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Abstract
Recent work studying triadic closure in undirected graphs has drawn attention to the distinction between
measures that focus on the “center” node of a wedge (i.e., length-2 path) versus measures that focus on the
“initiator,” a distinction with considerable consequences. Existing measures in directed graphs, meanwhile,
have all been center-focused. In this work, we propose a family of eight directed closure coefficients that
measure the frequency of triadic closure in directed graphs from the perspective of the node initiating
closure. The eight coefficients correspond to different labeled wedges, where the initiator and center nodes
are labeled, and we observe dramatic empirical variation in these coefficients on real-world networks, even
in cases when the induced directed triangles are isomorphic. To understand this phenomenon, we examine
the theoretical behavior of our closure coefficients under a directed configuration model. Our analysis
illustrates an underlying connection between the closure coefficients and moments of the joint in- and
out-degree distributions of the network, offering an explanation of the observed asymmetries. We also use
our directed closure coefficients as predictors in two machine learning tasks. We find interpretable models
with AUC scores above 0.92 in class-balanced binary prediction, substantially outperforming models that
use traditional center-focused measures.
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1. Introduction
A fundamental property of networks across domains is the increased probability of edges existing
between nodes that share a common neighbor, a phenomenon known as triadic closure (Simmel,
1908; Rapoport, 1953; Watts & Strogatz, 1998). This concept underpins various ideas in the
study of networks—especially in undirected network models with symmetric relationships—
including the development of generative models (Leskovec et al., 2005; Jackson & Rogers, 2007;
Seshadhri et al., 2012; Robles et al., 2016), community detection methods (Fortunato, 2010; Gleich
& Seshadhri, 2012), and feature extraction for network-based machine learning tasks (Henderson
et al., 2012; LaFond et al., 2014).

A standardmeasure for the frequency of triadic closure on undirected networks is the clustering
coefficient (Watts & Strogatz, 1998; Barrat &Weigt, 2000; Newman et al., 2001). At the node level,
the local clustering coefficient of a node u is defined as the fraction of wedges (i.e., length-2 paths)
with center u that are closed, meaning that there is an edge connecting the two ends of the wedge,
inducing a triangle. At the network level, the average clustering coefficient is the mean of the local
clustering coefficients (Watts & Strogatz, 1998), and the global clustering coefficient, also known
© The Author(s), 2020. Published by Cambridge University Press.
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as transitivity (Barrat & Weigt, 2000; Newman et al., 2001), is the fraction of wedges in the entire
network that are closed.

Recent research has pointed out a fundamental gap between how triadic closure is measured
by the clustering coefficient and how it is usually explained (Yin et al., 2019). Local triangle for-
mation is usually explained by some transitive property of the relationships that edges represent;
for social networks, this is embodied in the idea that “a friend of my friend is my friend.” In these
explanations, however, triadic closure is driven not by the center of a length-2 path but rather by
an end node (which we refer to as the head), who initiates a new connection. In contrast, the local
clustering coefficient that measures triadic closure from the center of a wedge implicitly accredits
the closure to the center node. The recently proposed local closure coefficient closes this defini-
tional gap for undirected graphs by measuring closure with respect to the fraction of length-2
paths starting from a specified head node that are closed (Yin et al., 2019).

These closure coefficients were only defined on undirected networks, but the interactions in
many real-world networks are more accurately modeled with an associated orientation or direc-
tion. Examples of such networks include food webs, where the direction of edges represents
carbon or energy flow from one ecological compartment to another; hyperlink graphs, where
edges represent which web pages link to which others; and certain online social networks such as
Twitter, where “following” relationships are often not reciprocated (Cheng et al., 2011). The direc-
tion of edges may reveal underlying hierarchical structure in a network (Homans, 1950; Davis &
Leinhardt, 1971; Ball & Newman, 2013), and we should expect the direction to play a role in local
triadic closure.

Extensions of clustering coefficients have been proposed for directed networks (Fagiolo, 2007;
Seshadhri et al., 2016), which are center-based at the node level. However, formulating directed
triadic measures from the center of a wedge is even less natural in the directed case, while measur-
ing from the head is a more common description of directed closure relationships. For example,
in citation networks, paper Amay cite B, which cites C and leads A to also cite C. In this scenario,
the initiator of this triadic closure is really paper A. Similarly, in directed social networks, outgo-
ing edges may represent differential status (Leskovec et al., 2010; Ball & Newman, 2013), where if
person A thinks highly of B and B thinks highly of C, then A is likely to think highly of person C
and consequently initiate an outbound link.

In the above examples, measuring triadic closure from A would be the analog of the closure
coefficient for directed networks, which is what we develop in this paper. More specifically, we
propose a family of directed closure coefficients, which are natural generalizations of the clo-
sure coefficient for undirected networks. Like the undirected version of closure coefficients, these
measures are based on the head node of a length-2 path, in agreement with common mechanis-
tic interpretations of directed triadic closure and fundamentally different from the center-based
clustering coefficient. Specifically, the directed clustering coefficients proposed by Fagiolo (2007)
are not to be confused with the directed closure coefficients introduced in this work.

Our measurements are based on the notion of a directed wedge as an ordered pair of directed
edges that share a common “center” node, and the “non-center” end nodes of this wedge on the
first and second edge are called the head and tail nodes, respectively (in Figure 1, solid lines mark
the wedge, where node u is the head and node w is the tail). Since each edge may be in either
direction, there are four directed wedge types. When considering triadic closure for each wedge
type, the closing edge between the head and tail nodes may also take either direction. Therefore,
at each node, there are eight local directed closure coefficients, each representing the frequency of
directed triadic closure with a certain wedge type and closure direction (Figure 1). Analogous to
the undirected case, we also define the average and global directed closure coefficients to measure
the overall frequency of triadic closure in the entire network. These statistics provide a natural and
intuitive way to study the frequency of directed triadic closure in detail, including how directions
of the incident and second edge influence a node’s tendency to initiate or receive directed triadic
closure.
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Figure 1. Illustration of four wedge types and eight local directed closure coefficients at node u. The type of wedge is
denoted by two letters, each representing an edge direction (i for incoming or o for outgoing). The first letter represents
the direction of the edge between the head node u and the center node v with respect to u. The second letter represents
the direction of the edge between v and the tail node w with respect to v. A wedge is i-closed if there is an incoming edge to
the head node from the tail, and o-closed if there is an outgoing edge from the head node to the tail. There are eight local
directed closure coefficients at node u, denoted as Hzxy(u) with x, y, z ∈ {i, o}. Each local directed closure coefficient mea-
sures the frequency of triadic closure of a certain wedge type (denoted by subscript xy) and closing direction (denoted by
superscript z).

