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Abstract

The Sargur Group has been considered to be the oldest group (>3.0 Ga) in the Archaean
sequence of the Dharwar Craton in south India, whereas the rocks of the Dharwar
Supergroup are younger (between 3.0 and 2.55 Ga). The supracrustal units of the Sargur
Group were deposited during the Archaean period. The Banavara quartzite forms part of
the supracrustal Sargur Group and contains significant amounts of chromian spinel (Cr-
spinel). Here, U–Pb and Hf isotopes of detrital zircons are integrated with compositional data
and X-ray refinement parameters for Cr-spinels to decipher the provenance of the metasedi-
ments. Zircons show an age spectrum from 3.15 to 2.50 Ga, and juvenile Hf isotopic compo-
sitions (ϵHf=þ0.8 toþ6.4) withmodel ages between 3.3 and 3.0 Ga. Major- and trace-element
contents of the Cr-spinels do not resemble those in the Sargur ultramafic rocks, but resemble
well-characterized Archaean anorthosite-hosted chromites. Cr-spinel trace-element signatures
indicate that they have undergone secondary alteration or metamorphism. X-ray refinement
parameters for the Cr-spinels also resemble the anorthosite-hosted chromites. We conclude
that the detrital minerals were probably derived from gneissic and anorthositic rocks of the
Western Dharwar Craton, and that the Sargur Group sequences have experienced a younger
(2.5 Ga) metamorphic overprint.

1. Introduction

Knowledge of the provenance of ancient clastic sedimentary rocks is important for mineral
exploration and basin analysis, as well as for palaeotectonic reconstructions. Minor amounts
of heavy minerals such as zircon, rutile, tourmaline, garnet, epidote and chromian spinel
(Cr-spinel) are commonly contained in clastic sedimentary rocks. Geochemical and heavy min-
eral associations of specific detrital minerals are powerful tools in provenance characterization,
especially in deciphering the timing of erosion or the tectonic setting of source terrains. Major-
and trace-element and isotopic signatures of most of the heavy minerals mentioned above have
been used as provenance indicators (e.g. Pober & Faupl, 1988; Morton, 1991; von Eynatten
& Gaupp, 1999; Sircombe, 1999; Faupl et al. 2002; Spiegel et al. 2002).

Archaean cratons preserve a record of crustal evolution processes of the primordial Earth,
and metasediments of the Archaean provinces preserve remnants of the crust that are no longer
exposed on the Earth’s crust. However, such rocks have experienced protracted metamorphic-
deformational-alteration events making it difficult to understand the evolution of the early
continental areas. Resistant minerals such as zircon, rutile, chromite, etc. associated with the
Archaean metasediments are ideal materials as the isotopic and geochemical tracers incorpo-
rated in these phases can survive multiple geological processes. Detrital zircon from Archaean
metasediments has been used to delineate the regional and geochronological history of such
provinces (e.g. Gerdes & Zeh, 2006; Zeh & Gerdes, 2012; Maibam et al. 2016). During the past
decade, numerous U–Pb dating studies have been conducted on granitoid rocks of the Dharwar
Craton using modern microbeam techniques (ion probe and laser ablation multi-collector/
quadrupole inductively coupled plasma mass spectrometry (LA-MC/Q-ICP-MS)). Although
isotopic age datasets have outlined the geochronological framework of the formation and
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evolution of the Archaean gneissic continental crust of the
Dharwar Craton (Maibam et al. 2011, 2016, 2017; Lancaster
et al. 2015; Guitreau et al. 2017), the provenance study of metasedi-
ments of the Archaean supracrustal units is lacking.

Combined in situ U–Pb and Hf isotopic studies of zircon are
ideal for providing provenance information and for giving insight
into regional crustal growth, providing an overview ofmagmatism/
metamorphism of igneous/metamorphic rocks of different ages
over a large area (e.g. Cawood et al. 1999, 2012; Wang et al.
2013). The Hf isotope composition of zircons is a sensitive tracer
for sediment provenance (Kinny & Maas, 2003; Howard et al.
2009) and is not usually affected by post-crystallization thermal
disturbance, so it provides an accurate record of whether the zir-
cons formed during juvenile additions to the crust or are derived
from reworked crust, or a combination of the two. The age spectra
of the grains and the Hf isotope composition allow comparison
with the geochemical characteristics of potential source terrains.

Cr-spinel is a common mineral in mafic and ultramafic rocks,
and its chemical composition is influenced by the geodynamic
environment of its formation, enabling its use as a petrogenetic
indicator (e.g. Irvine, 1967; Dick & Bullen, 1984; Allan et al.
1988; Sack & Ghiorso, 1991; Roeder, 1994; Barnes & Roeder,
2001; Zhu et al. 2004). Although the composition of Cr-spinel
depends on the geotectonic setting, it is also strongly dependent
on processes that occur within a single geotectonic regime.
Cr-spinel also occurs as a detrital component in sedimentary rocks,
in which the chemical durability and varied geochemical finger-
prints of the spinel reflect the origin of the parent rock and allow
the identification of a specific provenance. Cr-spinel is mechani-
cally stable, preserves its compositional signature against weather-
ing and diagenesis (Mange & Morton, 2007) and is easy to
recognize in both transmitted and reflected light (Cookenboo
et al. 1997), enabling its widespread use in provenance studies
and palaeotectonic reconstruction (Utter, 1978; Press, 1986;
Pober & Faupl, 1988; Arai & Okada, 1991; Cookenboo et al.
1997; Sciunnach & Garzanti, 1997; Lenaz et al. 2000, 2003, 2009b).

