
J. Fluid Mech. (2021), vol. 916, A14, doi:10.1017/jfm.2021.124
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Miscible viscous fingering (VF) of the annulus of a more viscous fluid radially
displaced by a less viscous fluid is investigated through both numerical computations and
experimental study. We aim to understand how VF with finiteness in a radial displacement
different from the classical radial VF and the instability of a slice displaced rectilinearly
with a uniform velocity. It is observed that the VF of a miscible annular ring is a persistent
phenomenon in contrast to the transient nature of VF of a miscible slice. Although new
fingers cease to appear after some time but due to the radial spreading of the area available
for VF, a finite number of fingers always remain at a later time when diffusion is the
ultimate dominating force. A statistical analysis is performed for the numerical data and it
is found that the second moment of the averaged profile, variance, is a non-monotonic
function of time, contrary to variance in classical radial VF and rectilinear VF with
one fluid sandwiched between layers of another. The minimum in the variance indicates
the interaction of two fronts which is visible in terms of pressure fingers, but not the
concentration fingers indicating a faster growth of pressure than the concentration growth.
In addition, for existence of critical parameters for instability in terms of viscosity contrast
and amount of sample, the variation of the finger length with flow rate is found to be
dependent on the amount of the more viscous fluid confined in the annulus.

Key words: fingering instability, Hele-Shaw flows, porous media

1. Introduction

Viscous fingering (VF) is a hydrodynamic interfacial instability, which is ubiquitous in
various porous media flows during the displacement of a more viscous fluid by a less
viscous one (Homsy 1987). The two fluids may be miscible or immiscible in nature. The
less viscous fluid may displace the more viscous one linearly or radially, and accordingly
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the fingering instability is termed as rectilinear VF (Tan & Homsy 1988; Mishra, Martin
& De Wit 2008) or radial VF (Tan & Homsy 1987; Chen et al. 2008; Sharma et al. 2019).
Viscous fingering is observed in various applications such as chromatographic separations
(De Wit, Bertho & Martin 2005; Guiochon et al. 2008), spreading of pollution zones in
aquifers (Kretz et al. 2003; De Wit et al. 2005) or in mixing during brine transport in
aquifers. In all these displacement processes, it is possible that a finite amount of more or
less viscous fluid gets displaced in the porous medium by another bulk fluid resulting in a
limited amount of one of the fluids.

Understanding how VF effects or is affected by the finite amount of an intermediate
fluid sandwiched between two semi-infinite regions of another fluid has been of keen
interest to many researchers. For instance, De Wit et al. (2005) considered VF of a high
viscous slice displaced linearly by a less viscous fluid and observed that in comparison to
the fingering between semi-infinite regions, VF of finite slice is a transient phenomenon
which is a consequence of the decrease in viscosity with time. They observed an increase
in the variance due to the broadening of the peak as a result of VF. This indicates that
one fluid present in limited amounts does effect the fingering dynamics and VF with
two interfaces always has properties different from VF with a single interface. Further,
Mishra et al. (2008) compared the rectilinear fingering dynamics by considering the slice
to be more as well as less viscous than the ambient displacing fluid, and reported that the
variance of the less viscous sample is larger than that of the more viscous sample. Such
displacement of the finite solute plug of greater or lesser viscous fluid by a less viscous
fluid in chromatography column develops fingering instability, respectively, at the rear or
frontal interface, and is captured in classical experiments by Shalliker et al. (2007) and
Mayfield et al. (2005).

Further, a physiochemical aspect of finite width of a solute plug, i.e. the effects of linear
and nonlinear adsorption phenomena in the miscible VF, has been thoroughly explored in
the literature theoretically (Edstrom, Samuelsson & Fornstedt 2011; Rana et al. 2019), and
the interaction of unstable and stable interfaces to control the dynamical fingering patterns
due to adsorption is observed. Hota, Pramanik & Mishra (2015) performed a numerical
linear stability analysis to understand how linear adsorption isotherm affects onset of
instability in a finite slice, and succeeded in capturing the diffusion dominated region
during early stages of the flow process. So far, we have mentioned VF by considering
the displacement of the slice of a fluid sandwiched between another fluid having different
viscosity in the presence or absence of adsorption. However, the finite extent of fluids
can be of arbitrary shape (Pramanik, De Wit & Mishra 2015), may be present in the
entire domain (Jha, Cueto-Felgueroso & Juanes 2011) or there may be three different
fluids with one fluid confined between the other two (Daripa & Gin 2016). One thing
common in these studies is rectilinear displacement of a miscible fluid by another of
different viscosity. However, Cardoso & Woods (1995) considered a three layer system
containing an immiscible layer of fluid bounded by two other fluids both for linear and
radial displacement. They reported a stabilisation of the system due to continuous thinning
of the intermediate layer in the radial displacement while the layer breaks into drops for
rectilinear displacement. In context with radial displacement of the miscible fluids, Chen
et al. (2015) considered alternate injection of the more and the less viscous fluids and
found that multiple interfaces helped enhance the mixing of the fluids.