Our empirical evaluation of the directed closure coefficients on real-world networks in
Section 3.2 reveals several interesting patterns. At the node level, we find clear evidence of a
2-block correlation structure among the eight local directed closure coefficients, where coefficients
within one block are positively (but not perfectly) correlated while coefficients from distinct blocks
are nearly uncorrelated. The block separation coincides with the direction of the closing edge
in the closure coefficients. We also provide theoretical justification for this observation, gleaned
from studying the expected behavior of the closure coefficients for directed configuration model
random graphs. Specifically, we show that the expected value (under this model) of each local
directed closure coefficient increases with the node degree in the closing edge direction, and thus
coefficients with the same closure direction and directed degree are correlated.

From empirical networkmeasurements, we also find surprising asymmetry among average clo-
sure coefficients. Consider the in-out wedge in Figure 1, where the coefficients Hi

io(u) and Ho
io(u)

correspond to the same directed induced subgraph. For such symmetric wedges, the likelihood
for outbound closure can be substantially higher than for inbound, even though the two induced
subgraphs are structurally identical. On the other hand, we show in Section 4.1 that networks from
the same domain exhibit the same asymmetries.

With extremal analysis, we show in Section 4.1 that there is in fact no positive lower or upper
bound on the ratio between types of directed average closure coefficients. Additional probabilistic
analysis under the configuration model shows that the expected values of the directed closure
coefficients depend on various second-order moments of the joint in- and out-degree distribution
of the network. This result partly explains the significant difference in values between a pair of
seemingly related average closure coefficients: their expected behaviors correspond to different
second-order moments of the degree distribution.

Beyond our intrinsic study on the structure of directed closure coefficients, we illustrate in
Section 5 how these coefficients can be powerful features for network-based machine learning. In
a lawyer advisory network where every node (lawyer) is labeled with a status level (partner or asso-
ciate) and directed edges correspond to who talks to whom for profession advice (Lazega, 2001),
we show that local directed closure coefficients are much better predictors of status compared to
other structural features such as degree or Fagiolo’s directed clustering coefficients. Analysis of the
regularization path of the predictive model yields the insight that it is not how many one advises
but rather who one advises that is predictive of partner status. We conduct a similar network clas-
sification task in an entirely different domain using a food web from an ecological study. Using
the same tools, we find that directed closure coefficients are good predictors of whether or not
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a species is a fish. This highlights how our proposed measurements are potentially useful across
many domains.

In summary, we propose the directed closure coefficients, a family of eight new metrics for
directed triadic closure on directed networks. We provide extensive theoretical analysis which
helps explain some counterintuitive empirical observations on real-world networks. Through two
case studies, we demonstrate that our proposed measurements are good predictors in network-
based machine learning tasks.

2. Background and preliminaries
An undirected network (graph) G= (V , E) is a node set V and an edge set E, where an edge e ∈ E
connects two nodes u and v. We use d(u) to denote the degree of node u ∈V , that is, the number
of edges adjacent to u. A wedge is an ordered pair of edges that share exactly one node; the shared
node is the center of the wedge. A wedge is closed if there is an edge connecting the two non-center
nodes (i.e., the nodes in the wedge induce a triangle in the graph).

Although the notion of triadic closure in general has a long history (Rapoport, 1953;
Wasserman & Faust, 1994), perhaps the most common metric for measuring triadic closure in
undirected networks is the average clustering coefficient (Watts & Strogatz, 1998). This metric is
the mean of the set of local clustering coefficients of the nodes, where the local clustering coefficient
of a node u, C(u), is the fraction of wedges centered at node u that are closed:

C(u)= 2T(u)
d(u) · (d(u)− 1)

,

where T(u) denotes the number of triangles in which node u participates. The denominator d(u) ·
(d(u)− 1) is the number of wedges centered at u, and the coefficient 2 corresponds to the two
wedges (two ordered pairs of neighbors) centered at u that the triangle closes. If there is no wedge
centered at u (i.e., d(u)≤ 1), the local clustering coefficient is undefined.

Again, to measure the overall triadic closure of the entire network, the average clustering
coefficient is defined as the mean of the local clustering coefficients of all nodes:

C̄ = 1
|V|

∑
u∈V

C(u).

When undefined, the local clustering coefficient is treated as zero in this average (Newman, 2003),
although there are other ways to handle these cases (Kaiser, 2008). An alternative network-level
version of the clustering coefficient is the global clustering coefficient, which is the fraction of closed
wedges in the entire network (Barrat & Weigt, 2000; Newman et al., 2001),

C = 2
∑

u∈V T(u)∑
u∈V d(u) · (d(u)− 1)

.

This measure is also sometimes called transitivity (Boccaletti et al., 2006).
Recent research has exposed fundamental differences in how triadic closure is interpreted and

measured (Yin et al., 2019). For example, social network triadic closure is often explained by the
old adage that “a friend of my friend is my friend,” which accredits the creation of the third edge to
the end node (also called the head) of the wedge. This interpretation, however, is fundamentally
at odds with how triadic closure is measured by the clustering coefficient, which is from the per-
spective of the center node. To close this gap, Yin et al. (2019) proposed the local closure coefficient
that measures triadic closure from the head node of wedges. Formally, they define this as

H(u)= 2T(u)∑
v∈N(u) [d(v)− 1]
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Figure 2. Illustration of the local directed clustering coefficients at node u, due to Fagiolo (2007). The definition is a direct
extension of the local clustering coefficient (Watts & Strogatz, 1998), which measures triadic closure from the center of each
wedge.

where N(u) is the set of neighbors of u. In this case, the denominator is the number of length-2
paths emanating from node u. Thus, in social networks, the closure coefficient of a node u can be
interpreted as the fraction of friends of friends of u that are themselves friends with u. The closure
coefficient has since been investigated under scale-free random graph models (Stegehuis, 2019).
Extensions to directed networks. The focus of this paper is on measuring triadic closure in
directed networks. The only definitional difference from undirected networks is that the edges
are equipped with an orientation, and (u, v) ∈ E denotes a directed edge pointing from u to v.1
We assume that G does not contain multi-edges or self-loops and denote the number of nodes by
n= |V| and the number of edges bym= |E|.

When an end node u of an edge is specified, we denote the direction of an edge as i (for incom-
ing to u) or o (for outgoing from u). For any node u ∈V , we use di(u) and do(u) to denote its
in-degree and out-degree, that is, the number of edges incoming to and outgoing from node u,
respectively. For a sequence of joint in- and out-degrees [(di(u), do(u))]u∈V , we use Mxy, with
x, y ∈ {i, o} being the direction indicators, to denote the different second-order moments of the
degree sequence, that is,

Mxy = 1
n

∑
u∈V

dx(u)dy(u).

There are three second-order moments:Mii,Moo, andMio =Moi.
Fagiolo (2007) proposed a generalization of the clustering coefficient to directed networks.

Similar to the undirected case, a directed wedge is an ordered pair of edges that share a common
node, and the common node is called the center of this wedge. The wedge is then called closed if
the there is an edge from the opposite end point of the second edge to the opposite end point of
the first edge (this constraint, along with the ordering of the two edges, covers the symmetries in
the problem). In total, there are four directed clustering coefficients, each defined by the fraction
of certain types of wedges that are closed (Figure 2). Seshadhri et al. (2016) extended Fagiolo’s
definition by explicitly accounting for bidirected (reciprocal) edges, with a focus on network-level
(as opposed to node-level) metrics. While we could also explicitly differentiate bidirected links,
here we focus on bidirected links as counting toward wedges and closure in both directions.