In this study, we present U–Pb and Hf isotope datasets for detri-
tal zircons and a geochemical and crystal chemical study of detrital
Cr-spinels from the Banavara quartzite, which forms part of the
Sargur Group, a supracrustal unit of the Dharwar Craton. We
use this data to decipher the probable provenance of the sediments
and the tectono-magmatic evolution of the Dharwar Craton.

2. Geological background

2.a. Geological setting of the area

The Dharwar Craton comprises vast areas of tonalitic–trondhje-
mitic–granodioritic (TTG) gneisses (3.36–2.7 Ga, regionally
known as Peninsular Gneisses) and two generations of volcanic–
sedimentary greenstone sequences (>3.0 Ga Sargur Group and
2.9–2.6 Ga Dharwar Supergroup). The craton is sub-divided into
two parts viz. the Western Dharwar Craton (WDC) and the
Eastern Dharwar Craton (EDC) based on the nature and abun-
dance of greenstones as well as the age of their surrounding base-
ment and degree of regional metamorphism (Swami Nath et al.
1976). Maibam et al. (2011) showed widespread occurrence of
Archaean (>3.0 Ga) crustal components in the EDC that suggests
that crust formation in both the WDC and EDC took place during
Mesoarchaean time (>3.3 Ga) and continued until 2.5 Ga.

The Meso- to Neoarchaean lithostratigraphic sequence of the
Dharwar Craton, southern India, consists of the Sargur Group

and the Dharwar Supergroup (Swami Nath & Ramakrishnan,
1981). The supracrustal rocks of the Sargur Group comprise a
range ofmetasedimentary rocks: fuchsite andmuscovite quartzites
± graphite, psammopelites (kyanite/sillimanite ± garnet ± graphite
schists), calc-silicate rocks and marbles, and banded iron forma-
tion (BIF). They are associated with metamorphosed ultramafic
rocks (some komatiite), gabbros and anorthosites (Viswanatha &
Ramakrishnan, 1981). Ramakrishnan (2009) divided the Sargur
Group into two types of lithological associations (i) linear ultra-
mafic-mafic belts containing subordinate clastic sediments and
BIF (e.g. Nuggihalli, Nagamangala and Krishnarajpet) and (ii)
scattered ultramafic-mafic enclaves associated with a quartzite–
carbonate–pelite–BIF assemblage (e.g. Sargur and Mercara). On
the basis of the first U–Pb SHRIMP data for detrital zircons from
quartzites of the Sargur Group near Holenarasipur and Banavara,
Nutman et al. (1992) suggested that the sedimentary protoliths of
the quartzite were derived from 3.58–3.13 Ga granitoid rocks and
attributed a younger population of 3.13–2.9 Ga to the effects of
high-grade metamorphism associated with the emplacement of
the Peninsular Gneiss. Lancaster et al. (2015) also showed that
the Sargur Group metasediments were supplied by a 3580–
3130Ma provenance. Jayananda et al. (2008) and Maya et al.
(2017) reported 3.35 and 3.15 Ga ages for komatiitic rocks of
the Sargur Group. Pb−Pb zircon and Rb−Sr whole-rock ages for
gneisses from the Gorur–Hassan area (Naha et al. 1993; Peucat
et al. 1993) are generally higher, in the range 3300 to 3100Ma
(3.3−3.1 Ga). An overprint of a secondary event at ~2900
−2800Ma (2.9−2.8 Ga) has been inferred from zircon data for both
gneisses and metasediments of the adjoining Nuggihalli schist belt
(Maibam et al. 2003).

Radhakrishna (1983) suggested the Sargur supracrustal rocks
were sediments deposited in volcanically active shallow basins.
The clastic metasediments (quartzites) are characterized by
cross-bedding. Ramiengar et al. (1978) suggested a detrital nature
for the quartzite on the basis of the presence of current-bedding in
some of the quartzites. Based on the cross-bedding, palaeocurrent
and other sedimentary evidence, Naha et al. (1991) suggested a flu-
vial origin for the quartzites.

The division of the Dharwar supracrustal sequence into the
Sargur Group (older than 3.0 Ga) and Dharwar Supergroup
(3.0–2.55 Ga) contradicts an alternative view that the Sargur
Group rocks correspond to rocks of the Dharwar Supergroup
together with some older rocks (Ramakrishnan, 1994; Srinivasan
& Naha, 1996). The Sargur Group has been considered to be the
oldest group in the Archaean sequence of the Dharwar Craton
(Ramakrishnan & Vaidyanathan, 2008) and is assigned an age
older than 3.0 Ga, whereas the rocks of the Dharwar
Supergroup, consisting of the Dharwar greenstone belts, are youn-
ger and were deposited between 3.0 and 2.55 Ga.

