this paper has been to analyze the impact of increasing life expectancy
on the stability of PAYG pension systems. Therefore, I have abstracted from all other
economic and demographic factors that might also be potential sources of instability
for the system. First and foremost this concerns changes along the second demo-
graphic dimension: the size of the birth or working cohorts N(0, 7). Different fertility
scenarios have already been studied in the related literature (cf. in particular
Valdés-Prieto, 2000). The main finding is that non-monotonic shifts in the develop-
ment of cohort size can lead to short-run and/or long-run financial instability of
the pension system. Besides irregular developments of fertility there exist a number
of other factors that might change in an erratic fashion, e.g., sudden changes in the
average fertility age, in the average age of labor market entry or in the age-earnings
profiles. It is an interesting area for future research to study and systematize the effects
of these changes and to analyze their interaction with increasing life expectancy.

Given that there are many sources for unpredictable shocks it seems inevitable that
a NDC system includes some additional mechanism that adjusts for unforeseen
imbalances like the Swedish ‘automatic balance mechanism’ (Auerbach and Lee,
2009; Settergren, 2012). Independent of the design of such an additional balance
mechanism it is important to note, however, that the appropriate definition of the
notional interest rate and remaining life expectancy will in any case lead to a more
stable system and will make the activation of the automatic balance mechanism a
less frequent event.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/
S1474747216000226.
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Appendices
A. Cohort and PLE (Section 2.1)

CLE is given by equation (2a). The second equality follows from the fact that:

Jl—,u(x,t)dx f—ﬂ()&.t)dx f;t(x.t)dx S(a l)
e: = @0 0 — ? ,
Sz, 0

where I use equation (1), i.e., S(a, f) = efo*
Inserting the ‘modified de Moivre function’ (9) one can solve:

(x,Hdx

) J
) c _ 1+ _ z )
. (w (t)) (@(0) - 2) (1 — (Z)> (1) - 2)

j S(a, tyda = 157 = 117

A
Dividing this expression by S(z, ) = (1 — f ) leads to ¢ (z, 1) = (° (f) — z)/
(1 +2) as stated in equation (10a). @ ()

PLE, on the other hand, 1is given by -equation (2b), i.c.,

a WP (1)
el(z, 1) = fc_op(t) ej MDA L This can also be written as [: St - ada as can
: S(z,t—2)
be shown following similar steps as above for ¢ (z, ¢). For the ‘modified de Moivre

function’ (9) the mortality hazard rate is given by u(a, 1) =M/(w® () —a) and one
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can write:
a a -1 a )
—p(x, 1=x)d> ——d ———d
D e TR PO e s e
A

B (w"(t) —(1+ }’)a>l_—|—y
“\o-+pz)

From this one can derive:

A
(1) <a)"(l) -1+ y)a)l + Yy — w’(H) — (1 4 y)z

e t):j o(f) — (1 +yp)z l+y+4

which is stated as equation (10b). Note that:

. crnn O+ R(D) — (L +pR() () — R(0)
SR, 1+ R(D) = l+y+4 L4+
_ (1 4+ De‘(R(9), 1)

I+y+4

B. Expenditures E(f) (Section 3)

Inserting equations (18), (19) and (20) into (15) and using (1) leads to the following
expression:

R (t—a)
RE(1— _
o jmnk“”WWW+@J plsi—ats)ds g
=1 X
Ro(t) L(R(t—a), t — a)
9(s,1—a+s)ds [ (=uts, —apds
ercu-a N, t — a)e° da.

Note that W(t—a+x) = W(t— a)ef SUTATIE and Wt —a+ Rt — a)) =

R(t—a)
W — a)ef o SUTarIE gince in the formula above x < R¢ (t — a) one can write that:

RC(t—a)
f (—g(t—a+s))ds
Wit—a+x)=W(t—a+ R(t—a)e >

from which it follows that:

R¢(t—a) RC(1—a) . d
j tW(t—a+ x)efx pltmatdsg .
0

R¢(t—a) RC(1—a) q
T J Wt —at R — a)el. 0Oy siardyy,
0
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Similarly (since R (t — a) < a):

W(t—a+ R(t—a)) = VV(l‘)ejR“(I—a)(7‘g(t7a+‘y))d‘v

which leads to the final expression for E(z) that is stated as equation (21) in the
text.

C. Proposition 1 (Section 4)

For the assumptions of proposition 1 the income of the system (14) is given by:

R
1(H) = tW (L) = tW()N(O, z)J e S(a)da
0
R

— tW(H)N(O, z)j el 1N g,
0

The expenditure level (21), on the other hand, can be simplified to:

R
@ R (u(s)+n)ds . "
Jo ef ; dx ["nds [(-u)ds —na
EO=|tWo|—F———| &z ¢l e "N(0, 1) da
o [ (~u(sHds _— e —
R f Ré’ R dx Adjustment Cohortsize  [nitial size
Factor atagea  of cohort t—a
First
Pension

R
o S it g,

_ en(ufR)ejlo(—#(s))dsefnada
- d.
R jz efR( () 5 dox

=tW(@®N(Q, 1) j

R
o (R ) wds _pyx a
o el 7 BRGZOE

< da.
R (% | ((rtsnds dx

— tW(t)N(O, z)]

One can use these two expressions for I(7) and E(f) to derive that:

w

R a
R | u)ds _px (—u(s))ds
d(r)=E<t)—jfo el ey el

1(1) & f(; ef RHENs 4 f(f)? efo(—/t(s»ds e-mxdx

R[S s —pay (o [l-unds
_joe” eda [} el da

da

B [Fo JoHs , ag [0 [enenasy,”

where I have changed two times the name of the integration variable from ‘x’ to ‘a’.

Noting that (since a > R):

[uonds  f utnas
ofo 1S
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and

a

w 4 R w
[ (—utpas [utsrds ¢ [ (—unds
I er da = e° J eo da
R R

this can be simplified to:

R a
R , —u(s)ds
f eL u(s)dse_nada fw ejo( ﬂ(\))d‘da
d() = —=2 R =1
o1 (R [ ura [ s o [(uendsy
R j éJa Hs Seinadae 0 ‘[Re 0 da
0 [, utods Jo

Overall, proposition 1 shows that for the benchmark case of a stationary (or at least
continuously developing) demographic structure a constantly balanced NDC system
can be established by simply choosing a notional interest rate that is equal to the
growth rate of the wage bill plus a correction for inheritance gains, i.e., p(a, ) =
" (n+g" (1) + ).

The choice of any other notional interest rate, on the other hand, will lead to a per-
manent budgetary imbalance. This can be seen immediately by noting that the total
revenues of the system are always given by I(¢) = tW(¢)L(¢), while the expenditures
change with the choice of the notional interest rate. Using the growth rate of average

R [ s o [ (—utspeds
Jo & da [pelo da

wages p(a, 1) = g" (1) + u(a) leads to: d(r) = . n
[Re Sy 60ds ,ag, [2e [euonds 4,

A neglect of the inheritance gains, on the other hand, with p(a, £)=g" (¢) + g" (¢) leads
R

f —nadq
0 €

to d(t) = =
I ol CHO g,

# 1.
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