Directed clustering coefficients have found applications in analyzing functional magnetic reso-
nance imaging (fMRI) data (Liao et al., 2011), financial relationships (Minoiu & Reyes, 2013), and
social networks (Ahnert & Fink, 2008). However, as discussed above, existing directed clustering
coefficients measure clustering from the center of a wedge, a limited perspective. Our head-based
directed closure coefficients, which we define formally in the next section, thus enhance the toolkit
for these diverse applications using triadic closure patterns in directed networks.
Additional related work. The first research on directed triadic closure is due to Davis & Leinhardt
(1971) who studied the relative frequency of each three-node directed subgraph pattern and com-
pared the frequencies with random graph models. Milo et al. (2002) later examined significantly
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recurring patterns of connected directed subgraphs as “network motifs,” with a particular empha-
sis on the role of so-called “feed-forward loops” in biology (Mangan et al., 2003). Similar to the
case of directed clustering coefficients (Fagiolo, 2007), prior research has studied the ratio of closed
wedges at the global (network) level (Onnela et al., 2005; Brzozowski & Romero, 2011; Seshadhri
et al., 2016), which is sometimes called “motif intensity” (Onnela et al., 2005). Most generally, we
also note that the language of “directed graphlets” (Sarajlić et al., 2016), which can be used to quan-
tify node-level subgraph participation counts within directed networks, provides an expansive
characterization of 128 automorphism orbits from which our closure coefficients can be thought
of as specific, derived quantities. The key differences in our definitions of directed closure coef-
ficients in the next section are that (i) we measure closure at the node level; and (ii) they are
head-node-based metrics which are more agreeable with traditional explanations of directed tri-
adic closure. We will show later that our measures also have considerably different behavior than
previous measures.

Directed triadic closure also appears in dynamic network analysis. Lou et al. (2013) proposed a
graphical model to predict the formation of a certain type of directed triadic closure: closing an oo-
type wedge with outbound link. This model was later generalized to predict the closure of any type
of wedge based on node attributes (Huang et al., 2014). Similarly, the notion of a “closure ratio”
has been used to analyze copying phenomena in directed networks (Romero & Kleinberg, 2010).
This is also an end-node-based metric that measures a closure of in-in wedges with an incoming
edge. Our definitions of directed closure coefficients are different in that they (i) are defined on
static networks, (ii) measure diverse types of triadic closure, and (iii) are closely connected to
undirected measures of closure and the traditional perspective of triadic closure. Connecting our
static measures of directed closure and temporal counterparts is an interesting avenue for future
research.

3. Directed closure coefficients
In this section, we provide our formal definition of directed closure coefficients andmeasure them
on some representative real-world networks to demonstrate how they provide empirical insights.
These insights provide direction and motivation for our theoretical analysis in Section 4. We then
show in Section 5 how directed closure coefficients are useful features in machine learning tasks.

3.1 Definitions
With the same motivation as the undirected closure coefficient, we propose to measure directed
triadic closure from the end point of a directed wedge. Recall that a directed wedge is an ordered
pair of edges that share exactly one common node. The common node is called the center of the
wedge, and here we define the head of this wedge as the other end of the first edge, and the tail as
the other end of the second edge. Regardless of the direction of the edges, we denote a wedge by
an ordered node triple (u, v,w), where u is the head, v is the center, and w is the tail.

Since each edge is directed, there are four types of directed wedges.2 We denote the type of
wedge with two variables, say x and y, each taking a value in {i, o} to denote incoming or outgoing.
Specifically, a wedge is of type xy (an xy-wedge) if the first edge is of direction x to the head, and the
second edge is of direction y to the center node. Figure 1 shows the four types of directed wedges.

We say that a wedge is i-closed if there is an incoming edge from the tail to the head node, and
analogously, it is o-closed if there is an outgoing edge from head to the tail node. For any u ∈V
and x, y, z ∈ {i, o}, we denoteWxy(u) as the number of wedges of type xy where node u is the head,
and Tz

xy(u) as the number of z-closed wedges of type xy where node u is the head.
Nowwe give our formal definition of local directed closure coefficients, which is also illustrated

in Figure 1.
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Definition 3.1. The local directed closure coefficients of node u are eight scalars, denoted by
Hz
xy(u) with x, y, z ∈ {i, o}, where

Hz
xy(u)=

Tz
xy(u)

Wxy(u)
. (1)

If node u is not the head of any xy-wedge, then the two corresponding closure coefficients are
undefined.

Here, we highlight again the fundamental difference between the local directed closure coeffi-
cients we proposed and the local directed clustering coefficients proposed by Fagiolo (2007): the
closure coefficients measure triadic closure from the head of wedges, which agrees with natural
initiator-driven explanations of triadic closure, while the clustering coefficients measure from the
center of wedges. We will show that this small definitional difference yields substantial empirical
and theoretical disparity.

Analogous to the undirected clustering coefficient, we also define average and global directed
closure coefficients to measure overall directed triadic closure tendencies of a network

Definition 3.2. The average directed closure coefficients of a graph are eight scalars, denoted by
Hz

xy with x, y, z ∈ {i, o}, each being the mean of the corresponding local directed closure coefficient
across the network:

Hz
xy = 1

n
∑
u∈V

Hz
xy(u).

We treat local closure coefficients that are undefined as taking the value 0 in this average, though
most nodes in the datasets we analyze have eight well-defined closure coefficients.

Definition 3.3. The global directed closure coefficients of a graph are eight scalars, denoted by Hz
xy

with x, y, z ∈ {i, o}, each being the fraction of closed directed wedges in the entire network:

Hz
xy = Tz

xy

Wxy
(2)

where Wxy = ∑
u∈V Wxy(u) and and Tz

xy = ∑
u∈V Tz

xy(u) are the total number of xy-wedges and
closed xy-wedges.

The global directed closure coefficients are equivalent to some global metrics of directed clustering
coefficients (Onnela et al., 2005; Seshadhri et al., 2016), since the difference in measuring from
head or center does not surface.

3.2 Empirical analysis
To obtain intuition and empirical insights before diving into theoretical analysis, we evaluate the
directed closure coefficients on 11 networks from 5 different domains:

(1) Three social networks. SOC-LAWYER (Lazega, 2001): a professional advisory network
between lawyers in a law firm; SOC-EPINIONS (Richardson et al., 2003): an online net-
work of who-trusts-whom relationships; and SOC-LIVEJOURNAL (Backstrom et al., 2006):
an online social friendship network.

(2) Two communication networks. MSG-COLLEGE (Panzarasa et al., 2009): an online messag-
ing network between college students; and EMAIL-EU (Yin et al., 2017): an email network
between researchers at a European institute.
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Table 1. Summary statistics of networks.

