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ABSTRACT
A new aerofoil parameterisation method is put forward to represent an aerofoil by combining
the leading edge modification class/shape function transformation (LEM CST) method and
improved Hicks–Henne bump function’s method. The new class/shape function transforma-
tion (NEW CST) method has two additional basis functions comparing the original CST
method. In order to confirm these two basis functions, the radial basis functions neural
network (RBF) model is trained by some samples which are generated by the Latin hypercube
design (LHD) method and Genetic Algorithm (GA) is proposed to achieve the basis functions
of the NEW CST method. The NEW CST method has been evaluated in fitting precision of
1,545 aerofoils by comparison with the LEM CST method and the original CST method. And
the improved ability of the NEW CST at the leading edge and trailing edge is verified by a
series of complex aerofoil case studies within 1,545 aerofoils. The results indicate that the
NEW CST method can represent the whole aerofoils and possesses the intuitive property as
well as the original CST. Moreover, the number of control parameters (NCP) to parameterise
aerofoils is the fewest among these three methods. Furthermore, when the NCP of the NEW
CST and LEM CST is the same, the NEW CST method has the higher accuracy and smaller
root mean square errors (RMSE) especially at the leading edge and trailing edge.
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NOMENCLATURE
Ai weighting coefficient of shape function
an coefficient of basis function
C(ψ) class function
c chord length
Ki binomial coefficient
n order of Bernstein polynomials
p, q control parameters of leading-edge basis function
Rle leading-edge radius
S(ψ) shape function
z(x)baseline co-ordinate of base aerofoil
z error typical wind tunnel tolerance
z i,original(ψ) co-ordinate of original aerofoil
z i,fitting(ψ) co-ordinate of fitting aerofoil
α, β control parameters of trailing-edge basis function
ψ non-dimensional co-ordinate in chordwise
ζT trailing-edge thickness ratio in class/shape function transformation
θ trailing-edge angle
Δzte trailing-edge thickness
ϕn(ψ) basis function

1.0 INTRODUCTION
Aerofoil shape parameterisation, using a mathematical representation to represent the
aerofoil geometry, is a principal step in aerodynamic optimisation. Because different design
variables can generate different aerofoils, so shape parameterisation can directly affect
the design space of aerofoils. Moreover, the more precise the aerofoil geometry is, the higher
the accuracy of the aerofoil aerodynamic design is. Therefore, it is very important for the
aerofoil designers to select a suitable shape parameterisation method for the aerofoil opti-
misation design.

A wide range of methods have been previously used for aerofoil geometry repre-
sentation. Castonguay and Nadarajah(1) compared four parameterisation methods: the
mesh points, B-spline, Hicks–Henne bump function and PARSEC methods, in the aerofoil
aerodynamic design. Five aerofoil parameterisation techniques, Ferguson’s curves, Hicks–
Henne bump functions, B-splines, PARSEC and class shape functions transformation,
were ranked according to the economy, intuitiveness, orthogonality, completeness and
flawlessness by Sripawadkul(2). Master(3) analysed seven parameterisation methods: class
shape transformations, B-splines, Hicks–Henne bump functions, a radial basis function
domain element approach, Bezier surfaces, a singular-value decomposition modal
extraction method and the parameterised sections method, and tested the efficiency of
these parameterisation methods.

Kulfan(4) proposed that the geometric representation should have the following proper-
ties: (1) well behaved and produces smooth and realistic shapes; (2) few design variables to
represent the whole aerofoil; (3) high flexibility to cover the optimum aerodynamic shapes;
(4) intuitiveness of design variables. And Kulfan(5) developed the class shape function
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transformation (CST) parameterisation method to represent the aerofoils. The CST method,
which possesses the above properties, is widely used in the aerofoil aerodynamic optimi-
sation design(4–8). In the CST the leading-edge radius, the closure boat-tail angle and
trailing-edge thickness are the intuitive control parameters. However, it is very difficult to
set the leading-edge radius and the leading-edge radius of the upper aerofoil and the lower
aerofoil are different for most aerofoils. Moreover, the ability of the Bernstein polynomial
to control the leading-edge is not good. Therefore, Kulfan(9) proposed the leading-edge
modification (LEM) to the CST method. Although this modification increases an additional
basis function, the precision of representing the aerofoil is improved and the number of
control parameters significantly reduces.

The Hicks–Henne bump function’s(10) method was proposed to represent the aerofoil.
Hicks–Henne bump functions could capture all aerofoil features with the highest number of
design variables(2). The greater the number of the design variables is, the lower the efficiency
of the aerofoil optimisation becomes for the same optimisation algorithm. Moreover, the
ability of bump functions to control the trailing edge is bad and the shape of the trailing edge
remains almost unchanged. So the improved Hicks–Henne bump function’s method(11,12) was
used to optimise the aerofoils. And the improved Hicks–Henne bump function’s method
indeed expands the aerofoil design space.