The two-interface problems (stable–unstable or unstable–unstable ones) have
applications in polymer flooding in the enhanced heavy oil recovery processes (Vishnudas
& Chaudhuri 2017). Zhou, Dong & Maini (2013) performed experiments to understand
the enhanced heavy oil recovery by chemical flooding through a rectilinear displacement
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process by conducting various chemical slug injections in a two-dimensional sand-packed
cell. They used one chemical slug and two chemical slug tests, and showed that the second
polymer slug injection can recover more oil if a water slug injection is applied between the
two chemical slugs. Further Chaudhuri & Vishnudas (2018), analysed the polymer flooding
processes through a radial displacement in one-quarter of a five-spot system by considering
a miscible polymer intermediate layer between water and oil as innermost and outermost
fluids, respectively. Such a model gives rise to a system with miscible viscous fingers
piercing out to the polymer bank, and further entering the immiscible outward interface at
the polymer and oil bank. They reported that, with the non-uniform flow phenomenon in a
five-spot set-up, the fingering patterns are very much different than they are in a rectilinear
displacement. This describes that, not only the pattern formation but also the complete
interfacial VF dynamics of the two-interface problem can be changed depending on the
nature of the displacement, i.e. whether radial or rectilinear.

Recently, in context with the treatment of fluids in an oil well, Beeson-Jones & Woods
(2015) considered the overall stability of the radially spreading annulus considering three
fluids each having different viscosity. They reported that the results for an annulus are
similar to the single interface radial flow, but depend on the viscosity difference between
the inner and outer fluid. To the best of our knowledge, no study exists with miscible
fluids, and hence no conclusion can be drawn if miscibility also plays a role in addition to
the interaction of fronts existing due to one fluid being limited between the other two. This
motivates us to understand the miscible VF with an annular ring with the following two
purposes: (i) to understand the analogy and differences between the VF with a slice and
VF with an annulus; (ii) if the results known for classical radial VF are affected due to the
confinement of one of the fluids. For the sake of simplicity, we consider only two fluids,
with the more viscous annulus bounded between two layers of the less viscous fluid, so
that only one interface is unstable, while the other spreads diffusively.

Throughout the study, we ask and answer the following questions. How miscible VF
is affected if we consider radial displacement with one of the fluids confined between
layers of another fluid? Is the instability thus obtained a transient phenomenon or the
non-uniform radial velocity results in different dynamics? How does the competition
between the convection and diffusion (Sharma et al. 2020) affect VF of a miscible
annulus? In an attempt to answer these questions, we consider the VF of an annulus of
a more viscous fluid bounded by inner and outer regions of less viscous fluids. Such
an annulus is formed by the radial displacement of a finite amount of high viscous
intermediate fluid by a less viscous inner fluid. Various facets of miscible VF with
the finiteness of the intermediate fluid are analysed by performing experiments, and
further explained with the help of nonlinear simulations. It is observed that in contrast
to rectilinear VF with a slice, fingers always remain in the present case. However, after
some time, fingers evolve as frozen fingers without generation of new fingers. Also, first of
its type, variance is found to be a non-monotonic function of time, which is a consequence
of the limited more viscous fluid and the competition between the two opposing forces
of convection and diffusion. The minimum in the variance curve is explained in terms of
the distorted pressure contours indicating the interaction of the two fronts, even before the
fingers touch the stable interface.

The paper is organised so as to simultaneously understand the experimental and the
numerical results. The mathematical model followed by the numerical method is discussed
in § 2. The experimental set-up, as well as the fingering dynamics of miscible annulus of
the intermediate fluid between the inner and outer fluids, is presented in § 3. A thorough
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μs μc

INLET

(μc)

rout

r1

Figure 1. Schematic of the computational domain. The white circle in the centre represents the injection hole
with radius rin = 2 mm.

quantitative understanding of the computational results with different parameters of VF of
a miscible annular ring, along with the corresponding experimental validations, is made
in § 4, followed by the conclusions in § 5.

2. Mathematical formulation

2.1. Mathematical model
We consider a two-dimensional flow of Newtonian, incompressible, miscible and
non-reactive fluids in a homogeneous porous medium. With an aim to understand VF of
a miscible annular ring, we generate an annulus of one fluid which we call a sample fluid
(De Wit et al. 2005), with viscosity μs, surrounded by the other fluid which is referred
to as the carrier fluid, having viscosity μc and radially displacing the sample. In order to
model the radial (point source) flow to replicate the experimental conditions and to validate
the experiments discussed in § 3, we use the two-phase Darcy law (TPDL) module of
COMSOL (COMSOL Multiphysics�). The computational domain constitutes the region
between two concentric circles of radii rin, rout (see figure 1 for a schematic of the flow
problem). The computations are performed in Cartesian coordinates with the origin being
the centre of the two circles. The inner smaller circle acts as an injection hole to inject the
fluid. The presence of this hole helps replicate the experimental conditions and avoids any
singularity in the velocity (Chen et al. 2008; Sharma et al. 2019) at the origin, which is out
of the domain.

Below, we briefly explain how the equations in the TPDL module can be utilised to
model the single-phase porous media flow of miscible fluids. A detailed description of the
same is available in one of our previous works (Sharma, Pramanik & Mishra 2017). Under
the assumption of constant density of the fluids and disregarding the gravity and capillary
pressure, the equations in the TPDL module are

∇ · u = 0, (2.1)

u = − κ

μ
∇p, (2.2)

1
μ

= s1
κr1

μ1
+ s2

κr2

μ2
, (2.3)