Network n m Mii Mio Moo r �c �ac

SOC-LAWYER 71 892 227.41 166.15 208.65 0.39 880 5075
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SOC-EPINIONS 75.9K 509K 1179.40 526.15 721.82 0.41 740K 3.59M
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SOC-LIVEJOURNAL 4.85M 69.0M 2091.52 1220.33 1504.35 0.75 244M 946M

MSG-COLLEGE 1899 20.3K 347.80 391.99 592.42 0.64 11K 40K
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-EU 1005 25.6K 1428.97 1509.56 1756.77 0.72 132K 433K

CIT-HEPTH 27.8K 353K 1746.72 269.14 416.35 0.00 572 1.49M
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CIT-HEPPH 34.5K 422K 790.63 189.62 380.70 0.00 555 1.29M

FW-EVERGLADES 69 916 394.12 136.52 257.16 0.07 538 4781
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FW-FLORIDA 128 2106 493.08 201.92 451.62 0.03 357 8688

WEB-GOOGLE 876K 5.11M 1572.90 69.30 77.46 0.31 3.89M 28.2M
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WEB-BERKSTAN 685K 7.60M 62430.80 324.71 390.55 0.25 13.8M 131M

Number of nodes n; number of edgesm; second-order moments of the degree sequenceMii ,Mio , andMoo ; fraction r of edges that
are reciprocal (i.e., reciprocity); and number of cyclic and acyclic triangles (�c and�ac).

(3) Two citation networks. CIT-HEPTH and CIT-HEPPH (Gehrke et al., 2003): constructed
from arXiv submission in two categories.

(4) Two food webs. FW-FLORIDA and FW-EVERGLADES (Ulanowicz & DeAngelis, 2005):
carbon exchange relationships collected from the Florida Bay and the Everglades.

(5) Two web graphs. WEB-GOOGLE and WEB-BERKSTAN (Leskovec et al., 2009): hyperlink
networks from a Google competition as well as a crawl of berkeley.edu and stanford.
edu domains.

Table 1 lists some basic statistics of the networks. We emphasize that the reciprocity of these
networks vary substantially. For example, the citation networks and food webs contain mostly
unidirectional edges, and the communication networks have many bidirected (reciprocal) edges.

Figure 3 shows the global and average directed closure coefficients of the SOC-LAWYER dataset.
From the first row, we see that the eight global closure coefficients can be grouped into four pairs,

{(Hi
ii,H

o
oo), (H

o
ii,H

i
oo), (H

i
io,H

o
io), (H

i
oi,H

o
oi)},

with each pair of coefficients taking the same value. This observation is expected due to the sym-
metry in the wedge structure, which we study in more detail in Section 4.1. In contrast, these
groupings do not take the same value in the case of the average closure coefficients (the second
row of Figure 3): we observe an a priori unexpected asymmetry. For example, Ho

io = 0.362�
Hi

io = 0.263 (in orange, Figure 3). When an in-out wedge is closed with either an incoming or
outgoing edge, the induced triangle is actually the same: both are feedforward loops (Milo et al.,
2002). It is not obvious why closure with an outgoing edge is so much more likely that with an
incoming edge. We develop some theoretical explanations for this asymmetry in Section 4.2.

We also explore the correlations between the eight average directed closure coefficients in the
SOC-LAWYER and FW-FLORIDA networks (Figure 4). Each network has a clear separation among
the eight local closure coefficients: the coefficients in the first four rows and columns (with incom-
ing closure edge), and the coefficients in the last four rows and columns (with outgoing closure
edge). Within each group, the coefficients are strongly correlated. In SOC-LAWYER, the coeffi-
cients in different groups are nearly uncorrelated, whereas in FW-FLORIDA, the coefficients in
different groups are negatively correlated. This correlation pattern is representative across the
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Figure 3. Global (top) and average (bottom) directed closure coefficients in SOC-LAWYER, with head nodes in gray. The global
closure coefficients exhibit symmetry (e.g., Hiio = Hoio), while the average closure coefficients exhibit counterintuitive asym-

metry between pairs of coefficients, for example, Hiio = 0.263� Hoio = 0.362 (in orange, second row). The induced structure
is the same in both closure coefficients (a feedforward loop or acyclic triangle). We explain this phenomenon in Section 4.
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Figure 4. Heatmap of the correlation matrix of the eight local directed closure coefficients in SOC-LAWYER (left) and
FW-FLORIDA (right). There is a clear separation on the eight local closure coefficients: the ones for i-closed and the ones
for o-closed. Coefficients within each group are highly correlated while between groups are almost uncorrelated.

networks that we have studied with directed closure coefficients, and we explain this correlation
separation as part of the next section.

To study the difference in frequencies of directed triadic closure, we visualize the 8 average
directed closure coefficients of 10 networks in Figure 5, where each row contains two networks
within the same domain. We find that each domain of networks has their own directed triadic
closure patterns, even though the absolute closure rates can be different (see varying y-axis scales)
due to the size and average degree of each network. In social networks, different wedge types
have similar closure frequencies, likely due to the abundance of reciprocal edges (Newman et al.,
2002). In communication networks, the tall blue bars associated with out-in wedge type means
one is more likely to connect to people with whom they both send communications; this might
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Figure 5. Average directed closure coefficients of networks from five domains. Wedge types are colored in the same way as
in Figure 3, with incoming closure represented by slashed-bars and outgoing closure represented by dotted-bars. Although
networks from the samedomain (each row) can have different absolute closure rates (see varying y-axis scales), their relative
rate in closure direction of each wedge type are similar. Such relative closure pattern can be quite different across domains.
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be a result of shared interest. In contrast, citation networks have low closure coefficients for out-
in wedges (short blue bars), meaning that one is not likely to cite or be cited by papers with the
same reference: this phenomenon might come from a conflict of interest; moreover, due to near
nonexistence of cycles, in-in wedges and out-out wedges are each only closed in one direction.
Similar patterns appear in the food webs and web graphs, where there is a hierarchical structure
and few cycles. Lastly, we observe similar asymmetry in all citation, food web, and web graphs,
namely that Ho

io >Hi
io, as the orange bars show significantly higher outbound closure rate than

inbound rate.

4. Theoretical analysis
We now provide theoretical analysis of our directed closure coefficients. We first prove the sym-
metry between the four pairs of global directed closure coefficients. Motivated by the empirical
asymmetry among average directed closure coefficients, we first prove that this asymmetry can
be unboundedly large. Finally, to explain the asymmetry, we study how the in- and out-degree
distributions influence the expected value of each average closure coefficients under a directed
configuration model with a fixed joint degree distribution.

4.1 Symmetry and asymmetry
Recall that each global directed closure coefficient is the fraction of certain types of wedges that
are closed in the entire network. We observed in Section 3 that the eight global directed closure
coefficients can be grouped into four pairs, with each pair of coefficients having the same value.
The following proposition shows that these values must be the same in any network.