For some large camber and complex aerofoils, the fitting precision of the LEM CST near
the trailing edge is limited and the ability to adjust the leading edge is also limited. Since the
LEM CST method can reach relatively high flexibility with a reasonably few number of
design variables and the improved Hicks–Henne bump function’s method can spread the
trailing edge, so a new CST method is proposed to parameterise the aerofoil by combining
the LEM CST method with the improved Hicks–Henne bump function’s method. The
key of the NEW CST method is to confirm the leading-edge basis function and trailing-edge
basis function. So the Genetic Algorithm (GA)(13) is proposed to gain the parameters of
the basis functions. Some samples are generated by the Latin hypercube design (LHD)
method(14) and the radial basis functions neural network (RBF) model(15) is trained by these
samples. The NEW CST method is proved to be better than the LEM CST method and the
parameterisation performance of the NEW CST method in fitting a series of aerofoils is
accessed by comparison with the LEM CST method and the original CST method.

2.0 SHAPE PARAMETERISATION
2.1 Class-function/shape-function transformations

Kulfan(4) and Kulfan and Bussoletti(5) developed the CST method to represent aerofoils with
relatively few control parameters. This method is widely used in aerofoil optimisation.
The aerofoil is defined as

z
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This form can be rewritten as

ζðψÞ=CðψÞSðψÞ +ψζT ; …(2)
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where ψ= x=c, ξ= z=c, ξT =ΔξTE=c, C(ψ) is the class function and S(ψ) is the shape function

CðψÞ= ðψÞað1�ψÞb …(3)

SðψÞ= ξðψÞ�ψξTffiffiffiffiψp ð1�ψÞ =
Xn
i= 0

AiBPi;nðψÞ …(4)

The class parameters a and b for the general aerofoil with a round nose and an aft end trailing
edge are set to 0.5 and 1.0. The Bernstein polynomial is employed as the shape function to
describe the detailed shape as

BPi;nðψÞ=Kiψið1�ψÞn�i; …(5)

where Ki is the binomial coefficient and n is the order of the Bernstein polynomial.
Kulfan(9) presented a leading-edge modification (LEM) to the CST method, adding an

extra basis function, to improve the flexibility of the CST method. The LEM CST is as
follows:

SðψÞ=
Xn
i= 0

AiBPi;nðψÞ +An + 1ψ0:5ð1�ψÞn�0:5
…(6)

This LEM CST method was proved to be effective and could improve the precision of the
aerofoil fitting(9).

2.2 Improved Hicks–Henne bump function

Hicks and Henne(10) proposed to use bump functions for aerofoil design. The aerofoil shape
can be represented by the following equations:

zðψÞ= zðψÞbaseline +
XN
n= 1

anφnðψÞ; …(7)

where zðψÞbaseline is the co-ordinate of the base aerofoil. ϕn(ψ) is the basis function and an is
the coefficient:

φ1ðψÞ=ψ0:25ð1�ψÞe�20ψ

φnðψÞ= sin3ðπψlog 0:5= log xnÞ 0≤ xn ≤ 1 …ð8Þ
Because the basis function and its derivative are both 0 at ψ= 1, so the variation at the trailing
edge is also 0. It leads that the new aerofoils have no change in comparison with the original
aerofoil near the trailing edge. It is disadvantageous for the optimisation of the aerofoil.
Therefore, a new basis function is added near the trailing edge. The improved Hicks–Henne
function is as follows:

φnðψÞ=
ψ0:25ð1�ψÞe�20ψ n= 1
sin3ðπψlog 0:5= log xnÞ 2≤ n≤N�1
αψð1�ψÞe�βð1�ψÞ n=N;

8<
: …(9)

where α and β are the control parameters of the basis function. α can control the slope of the
basis function and β can control the attenuation of the basis function.
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The derivative of the improved Hick–Henne basis function is not 0 at ψ = 1. The
representation of aerofoil on the trailing edge is improved and the design space of the aerofoil
is expanded by the improved Hicks–Henne basis function(11,12).

2.3 Combination of CST and Hicks–Henne bump function:
new CST method

Kulfan and Bussoletti(5) and Ceze et al.(16) expounded that the CST method could represent
most aerofoils with high accuracy when the Bernstein polynomial order is higher than 9. But
for some large camber and complex aerofoils such as S1223, E216 and NLR7301, the high
order Bernstein polynomial cannot reach the accuracy requirement of these aerofoils.
Moreover, the representation on the aerofoil at the leading edge and trailing edge is bad and
the fitting error is large. So, Kulfan(9) proposed the leading-edge modification (LEM) to the
CST method. Though the LEM CST method adds a control parameter in comparison with
the original CST method, it improves the geometric accuracy for aerofoils and also reduces
the order of the Bernstein polynomial(3,17).