∂εps1

∂t
+ u · ∇s1 = D∇2s1, (2.4)

where u = (u, v) is the Darcy velocity, p is the hydrodynamic pressure, κ and εp are,
respectively, the permeability and porosity of the porous medium. Here κri, si, i = 1, 2,

are the relative permeabilities and the saturation of the two fluids and D is the capillary
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diffusion. Also, s1 + s2 = 1 so that the medium is completely saturated. The experiments
in this paper are performed using a water–glycerol system. Thus, in our numerical
simulations, we consider the second fluid to be water and define the concentration of the
species (glycerol) to be c = ρ1(1 − s2) = ρ1s1. However, ρ1 can be assigned arbitrary
values as density is assumed to play no role in our study. Without loss of generality, we
assume ρ1 to be unity so that the species concentration is given as c = s1 which can be
obtained by solving equation (2.4). Thus, D can be regarded as the molecular diffusion
coefficient of glycerol in water, and we use s1 to represent the species concentration.
Equation (2.4) is associated with the following initial condition:

s1(x, y, t = 0) =
{

1, r2
in < x2 + y2 � r2

1

0, otherwise,
(2.5)

where r1 is the radius of the circle occupied by the sample fluid initially, and rin is the
radius of the injection hole. The carrier fluid is continuously injected through the injection
hole at a constant velocity U0, specified as

− n̂ · u = U0 and s1(x, y, t) = 0, at x2 + y2 = r2
in, (2.6)

where n̂ is the unit outward normal. An annulus or miscible ring of sample fluid is created
on the injection of the carrier fluid. We choose to create the annular ring in this way in
order to utilise a smaller domain and to initially avoid the effect of the non-uniform radial
velocity on the dynamics. At the boundary of the other circle x2 + y2 = r2

out, the outlet
condition

p(x, y, t) = 0 and − n̂ · D∇s1 = 0, (2.7a,b)

representing the free flow of the fluid is specified. Further, we specify

κr1 = κr2 = 1, (2.8)

so that (2.3) implies
μ = f (μ1, μ2, s1). (2.9)

The function f (μ1, μ2, s1) is assumed in order to recover the Arrhenius viscosity
concentration relation used in miscible VF (Homsy 1987; Tan & Homsy 1987; Mishra
et al. 2008) as

μ(s1) = μ2 exp (Rs1), (2.10)

where R is a non-dimensional parameter. The viscosity of the sample and the carrier can
be obtained from the above relation as follows. From the condition (2.5), it is clear that
s1 = 0 for the carrier fluid, therefore

μc = μ2, (2.11)

and the viscosity of the sample is obtained by substituting s1 = 1 in (2.10) as

μs = μ2 exp R. (2.12)

From now on, we shall use μc and μs for the viscosity of the carrier and the sample,
respectively. From the above two equations, we obtain

R = ln
(

μs

μc

)
, (2.13)

which is the log-mobility ratio describing the viscosity contrast between the fluids. The
sign of R decides the viscosity of the sample, which is more viscous than the carrier for
R > 0.
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Parameters Value

dx (mm) 0.5
Number of degrees of freedom 3 029 334
rin (mm) 2
rout (mm) 150
r1 (mm) 5, 10, 15, 30, 50

Table 1. Various parameters chosen in the study.

dx (mm) 4 2 1 0.8 0.5

DOF 47 240 189 345 757 959 1 194 379 30 293 334

Table 2. Degrees of freedom (DOF) for various dx used for mesh independence study.

2.2. Numerical method
For the numerical simulations, we choose rin = 2 mm similar to the injection hole in the
experiments, and rout = 150 mm so that the computational domain is large enough to
capture the dynamics without the boundary effect on the results. However, the density
plots in the x–y coordinate system have been cropped to a radius mentioned in each
respective caption for a better visualisation. We utilise a user-controlled free triangular
mesh of fluid dynamics for the computations, customised by fixing the maximum as well
as the minimum element size. With an automatic tessellation, the triangulation method is
selected to best suit the geometry (COMSOL Multiphysics�) and hence the size of the
elements increases with an increase in the distance from the source. This results in tilted
fingers at a later time due to the interpolation over the mesh. In order to have patterns
independent of the mesh, a Delaunay tessellation (George & Borouchaki 1988) is used
so that the triangles are regular (Preparata & Shamos 1988) throughout the domain and
does not affect the fingering patterns. Time discretisation is set default by the solver in
COMSOL using backward differentiation formulae of first and second orders. The time
stepping is adaptive, however, to have results independent of the final time, we fix 10−2 s
to be the maximum and the initial time step taken by the solver (Sharma et al. 2017). In
the table 1, we give the details about various parameters used throughout the study.

2.3. Mesh independence
We consider a free triangular mesh of fluid dynamics to perform the simulations. A mesh
refinement study is done by performing a parametric sweep over the spatial step size of
the mesh. The size of the mesh is customised by choosing dx = dy and varying dx ∈
{4, 2, 1, 0.8, 0.5} mm in order to chose the appropriate mesh size. This helps to explore
the effect of mesh size on the VF dynamics along with testing the mesh convergence as
well as the mesh independence of the results. In table 2, we show the degrees of freedom
for each dx considered.

Since the sample occupies a fixed area at initial time, the mass conservation demands
the area occupied by the sample at all time must remain same. Let as(t) denote the area
occupied by the sample at time t, then

as(t) = as(t = 0) = π(r2
1 − r2

in), (2.14)
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50 100

t (s)

Edx

150

dx = 2 mm

1 mm

0.8 mm

0.5 mm

2000

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(×10–3)

Figure 2. Relative error at all times for various dx. Here R = 2.4, r1 = 50 mm, U0 = 1.5 mm s−1.

which for r1 = 50 mm can be calculated analytically as as ≈ 7841 mm2. We denote the
area occupied by the sample for the mesh with spatial step size dx as as,dx and compute
the same as

as,dx =
∫
Ω

s1 dΩ. (2.15)

Further, we compute the relative error,

Edx(t) = |as,dx − as|
as

, (2.16)

and plot the same in figure 2. Evidently, Edx(t) < 0.1 % ∀t, for dx ≤ 1 mm, indicating
mesh convergence. However, since the error is the least for the simulations with dx = 0.5
mm, we perform all the simulations for this spatial step size.

