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The aim of this study was to evaluate the ability of Bifidobacterium strains to prevent the effects
associated with Clostridium difficile infection in a hamster model of enterocolitis. After clindamycin
treatment (30 mg/kg), animals were infected intragastrically with C. difficile (5×108 CFU per animal).
Seven days prior to antibiotic administration, probiotic treatment was started by administering
bacterial suspensions of bifidobacteria in drinking water. Strains CIDCA 531, CIDCA 5310, CIDCA
5316, CIDCA 5320, CIDCA 5323 and CIDCA 5325 were used. Treatment was continued during
all the experimental period. Development of diarrhoea, enterocolitis and mortality were evaluated.
All the infected animals belonging to the placebo group developed enterocolitis (5/5) and only two
dead (2/5) whereas in the group administered with Bifidobacterium bifidum strain CIDCA 5310 the
ratio of animals with enterocolitis or dead decreased significantly (1/5 and 0/5 respectively).
Biological activity of caecum contents was evaluated in vitro on Vero cells. Animals treated with
strain CIDCA 5310 presented lower biological activity than those belonging to the placebo group.
The present study shows the potential of selected strains of bifidobacteria to antagonise, in vivo, the
virulence of C. difficile.
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Clostridium difficile is a Gram (+) spore forming bacteria,
inhabiting the intestinal tract of several animal species, e.g.
pigs, calves, dogs, horses, cats and mice (Arroyo et al. 2005;
Songer & Anderson, 2006; Avberse et al. 2009). In piglets,
C. difficile has been associated with neonatal enteritis
(Hopman et al. 2011). In humans, C. difficile is an important
cause of nosocomial diarrhoea, mainly antibiotic associated
diarrhoea.

The microorganism is carried asymptomatically in about
50% of neonates, 20% of hospitalised patients and 2% of
healthy adults (Matsuki et al. 2005; Gursoy et al. 2007). In
hospitalised individuals, proton pump inhibitors or anti-
biotics such as clindamycin, cephalosporins, fluoroquino-
lones and ampicillin can cause imbalance of the normal
intestinal microbiota thus leading to overgrowth of intestinal
C. difficile, or colonisation by environmental microorgan-
isms that are normally present in health care centres

(Schroeder, 2005; Sunenshine & McDonald, 2006).
C. difficile is responsible for 90–100% of cases of pseudo-
membranous colitis (PMC), 60–75% of antibiotic-associated
colitis and 30–60% of antibiotic-associated diarrhoea
(AAD) (Limaye et al. 2000).
The main virulence factors of this microorganism are two

large protein toxins: TcdA (308 kDa) and TcdB (260 kDa).
These toxins act as glycosyltransferases on small GTPases
that are involved in actin polymerisation and cytoskeleton
assembly (Jank et al. 2007). In the hamster model, TcdB but
not TcdA, is an essential virulence factor in C. difficile
infection (Lyras et al. 2009). Some C. difficile strains produce
a third toxin named binary toxin (CDT) (Popoff et al. 1988)
an AB type toxin constituted by two components: CdtA
(48 kDa) and CdtB (75 kDa). CdtB (receptor-binding com-
ponent) form a heptamer onto cellular surface, allowing for
the internalisation and enzymatic activity (ADP-ribosyl
transferase) of CdtA (Barth et al. 2004). These events trigger
cytoskeleton disorganisation, cell death and nutrient release
into the extracellular milieu (Schwan et al. 2009). Although
relevance of CDT during pathogenic process of C. difficile*For correspondence; e-mail: pfp@biol.unlp.edu.ar
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infection has not been so far confirmed, this factor seems to
be associated with higher severity in the infections
(McDonald et al. 2005).

Recommended therapy for C. difficile-associated diar-
rhoeas involves the use of antibiotics such as metronidazole
for mild-moderate illness and high doses of vancomycin for
severe illness (Cohen et al. 2010). Several studies suggest
that probiotics could constitute an alternative approach for
the prophylaxis and/or treatment of C. difficile associated
diarrhoea (CDAD). In this context, there are reports showing
the correction of microbiota imbalances by administration
of probiotics (Wullt et al. 2003; Plummer et al. 2004;
Segarra-Newnham, 2007) or prebiotics (Lewis et al. 2005).