Five properties including completeness, orthogonality, flawlessness, economy and intui-
tiveness(2,18) are specified to evaluate the merits and demerits of the aerofoil parameterisation.
In the RAE2822 aerofoil fitting(2), 32 design variables were required to reach the typical wind
tunnel tolerance using the Hicks–Henne bump function. It indicates that the economy of the
Hicks–Henne bump function is worse than the other fitting methods. And the Hicks–Henne
bump function method is non-orthogonal in comparison with the CST method. Moreover, the
capacity of the Hicks–Henne bump function method to represent the aerofoil trailing edge is
limited(11,12). As mentioned before, the modified Hicks–Henne bump function can improve
the fitting precision of the aerofoil trailing edge.

When we use the LEM CST method and the original CST to parameterise the aerofoils,
we find that the fitting errors near the trailing edge are large especially for some highly
cambered trailing-edge aerofoils. In section Improved Hicks–Henne bump function, the
improved Hick–Henne bump function(11,12) can offer the more flexible expression form on
the trailing edge and expand the design space of the aerofoil. And the higher fitting
precision near the trailing edge can be obtained. So the trailing-edge base function of the
improved Hick–Henne bump function is combined with the original CST method to
improve the fitting precision.

The essence of the aerofoil parameterisation is that different basis functions are super-
posed together to approach the original aerofoil. Moreover, these different basis functions
can produce different fitting errors and we need to choose suitable basis functions to obtain
the smallest fitting error. It is effective for the LEM CST method(9) to parameterise the large
nose camber aerofoils and it can reduce the number of terms by comparison with the
original CST. To accommodate different nose camber aerofoils, the leading-edge basis
function of the LEM CST is improved. Because Equation (9) can generate different basis
functions for the different xn and completely include Kulfan’s LEM basis function in Fig. 2,
so the second item of Equation (9) is used as the new leading-edge modification basis
function.

In this paper, the new leading-edge modification basis function and the trailing edge basis
function are combined to parameterise the aerofoil. The LEM CST method is improved by
introducing the parameter p to control the leading edge of the aerofoil. Different basis
functions are obtained by changing p. The fitting ability to the leading edge is better than the
LEM CST. The parameter q can control the amplitude of the basis function. And the trailing-
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edge modification function (TEM) is introduced into the NEW CST method. α and β are the
control parameters of the trailing-edge basis function. α can control the amplitude of the basis
function. Different β can produce different basis functions. So it can improve the fitting
precision of the trailing edge. The NEW CST is as follows:

ζðψÞ=CðψÞ
Xn
i= 0

AiBPi;nðψÞ + An + 1 � α � ψð1�ψÞe�βð1�ψÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TEM

+

An + 2 � q � sin3ðπψlogð0:5Þ= logðpÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LEM

+ψζT …ð10Þ

Equation (10) can be written as

ζðψÞ=CðψÞ
Xn
i= 0

AiBPi;nðψÞ + An + 1ψð1�ψÞe�βð1�ψÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TEM

+ An + 2 sin
3ðπψlogð0:5Þ= logðpÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LEM

+ψζT

…(11)

The weight coefficients An and An + 1 are corresponding to the trailing-edge angle and trailing-
edge vertical position:

Sð1Þ=An = tanðθÞ�An + 1 +
Δzte
c

…(12)

An +An + 1 = tanðθÞ + Δzte
c

…(13)

The design variables of the NEW CST method are the weight coefficients Ai (i= 0,1,…,n + 2)
in Equation (11). The NEW CST method has two additional basis functions in comparison
with the original CST. And the LEM CST method has one additional basis function in
contrast with the original CST. The number of design variables is BPONEW + 3 (BPO is the
order of Bernstein polynomial) and the numbers of design variables for the LEM CST and the
original CST is listed in Table 1. The NEW CST introduces two parameters (p and β) to
control the additional basis functions. There are different basis functions for different aero-
foils using the NEW CST method.

The basis functions for the six design variables CST configuration are shown in Fig. 1.
The red dashed lines represent the basis functions for the original CST method. The blue
dotted lines represent the basis functions for the aerofoil leading-edge and the black solid
lines are the basis functions for the aerofoil trailing-edge. Different p (p= 0.01, p= 0.1,
p= 0.5) can generate different basic functions in Fig. 1. If p is larger, the ability to control

Table 1
Design variables of the original CST, LEM CST and NEW CST

Method Original CST LEM CST NEW CST

Number of design variables BPOCST + 1 BPOLEM + 2 BPONEW + 3
Number of leading-edge and trailing-edge
functions

0 1 2
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the leading-edge is worse. Because the basis function is more flat near the leading edge and
the value of the basis function at ψ = 0 is close to 0. If p is smaller, the ability to control
the leading-edge is also worse. Because the basis function is steeper near the leading edge
and the value of the basis function at ψ = 0 is close to the constant (0.3), so it is necessary
to choose the appropriate p to obtain the leading-edge modification basis function. When
0.13≤ p ≤0.3, NEW LEM basis functions can completely include Kulfan’s LEM basis
function in Fig. 2. So the NEW CST method can generate more aerofoils. In Fig. 1,
different β (β= 5, β= 20, β= 50) can generate different trailing-edge modification basis
functions. When β (β= 50) is larger, the trailing-edge modification (TEM) basis function
quickly decays. And this leads the ability of TEM basis function to control the aerofoil

Figure 1. Basis functions of the NEW CST.