The Dharwar greenstone belt rocks aremetamorphosed at greens-
chist to lower amphibolite facies, whereas the SargurGroupwasmeta-
morphosed under upper amphibolite to lower granulite facies (e.g.
Viswanatha & Ramakrishnan, 1981). Among the major mafic-ultra-
mafic bodies are Holenarasipur, Nuggihalli, Krishnarajpet and
Jayachamarajapura. In the Nuggihalli schist belt komatiite affinity
chromite seams occur as layers, irregular tabular or lensoid bodies
in serpentinized ultramafic rocks (Bidyananda & Mitra, 2005).
Combined single crystal X-ray refinement and Mössbauer spectros-
copy study show that the Nuggihalli chromites were not affected
by metamorphism (Lenaz et al. 2004).

Ramakrishnan (2009) and Chadwick et al. (1989) suggested
that the Dharwar Supergroup consists of three lithological
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packages: (1) the Bababudan Group comprising quartz-pebble
conglomerate, amygdular metabasalt alternations, felsic volcanic
rocks and BIF; (2) the Chitradurga Group classified into (a) the
Vanivilas Subgroup, including polymict conglomerate, quartzite,
pelite, carbonate and manganese-iron formations, and (b) the
Ingaldhal Subgroup, comprising pillowed metabasalts, felsic vol-
canic rocks and BIF; and (3) the Ranibennur Subgroup composed
of greywacke turbidite, polymict conglomerate and a BIF horizon.
A generalized stratigraphical sequence of the Dharwar Craton is
presented in online Supplementary Material Table S1.

The supracrustal enclave near the Banavara area is ~10 km2.
The lithounit comprises fuchsite quartzite, metapelite, ironstone
and ultramafic rocks. Varieties of porphyry granites (grey to pink
colour) cross-cut the supracrustal units. Younger dolerite dykes
cross-cut the rock units. Although primary sedimentary features,
cross-bedding, etc. are reported from other metasedimentary units
of the Sargur Group, the studied sample does not show any such
features, probably owing to intense deformational and metamor-
phic recrystallization (Ramiengar et al. 1978).

2.b. Sample description

Clastic metasediments are an indispensable rock unit of the Sargur
Group. However, Cr-spinels are associated with select quartzite
exposures. We have deliberately sampled the Cr-spinel-bearing
layered fuchsite quartzite to carry out a combined detrital zircon
and Cr-spinel provenance study. The studied sample was collected
from the Bangaluru–Honnavara Highway near Banavara
(13° 25.322 0 N, 76° 09.085 0 E; Fig. 1). The chromite-bearing fuch-
sitic quartzites are 2 to 3 m thick and are intercalated with amphib-
olites, ultramafic rocks and schistose rocks. The supracrustal rocks
occur as enclaves within the Peninsular Gneiss. Cr-spinel makes up
5 to 15 % of the studied sample. Representative photomicrographs
of the studied sample are presented in Figure 2 and a scan image of
the thin-section presented in Figure 3a.

The quartzite consists dominantly of medium- to coarse-
grained (~1 mm) sub-rounded quartz grains; small quartz grains
exhibit polygonal outlines and surround the larger grains. The rock
shows deformation bands in places and the Cr-spinels are aligned
parallel to the foliation (Fig. 2). Individual Cr-spinel grains are
mostly 0.2–0.6 mm in size and anhedral in shape. Fuchsite mica
(~10 % modal composition) with feeble (slight) pleochroism cre-
ates a subparallel arrangement and forms a foliation plane
(Fig. 2a, b). Needle-shaped rutile, subhedral reddish tourmaline
and sub-rounded zircon grains are also observed (Fig. 2c, d).

3. Methodology

3.a. Zircon

Zircon separation was carried out at the Physical Research
Laboratory, Ahmedabad. The sample was crushed into centi-
metre-sized chips to eliminate weathered portions and thoroughly
washed. Clean chips from the sample were pulverized to <250 μm
using a stainless steel piston and cylinder. Zircons were concen-
trated using aqueous sodium polytungstate solution (density = 3
gcm−3) followed by magnetic separation using a Frantz iso-
dynamic separator. Zircon grains were handpicked from the least
magnetic fraction using a binocular microscope.

Most of the zirconU–Pb isotope analyses were carried out at the
University of Münster, Germany, with an Element 2 mass spec-
trometer (ThermoFisher) connected to a Photon Machines
Analyte G2 laser system. Forward power was 1300W and reflected

power <1W; gas flow rates were 1.2 l m−1 for He (carrier gas of
ablated material), and 0.9 l m−1 and 1.1 l m−1 for the Ar-auxiliary
and sample gas, respectively. Cooling gas flow rate was set to 16 l
min−1. The laser repetition rate was set to 10 Hz using a fluence of
4 J cm−2 and the system was tuned (torch position, lenses, gas
flows) on NIST 612 glass, measuring 139La, 232Th and 232Th16O
to get stable signals, high sensitivity and low oxide rates
(232Th16O/232Th <0.1 %) during ablation. Laser spot sizes varied
between 25 and 45 μm, depending on the size of the zircons.
Details of the analytical and data reduction protocols can be found
in Kooijman et al. (2012). Cathodoluminescence (CL) images of
zircons were used as guides for laser ablation spot selection.