Proposition 4.1. In any directed network, Hi
ii =Ho

oo, Ho
ii =Hi

oo, Hi
io =Ho

io, and H
i
oi =Ho

oi.

Proof. Here we only proveHi
ii =Ho

oo, and the other three identities can be shown analogously. By
counting wedges from the center node,Wii = ∑

u di(u) · do(u)=Woo. Next, there is a one-to-one
correspondence between a closed in-in wedge and a closed out-out wedge by flipping the roles of
the head and tail nodes. Thus, Ti

ii = To
oo and Hi

ii =Ho
oo, according to Definition 3.3.

Proposition 4.1 illustrates the fundamental symmetry among the eight global directed closure
coefficients. The four pairs of global closure coefficients

{(Hi
ii,H

o
oo), (H

o
ii,H

i
oo), (H

i
io,H

o
io), (H

i
oi,H

o
oi)}

correspond to the same structure and triadic closure pattern in the entire network, so their values
have to be the same.

As an alternative global measure of directed triadic closure, wemight expect the average closure
coefficients to have a similar symmetric pattern. Specifically, by pairing up the average closure
coefficients in the same way,

{(Hi
ii,H

o
oo), (H

o
ii,H

i
oo), (H

i
io,H

o
io), (H

i
oi,H

o
oi)}, (3)

one might initially guess that the two values in a pair would be close. However, our empirical
evaluation on the SOC-LAWYER datasets above, as well as all of the citation, food webs, and web
graphs, showed asymmetry in these metrics; for example, Ho

io �Hi
io in the SOC-LAWYER dataset.

Here, we study how large such difference can be and find that there is no nontrivial upper or lower
bound on Hi

io based on Ho
io and vice versa. Furthermore, this same flavor of unboundedness is

valid for the other three pairs of average directed closure coefficients.
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Class #nodes Wio(u) T iio(u) Toio(u)

C4

C3

C2

C1 n1 n3n2+n3n4 n3n2 0

n2 n3n1+n3n4 0 n3n1

n3 0 0 0

n4 n3n1+n3n2 0 0

Figure 6. An example graph used in the proof of Theorem 4.2, showing maximal differences between directed closure coef-
ficients Hiio and H

o
io. Each double circle Cj represents a class of nodes and an edge Cj → Ck means that uj → uk for all uj ∈ Cj

and uk ∈ Ck .

Theorem4.2. For any ε > 0, and any pair of average directed closure coefficients from Equation (3),
denoted as (Ha,Hb), there is a finite graph such that Ha < ε and Hb > 1− ε, and another finite
graph such that Ha > 1− ε and Hb < ε.

Proof. Here we give a constructive proof for the pair (Hi
io,H

o
io); the same technique works for the

other three pairs. We use the example graph in Figure 6. Each double circle in the figure, denoted
by Cj with j ∈ {1, 2, 3, 4}, represents a set of nodes, and we let nj denote the number of nodes in
each class. A directed edge from class Cj to Ck means that for any node uj ∈ Cj and any node
uk ∈ Ck, there is an edge uj → uk. The number of in-out wedges as well as closed wedges are listed
in the last three columns of the table. We have thatHi

io(u)= n2
n2+n4 for any node u ∈ C1,Hi

io(u)= 0
for u ∈ C2 or C4, and Hi

io(u) undefined for u ∈ C3. Now,

Hi
io = n1n2

(n2 + n4)(n1 + n2 + n3 + n4)
, Ho

io = n1n2
(n1 + n4)(n1 + n2 + n3 + n4)

.

The nj’s can take any integer value. We first fix n3 = n4 = 1. If n1 = k2 and n2 = k for any integer
k> 3/ε, Hi

io > 1− ε and Ho
io < ε. And if n1 = k and n2 = k2 for any integer k> 3/ε, Hi

io < ε and
Ho

io > 1− ε.

In contrast, the directed clustering coefficients due to Fagiolo (2007) are based on the cen-
ter of wedges, so the two edges are naturally symmetric and consequently, the metric is always
symmetric. Therefore, there are four directed clustering coefficients and eight directed closure
coefficients.

In the next section, we study how we expect the directed closure coefficients to behave in a con-
figuration model, which provides additional insight into why asymmetries in the directed closure
coefficients might be unsurprising.

4.2 Expectations under configurationmodel
The previous section showed that pairs of average directed closure coefficients can have signifi-
cantly different values; in fact, our extremal analysis showed that their ratio can be unbounded in
theory. However, we have not yet provided any intuition for asymmetry in real-world networks.
Here, we provide further theoretical analysis to show that the structure of the joint in- and out-
degree distribution of a network provides one explanation of this asymmetry. When considering
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random graphs generated under a directed configurationmodel with a fixed joint degree sequence,
the coefficients are generally asymmetric even in their expectations.

The configuration model (Molloy & Reed, 1995; Fosdick et al., 2018) is a standard tool for
analyzing the behavior of patterns and measures on networks. The model is typically studied for
undirected graphs with a specified degree sequence, but the idea cleanly generalizes to directed
graphs with a specified joint degree sequence (Chen & Olvera-Cravioto, 2013). It is often hard to
understand the determinants of unintuitive observations on networks. What aspect of the specific
network under examination leads to a given observation? As one specific angle on this question,
does the observation hold for typical graphs with the observed joint degree sequence, and if so,
what are the determinants of the behavior? Analyses using the configuration model can thus be
used to investigate the expected behavior of ameasure, in our case the directed closure coefficients,
under this random graph distribution.

If a degree sequence S satisfies the condition that the maximum degree is upper bounded by√
n, then under the configuration model with this degree sequence, the probability of forming an

edge u→ v is

P[(u, v) ∈ E | S]= do(u) · di(v)
m

· (1+ o(1)), (4)

where the o(1) term is with respect to large graphs (i.e., n→ ∞) (Newman, 2003). As further
notation for this section, for an event denoted by A, we use 1[A] as the indicator function for event
A, that is, 1[A] = 1 when event A happens and 0 otherwise. Moreover, we use the symbol “∼”
between two quantities X ∼ Y if X = Y · (1+ o(1)). For any direction variable x ∈ {i, o}, we use x̄
to denote the opposite direction of x.

Before presenting the main theoretical results, we first provide a useful lemma. The error term
o(1) here, as well as those in subsequent theorems in this subsection, vanishes as the size of
network grows to infinity, which is the scenario when the probability of an edge between two
nodes in the directed configuration model is proportional to the product of the nodes’ degrees
[Equation (4)].

Lemma 4.3. Suppose G is a random directed graph sampled from the directed configuration model
with joint degree sequence S and let u be any node. Let (u, v,w) be a random type-xy wedge with
head node u. Then for either direction z ∈ {i, o},

E[dz(w) | S, u]= (n/m) ·Mȳz · (1+ o(1)).