2.4. Fingering evolution in miscible ring: computational results
We create the annulus by considering a finite amount of the sample in a circle of radius r1,
surrounded by the carrier fluid inside the computational domain as shown in figure 3 at t =
0 s. Further, the carrier fluid injected from the inlet radially displaces the sample creating
an annulus (see figure 3a). There exist two interfaces, one where carrier displaces the
sample which we refer to as the inner front, while the other where the carrier is displaced
by the sample is called the outer front. The two fronts are visible ∀t > 0 in figure 3 and
experience two contrasting hydrodynamic displacements depending upon the viscosity
contrast between the carrier and the sample fluid. For R > 0, the inner front is unstable due
to the displacement of the more viscous fluid by a less viscous one, while the outer front
undergoes a stable displacement of the less viscous carrier by the more viscous sample. A
stable displacement of the two fronts is visible for R = 0 in figure 3(a), while the fingering
instability at the inner front is evident in figure 3(b) for a viscosity contrast between the
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t = 0 s t = 50 s t = 100 s t = 200 s

0

(a)

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. Numerically computed temporal evolution of the density plots of concentration s1 for r1 = 50 mm,
U0 = 1.5 mm s−1 for (a) R = 0, (b) R = 2.4. Formation of the annulus and VF is evident. The plots have been
cropped to show only up to a radius of 100 mm.

two fluids. It is mentioned that the parameters (R, U0) are chosen close to those discussed
in experiments in the next section. However, we have chosen r1 to be large in order to
visualise the dynamics efficiently. It is evident in figure 3(b) that up to t ≈ 100 s, the VF
at the inner front develops independent of the other front, but with passage of time the
fingers touch the other interface and an interaction takes place which will be discussed in
the sections to follow.

3. Experimental set-up

We conducted the experiments using a radial Hele-Shaw cell, the schematic of the
experimental apparatus is sketched in figure 4(a). The Hele-Shaw cell used in the
experiments consisted of two parallel transparent glass plates of dimensions 140 mm ×
140 mm × 10 mm, separated by four metal (stainless steel) right-triangular plates at the
corners of the glass plates. The size of the isosceles edges and the thickness of the
triangular spacers were 30 mm and 0.05 mm, respectively. The top plate has a small hole of
4 mm diameter at the centre, drilled for injecting the fluids (see figure 4b for the schematic
of the Hele-Shaw cell used). Two syringe pumps (Furue Science, JP-V), one for each fluid,
were used for the injection. Only one of the pumps was connected at any given time, and
had to be connected and disconnected manually while changing the fluid to be injected
in the cell. Thus, in the schematic in figure 4(a), only one pump is shown connected to
the cell. The dynamics in the cell were recorded by a video camera mounted below the
cell. The cell was placed between two circular flanges in order to avoid an increase in the
gap width due to fluid injection, which also resulted in a circular region for visualising
the VF dynamics. The diameter of the circular region for the measurement was 116 mm.
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5
6

4

8
4

3

11

1

4 5 6 7

8

2 3

1

1 Glass plate

2 Metal plate (b = 0.05 mm)

3 Injection hole

(140 mm × 140 mm × 10 mm

Syringe pump (Furue science, JP-V), Hele-Shaw cell, Flange,

1 ml syringe, 20 ml syringe, Vinyl tube, Digital viedo camera,

Acrylic board

2

5

7

2

3

(b)

(a)

(c) (d )

b

Figure 4. (a) Schematic of experimental apparatus. (b) Schematic of radial Hele-Shaw cell. (c) Direct
photograph of radial Hele-Shaw cell without upper flange. (d) Direct photograph of radial Hele-Shaw cell
with upper flange. The inner diameter of the flange is 116 mm; this is a measurement region.

The actual Hele-Shaw cell (with/without upper flange) used in the experiments is shown
in figure 4(c,d). An acrylic board was placed on top of the upper flange to ensure a white
background in the experimental images.

We used a water–glycerol solution system for our experiment. Viscosity of the solution
was controlled by the weight concentration of glycerol, cg. The higher the cg, the more
viscous is the fluid. Note that cg = 0 means that the fluid is water. We call the fluid which
is inside the annulus the sample fluid and the other fluid is referred to as the carrier fluid,
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Concentration of glycerol (wt%) Viscosity (mPa s) Density (g cm−3)

0 0.89 0.997
15 1.5 1.03
19 1.6 1.03
60 9.5 1.15

Table 3. Viscosity and density of glycerol solution used at 25 ◦C.

following the same terminology as in the numerics. We denote the weight concentration
for the carrier and sample fluids as cgc and cgs, respectively. The viscosity of the carrier
and sample fluids at room temperature are denoted as μc and μs, respectively. The annular
ring is represented in terms of finite volume Vs, initially occupied by the more viscous
fluid inside the Hele-Shaw cell. The sample fluid was dyed blue for visual contrast. The
chemicals (pure glycerol and indigo carmine (blue dye)) were purchased from FUJIFILM
Wako Pure Chemical Corporation. The experiments were performed at 25 ◦C. A tabulated
value of the measured viscosity and density (Glycerine, Producers’ Association 1963) of
the water–glycerol system at different glycerol concentration have been added in table 3.
We note that in glycerol and water system, the exponential model for viscosity and
concentration does not fit the experimental result for all ranges of glycerol concentration
(0–100 wt%). However, we confirm that the exponential model almost fits the relationship
if the concentration of glycerol is less than 60 wt%, which is the condition employed in
the experiments in the present study. Thus, the use of the viscosity-concentration relation
utilised in the numerical simulations (see (2.10)) is justified. For the experiments, the
log-mobility ratio R is defined as R = ln(μs/μc), similar to the numerical study.