Some of the zircons were U–Pb dated by laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS) at MQ
Geoanalytical, Macquarie University, Sydney. The analyses were
carried out using an Agilent 7700 quadrupole ICP-MS instrument,
attached to a PhotonMachines Excimer 193 nm laser system using
a beam diameter of c. 30–40 μm with 5 Hz repetition rate and
energy of c. 0.06 μJ and 8 J cm−2. The analytical procedures for
U–Pb dating are described in detail by Jackson et al. (2004).

Hf isotope analyses were carried out at MQ Geoanalytical,
Macquarie University, using the methodology and analytical con-
ditions for Lu–Hf isotope analysis described in Griffin et al. (2000).
Analyses were carried out in situ using a PhotonMachines Excimer
193 nm laser attached to a Nu Plasmamulti-collector ICP-MS. The
analyses were carried out with a beam diameter of 40 μm and a
5 Hz repetition rate and typical ablation times of c. 100 s. He carrier
gas transported the ablated sample from the cell via a mixing
chamber to the ICP-MS torch.

3.b. Chromian spinels

Three Cr-spinels from the quartzite were studied by X-ray single
crystal diffraction. Data were recorded on an automated KUMA-
KM4 (K-geometry) diffractometer at the Department of
Mathematics and Geosciences (University of Trieste), using
MoKα radiation, monochromatized by a flat graphite crystal. X-
ray data collection, chemical analyses and cation distribution were
made according to the procedures described in Lenaz &
Schmitz (2017).

Major-element compositions were determined with a JEOL
JXA 8900 RL electron microprobe at the University of Mainz.
The oxideminerals were measured with five wavelength-dispersive
spectrometers at 20 kV acceleration voltage, a current of 12 or
20 nA and either a focused beam or a beam diameter of 2 μm.
Natural minerals and oxides (Si, Ti, Al, Fe, Mg, Mn, Cr and Zn)
and pure element standards (V, Co) were used.

Trace-element compositions of chromite were determined
using a NewWave UP 266 laser system connected to an Agilent
7700cs ICP-MS at MQ Geoanalytical, Macquarie University, fol-
lowing the methods described by Colás et al. (2014). The basaltic
glass BCR-2g and the in-house chromite secondary standard LCR-
1 (Lace mine, South Africa; Locmelis et al. 2011) were analysed as
unknowns during each analytical run to check accuracy and pre-
cision. The results obtained for these two standards display very
good reproducibility (3–8%) for most trace elements.

4. Results

4.a. Zircon

The majority of the zircons are long prismatic and poorly sorted,
although a small number of sub-rounded to subhedral and poorly
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Fig. 1. (Colour online) (a) Geological map of the Dharwar Craton (modified from Peucat et al. 1993). (b) Geological map of the Banavara area (after Ramiengar et al. 1978).
Locations of important cities, towns and sample are marked.

Fig. 2. (Colour online) Photomicrographs of studied quartzite all in crossed nicols (except a). (a, b) Parallel alignment of quartz, Cr-spinel and fuchsite mica. Note the distribution
of Cr-spinels and fuchsite arranged in subparallel alignment showing a distinct foliation. Interstices are filled with finer quartz grains. (c) Rutile needles as inclusion in quartz. (d)
Tourmaline, sub-rounded zircon and fuchsite mica as inclusion in quartz.

1674 B Maibam et al.

https://doi.org/10.1017/S001675682100025X Published online by Cambridge University Press

https://doi.org/10.1017/S001675682100025X


sorted zircons also occur. Grain morphology shows that the zir-
cons could be of mixed origin (probably both detrital and meta-
morphic). Zircons are generally colourless to brownish in
transmitted light: most of the zircon grains selected for analysis
were colourless and prismatic, a few slightly rounded. They were
free of visible alteration, cracks and inclusions. CL images of rep-
resentative analysed grains are shown in online Supplementary
Material Figure S1. CL reveals clear core–rim relationships in some
zircon grains (online Supplementary Material Fig. S1vi, ix, xi).
Some grains show metamict cores.

We conducted 52 analyses on 51 separate grains (online
Supplementary Material Table S2a, b). Analyses with >10 % dis-
cordance occur but are not used in the discussion. Only 27 analyses
yielded concordant ages (92–102 % concordance) ranging between
3150 and 2510Ma, with a dominant age group between 3150 and
2900Ma. It may be noted that though the total number of analysed
zircons is limited, the majority of our age spectrum falls within the
reported detrital zircon ages of the Sargur supracrustal sequences
(except <2.9 Ga ages). The discordant (37 to 87 % concordance)
dataset of 25 spot analyses yields a similar 207Pb–206Pb age range
of 3150 to 2900Ma. The U–Pb dataset is presented in online
Supplementary Material Table S2 and the concordia and probabil-
ity distribution diagrams in Figure 4. The older age population
(3150 to 2900 Ma) showing higher uranium contents ranging
between 126 and 452 ppm is similar to the youngest age range
of detrital zircons in the Sargur supracrustal rocks reported by
Nutman et al. (1992). The younger age population between 2.65
and 2.51 Ga is characterized by a lower uranium (11 to 26 ppm)
concentration and very low Th/U values (ranging between 0 and
0.01) (online Supplementary Material Table S2b nos. 2–6).