Proof. Conditional on the degree sequence, for any node pair v∗ and w∗, (u, v∗,w∗) forms an
xy-wedge with probability

dx(u)dx̄(v∗)
m

· dy(v
∗)dȳ(w∗)
m

· (1+ o(1))∼ C · dȳ(w∗)

where C is a constant independent of w∗. Therefore, for any node w∗, it is the other end of a
random wedge with probability P [w=w∗ | S, u]∝ dȳ(w∗) · (1+ o(1)), and thus

P
[
w=w∗ | S, u] ∼ dȳ(w∗)∑

w∈V dȳ(w)
= dȳ(w∗)

m
.

Consequently, we have

E[dz(w) | S, u]=
∑
w∗∈V

dz(w∗) · P[w=w∗ | S, u]∼
∑
w∗∈V

dȳ(w∗)dz(w∗)
m

= nMȳz

m
.
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Now we present the following theoretical results on the expected value of local directed closure
coefficients under the directed configuration model, which relates the expected closure coefficient
of node u with closing direction i and o to the in- and out-degrees di(u) and do(u) of u.

Theorem 4.4. Let S be a joint degree sequence and G a random directed graph sampled from the
directed configurationmodel with S. For any node u and any local directed closure coefficient Hz

xy(u),
we have

E[Hz
xy(u) | S]=

n(dz(u)− 1[x=z])
m2 ·

(
Mȳz̄ − 1[y=z] · mn

)
· (1+ o(1))

where Mȳz̄ is the second-order moment of degree sequence S.

Proof. Note thatHz
xy(u) can be directly interpreted as the probability that a random type-xywedge

(u, v,w) is z-closed, where node u is the head of this wedge. This is the case if there is an edge
between u and w of direction z (with respect to u): a z-stub from node u is matched to a z̄-stub
from node w. Note that the number of z-stubs of node u that are not used in wedge (u, v,w) is
(dz(u)− 1[x=z]), where we need to subtract the indicator function because one z-stub is already
used in wedge (u, v,w) if x= z. Similarly, the number of z̄-stubs of node w that are not used in
wedge (u, v,w) is (dz̄(w)− 1[ȳ=z̄]). According to the setup of the directed configuration model
[Equation (4)], this probability is

(dz(u)− 1[x=z]) · (dz̄(w)− 1[ȳ=z̄])/m · (1+ o(1))

with the given joint degree sequence, and consequently

E[Hz
xy(u) | S] ∼ E[(dz(u)− 1[x=z]) · (dz̄(w)− 1[ȳ=z̄])/m | S]

= dz(u)− 1[x=z]
m

· (E[dz̄(w) | S]− 1[ȳ=z̄]
)

∼ dz(u)− 1[x=z]
m

· ((n/m) ·Mȳz̄ − 1[ȳ=z̄]
)

= n(dz(u)− 1[x=z])
m2 ·

(
Mȳz̄ − 1[y=z] · mn

)

where the second step follows from the fact that the only random variable is the degree of a
random tail node w, and the third step is due to Lemma 4.3.

Theorem 4.4 shows that the expected value of the local directed closure coefficient Hz
xy(u)

increases with dz(u), the degree in the direction of closure. One corollary of this result is that
under the configuration model, the expected values of the local closure coefficient with the same
closure direction are all monotonic with the same corresponding degree and thus they should be
correlated themselves. This result provides one intuition for the block structure of the correlations
between coefficients found in Figure 4.

We can easily aggregate the results of Theorem 4.4 to give expected values of the average
directed closure coefficients.

Theorem 4.5. Let S be a joint degree sequence and G be a random directed graph generated from
the directed configuration model with S. For any average directed closure coefficient Hz

xy,

E[Hz
xy | S]= m− n · 1[x=z]

m2 ·
(
Mȳz̄ − 1[y=z] · mn

)
· (1+ o(1)).

https://doi.org/10.1017/nws.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.20


Network Science 565

Proof. We have

E[Hz
xy | S] = 1

n
∑
u

E[Hz
xy(u) | S]

∼
(
Mȳz̄ − 1[y=z] · mn

)
· 1
m2

∑
u

[dz(u)− 1[x=z]]

=
(
Mȳz̄ − 1[y=z] · mn

)
· m− n · 1[x=z]

m2

where the second line is due to Theorem 4.4.

Theorem 4.5 shows that the expected value of any average closure coefficientHz
xy is mainly deter-

mined by Mȳz̄, a second-order moment of the degree sequence. In the SOC-LAWYER dataset, we
have Mio = 166.15� 227.41=Mii, meaning that E[Hi

io]�E[Ho
io]. This result (partly) explains

the asymmetry observed in Figure 3: the different coefficients are related to different moments of
the joint degree sequence of the network, at least for graphs sampled from a configuration model
with different empirical joint degree sequences.

Finally, we can also determine the expected value of global directed closure coefficients under
the configuration model, as given in Theorem 4.7. Again we first present a useful lemma, which is
analogous to Lemma 4.3.

Lemma 4.6. Suppose G is a random directed graph sampled from the directed configuration model
with joint degree sequence S. Let (u, v,w) be a random type-xy wedge, then

(1) E
[
dz̄(w) | S

] = (n/m) ·Mȳz̄ · (1+ o(1));
(2) E

[
dz(u) | S

] = (n/m) ·Mxz · (1+ o(1));
(3) E

[
dz(u)dz̄(w) | S

] =E
[
dz(u) | S

] ·E [
dz̄(w) | S

] · (1+ o(1)).

Proof. Result 1 is a corollary of Lemma 4.3:

E[dz̄(w) | S]=E
[
E[dz̄(w) | S, u] | S

] ∼ nMȳz̄

m
.

Result 2 is a corollary of result 1: (u, v,w) being a type-xy wedge is equivalent to (w, v, u) being a
type-ȳx̄ wedge.

Now, we show the last result. Conditional on the degree sequence, for any node triple
(u∗, v∗,w∗), it forms an xy-wedge with probability

dx(u∗)dx̄(v∗)
m

· dy(v
∗)dȳ(w∗)
m

· (1+ o(1))∼ C · dx(u∗)dȳ(w∗)

where C is a constant independent of u∗ and w∗. Therefore, for any node pair u∗ and w∗, they
are the two ends of a random wedge with probability P [u= u∗,w=w∗ | S]∝ dx(u∗)dȳ(w∗) · (1+
o(1)), and thus

P
[
u= u∗,w=w∗ | S] ∼ dx(u∗)dȳ(w∗)∑

u,w∈V dx(u)dȳ(w)
= dx(u∗)dȳ(w∗)

m2 .

Consequently, we have

E
[
dz(u)dz̄(w) | S

] =
∑

u∗,w∗∈V
dz(u∗)dz̄(w∗) · P [

u= u∗,w=w∗ | S]

∼
∑

u∗,w∗∈V
dz(u∗)dz̄(w∗) · dx(u

∗)dȳ(w∗)
m2
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= nMxz
m

· nMȳz̄

m
∼E

[
dz(u) | S

] ·E [
dz̄(w) | S

]

which completes the proof.