The relation between the numerical and the experimental parameters is explained below.
The volume Vs of the sample is related to the radius r1 occupied by the sample as

Vs = π(r2
1 − r2

in)b = asb, (3.1)

and thus helps to obtain the sample in the same quantity in both the experiments and the
numerical simulations. Here, as is the area occupied by the sample. Further, the flow rate
Q is the product of the area of the injection hole and velocity U0 with which the carrier is
injected.

3.1. Fingering evolution in miscible ring: experimental result
In a novel attempt to experimentally understand miscible VF of an annulus, the important
and challenging part is to prepare the initial annular ring. Keeping in mind the limited
dimensions of the cell, we prepare the annulus by injecting the two fluids interchangeably
to first obtain the initial condition as used in the numerical simulations. Initially, the carrier
fluid is filled inside the cell followed by the injection of the sample fluid. A fixed volume
Vs of the sample fluid is carefully injected in order to occupy a finite region inside the cell
and form a circle. Further, the carrier fluid is injected at a constant flow rate Q. At time
t > 0, the freshly injected carrier fluid radially displaces the sample, thereby creating an
annulus containing the sample fluid in finiteness (see figure 5a). For R > 0, the sample
is more viscous and the inner front undergoes VF while dispersion results in a stable
outer front as evident in figure 5(a). Similar to the numerical results, the outer front has
no effect on the VF dynamics before t = 80 s, but due to the finite extent of the annular
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Viscous fingering of miscible annular ring

t = 0 s

116 mm

t = 40 s t = 80 s t = 100 s

(b)

(a)

Figure 5. Temporal evolution of displacement pattern of miscible ring obtained (a) experimentally under the
condition of cgc = 0 wt% (μc = 0.89 mPa s), cgs = 60 wt% (μs = 9.5 mPa s), R = 2.4, b = 0.05 mm, Vs =
0.09 ml and Q = 1.74 × 10−3 ml s−1. (b) The numerical results for r1 = 23.94 mm, U0 = 1.38 mm s−1,
R = 2.4 which correspond to same parameters (Vs, Q, R) chosen for experiments in panel (a). The numerical
plots have been cropped to show only up to radius 60 mm.

sample or intermediate fluid, the fingers touch the outer front with the evolution of time.
Also, the fundamental features of VF instability such as splitting, merging, coarsening,
etc. are evident. In figure 5(b), we show the VF dynamics of an annular ring obtained
numerically for the same parameters considered in the experiments in figure 5(a). A good
agreement exists between the experimental and numerical results. In the sections which
follow, we explore various features of fingering instability due to a more viscous annulus
both numerically and experimentally.

4. Results and discussions

We have seen the annular ring of the sample affecting the VF dynamics due to the presence
of the outer front both in the experiments and the numerical study in the previous sections.
In this section, we quantitatively discuss the effect of the confinement of the more viscous
sample on the VF dynamics followed by the effect of the viscosity contrast and the
injection speed on the fingering dynamics due to the annular ring.

4.1. Averaged concentration profile
In existing miscible VF studies with rectilinear displacement (DeWit et al. 2005;
Mishra et al. 2008), the concentration averaged along the transverse direction helps to
quantitatively explicate the instability dynamics. Hence, in order to have a profound
statistical analysis of the instability through a probability density function, we construct
the averaged concentration profile of annular fingering patterns (figure 3) in the following
process. Firstly, we transfer the concentration s1 data computed from COMSOL using
a rectangular grid of step size 10−4 m both in the x and y directions. The data is then
post-processed using MATLAB (2018) by transforming into a polar coordinate system so
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Figure 6. (a, b) Upper panels: computational density plots of concentration s1 in the transformed r–θ

coordinate system at t = 50 s for (a) R = 0, (b) R = 2.4; lower panels: angular averaged concentration 〈s1〉
at different times for (a) R = 0 and (b) R = 2.4. (c) First moment m(t), for R = 0, 2.4. In all these plots,
r1 = 50 mm, U0 = 1.5 mm s−1.

that the annulus for R = 0 seen in x–y coordinates appears as a strip of the same width in
the new coordinate system (see figure 6a top). We refer to the new coordinate system
as the r–θ coordinate system too, with domain of computation [rin, rout] × [0, 2π]. In
figure 6(a,b), the density plots of concentration s1 for R = 0, 2.4, U0 = 1.5 mm s−1 in
the r–θ plane at a representative time t = 50 s are shown. It is to be noted that θ = 0
corresponds to the line x = 0 in the first quadrant (y > 0) in the Cartesian coordinate
system. In the subsections to follow, all the quantitative analysis is performed in r–θ

coordinates.
We calculate the angular averaged concentration 〈s1〉 ≡ 〈s1〉(r, t) by taking the average

of s1(θ, r, t) along the θ direction as

〈s1〉 = 1
2π

∫ 2π

0
s1(θ, r, t) dθ, (4.1)

and plot the same for R = 0, 2.4 in figure 6(a,b) at various times. The distorted left
side of 〈s1〉 for R = 2.4 supports the fact that the fingering appears at the inner front
while the outer front spreads diffusively both for the viscosity matched (R = 0) and the
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Viscous fingering of miscible annular ring