A total of 18 Lu–Hf analyses were made on zircons with robust
U–Pb ages (>95 % concordance). The Hf isotope compositions of
the 3.15 to 2.9 Ga zircons have chondritic to superchondritic ϵHf
values ranging between þ0.8 and þ6.4, and show variable crustal
model (TDM

c) ages lying between 3.1 and 3.3 Ga. The Hf isotope
results are shown in Figure 5 and the data are presented in online
Supplementary Material Table S3. Five data points plot above the
depleted mantle (DM) line, probably owing to the mismatching of
the analysed U–Pb and Hf isotope spots: these data points are not
considered during the discussion. There could be at least two
explanations for the data points that plot above the DM reference
line: (a) In the present study, we used the model by Griffin et al.
(2000), where the DM has a present-day 176Hf/177Hf of 0.28323,
similar to that of average mid-ocean ridge basalt (MORB).
However, the range of MORB Hf isotope ratios is not limited to
a thin line, but represents a range in 176Hf/177Hf values varying
mainly from 0.283040 to 0.283311, but with some values over
0.283355 (e.g. Nowell et al. 1998). (b) There could be a possibility
of core–rim zoning in some of the studied zircons, where Hf iso-
tope analysis spots sample the older core domain, while U–Pb
spots are within the younger rim zones.

4.b. Chromian spinels

Detrital Cr-spinels of varying sizes often occur as continuous bands
composed of >80 vol. % chromite within the metasediment.
Representative photomicrographs and scanning electron microscope

Fig. 3. (Colour online) (a) Quartzite thin-section showing Cr-spinel (Chr) distribution
in the sample. (b) Photomicrograph of a quartz inclusion in a Cr-spinel (Chr) grain. (c)
Exsolved ilmenite (Ilm) phases in Cr-spinel (Chr). (d) Scanning electron microscope
image of single Cr-spinel grain. (e) Ti distribution in the same Cr-spinel grain showing
exsolution pattern.

Fig. 4. (a) Histogram and (b) Concordia diagram for the Banavara detrital zircons
showing bimodal age distribution.
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(SEM) images of single grains are shown in Figure 3. Individual Cr-
spinel grains are mostly 0.2–2.0 mm across, anhedral and show the
effects of corrosion or reaction. Cr-spinel grains are closely packed,
with very narrow interstices filled with silicate minerals (Fig. 3b).
Exsolved needle-shaped ilmenites a few microns in size are present
in some grains (Fig. 3c, e).

Electron probe microanalysis (EPMA) of cores of Banavara Cr-
spinels is presented in online Supplementary Material Table S4.
The Cr-spinels show relatively variable Cr2O3 contents (30.79 to
37.61 wt %), Al2O3 in the range 20.01 to 25.74 wt %, high FeO
(36.77 to 38.61 wt %) and very low MgO (0.53 to 0.91 wt %).
TiO2 is less than 1 wt % (except one with 3.37 wt %) and ZnO is
high (3.07–3.79 wt %). Other oxides are below 1 wt %, with
MnO within 0.85–0.99 wt %, NiO 0.01–0.06 wt % and V2O3

0.16–0.23wt %. Fe2þ and Fe3þ are calculated from ideal spinel stoi-
chiometry: Fe2þ/Fe3þ ranges between 3.3 and 10.2. Given this, the
Mg no. value (Mg/(Mgþ Fe2þ)) is between 0.03 and 0.05, the Cr
no. (Cr/(CrþAl)) between 0.43 and 0.57, and Fe3þ no. (Fe3þ/(Fe3þ

þ CrþAl)) between 0.05 and 0.13.
For provenance analysis, eight transition metals (Sc, Ti, V, Mn,

Co, Ni, Zn and Ga) were consistently above detection limits (DL
0.02 to 1 ppm; online Supplementary Material Table S4).
Scandium contents are very low (0.19 to 0.52 ppm), Ti ranges from
1097 to 6122 ppm, V from 1057 to 1316 ppm, Mn from 5891 to
7469 ppm, Co from 313 to 422 ppm, and Ni from 190 to 234
ppm. Zinc content is very high (28961 to 38164 ppm) andGa varies
from 201 to 288 ppm. The low Mg no. and the overall enrichment
of Zn, Ga, Mn and V in the Cr-spinels indicates that the enrich-
ment is linked to secondary processes. A MORB-normalized
multi-element diagram of the studied Cr-spinel is presented in
Figure 6.

In spinel, anions form a nearly cubic close-packed array, paral-
lel to (111) planes, and the cations fill part of the tetrahedral (T)
and octahedral (M) interstices available in the framework. In this
structure, oxygen atoms are linked to three octahedral cations and
one tetrahedral cation lying on the opposite side of the oxygen layer
to form a trigonal pyramid. As the oxygen atom moves along the
cube diagonal [111], it causes the oxygen layers in the spinel struc-
ture to be slightly puckered. Variations in u, the oxygen positional
parameter, correspond to displacements of oxygens along the cube
diagonal, and reflect adjustments to the relative effective radii of
cations in the tetrahedral and octahedral sites. An increase in u cor-
responds to an enlargement of the tetrahedral coordination

polyhedra and a compensating decrease in the octahedra
(Lindsley, 1976). X-ray data showed that the three crystals are very
similar, with cell edges ranging from 8.2735 (3) Å to 8.2785 (2) Å
and oxygen positional parameters between 0.2635 (2) and
0.2639 (2).