We have demonstrated that growth and adhesion of the
pathogen onto Caco-2 cells are significantly reduced by
extracellular factors present in spent culture supernatants
of bifidobacteria (Trejo et al. 2006). In addition, co-culture of
C. difficile with selected strains of bifidobacteria leads to a
dramatic reduction of the biological activity of supernatants
due to clostridial toxins (Trejo et al. 2010). These findings are
very interesting because bifidobacteria colonise the same
intestinal region as C. difficile and they are included in
the formulation of many dairy products thus allowing for
the prevention/treatment of the infection by nutritional
intervention.

Taking into account above-mentioned results we assessed
the effect of administration of bifidobacteria on the course
of an experimental infection with C. difficile in a hamster
model.

Materials and methods

Preparation of bacterial suspensions

C. difficile strain 117 is a clinical isolate obtained from
the Servicio de Bacteriología, Hospital Muñiz, Buenos Aires,
Argentina. This strain was characterised in our laboratory
as belonging to TcdA+/TcdB+ toxinotype (Trejo et al.
2010). Clostridia were inoculated in BHI (Biokar,
Diagnostics-Zac de Ther) supplemented with 0·05% w/v
cysteine (Laboratorios ANEDRA, Argentina; BHI-Cys) and
incubated anaerobically (AnaeroPak, Mitshubishi Gas
Chemical Co, Inc) at 37 °C for 20 h. Fifty ml of bacterial
culture were centrifuged at 12 000 g for 10min. Bacteria
were washed twice with sterile phosphate saline buffer
(PBS: 0·144 g KH2PO4/l, 9 g NaCl/l, 0·795 g Na2HPO4/l,
pH 7,5) and suspended in 4ml sterile PBS. Bacterial
concentration was evaluated in a haemocytometer and
adjusted to 109 bacteria/ml in PBS.

Six bifidobacterial strains (Table 1) were selected accord-
ing to their ability to antagonise growth, adhesion to
enterocytes in culture and biological activity of spent culture
supernatants of C. difficile (Trejo et al. 2006; Trejo et al.
2010). Bifidobacterium strains were grown in MRS broth
(DIFCO, Becton Dickinson and Company Sparks, MD
21252, USA) supplemented with 0·05% w/v cysteine
(MRS-cys) at 37 °C for 24 h in anaerobic conditions

(AnaeroPak, Mitshubishi Gas Chemical Co, Inc). Bacterial
suspensions were obtained from 1 l of Bifidobacterium
culture. Afterwards, cultures were centrifuged at 12 000 g
for 10 min, washed twice with sterile PBS and bacteria were
suspended in sterile PBS and stored at �80 °C until use.
Counts were performed by plating serial dilutions of the
cultures on MRS-cys/agar 1·5% (w/v). Plates were incubated
at 37° C for 72 h in anaerobic conditions (AnaeroPak,
Mitshubishi Gas Chemical Co, Inc).

Infection protocol and probiotic administration

Specific pathogen free female Golden Syrian hamsters of
45–60 days old (100–150 g) were used (Instituto de Biología
y Medicina Experimental, CONICET, Argentina). Animals
were housed in polypropylene cages covered with polyester
filters (4 or 5 animals per cage). Food, water, bedding, cages,
wire lids and filter covers were sterilised (15 min, 121 °C)
before use. Food and water were administered ad libitum
throughout.
The time line and general schedule of the experiments are

depicted in Fig. 1. Animals were allocated to 3 experimental
groups:

(a) IC (infected controls)
(b) IPT (infected probiotic treated)
(c) UC (uninfected controls)

Animals of the IPT group (Infected Probiotic-Treated)
were administered daily with suspensions of bifidobacteria
in drinking water at concentration of 2×108 CFU/ml.
Probiotic administration started at day 0 and was continued
until the end of the experiment. Fresh bacteria suspensions
were given daily in order to administer high doses of viable
microorganisms (around 1×109 CFU per animal per day).
Infected controls (IC) and uninfected controls (UC) received
drinking water throughout. The UC group was included in
order to assess the effectiveness of the infection confinement
measures.
On day 7 animals belonging to all experimental groups

were intragastrically (i.g.) administered 100 μl clindamycin
(Parafarm, Drogueria Saporiti, Argentina) solution (30 mg/ml
in PBS) at dose 30mg/kg/animal. In hamsters, clindamycin
treatment results in microbiota imbalance predisposing