Figure 2. Basis functions at the leading edge.
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trailing-edge declines and makes the fitting aerofoil distorted. When β (β= 5) is smaller,
the TEM basis function has an influence on the original CST basis function. Therefore, β is
an important parameter to control the aerofoil trailing-edge.

The derivatives of the TEM basis functions (β= 2, β= 5, β= 15, β= 100) are repre-
sented in Fig. 3. If the derivative of the TEM basis function is not 0, it indicates that the
TEM basis function is not constant. In the figure, when β (β= 2) is smaller, the derivative
of the aerofoil middle co-ordinate is larger than 0. It indicates that the TEM basis
function can affect the aerofoil middle co-ordinate. Furthermore, the smaller β is, the
greater the sphere of influence to the aerofoil middle co-ordinate. When β (β= 100) is
larger, though the TEM basis function has no effect on the LEM basis function and
original CST basis function, the variation of the TEM basis function becomes greater.
The ability to manipulate the aerofoil trailing-edge is poor. So we should choose a
suitable TEM function.

3.0 GEOMETRIC INVERSE FITTING TEST AND
RESULTS

A well-behaved parameterisation method should be able to represent a wide range of
existing aerofoils with high accuracy. It is necessary to test the aerofoil shape recover-
ability. So the University of Illinois Urbana Champaign (UIUC) aerofoil database (see
footnote *) is applied to test the new parameterisation method and there are about 1,550
kinds of aerofoils in this database. To accommodate the proposed NEW CST, the original
CST and the LEM CST methods, the geometries of all the aerofoils are normalised. So an
impartial and consistent testing platform can be provided in this paper. The aerofoil nor-
malisation is detailed in Appendix A.

Figure 3. Derivatives of trailing edge modification basis functions.

* http://aerospace.illinois.edu/m-selig/ads/coord_database.html [retrieved 10 June 2018].
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3.1 Geometric inverse fitting error

A statistics method is employed to access the fitting errors. The root mean square error
(RMSE)(19) has been used as a standard statistical metric to measure the NEW CST method.
The RMSE is as follows:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

ðzi;fittingðψÞ�zi;originalðψÞÞ2
s

…(14)

where zi;originalðψÞ is the co-ordinate of the original aerofoil and zi;fittingðψÞ is the co-ordinate
of the fitting aerofoil. n is the number of the upper or lower aerofoil co-ordinate.

In the NEW CST method, different p and β can produce different leading-edge basis
functions and trailing-edge basis functions and the RMSE of this method is also different.
When n is constant, the minimum RMSE is obtained by choosing the suitable leading-edge
and trailing-edge basis functions. So p and β should be calculated first and the leading-edge
and trailing-edge basis functions of the NEW CST method can be determined. The sensitivity
of the RMSE to the parameters p and β is researched. The S1223 aerofoil is used to measure
the feasibility and accuracy of the NEW CST. When the number of control parameters (NCP)
for the NEW CST is equal to the LEM CST, different p and β are discussed. The NCP of
these two methods for the S1223 aerofoil is 15. The RMSE of the S1223 upper aerofoil for
the LEM CST is 1.3637 × 10-4 and the lower aerofoil is 7.7261 × 10 − 5. When 0< p< 0.2,
different β (β= 20, β= 50, β= 100) of the NEW CST method are analysed. When 0< β< 300
of the upper aerofoil and 0< β< 100 of the lower aerofoil, p= 0.015, p= 0.02, p= 0.035 of
the upper aerofoil and p= 0.015, p= 0.02, p= 0.025, p= 0.08, p= 0.1 of the lower aerofoil
are analysed using the NEW CST method. The RMSE results of the S1223 aerofoil are shown
in Figs 4 and 5.

In Fig. 4. as p ranges from 0 to 0.04 for the upper aerofoil of S1223, the RMSE has a
trough and the smallest RMSE is 6.736 × 10 − 5. And when p ranges from 0.04 to 0.2, the
upper aerofoil has also the smallest RMSE: 6.7465 × 10 − 5. Moreover, when β changes
from 0 to 300, the RMSE has the trough and it is 4.1581 × 10-5 (p= 0.015, β= 180). In
Fig. 5, as p ranges from 0 to 0.2 for the lower aerofoil of S1223, the RMSE has two
troughs and they are 3.5394 × 10 − 5 (p = 0.015, β= 20) and 3.0859 × 10 − 5 (p= 0.08,
β= 20). When 0< β < 100, the lower aerofoil has the smallest RMSE. So the suitable
p and β of the NEW CST can be obtained by comparison with the RMSE of the
LEM CST.