Theorem 4.7. Let S be a joint degree sequence and G be a random directed graph generated from
the directed configuration model with S. For any global directed closure coefficient Hz

xy,

E[Hz
xy | S]=

(
Mȳz̄ − 1[y=z] · mn

)
·
(
Mxz − 1[x=z] · mn

)
· n2

m3 · (1+ o(1)).

Proof. For a random type-xy wedge (u, v,w), we have shown that the probability of it being
z-closed is of the order (dz(u)− 1[x=z]) · (dz̄(w)− 1[ȳ=z̄])/m. Different from the proof of
Theorem 4.4 where node u is fixed, here we do not fix node u, meaning that both node u and
node w are random.

E

[
Hz
xy | S

]
∼ 1

m
·E [

(dz(u)− 1[x=z]) · (dz̄(w)− 1[ȳ=z̄]) | S
]

∼ 1
m

· (E[dz(u) | S]− 1[x=z]
) · (E[dz̄(w) | S]− 1[ȳ=z̄]

)

∼ 1
m

·
( n
m

·Mxz − 1[x=z]
)

·
( n
m

·Myz̄ − 1[ȳ=z̄]
)

where the second line is due to the last result in Lemma 4.6, and the last line is due to the first two
results in Lemma 4.6.

As a byproduct of our analysis, the proof of Theorem 4.7 also shows that, under the directed
configuration model, the probability that a wedge is closed is independent of the center node, and
thus equal to the network-level average. This observation gives us the expected value of Fagiolo’s
(2007) directed local clustering coefficients under this random graph model as well.

Proposition 4.8. Let S be a joint degree sequence and G be a random directed graph generated from
the directed configuration model with S. For local directed clustering coefficient Cxy(u),

E[Cxy(u) | S]=E[Hi
x̄y | S].

Proof. Consider a random wedge with u being the center node, (v, u,w), which is an x̄y-wedge
to node v. From the definition of Cxy(u), this wedge is closed if it is i-closed to node v. Since the
probability of this wedge being i-closed is independent of node u, it is the same as if we randomly
choose a wedge without constraining node u as the center, and thusE[Cxy(u) | S]=E[Hi

x̄y | S].
Next, we study the accuracy of the theoretical expected values of the average and global closure

coefficients under the directed configuration model. The directed configuration model can be
sampled using double-edge swaps (Rao et al., 1996). To sample graphs from the model, we begin
with an empirical graph (the graph of interest) with joint degree sequence S. We then select a
pair of random directed edges to swap, which changes the graph slightly but notably preserves the
degree sequence. Taking care to avoid self-loops andmulti-edges (Fosdick et al., 2018), the double-
edge swap can be interpreted as a randomwalk in the space of simple graphs with the same degree
sequence, and the stationary distribution of this random walk is the uniform distribution over the
network space. The swap is then repeated many times to generate graphs that are sampled from
the stationary distribution. The mixing time of these random walks are generally believed to be
well behaved, but few rigorous results are known (Greenhill, 2014).
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Figure 7. Histogramof each global closure coefficient (first two rows) and average closure coefficient (last two rows) in 1,000
directed configurationmodel randomgraphswith the joint degree sequence of the SOC-LAWYER and CIT-HEPPH networks. The
x-axis is the value of various directed closure coefficients and the y-axis is the frequency. Besides the histogram, we also plot
the expected value of closure coefficients from Theorems 4.5 and 4.7 (blue dashed) as well as the actual value in the original
network (green solid).

We generate 1,000 random graphs with the same joint degree sequence as the SOC-
LAWYER and CIT-HEPPH network; to generate each graph, we repeat the edge-swapping pro-
cedure 10,000 times. Figure 7 shows histograms of the distribution of each average and global
closure coefficient under this configuration model. We see that our approximate formulas from
Theorems 4.5 and 4.7 are very accurate even when the network is only moderate in size (n= 71
for SOC-LAWYER). The theoretical formulas are only guaranteed to be accurate on large sparse
networks, and we do observe a small difference between the expected and simulated means
(e.g., Hi

ii).
The simulation shows that the average and global closure coefficients have low variance under

this configuration model, and the values in the original network deviate significantly from these
distributions. More specifically, the values in the citation network are mostly larger than the distri-
bution by orders of magnitude, and the exceptions areHi

oo andHo
ii, as well as their average closure
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coefficient counterparts, where the real-world values are low due to the natural lack of cycles in
citation networks. This provides evidence that the directed closure coefficients of real-world net-
works capture interesting empirical structure beyond what one would expect from a graph drawn
uniformly at random from the space of graphs with the same joint degree sequence.

5. Case studies in node-type predictions
Now that we have a theoretical understanding of our directed closure coefficients, we turn to appli-
cations. Directed closure coefficients are a new measurement for directed triadic closure and thus
can serve as a feature for network analysis and inference. In this section, we present two illustra-
tive examples to exhibit the strong predictive potential of directed closure coefficients. Specifically,
we present two case studies of node-type classification tasks, where we show the utility of local
directed closure coefficients in predicting the node type in the SOC-LAWYER and FW-FLORIDA
datasets analyzed above. Using an interpretable regularized model, we are able to identify the
salient directed closure coefficients that are useful for prediction. This analysis reveals new social
status patterns in the social network and also automatically identifies previously studied triadic
patterns in food webs as good predictors.

5.1 Case study I: Identifying lawyer status in an advisory network
The SOC-LAWYER dataset collected by Lazega (2001) is a social network of lawyers at a corporate
firm. There is a node for each of the 71 lawyers, and each is labeled with a status level—partner or
associate. Of the 71 lawyers in the dataset, 36 are partners and 35 are associates. The edges come
from survey responses on who individuals go to for professional advice: there is an edge from i to j
if person i went to person j for professional advice. Of the edges, there are 395 between 2 partners;
196 between 2 associates; 59 from partner to associate; and 242 from associate to partner.

In this case study, our goal is to predict the status of the lawyers (associate or partner) with pre-
dictors extracted from the advice network.We consider the following six sets of network attributes
as predictors:

1. degree: the in- and out-degree, and the number of reciprocal edges at each node;
2. degree + 1-hop: the union of the degree predictors and four neighbor degrees: the average

in- and out-degree of all in- and out-neighbors of each node;
3. closure: the eight local directed closure coefficients defined in this paper;
4. closure + degree: the union of the closure coefficients and the degree predictors;
5. clustering: the four local directed clustering coefficients as defined by Fagiolo (2007); and
6. clustering + degree: the union of the local directed clustering coefficients and the degree

predictors.

For each predictor set, we use 100 random instances of threefold cross-validation to select an
�1-regularized logistic regression model for predicting whether or not a node is a partner (i.e., the
positive label is for partner). Table 2 reports validation set accuracy and the area under the curve
(AUC) metric of the Receiver Operating Characteristic (ROC). Even though different predictor
sets have different dimensions, evaluating the performance in this way makes them comparable.
The predictors that include our local directed closure coefficients substantially outperform the
other predictor sets. The predictor set that includes both degrees and closure coefficients slightly
underperforms the one with only closure coefficients, indicating slight overfitting in the train-
ing data, which implies that the degree attributes provide redundant and noisy information in
addition to the closure coefficient attributes in this prediction task. In contrast, adding the 1-hop
degrees does not give as much improvement as they do not consider the triadic closure factors.
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Table 2. Validation set accuracy and AUC in classifying node types in the SOC-LAWYER dataset
(partner vs. associate).