Table 1. Bifidobacterium sp. strains

Bifidobacterium species Strains

Bifido. bifidum CIDCA 5310
Bifido. longum CIDCA 5316
Bifido. longum CIDCA 5320
Bifido. longum CIDCA 5325
Bifido.. longum CIDCA 5323
Bifido. pseudolongum CIDCA 531

Strain CIDCA 531 was isolated from a fermented milk product. Remaining
Bifidobacterium strains were isolated from infant faeces (age between 6 d and
4 months), breastfed (Gomez Zavaglia et al. 1998; Pérez et al. 1998)
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animals toC. difficile infection (Chang et al. 1978). Four days
later (day 11) animals of the IC and IPT groups received
intragastrically C. difficile strain 117 (5×108 bacteria/
animal). Uninfected controls (UC) received PBS instead
of C. difficile. At day 4 post-infection (day 15), surviving
animals were euthanatized by CO2 inhalation and cervical
dislocation.

Two independent experiments were conducted: (1) Strain
selection and kinetics: Six bifidobacterial strains. Groups IC
(n=5); IPT (n=5) and UC (n=4) and (2) Strain CIDCA 5310:
Groups IC and IPT (n=8 each).

All the procedures were performed according to inter-
national and local regulations related to animal welfare.

Infection markers

Animals were observed daily and mortality, morbidity
and presence of diarrhoea were recorded. Criteria used to
evaluated moribund animals were auto isolation, lethargy,
skin erosions and stooped posture. Animals judged to be in
a moribund state were euthanatized as described above.

Biological activity of caecal content

After sacrifice, 1 g caecal content was collected and
homogenised with 1 ml PBS. The suspension was cen-
trifuged at 12000 g for 10min and supernatants were filter
sterilised (0·45 μM). Filtrates were stored at �80 °C until use.

Biological activity was assessed as previously described
(Trejo et al. 2010). Briefly, Vero cells, grown in 48 well
plates for 48 h, were treated for 16 h (37 °C, 5% CO2 – 95%
air atmosphere) with 2 fold serial dilutions of filtrates in
DMEM. Detached cells were removed by washing with
PBS. Remaining cells were fixed with 2% (v/v) formaldehyde
and stained with crystal violet solution (0·13% w/v crystal
violet; 5% v/v ethanol; 2% v/v formaldehyde in PBS).

Next, an extraction with 50% (v/v) ethanol was performed
and OD540 was determined. Biological activity was

expressed as the ratio of detached cells (rd), according to
the following expression:

rd ¼ 100 � 1� ODs�OD0ð Þ= ODc�OD0ð Þð Þ
where:

ODs: optical density of sample.
OD0: optical density of well without cells (control of stain
adsorption by the well).
ODc: optical density of untreated control cells

By using this equation, filtrate concentration leading to
50% of cell detachment was calculated (DD50). This value
inversely correlates with the biological activity of the
filtrates. To confirm that biological activity was associated
with TcdB the assay was repeated in the presence of
monoclonal antibody anti-TcdB (10 μl per 100 μl filtrate,
Meridian Life Science, Inc., CA, USA). Biological activity
was abrogated in the presence of anti-TcdB antibody.

Histological studies

Samples of caeca were removed, fixed by using 5% (v/v)
paraformaldehyde and embedded in paraffin. Sections
(5 μM) were hydrated and stained with haematoxylin/eosin.

Statistical analysis

Results were analysed by log-rank (Mantel-Cox) survival
analysis, non-parametric test (Mann-Whitney) or Fisher’s
exact test (two-tailed) using GraphPad Prism version 5.00 for
Windows, (GraphPad Software, San Diego California USA).

Results

Effect of C. difficile infection

Hamsters, administered with clindamycin and sub-
sequently challenged with C. difficile strain 117 showed
evident signs of infection at day 15 (4 d post infection).

Fig. 1. Time line of the study. Administration of bifidobacterial suspensions (1×109 per animal per day) begins at day 0 and continues until
the end of the experiment. Clindamycin was administrated at a single dose (100 μl of a 30mg/ml solution in PBS per animal).
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Indeed inflammation of caecum and colon, increased
intestinal gas, viscous yellowish caecal content and tissue
fragility were observed. These signs are evident in Fig. 2b
that clearly contrasts with Fig. 2 A corresponding to an
uninfected control. Above-mentioned findings were con-
sidered as markers of colitis. Diarrhoea was evidenced by
wet tail and presence of faecal halo in the perianal region.