viscosity mismatch cases (R /= 0). The right sides of the curves in figure 6(a,b) are at
the same position for t < 300 s that indicate the outer front for both R(=0, 2.4) have the
same location up to t � 300 s, but as time increases further, the finiteness affects the VF
dynamics with the outer front acting as a barrier to the fingers. The fingers in turn exert
a force on the barrier providing extra convection which makes the right side of 〈s1〉 for
R = 2.4 appear ahead of that for R = 0. The averaged profile approaching the Gaussian
curve provides an insight into the fact that towards the end of the numerical computation,
the diffusion is the dominating force. However, the distortions (or minor bumps) observed
in the outer front in 〈s1〉 at t = 500 s hint that a finite number of fingers always remain in
miscible fingering in annular ring in contrast to miscible VF in a slice (DeWit et al. 2005)
where fingers ultimately disappear. A comparison of the angular averaged profile from
t = 50 s to t = 150 s in figure 6(b) indicates that the zone containing only the sample, that
is, the region for which 〈s1〉 = 1 decreases significantly within this time frame. Below we
gain insight into this in detail.

4.1.1. Moments of averaged profile
In order to have a detailed understanding of the effect of the finiteness on VF dynamics,
we compute the first two central moments of the angular averaged concentration 〈s1〉. The
first moment

m(t) =
∫ rout

rin

f (r, t)r dr, (4.2)

provides information about the centre of the mass, where

f (r, t) = 〈s1〉∫ rout

rin

〈s1〉 dr
(4.3)

is the probability density function of the continuous distribution 〈s1〉. The evolution of the
first moment m(t) is shown in figure 6(c). For R = 2.4, m(t) is always less than that for
R = 0 at all time, signifying the occurrence of fingers at the inner front and the outer front
preventing the fingers penetrating.

The second moment is the variance computed as

σ 2(t) =

∫ rout

rin

〈s1〉(r − m(t))2 dr∫ rout

rin

〈s1〉 dr
, (4.4)

and is a measure of the spreading of the mass. To begin with we first discuss the variance
for the classical radial VF with a single interface for which we consider the less viscous
fluid initially occupying a circle of finite radius 50 mm and surrounded by the more viscous
fluid. The less viscous fluid injected from the inlet results in VF as shown in figure 7(a).
We assume μ(s1) = eR(1−s1) for a single interface so that s1 = 0 corresponds to more
viscous fluid for R > 0. The averaged concentration profile 〈s1〉 is plotted in figure 7(b).
It is evident that the fingers appear at the interface between the two fluids. Also, VF
results in an increase in spreading and hence the variance should be an increasing function
of time, and indeed we observe the same (i.e. increasing of variance) in figure 7(c).
However, for the case of annular VF spreading with two interfaces, we have found a
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Figure 7. (a–c) The fingering instability and analysis for single interface. (a) Representative density plot of
s1 in x–y and r–θ coordinate systems shown at t = 500 s, (b) angular averaged concentration 〈s1〉 at different
times for R = 2.4, (c) second moment σ 2(t) of angular averaged concentration, for R = 2.4, r1 = 50 mm,
U0 = 1.5 mm s−1.
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Figure 8. (a) Variance σ 2(t) of angular averaged concentration, for R = 0, 2.4 with r1 = 50 mm, U0 =
1.5 mm s−1. Inset: density plot in r–θ plane for R = 2.4 at t = 100 s. The pressure contours (solid curves)
and concentration contour s1 = 0.99 (dotted curves) for R = 2.4 at (b) t = 50 s, (c) t = 100 s, (d) t = 150 s.
The dotted concentration contour overlapping the least valued pressure contour (blue coloured) represents the
outer interface. The deformed non-circular pressure contour at the azimuthal positions of the most deformed
concentration dotted contours are shown at t = 100 s (inside the dashed pink box).

fascinating result that the variance σ 2(t) is a non-monotonic function of time in the
presence of VF, while for a stable displacement, σ 2(t) only decreases with time (see
figure 8a for stable displacement in the case of R = 0 and in the presence of VF for
R = 2.4), contrary to the result of the classical radial fingering of one interface (figure 7c).
This kind of variance analysis has been reported for the first time in the context of miscible
annular VF, to the best of our knowledge, and can be attributed to both the finiteness of
the sample and the spatially varying velocity in radial geometry.
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Viscous fingering of miscible annular ring