Degree Degree Closure Closure Clustering Clustering

+ 1-hop + degree + degree

Accuracy 0.7884 0.8270 0.8743 0.8585 0.6255 0.7884
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AUC 0.8763 0.8978 0.9235 0.9183 0.6362 0.8765

Our proposed local directed closure coefficients (in bold) are the best set of predictors, illustrating the utility of
directed closure coefficients in node-level prediction tasks. In contrast, the local directed clustering coefficients
(Fagiolo, 2007) are not as effective.
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Figure 8. Regularization path of the �1-regularized logistic regressionmodelwith predictor set closure + degree for themodel
of the SOC-LAWYER dataset. The x-axis is the regularization level, and the y-axis is the regression coefficient for each predic-
tor. The vertical black dashed line represents the optimal regularization level obtained from cross-validation. The degree
attributes are only selected at very low regularization levels, and various local directed closure coefficients dominate the
prediction model.

To understand how the directed local closure coefficients improve prediction performance, we
analyze the regularization path of our model, a standard method in sparse regression to visualize
the predictors at each regularization level (Friedman et al., 2010). Figure 8 shows the regularization
path for the predictor set that includes both the local directed closure coefficients and the degree
predictors.

We highlight a few important observations. First, as regularization decreases, directed local clo-
sure coefficients are selected before the degree predictors, indicating that the closure coefficients
are more relevant in prediction than degrees. Second, the two predictors with largest positive
coefficients at the optimal level of regularization are Hi

io(u) and Hi
oo(u), meaning that lawyers

with partner status are more likely to advise people who also advise others. In contrast, the in-
degree di(u) predictor is not one of the first selected, which implies that it is not how many one
advises but ratherwho one advises that is correlated with partner status. Finally, the two predictors
with the largest negative coefficients at the optimal regularization are Hi

oi(u) andHo
oi(u), meaning

that partner-status lawyers are less likely to interact with other lawyers with whom they share an
advisor.

5.2 Case study II: Identifying fish in a food web
We now perform a similar network prediction task. Here, the data come from an entirely dif-
ferent domain (ecology), but we still find that our local directed closure coefficients are effective
predictors for identifying node type.

https://doi.org/10.1017/nws.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.20


570 H. Yin et al.

Table 3. Validation set accuracy and AUC in classifying node types in the FW-FLORIDA dataset
(fish vs. non-fish).

Degree Degree Closure Closure Clustering Clustering

+ 1-hop + degree + degree

Accuracy 0.6250 0.8466 0.8735 0.8700 0.6875 0.7366
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AUC 0.6772 0.9127 0.9538 0.9529 0.7472 0.7834

Our proposed local directed closure coefficients (in bold) are again the best set of predictors (see also Table 2),
illustrating the utility of directed closure coefficients in node-level prediction tasks outside of social network
analysis.
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Figure 9. Regularization path of the �1-regularized logistic regressionmodelwith predictor set closure + degree for themodel
of the FW-FLORIDA dataset. The x-axis is the regularization level, and the y-axis is the regression coefficient for each predic-
tor. The vertical black dashed line represents the optimal regularization level obtained from cross-validation. The degree
attributes are only selected at very low regularization levels, and various local directed closure coefficients dominate the
prediction model.

More specifically, we study a food web collected from the Florida Bay (Ulanowicz &DeAngelis,
2005). In this dataset, nodes correspond to ecological compartments (roughly, species) and edges
represent directed carbon exchange (roughly, who-eats-whom). There is an edge from i to j if
energy flows from compartment i to compartment j. There are 128 total compartments, of which
48 correspond to fish. Our prediction task in this case study is to identify which nodes are fish
using basic node-level features. The dataset contains 2,106 edges, of which 268 are between fish;
699 are between non-fish; 648 are from a fish to a non-fish; and 491 are from a non-fish to a fish.

We used the same model selection procedure as in the first case study on the SOC-LAWYER
dataset described above. Table 3 lists the accuracy and AUC of the �1-regularized logistic regres-
sion model. We again find that our proposed directed closure coefficients form the best set of
predictors for this task. We also find minimal difference in prediction accuracy when including
degree features, indicating that the degree features provide little predictive information beyond
the directed closure coefficients.

In fact, the regularization path shows that the two closure coefficients Ho
oo(u) and Ho

oi(u) are
the most important predictors for identifying fish (Figure 9), the former being positively corre-
lated with the fish type and the latter positively correlated with the non-fish type. The type of
closure associated with the coefficient Ho

oo(u) has previously been identified as important for the
network dynamics of overfishing (Bascompte et al., 2005), so it is reasonable that this predictor is
important.
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6. Discussion
Triadic closure and local clustering are fundamental properties of complex networks. Although
these concepts have a storied history, only recently have there been local closure measure-
ments (for undirected graphs) that accurately reflect the “friend of friend” mechanism pervasive
in discussions of closure. In this paper, we have extended the subtle definitional difference of
initiator-based versus center-based clustering to directed networks, where clustering in general
has received relatively little attention. We observed a seemingly counterintuitive result that the
same induced triadic structure can produce two different average directed closure coefficients;
however, this asymmetry is understandable through our analysis of closure coefficients within a
configuration model, which points to the role of moments of the in- and out-degree distributions.
Additional analysis showed that this asymmetry can be arbitrarily large.

One of the benefits of these new local network measurements is that they can be used as pre-
dictors for statistical inference on networks. Two case studies showed that our directed closure
coefficients are good predictors at identifying node types in two starkly different domains—
social networks and ecology—with simple models using these features achieving over 92% mean
AUC in both cases. Furthermore, directed closure coefficients are much better predictors than
generalizations of clustering coefficients to directed graphs for these tasks. We anticipate that clo-
sure coefficients will become a useful tool for understanding the basic local structure of directed
complex networks.
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Notes
1 One nuance in directed networks is that an edge might be reciprocal: (u, v) ∈ E and (v, u) ∈ E. A pair of reciprocal edges are
sometimes treated as a single bidirected edge (Garlaschelli & Loffredo, 2004; Seshadhri et al., 2016) and sometimes treated
as two distinct edges (Sarajlić et al., 2016). For readability proposes, in this paper, we treat a pair of reciprocal edges as
two separate edges. Extensions for special considerations of reciprocal edges are straightforward and similar theoretical and
empirical results can be found.
2 Again, for readability purposes, we do not consider reciprocal edges separately; instead, a reciprocal edge is treated as two
separate directed edges. Our definitions and analyses can easily be extended to study reciprocal edges, though there would be
9 types of directed wedges and 27 closure coefficients.
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