3.2 Confirming the basis functions of NEW CST method

The relationship among p, β and RMSE is complicated and non-linear. In order to obtain the
suitable leading-edge and trailing-edge basis functions, p and β are sampled by the Latin
hypercube design (LHD) method and the radial basis functions neural network (RBF) model
is trained by the sample data. So the approximation relationship among p, β and RMSE can be
obtained. MATLAB’s Genetic Algorithm (GA) toolbox has been used to acquire the mini-
mum RMSE and the optimisation process is represented in Fig. 6.

There are three assessments to validate the accuracy of the RBF model: the root mean square
error (RMSERBF), the maximum absolute error (MAX) and the correlation coefficient (R 2)(20).
RMSERBF is used to measure the global accuracy of the RBF model; MAX is employed to
evaluate the local accuracy of the RBF model; R 2 can reflect the linear dependence between the
predicted values of the RBF model and the actual values. When RMSERBF= 0, MAX= 0, and
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R 2= 1, the RBF model goes through these samples. So the closer RMSERBF is to 0, MAX is
to 0, and R 2 is to 1, the higher the prediction precision of the RBF model is.
NASA_SC20714, FX63_137 and S1223 aerofoils are used to confirm the basis functions.
500 samples are generated by using the LHD method for each aerofoil and these samples are
approached by the RBF model. These samples are shown in Figs 7–12 and the results of the
RBF model are listed in Table 2. Parameter settings of the GA optimisation are as follows: the
sub-population size is 10, the number of island is 10, the number of generations is 10, the rate
of crossover is 0.95, the rate of mutation is 0.01, the rate of migration is 0.3 and the interval of
migration is 4. The optimisation results are represented in Table 2. So we can use the suitable
basis functions to fit the aerofoils and obtain the minimum RMSECST.

Figure 4. RMSE of the S1223 upper aerofoil.
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The results of RMSERBF and R 2 can reach the requirement of the RBF approximation
model from Table 2, when 500 samples are generated by the LHD method. The NEW CST
for the S1223 aerofoil is as follows:

ζUpperðψÞ=CðψÞ
X12
i= 0

AiBPi;12ðψÞ +A13 � ψð1�ψÞe�168:66ð1�ψÞ +A14

� sin3ðπψlogð0:5Þ = logð0:07717ÞÞ +ψζT …(15)

Figure 5. RMSE of the S1223 lower aerofoil.
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Figure 6. Optimisation process of the NEW CST method.

Figure 7. RMSE of the NASA_SC20714 upper aerofoil.
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Figure 8. RMSE of the NASA_SC20714 lower aerofoil.

Figure 9. RMSE of the FX63_137 upper aerofoil.

Figure 10. RMSE of the FX63_137 lower aerofoil.
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ζLowerðψÞ=CðψÞ
X12
i= 0

AiBPi;12ðψÞ +A13 � ψð1�ψÞe�17:56ð1�ψÞ +A14

� sin3ðπψlogð0:5Þ = logð0:08515ÞÞ +ψζT …(16)

3.3 Tested on UIUC aerofoil database

The University of Illinois Urbana Champaign (UIUC) aerofoil database consists of about
1,550 kinds of aerofoils. The UIUC aerofoil database is tested to validate the improved
capability of the new parameterisation by comparison with the LEM CST and the original
CST. In general, [0,0] is the leading edge point and [1,0] is the trailing edge point. To make it
easier to compare these three methods, all the aerofoils have been normalised to ensure
0≤ψ≤ 1.

The root mean square error (RMSE) has been used as a standard statistical metric to
compare these three methods. When the number of the weight coefficients An is the same, the
RMSEs of these three methods are calculated and obtained. Two situations (BPO= 4 and
BPO= 7) are analysed and 1,545 aerofoils are tested. In general, the smaller the value of

Figure 11. RMSE of the S1223 upper aerofoil.

Figure 12. RMSE of the S1223 lower aerofoil.
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Table 2
GA optimisation results

BPO Range of β Range of p RMSERBF MAX R 2 Min RMSECST β p

NASA_SC20714 upper aerofoil 5 [10, 300] [0.001, 0.2] 0.01121 0.04305 0.99692 2.585 × 10-5 11.02 0.0353
NASA_SC20714 lower aerofoil 5 [10, 300] [0.001, 0.25] 0.02326 0.10741 0.99239 1.074 × 10-4 15.17 0.225
FX63_137 upper aerofoil 7 [10, 300] [0.001, 0.3] 0.01798 0.08866 0.99315 6.67 × 10-5 12.47 0.0864
FX63_137 lower aerofoil 7 [10, 300] [0.001, 0.3] 0.03937 0.1121 0.97351 3.13 × 10-5 12.47 0.0864
S1223 upper aerofoil 12 [10, 300] [0.001, 0.3] 0.01283 0.0601 0.99567 4.054 × 10-5 168.66 0.07717
S1223 lower aerofoil 12 [10, 300] [0.001, 0.3] 0.02129 0.0975 0.98616 2.916 × 10-5 17.56 0.08515