With the sample confined in the annular ring, there are two interfaces each at the inner
and the outer front experiencing different convection due to non-uniform radial velocity;
as such, the inner front moves faster than the outer front irrespective of R. The movement
of both the inner and the outer front on account of the injection of the carrier results in
a decrease in the width of the annulus as can be visualised from the density plots of the
concentration for R = 0 in figure 3(a). Consequently the variance for R = 0 decreases.
This cannot be observed in the rectilinear displacement with a uniform velocity. On the
other hand, for R /= 0, both diffusion and convection compete (Chui, de Anna & Juanes
2015; Sharma et al. 2020) in a radial flow. We attribute the non-monotonicity in σ 2(t) for
non-zero log-mobility ratio to this competition between the two forces and the limited
amount of sample. After initial diffusion dominance, convection overtakes triggering
instability and hence an increased convection at the inner front results faster thinning
of the zone containing the sample. Thus, an initial decrease in the width of the sample
and hence in the variance for R = 2.4 is observed. The minimum on the σ 2(t) curve is
observed (near t ≈ 100 s) when VF starts affecting the stable diffusive front. This is clear
from the appearance of a bump at the outer front in the density plot of concentration
s1(θ, r, t) at t = 100 s shown in the inset of figure 8(a), however, the fingers have not
reached the outer interface. In order to get more insight for such dynamical observation of
non-monotonic variance, we plot the computed pressure contours in figure 8(b–d) along
with a concentration contour of s1 = 0.99. The dotted concentration contour shown with
fingers represents the inner unstable interface, and the more circular dotted one signifies
the outer stable front location. Interestingly, near the outer front the distorted pressure field
(a non-circular one) is clearly visible for t = 100, 150 s (see figure 8c,d) whereas they
are more circular at time t = 50 s (figure 8b). This shows the evidence of the unstable
inner front interacting with the stable outer front at time (t ≈ 100 s) when variance
attains a minimum, through the pressure fingers, although the concentration fingers have
not visibly reached the outer front. This proves that the pressure growth is larger than
the concentration growth and interestingly this is captured through the quantification of
variance σ 2(t) due to coupling of the partial differential equations used in mathematical
modelling. It can be inferred that the statistical spreading measurement (σ 2(t)) provides
information about all the underlying dynamics present in our model system which is a
novel finding of the present work.

Further, from this minimum time onwards, σ 2(t) starts increasing again, and with the
passage of time the fingers ultimately interact with the outer front acting as the barrier,
and diffusive mixing starts at the barrier. The convection decreases and diffusion starts
dominating after this point. This is when fingers only spread radially with the injection of
the carrier and variance starts increasing again. Thus, the limited sample causes a decrease
in effective viscosity and ultimate seizing of instability. However, the already existing
fingers remain as the area available for VF increases with the injection of carrier, thereby
increasing σ 2(t) as time progresses.

4.2. Varying the viscosity contrast between the sample and the carrier
For a larger viscosity contrast between the two fluids, the less viscous fluid is more mobile
and can rapidly penetrate through the sample. It is reported that larger the R, more intense
are the VF patterns for rectilinear displacement (De Wit et al. 2005). To explore the effect
of R on the miscible VF of the annular ring, we perform experiments for a fixed Vs, Q
and various R and the snapshots of the experiments are shown in figure 9. The viscosity
contrast in the experiments is modified by varying the cgs and fixing cgc = 0 wt%. For
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R = 0.52 R = 0.59 R = 2.4

(a) (b) (c)

Figure 9. Experimental displacement pattern of miscible ring at t = 100 s under the condition of cgc = 0 wt%
(μc = 0.89 mPa s), b = 0.05 mm, Vs = 0.12 ml and Q = 1.74 × 10−3 ml s−1 with the log-mobility ratio (a)
R = 0.52 (cgs = 15 wt%, μs = 1.5 mPa s), (b) R = 0.59 (cgs = 19 wt%, μs = 1.6 mPa s) and (c) R = 2.4
(cgs = 60 wt%, μs = 9.5 mPa s).

the smallest R = 0.52 which corresponds to the least value of cgs considered (figure 9a),
the carrier radially displaces the sample while slight distortions at the inner interface
are observed on increasing cgs further (i.e. R = 0.59). Rigorous fingering patterns are
observed for a large R = 2.4, considered in the experiment (see figure 9c). Thus, there
exists an agreement between the experiments and the existing nonlinear simulations in
rectilinear geometry (De Wit et al. 2005). However, a transition from no instability to
slight bumping at the inner front is observed in the experiments with an increase in R. It is
evident that a critical log-mobility ratio Rcrit exists for a fixed volume Vs and flow rate Q
for the fingering to occur, and in our experiment it is obtained as Rcrit,exp ≈ 0.59.

To check the R effect on VF of an annular ring and the existence of Rcrit, numerical
simulations are performed for various R. Intense fingering as well as VF mechanisms of
tip splitting, shielding and merging appear with an increase in the viscosity contrast in
the nonlinear simulations similar to experiments as evident in figure 10. An early onset of
instability as well as longer fingers are observed for a larger R, which in turn result in quick
interaction of the two fronts. Also, from the numerical results, for R = 0.5 (see figure 10a),
the two fronts are only convected radially similar to R = 0 (figure 3a), while the inner front
is slightly distorted for R = 0.75. This indicates the existence of the log-mobility ratio for
which VF may not occur despite an unstable viscosity contrast at the inner front. Sharma
et al. (2020) divided the R, Pe parameter space into stable and unstable zones and reported
the existence of critical R, Pe for the occurrence of instability in a radial geometry. From
our observations, it can be inferred that this result is independent of the amount of the
more viscous fluid, whether it exists in finiteness, as is the case here, or infinitely (Sharma
et al. 2020).

In order to quantify the critical log-mobility ratio Rcrit, we define the normalised
variance as

σ 2
N(t) = σ 2

VF(t)/σ 2
0 (t). (4.5)

Here σ 2
VF(t) = |σ 2(t) − σ 2

0 (t)|, with σ 2
0 (t) being the variance for the stable case (R =

0). Here σ 2
VF(t) represents the variance due to the unfavourable viscosity gradient that

results in VF instability. We consider the displacement corresponding to a given R as
stable if ∀t, σ 2