SEM images indicate the presence of negative crystals
(Laemmlein, 1973; Kern, 1987; Sunagawa, 1987) in the cores of
chromite grains (Fig. 7). These octahedral pores are occasionally
filled by quartz and are considered to be sites where fluid inclusions
could have existed. After originally forming their primary, more or
less irregular shape, fluid inclusions usually transform it through
dissolution and recrystallization into the equilibrium crystal shape
with minimum surface free energy. Some inclusions retain their
original metastable shape, especially at low T, fast cooling and
as a result of the slow recrystallization rate.

5. Discussion

5.a. Zircon

Multiple age peaks on a relative probability diagram indicate input
either from source regions with discrete ages or the presence of
rocks of diverse ages within the source region. In the present study,
grains of Archaean age are dominant, and the age range of 3150 to
2510 Ma is similar to the ages of the Peninsular Gneiss (e.g.
Bhaskar Rao et al. 1983; Rogers & Callahan, 1989; Maibam et al.
2003). Hf isotope compositions of the 3.1 to 2.9 Ga zircons are
chondritic to superchondritic (ϵHf ranging between þ0.8 and
þ6.4) and juvenile in nature, which differs from younger zircons
(<2.9 Ga) with subchondritic Hf isotopes. Our results and younger
ages from the Sargur Group rocks (Hokada et al. 2013; Maibam
et al. 2017) indicate that the Sargur Group supracrustal rocks were
not derived from >3 Ga crust.

In closure proximity to the study area the zircon ages that clus-
ter around 3.0 Ga are older than the metamorphic age of the
adjoining Chennarayapatna gneiss (Bhaskar Rao et al. 1983),
but overlap with the age of the Tiptur trondhjemite (Rogers &
Callahan, 1989). The zircon ages for the metasediment obtained
here suggest an upper limit of 3.2 Ga for the onset of sediment dep-
osition in this part of the Dharwar Craton. The ages of some meta-
sedimentary protoliths and the gneissic precursors in this region
appear to be nearly contemporaneous. There are also reports of
younger ages from the WDC: Jayananda et al. (2006) proposed
regional partial reworking of the WDC at 2.6 Ga involving a

Fig. 5. (Colour online) Plot of ϵHf versus U–Pb ages for the analysed zircons. CHUR –
chondritic reservoir (bulk earth); DM – depleted mantle. Data points above the DM line
are not considered during the discussion.

Fig. 6. (Colour online) Comparative plot of major and trace elements in Banavara (this
study) and Nuggihalli Cr-spinel showing strongly differing distribution of the elements.
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high-temperature thickening event. Sarma et al. (2012) reported a
similar age of 2.61−2.55 Ga with a large variation in 176Hf/177Hf
ratios, probably owing to mixing between the older crustal compo-
nents and mantle-derived juvenile magmas. Published detrital zir-
con ages and our present dataset show that the detrital zircon ages
of theWDC range between 3.6 and 2.5 Ga, with some of the earlier
workers inferring that the youngest age gives the maximum age of
deposition (e.g. Sarma et al. 2012). The studied sample is present as
a supracrustal enclave enclosed within the surrounding gneisses;
however, the detrital zircons are contemporaneous with the
gneissic ages. We suggest from our data that the supracrustal rocks
of the WDC were probably derived from the gneissic rocks of the
Dharwar Craton. The combined geochronological data and cur-
rent detrital zircon ages reinforce our earlier interpretation that
not all Sargur supracrustal rocks were derived from >3.0 Ga crust
(Maibam et al. 2017), which contrasts with the commonly accepted
3.4 to 3.0 Ga age range for the Sargur Group (e.g. Naqvi & Rogers,
1987; Jayananda et al. 2008, 2015).

The U–Pb and Hf isotope data for the Sargur supracrustal rocks
are characterized by a chondritic to superchondritic crustal signa-
ture (ϵHfþ0.2 toþ6.4), indicating possible derivation from a juve-
nile magmatic crustal source with an age between 3.1 and 2.9 Ga.
Our data do not support the idea that <3.2 Ga components in the
western Dharwar block are recycled older crust and not juvenile in
nature (Guitreau et al. 2017).