Probiotic strain selection

As shown in Table 2, infection of hamsters belonging to the
IC group (infected controls) with strain 117 of C. difficile lead
to diarrhoea in 4/5 animals, enterocolitis in 5/5 animals and
2/5 animals died before the final time point (4 d after
infection). Interestingly, preventive administration of strain
CIDCA 5310 significantly (P=0·02) reduced the ratio of
animals with enterocolitis (1/5) as compared with the IC
group group (5/5). An independent experiment conducted
with strain CIDCA 5310 (not shown in Table 2) showed ratios
of enterocolitis of 2/8 and 7/8 for the treatment and placebo
group respectively. This represent a significant difference
between the two groups (P=0·02).

Other strains under study, did not lead to a significant
protective effect although strains CIDCA 5323 and CIDCA
5325 showed 2 out of 5 animals with enterocolitis thus
leading to a trend (P=0·08) of protective effect. In the
uninfected control group, neither enterocolitis or diarrhoea
were observed and no deaths occurred. This indicates
appropriate confinement of infection.

Effect of Bifido bifidum CIDCA 5310 on the kinetics of
C. difficile associated diarrhoea

Kinetics of development of enterocolitis was significantly
different when placebo and probiotic-treated groups were
compared. As shown in Fig. 3, no mortality and only 1
hamster showing signs of diarrhoea were found in the
IPT group at day 4 post-infection. In contrast, in the IC group
diarrhoea and death were evident at days 1 and 2 post-

infection respectively. At the end of experimentation
period, 2/5 animals died and 5/5 showed signs of diarrhoea
in IC group.

Histology

As shown in Fig. 4, caeca of animals belonging to the IC
group show evidence of cellular infiltration with enlarged
sub-mucosal region (Fig. 4 B1), typical volcanic eruption
lesion (Fig. 4 B2) and oedema (Fig. 4 B3). In contrast, normal
appearance was demonstrated in histological sections of
CIDCA 5310-treated infected animals (Fig. 4 C1, C2 and
C3). Histological characteristics of this group were similar to
those of uninfected controls (Fig. 4 A1, A2 and A3). Intestinal
epithelium breakdown produced during C. difficile path-
ology allows passage of polimorfonuclears cells from sub-
mucose though luminal area (Fig. 4b). Viscous aspect of
intestinal content, shown in Fig. 2b, normally is associated
with fibrin effusion that gives rise to the characteristic
volcanic eruption lesion found in histological analysis
(Waters et al. 1998).

Biological activity of caecal content

As depicted in Fig. 5, biological activity of filtrates of
caecal content revealed significant differences between
groups. Indeed, samples from the placebo group had lower
DD50 (higher biological activity) than those belonging to
the 5310-treated group (P=0·016). Non-biological activity
associated to TcdB was evidenced in non-infected control
group (data not shown).

Discussion

Treatment of C. difficile associated diarrhoea (CDAD),
generally performed with metronidazole or vancomycin
has proved to have an effectiveness of 95% (Kelly et al.
1994). However, there is evidence of increasing failure of
this conventional therapy (Aslam et al. 2005) as well as
relapse ratios ranging from 20 to 50% (Musher et al. 2005;
Pepin et al. 2005).
Since CDAD is associated with disruption of the intestinal

microbiota, strategies encompassing administration of pro-
biotic microorganisms constitute a promising approach.
These nutritional interventions have been addressed in
human trials that revealed the suitability of probiotics
to improve the course of this pathology (reviewed in
Gougoulias et al. 2007).
C. difficile can lead to severe infectious diarrhoea in pigs

(Songer & Anderson, 2006) but the most suitable animal
model to mimics human infection is the Syrian Golden
hamster (Mesocricetus auratus) (Chang et al. 1978). It has
been reported that administration of nontoxigenic strains
of C. difficile 3 d before challenge with toxigenic strains
prevented colonisation of hamster (Sambol et al. 2002). This
protective effect has been correlated with decrease in
colonisation by clostridia.

A B

Fig. 2. Effect of C. difficile infection in hamster. (a) animal
administered with B. bifidum CIDCA 5310 (2×108 CFU/animal)
and infected with C. difficile (5×108 CFU/animal). (b) Infected
control.
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Treatment with Saccharomyces boulardii reduces mor-
tality of hamsters infected with C. difficile (Toothaker &
Elmer, 1984). Even though in vitro studies have shown that
Sac. boulardii is able to inactivate C. difficile toxins by
proteolytic cleavage (Castagliuolo et al. 1996; Buts, 2008)
this effect has not been demonstrated in vivo.