324
T
H
E
A

E
R
O
N
A
U
T
IC
A
L
J
O
U
R
N
A
L

M
A
R
C
H
2019

https://doi.org/10.1017/aer.2018.165 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aer.2018.165


RMSE is, the higher the fitting precision is. The RMSE is converted to the logarithmic for
ease of comparison and the logarithmic expression is Q=� log10ðRMSEÞ. So we need to
compare the size of Q. The results of the upper aerofoils and the lower aerofoils are presented
in Figs 13 and 14 (the black solid line represents the NEW CST, the red dashed line
represents the LEM CST and the blue dotted line represents the original CST). The aerofoil
number 1–100, number 400–500, number 900–1000 and number 1,400–1,500 of the UIUC
library are clearly shown in Figs 13 and 14.

Figure 13. RMSE results of BPO=4 for the NEW CST, the LEM CST and the original CST when tested on
the UIUC library.

(a) RMSE results of the upper aerofoil and (b) RMSE results of the lower aerofoil.
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In Fig. 13, when BPO= 4, the NEW CST methods is more accurate than the LEM CST
and the fitting accuracy of the LEM CST is higher than the original CST. In the NEW CST
method, 92.36% of the UIUC library are superior to the LEM CST for the RMSE of the
upper aerofoil and 94.56% are superior to the original CST. The remaining 7.64% of the
UIUC library using the NEW CST are close to the LEM CST and 5.44% of aerofoils
approach to the original CST. For the RMSE of the lower aerofoil, about 91.13% of the
UIUC library are superior to the LEM CST and 92.69% of the UIUC library precede the
original CST.

Figure 14. RMSE results of BPO= 7 for the NEW CST, the LEM CST and the original CST when tested on
the UIUC library.

(a) RMSE results of the upper aerofoil and (b) RMSE results of the lower aerofoil.
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In Fig. 14, when BPO= 7, the NEW CST method is obviously superior to the LEM CST
and the fitting precision is the highest among these three methods. About 89.9% of the UIUC
library for the RMSE of the upper aerofoil are superior to the LEM CST and 91.2% are
superior to the original CST. At the same time, 93.53% of the UIUC library for the RMSE of
the lower aerofoil precede the LEM CST and 91.39% precede the original CST. The fitting
precision of the remaining aerofoils for the NEW CST basically approaches to the LEM CST
and the original CST.

3.4 Case studies on the leading edge and trailing edge

In section Geometric Inverse Fitting Test and Results, 1,545 aerofoils of the UIUC library
are recovered by the NEW CST, the LEM CST and the original CST. When the number of
control parameters is the same for these three methods, the NEW CST method has the
highest fitting precision for the UIUC library. Because the NEW CST method has the better
leading edge modification base function and trailing edge base function by comparison with
the LEM CST and the original CST. So some complex aerofoils in the UIUC library are

Figure 15. Geometric fitting for FX63_137 using the original CST, LEM CST and NEW CST.
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selected to further study the improved ability of the NEW CST at the leading edge and
trailing edge.

In this section, a range of aerofoils, including high-lift low Reynolds number aerofoils (FX
63-137, S1223, E216)(21), supercritical aerofoils (NASA_SC20714, RAE2822,
NLR7301)(22,23), laminar aerofoils (NACA6412, NLF0416)(7,9,24), sailplane aerofoils (AG16,
E432)(25,26), and low-speed aerofoil (SA7035)(27), have been employed to test the inverse
fitting performance of the proposed NEW CST, the original CST and the LEM CST methods.

Kulfan and Bussoletti(4,5) defined a typical wind tunnel tolerance as the criterion of the
geometric error. The typical wind tunnel tolerance is

zerror = 3:5 ´ 10�4 0≤ x=c≤ 0:2
7:0 ´ 10�4 0:2<x=c≤ 1

�
…(17)

z error are the errors between the approximated aerofoil and the original curves. In general, the
fitting tolerance must reach the requirement of the typical wind tunnel test. If the error of the
parameterised aerofoil is within the prescribed tolerance, the method is deemed successful. So

Figure 16. Geometric fitting for S1223 using the original CST, LEM CST and NEW CST.
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this paper uses this tolerance to access the proposed NEW CST, the original CST, and the
LEM CST methods.