The new dataset reinforces the interpretation that the Sargur
Group supracrustal enclaves are a combination of older
(>3.0 Ga) and younger (<3.0 Ga) components (Maibam et al.
2017). Not all enclaves in the gneiss terrain are older than those

in the greenstone belt. Evidence of younger Neoarchaean geologi-
cal events (magmatic andmetamorphic) at 2.6–2.5 Ga is nowwide-
spread in the supracrustal sequence (Jayananda et al. 2006;
Maibam et al. 2011; Lancaster et al. 2015). Our combined U−Pb
and Hf isotope dataset indicates that those between 3.1 and
2.9 Ga crystallized from a juvenile magmatic source, contrasting
with Nutman et al.’s (1992) conclusion of a metamorphic origin
for the 3.13–2.96 Ga detrital zircons and the restriction of juvenile
magmatic zircons to the >3.3 Ga components (Guitreau et al.
2017). A span of protracted crystallization ages ranging from 3.3
to 3.0 Ga is reported from the gneissic protolith (e.g. Maibam
et al. 2011, 2016; Guitreau et al. 2017). The younger zircon popu-
lation (2.6 to 2.5 Ga) could be of metamorphic origin or the
imprint of the younger potassic granite magmatism. The results
obtained in this study indicate that the 3.1 to 2.9 Ga juvenile detri-
tal zircons in the Banavara quartzite (Sargur Group) were probably
subjected to reported Neoarchaean potassic granite magmatic and
metamorphic events at 2.6 and ˜2.5 Ga, an event that has been rec-
ognized from a Pb–Pb isotopic study of marbles from the Sargur
Group (Sarangi et al. 2007) and Dharwar Supergroup (Russell et al.
1996). Our zircon data do not support Hokada et al.’s (2013) inter-
pretation that Sargur Groupmetamorphism (3.08 Ga) is older than
the Dharwar Supergroup.

Our limited new geochronological results emphasize the need
for further intensive U–Pb geochronology and Lu–Hf systematic
studies of zircons in the Sargur Group supracrustal rocks in order
to resolve the complex stratigraphic relationships of this group rel-
ative to the low-grade supracrustal rocks in the Dharwar green-
stone belts. The current data endorse the interpretation by

Fig. 7. SEM images of Cr-spinels: (a) polished crystal with pores; (b) map of Si distribution in the crystal; (c) broken crystal surface showing the presence of pores; (d) enlargement
of octahedral pores.
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Maibam et al. (2017) that the Sargur Group is a complex of rocks of
more than one age, some pre-dating the Dharwar Supergroup and
others of the same age as the Dharwar Supergroup.

5.b. Chromian spinels

The low Mg no. values of the Cr-spinels are a consequence of
extensive alteration removing MgO, so that it is impossible to
determine their primary composition and consequently their prov-
enance. Several factors can affect the composition of spinel, from
reaction with interstitial liquids at the magmatic stage, to subsoli-
dus re-equilibration with olivine, pyroxenes or amphibole, oxida-
tion, hydrothermal alteration and metamorphic reactions
(Abzalov, 1998; Appel et al. 2002; Mellini et al. 2005; González-
Jiménez et al. 2009, 2015; Bai et al. 2018). These processes lead
to different effects, including depletion in Mg and Cr and enrich-
ment in Ti and Fe3þ. Also, Ti-rich chromite is stable at high tem-
perature but releases Ti to form ilmenite lamellae on cooling in
oxidizing conditions (e.g. Spencer & Lindsley, 1981; Frost, 1991;
Appel et al. 2002). Similar conditions can be inferred for ilmenite
lamellae in the Banavara Cr-spinels (Fig. 3c, e), and Zn may also
have been partially introduced to the Cr-spinels at this stage
(Abzalov, 1998).

During fractional crystallization or partial melting, trace ele-
ments show larger variations than major elements, thus trace ele-
ments are important proxies for monitoring melt–rock reactions
and magmatic differentiation in Cr-spinel (Pearce et al. 2000).
Recent studies have shown that trace-element concentrations in
Cr-spinel can be used to decipher the environment in which the
Cr-spinel crystallized (e.g. Pagé & Barnes, 2009; González-
Jiménez et al. 2011, 2014; Colás et al. 2014, 2016).

Lenaz et al. (2017) showed that elements such as V, Ni, Mn and
Ga can be correlated with Cr2O3 in spinels in mantle xenoliths. In
ophiolites, the situation is much more complex owing to serpenti-
nization. However, Colás et al. (2014) demonstrated that the cores
of partly altered high-Cr-spinel are enriched in Zn, Co andMn but
strongly depleted in Ga, Ni and Sc, attributed to a decrease in Mg
no. and Al produced by the crystallization of chlorite in the pores of
porous chromite. Non-porous chromite can be enriched in Ti, Ni,
Zn, Co, Mn and Sc but depleted in Ga, suggesting that fluid-
assisted processes have obliterated the primary magmatic signa-
ture. In addition, Colás et al. (2016) reported that the order of
increasing compatibility with MgAl2O4-rich spinels is Ti, Sc, Ni,
V, Ge, Mn, Cu, Sn, Co, Ga and Zn.

According to Colás et al. (2016), a systematic increase in Zn and
Co coupled with a net decrease in Ga during hydrous metamor-
phism of chromitite bodies cannot be explained exclusively by
compositional changes of major elements in the Cr-spinel. The
most likely explanation is that minor and trace elements in Cr-
spinel in metamorphosed chromitites are controlled by inter-
actions withmetamorphic fluids involved in the formation of chlo-
rite. There is no correlation between Cr no. and most trace
elements apart from Zn in the Banavara Cr-spinels (Fig. 8). As sug-
gested by Abzalov (1998), this covariation of Zn and Cr no. may be
related to a single hydrothermal event. Even though they are not
related to Cr no., Mn, Ni, Ga and Co show a positive correlation (R2

in the range 0.88−0.97) suggesting they have a common origin.
The distribution patterns of major, minor and trace elements in

Cr-spinels from chromitite normalized to Cr-spinel from MORB
are compared to those from the Nuggihalli schist belt in
Figure 6. The trace-element patterns do not show any particular
trend and the two patterns are distinctly different. The Banavara

Cr-spinels are depleted in Al, Ni, Mg, Co, Sc and show enrichment
in Ga, Zn and Mn.