In the present study, we show for the first time the
protective effect of a selected strain of Bifido bifidum
(CIDCA 5310) in a hamster model of CDAD. Continuous
administration of strain CIDCA 5310 in drinking water
starting 11 d before infection with C. difficile, leads to a
significant amelioration of symptoms and increased survival
ratio in the probiotic-treated group. Protective effect was
observed at least for 4 d post infection.

Even though six bifidobacterial strains were tested, only
strain CIDCA 5310 was able to antagonise the effect of

C. difficile. Interestingly, other strains (Trejo et al. 2006)
showed higher in vitro inhibitory potential than strain
CIDCA 5310 (e.g. CIDCA 5320 ad CIDCA 5323) and also
higher capability to antagonise adhesion to cultured human
enterocytes (e.g. strains CIDCA 5316, 5320, 5323 and
5325). Although none of these characteristics were
found in strain CIDCA 5310, co-culture of this strain with
toxinogenic C. difficile dramatically reduces biological
activity of spent culture supernatants as compared with
pure clostridial cultures (Trejo et al. 2010). Furthermore, it
has been demonstrated that culture of C. difficile in the
presence of strain CIDCA 5310 leads to lower concen-
trations of TcdA and TcdB in the spent culture supernatants.
These findings have been ascribed to either decrease of
toxin release or synthesis diminution with no inhibition of
C. difficile growth (Trejo et al. 2010). Interestingly, in the
present study we detected lower biological activity in faecal
samples of probiotic-treated animals as compared with the
control group.
In agreement with the above mentioned findings animals

administered with strain CIDCA 5310 showed better general
condition, lower ratio of enterocolitis and lower mortality
compared with placebo-treated group.
It is worth noting that the protective effect of strain CIDCA

5310 was found even in a model that includes antibiotic
administration. Indeed, in the present study hamsters were
administered with clindamycin at day 7 to facilitate infection
by C. difficile. It has been demonstrated (Larson & Borriello,
1990) that this antibiotic remains in the caecal content
at potentially inhibitory concentrations (4–6 μg/g) for up
to 11 d. These concentrations are higher than minimal
inhibitory concentrations (MIC) reported by Xiao et al.
(2010) but daily administration of bifidobacteria from day 0
until the end of the study provides daily intake of living
microorganisms.
The effect of strain CIDCA5310 could be related to several

factors that involve balance of the intestinal microbiota and
immunomodulation. However, the ability of strain CIDCA
5310 to decrease in vivo, the biological activity of faecal
contents seems to be a finding of particular relevance given

Table 2. Ratios of animals with diarrhoea, enterocolitis or dead. Animals received clindamycin (30mg/kg) at day 7 and they were infected
with 5×108 CFU/animal C. difficile strain 117 at day 11. Results were recorded 4 d after infection. Control animals received antibiotic
treatment but they were no infected nor probiotic-treated

Treatment Experimental group

Ratio

Diarrhoea Enterocolitis Death

CIDCA531 IPT 5/5 3/5 0/5
CIDCA5310 1/5 1/5(*) 0/5
CIDCA5316 4/5 4/5 2/5
CIDCA5320 4/5 4/5 1/5
CIDCA5323 3/5 2/5 3/5
CIDCA5325 3/5 2/5 0/5
Infected controls IC 4/5 5/5 2/5
Uninfected controls UC 0/4 0/4 0/4

(*) Significantly difference from placebo group (Fisher’s exact test, P<0·05)

Fig. 3. Enterocolitis and death in hamsters infected with C. difficile
strain 117 (5×108 CFU/animal). Infected Probiotic-Treated (IPT)
animals were administered with 2×108 CFU/ml of B. bifidum
CIDCA 5310 in drinking water starting at day 0 until end of
experiment.
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the main role of secreted TcdA and TcdB in the course of
the pathology. Noteworthy, the low proteolytic activity of
bifidobacteria precludes degradation of toxins in the gut as
a mechanism for explaining the protective effect.

Results reported in the present study emphasise the
importance of strain selection for improving the likelihood
of successful interventions. Even though the mechanisms
have not been elucidated, results presented here encourage
further research on the use of bifidobacteria-containing
products in the prophylaxis/treatment of CDAD.
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