Five types of aerofoils are applied to compare the fitting errors of the proposed NEW CST,
the original CST and the LEM CST methods. The high-lift low Reynolds number aerofoils
are employed for the first fitting test. The high-lift aerofoils have the larger camber around the
trailing edge. They can increase payloads, shorten takeoff and landing distances, reduce
aircraft noise, and lower stall speeds(21). FX63_137(28) and E216 aerofoils are used in some
small unmanned aerial vehicles. The S1223(29) aerofoil is applied to the design of the high
altitude propeller. It is significant for the aircraft aerofoil design and optimisation to select the
suitable method. The fitting aerofoils obtained by these three methods and the residual dis-
tributions are represented in Figs. 15–17. In Fig. 15, the first picture is the geometric fitting for
FX63_137, the second picture shows the fewest numbers of the control parameters for these
three methods when the geometric fitting errors can just reach the requirement of the typical
wind tunnel tolerance, and the third picture is the geometric fitting error as the NCP is the same
for these three methods.

Figure 17. Geometric fitting for E216 using the original CST, LEM CST and NEW CST.
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The supercritical aerofoils, which are NASA_SC20714, RAE2822 and NLR7301, are
accessed by these methods. The trailing-edge of the NASA_SC20714 aerofoil is open and this
aerofoil is used in the PrandtlPlane(30). The RAE2822(31) aerofoil is widely applied in the
high-speed subsonic aircraft. The NLR7301(7) aerofoil is a typical supercritical aerofoil with a
large thickness. The fitting results of the proposed NEW CST, the original CST and the LEM
CST methods are represented in Figs 18–20.

NACA6412 is the laminar flow 6-series aerofoil(32) developed by NACA and has small
drag. NLF0416 is a low-speed natural laminar flow aerofoil. The NLF aerofoil is widely used
in business jet designs. It can reduce the drag and improve the performance significantly(33).
The fitting results of NACA6412 and NLF0416 aerofoils using these three methods are
represented in Figs 21 and 22.

Sailplane aerofoils (AG 16, EPPLER432) and low-speed aerofoils (SA7035, SD8020) are
tested by the proposed NEW CST, the original CST and the LEM CST methods. AG aerofoils
were designed by Dr Mark Drela from MIT. SA aerofoils were improved from SD aero-
foils(25–27). The test results are presented in Figs 23–25.

Figure 18. Geometric fitting for NASA_SC20714 using the original CST, LEM CST and NEW CST.
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As mentioned above, the proposed NEW CST method is composed of the original CST
Bernstein polynomial, the leading-edge modification basis function, and the trailing-edge
modification basis function. Therefore, two extra control parameters are added to the NEW
CST method. And the LEM CST method has an additional control parameter compared to the
original CST method.

FX 63-137, S1223 and E216 aerofoils have larger chamber and the complex leading
edge and trailing edge. It leads that many more control parameters need to be used in the
aerofoil fitting. The 15th-order CST (the number of control parameter (NCP) is 16) can
reach the fitting precision of a typical wind tunnel test. And 8th-order LEM CST
(NCP= 10) can fit the FX63_137 aerofoil within the tolerance. When NCP is 9, the NEW
CST can fit the FX63_137 aerofoil. When NCP is 10, the NEW CST has the higher
precision than the LEM CST. Moreover, the tolerances of the leading-edge and trailing-
edge are smaller than the LEM CST. The 25th-order CST of the S1223 aerofoil cannot
reach the fitting precision of the typical wind tunnel test, especially at the location of the
leading-edge and trailing-edge. And the LEM CST needs 15 control parameters. However,

Figure 19. Geometric fitting for RAE2822 using the original CST, LEM CST and NEW CST.
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there are only eight control parameters to represent the S1223 aerofoil for the NEW CST
method. When the number of control parameters for two methods is 15, the NEW CST
method is more accurate than the LEM CST method by choosing the suitable p and β. The
tolerances of the leading-edge and trailing-edge are smaller than the LEM CST. The 22th-
order CST can fit the E216 aerofoil within the tolerance. And the NCP of the LEM CST is
14 and the NEW CST is 8. Moreover, when the NCP of the NEW CST is 11, it can reach
the precision of the LEM CST.

For the supercritical aerofoils, the 10th-order CST can fit the NASA_SC20714 aerofoil
within the errors of the typical wind tunnel. The RAE2822 aerofoil needs the 6th order and the
NLR7301 aerofoil requires the 23rd order. For the laminar flow aerofoils, the 9th-order CST
for the NACA6412 aerofoil can reach the precision requirement of the wind tunnel test. The
NLF0416 aerofoil requires the 17th order. For the sailplane aerofoils and the low-speed
aerofoils, the AG16 aerofoil needs the 10th-order CST, the EPPLER432 aerofoil needs the
22nd order and the SA7035 aerofoil requires the 12th order. The fitting results of the NEW
CST and the LEM CST including the original CST are listed in Table 3.

Figure 20. Geometric fitting for NLR7301 using the original CST, LEM CST and NEW CST.
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Figure 21. Geometric fitting for NACA6412 using the original CST, LEM CST and NEW CST.