The relationships between mineral chemistry, structural
parameters (cell edge a0 and oxygen positional parameter u) and
tectonic setting have been considered in detail in recent years
(Fig. 9). In Figure 9, the Banavara chromites are compared to other
Archaean occurrences: the layered complexes of Bushveld (Lenaz
et al. 2007) and Stillwater (Lenaz et al. 2012), the Ujragassuit,
Fiskenaesset and Zimbabwe complexes (Rollinson et al. 2017),
the Amsaga complex in Mauritania (Lenaz et al. 2018), the
Sittampundi complex in south India (unpub. data) and the
Archaean Nuggihalli chromite (Lenaz et al. 2004). The Banavara
spinels are similar to those from anorthositic complexes such as
Sittampundi, Amsaga and Fiskenaesset, showing the highest oxy-
gen positional parameter value ever recorded for natural Cr-
spinels. They differ from Cr-spinels in the Bushveld and
Stillwater layered complexes and the Nuggihalli komatiites.
Crystal chemical studies are not commonly applied to detrital
material (Lenaz & Princivalle, 1996, 2005; Carbonin et al. 1999;
Lenaz et al. 2002, 2009a, 2015), but they can be helpful in identi-
fying sources and oxidation processes.

The oxygen positional parameter is a consequence of the distri-
bution of cations in the T andM sites, which can reflect the cooling
history of the crystal (Della Giusta et al. 1986; Princivalle et al.
1989). Rapid cooling creates disorder among trivalent cations such
as Al and/or Fe3þ in the T sites (Parisi et al. 2014) while divalent
cations Mg and Fe2þ occupy the M sites. In contrast, slow cooling
creates a more ordered situation with trivalent cations in the M
sites and divalent in the T sites. The geothermometer of
Princivalle et al. (1999) allows us to calculate the intracrystalline
closure temperature (Tc) derived from the Mg–Al exchange
between the two sites M and T, yielding a temperature of c.
1130 °C, although the very low Mg content, and consequently
the Mg–Al exchange, may have affected this result. Even in this
case, it is not possible to identify a possible provenance for these
detrital Cr-spinels.

It is difficult to arrive at a unique interpretation of the Cr-
spinels, as they have a complex magmatic/metamorphic history.
Furthermore, their original composition cannot be determined.
The last event that occurred at the lowest temperature is possibly
related to hydrothermal alteration that occurred in the quartz
arenite. This provoked recrystallization, resulting in a decrease
in Cr no. and an increase in ZnO, as well as the negative crystals
sometimes filled by quartz. We can only speculate about their ear-
lier history and origin. Cr-spinels occurring in Archaean com-
plexes are chemically different from those in younger complexes
such as ophiolites, and their structural parameters are also differ-
ent. The low temperature of hydrothermal alteration probably did
not mask the primary cation distribution formed at higher temper-
ature, in which case their similarity to Archaean layered complexes
in the u versus cell edge diagram (Fig. 9) is real. However, the trace-
element compositions of Cr-spinels from such complexes are not
currently available, so it cannot be assessed whether the distribu-
tion of Ni, Ga, Co and Mn is magmatic or a due to later event. As
the partition coefficients of these elements differ, a metamorphic
event would have redistributed them differently. It is therefore pos-
sible that the observed abundances of these Cr-spinels are primary.

6. Conclusions

This combined detrital zircon isotopic (U–Pb, Lu–Hf), geochemi-
cal and single crystal X-ray refinement study of the Banavara
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quartzite (Sargur supracrustal unit) Cr-spinel provides important
insights into the evolution of the Dharwar Craton. These are:

(i) The association of zircon and Cr-spinel in the Banavara
quartzite suggests that significant basic and ultrabasic mag-
matism took place during a relatively short period before
emplacement of the host gneissic rocks.

(ii) Detrital zircons belong to two age populations with concord-
ant U–Pb ages: an older population with ages ranging from
3.15 to 2.9 Ga and a younger population at 2.6–2.5 Ga.

(iii) The Lu–Hf isotopic systematics of the zircons provides evi-
dence that 3.1–2.9 Ga juvenile rock components are the
source of sediments that supplied the Sargur supracrustal
rocks.

Fig. 8. (Colour online) Bivariate plots of transition elements showing strong positive correlations between (a) Mn versus Ga, (b) Mn, Ga and Ni versus Co, and (c) negative cor-
relation between ZnO and Cr no.
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(iv) Interpretation of the depositional and magmatic setting of the
Sargur Group is fraught with difficulties because the enclaves
in the orthogneisses may be derived from protoliths of widely
different ages and settings, which were juxtaposed tectonically
during a series of gneiss-forming events in the period
3.4–2.6 Ga.
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