Table 3
NCP of the original CST, LEM CST and NEW CST

NCP Original CST LEM CST NEW CST

FX 63-137 16 10 9
S1223 26 15 8
E216 23 14 8
NASA_SC20714 11 8 7
RAE2822 7 7 5
NLR7301 24 12 10
NACA6412 10 7 6
NLF0416 18 11 9
AG16 11 6 4
EPPLER432 23 10 7
SA7035 13 7 4
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The NEW CST can fit all test aerofoils to reach the typical wind tunnel tolerance.
Moreover, the number of control parameters for the NEW CST is the fewest among these
three methods. When the NCP of the NEW CST and LEM CST is the same, the RMSE of the
NEW CST is smaller by adjusting p and β.

4.0 CONCLUSIONS
A new aerofoil parameterisation method is proposed by combining the leading edge
modification CST method and improved Hicks–Henne bump functions method. Though
the NEW CST method has two additional basis functions in comparison with the original
CST, the fitting precision is better and the number of control parameters is fewer.
Moreover, the number of control parameters of the NEW CST is fewer than the original
CST for some complex aerofoils. The NEW CST introduces two parameters (p and β) to
control the additional basis functions. Different p can generate different leading edge
modification basis functions and the suitable β can reduce the representation errors of the
trailing edge. Besides, the radial basis functions neural network model is trained by some
samples (p, β and RMSE) which are generated by the Latin hypercube design (LHD)

Figure 22. Geometric fitting for NLF0416 using the original CST, LEM CST and NEW CST.
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method. The relationship between p, β and RMSE can be obtained by the RBF model. And
p and β are calculated by the Genetic Algorithm (GA) which can achieve the minimum
RMSE of the NEW CST method. We can choose the suitable basis functions to fit the
aerofoils. So the NEW CST method has an advantage over the LEM CST method in the
aerofoil parameterisation.

The 1,545 UIUC aerofoils are tested to validate the improved capability of the new
parameterisation by comparison with the LEM CST and the original CST. Furthermore, the
leading-edge and trailing-edge fitting abilities of the NEW CST for high-lift low Reynolds
number aerofoils, supercritical aerofoils, laminar aerofoils, sailplane aerofoils and low-
speed aerofoil within the UIUC library are evaluated. The results show that the NEW CST
can represent the whole aerofoils and the number of control parameters is the fewest among
these three methods. Furthermore, when the NCP of the NEW CST and LEM CST is the
same, the NEW CST method has a higher accuracy and smaller error especially at the
leading edge and trailing edge.

The NEW CST method possesses the intuitive property like the original CST. Relatively
few control parameters can represent the aerofoil and the fitting precision is high. Therefore, it
is favorable for the aerofoil designers to select the NEW CST method to parameterise and
optimise the aerofoil.

Figure 23. Geometric fitting for AG16 using the original CST, LEM CST and NEW CST.
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APPENDIX A. AEROFOIL NORMALISATION
To make it easier to compare these three methods, all the aerofoils have been normalised to
ensure that the leading-edge point is located at [0,0] and the trailing-edge point is located at
[1,0]. We use the original data to normalise the aerofoil geometry. The normalisation factors
of the upper and lower aerofoils are as follows:

Xupper =
xupper�minðxupperÞ

maxðxupperÞ�minðxupperÞ …(A1)
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Xlower =
xlower�minðxlowerÞ

maxðxlowerÞ�minðxlowerÞ …(A2)

Equations (A1) and (A2) can guarantee Xupper, Xlower∈ [0, 1]. The co-ordinates of the leading-
edge point and trailing-edge point are [xle,yle] and [xte,yte]. So the angle between the chord line
and x-axis is

θ= arctanð yte�yle
xte�xle

Þ …(A3)

The origin of the co-ordinate system is translated to the leading-edge point [xle,yle] by the co-
ordinate translation. So the leading-edge point is located at [0,0]. According to the principle of
the co-ordinate rotation, we can rotate x-y co-ordinate by θ degrees around [0,0]. So we can
obtain the new x′–y′ co-ordinate and guarantee that the chord line is parallel to x′-axis

x0

y0

� �
=

cos θ sin θ
� sin θ cos θ

� �
x�xle
y�yle

� �
…(A4)

The rotation co-ordinate and scaling of the x′–y′ axes are shown in Figure A1. According to
the normalisation equations (A1) and (A2), the x′–y′ scaling of the aerofoil can be obtained.

kscale =
X

x′�min x′ð Þ =
1

max x′ð Þ�min x′ð Þ =
1

xte�xleð Þ=cos θ
…(A5)

where x′ is the x′ co-ordinate value of the upper and lower aerofoil data, kscale is the scaling
factor and X is the normalisation factor. So the co-ordinate of the scaled aerofoil in x′–y′ plane
is as follows:

x0

y0

� �
= kscale

x0

y0

� �
= kscale

cos θ sin θ
� sin θ cos θ

� �
x�xle
y�yle

� �
…(A6)

So an impartial and uniform testing platform can be ensured by the aerofoil normalisation in
this paper.

Figure A1. Rotation co-ordinate of the aerofoil.
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