N(t) < 0.1 %. It is evident in the inset of figure 11(a) that Rcrit ≈ 0.7 for
U0 = 1.5 mm s−1. The variance σ 2(t) for various R is plotted in figure 11(a). Owing
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R = 0.5
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Figure 10. Computational results: temporal evolution of the density plots of concentration s1 for r1 = 50 mm,
U0 = 1.5 mm s for different R = 0.5, 0.75, 1.5 and 2. Formation of the annulus and VF is evident. The plots
have been cropped to show only up to a radius of 80 mm.
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Figure 11. (a) Variance for various log-mobility ratios R calculated from the computational results for r1 =
50 mm, U0 = 1.5 mm s−1. Inset: σ 2

N(t) versus time for the classification of critical Rcrit; here Rcrit ≈ 0.7.
(b) dσ 2/dt showing diffusion dominates for all R at later times.
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to the competition between convection and diffusion, and the finiteness of the sample as
explained in § 4.1.1, σ 2(t) is a non-monotonic function of time for each R > Rcrit. The
minimum appears earlier for a larger R, which is reasonable as the fingers are longer, grow
faster and approach the outer front quickly for a larger difference in the viscosity contrast
of the two fluids. Thus, for the VF with finiteness, the temporal evolution of the width
of the annulus and the thinning of the zone containing the sample is dependent on the
log-mobility ratio R. However, after the minimum, σ 2(t) increases in a way independent
of R hinting at similar dynamics for each R. This is because once the two fronts interact,
the effective viscosity ratio decreases and diffusion dominates. Fingers thereby spread
radially outward diffusing in the ambient fluid. In order to support the fact that diffusion
dominates after a minimum is observed, we plot the rate of change of σ 2(t) with respect
to time in figure 11(b). It is clearly evident that dσ 2/dt increases for R � 0 and changes
sign from negative to positive at the time which corresponds exactly to the time when a
minimum is attained for variance σ 2(t) (see figure 11a). Further, the rate of change of
variance asymptotically approaching the slope corresponding to the R = 0 case indicating
that at a later time diffusion is the dominating force. Thus, the diffusion prevents growth
of new fingers but the existing fingers spread radially, making VF in an annular ring a
persistent phenomenon despite a transient effective viscosity gradient.

4.3. Effect of different area/volume occupied by the sample
Changing the area occupied by the sample (as) helps us to understand the effect of
finiteness on VF. Since the area occupied by the sample is

as = π(r2
1 − r2

in), (4.6)

then changing the area is equivalent to changing r1 numerically as rin is a constant for all
the simulations. Varying r1 results in a different distance and hence interaction between
the two fronts, which makes it important to consider the effect of r1 on the VF dynamics.
The width of the ring, which is the distance between the two fronts, depends on r1. The
larger the r1, the wider is the annular ring and the farther are the two fronts. Furthermore,
continuous injection of the carrier results in a time dependent width, which decreases with
time until the two fronts mix with each other.

4.3.1. Existence of critical area/volume for VF
It is observed that the mixing is earlier for the smaller r1, as shown in figure 12, and with
an increase in r1 fingering instability at the inner front is visible depending upon R, U0. For
a given U0, R, the VF dynamics depend predominantly on r1 or equivalently the area (as)
occupied by the sample fluid, as can be seen in figure 12. A stable displacement is observed
for R = 0.75 (figure 12) for a fixed U0 = 1.5 mm s−1 with r1 = 5 mm, but small bumps in
the form of an instability appear on increasing r1 further. The reason for the same is evident
in the form of quick diffusion of the fluids due to a smaller width (see plots for r1 = 5 mm
in figure 12). Thus convection in terms of viscosity gradient may be large but the smaller
width of the annulus results in a smearing out of concentration and hence the viscosity
gradient, resulting in stable displacement. In fact, it is observed that for a given U0, R, the
fingering instability is observed only when the area occupied by the more viscous fluid is
more than a critical area, as,crit = π(r2

1,crit − r2
in), as seen in figure 12. Thus, the width of

the annulus results in a transient viscosity gradient and, up to as,crit, the viscosity contrast
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Figure 12. Computational results of temporal evolution of concentration s1 for U0 = 1.5 mm s−1 and
(a) R = 0.75, r1 = 5 mm, (b) R = 0.75, r1 = 10 mm. The plots have been cropped to show only up to a radius
of 60 mm. The parameters in next two rows are (c) R = 0.75, r1 = 30 mm, (d) R = 0.75, r1 = 50 mm. The
plots have been cropped to show only up to a radius of 80 mm.

is not enough to trigger the instability and only stable displacement is observed. It can be
inferred from figure 12 that r1,crit ≈ 5 mm for R = 0.75, U0 = 1.5 mm s−1; the critical
area can be computed using (4.6). Existence of a critical sample width for the occurrence
of VF has already been reported numerically for the rectilinear geometry (Hota et al.
2015). Thus, from our numerical observations, we can conclude that the finiteness always
affects the VF dynamics by modifying the viscosity, independent of the geometry being
considered.

Our result is qualitatively supported by the experiments as evident in figure 13. Owing
to the three-dimensional (quasi-two-dimensional due to the small gap-width of the cell)
nature of the experiments, we use the volume of the sample, Vs, instead of the area of
the sample. Figure 13 shows displacement patterns at a given time for three different
Vs under the experimental condition of cgc = 0 wt% (μc = 0.89 mPa s), cgs = 19 wt%
(μs = 1.6 mPa s), R = 0.59, b = 0.05 mm and Q = 1.74 × 10−3 ml s−1. No fingering
is observed when Vs = 0.03 ml and 0.09 ml (see figure 13a,b), respectively. However,
small fingers appear at the inner front on increasing Vs further to 0.12 ml (see figure 13c).
These observations show the experimental evidence of the existence of a critical
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(a) (b) (c)

Vs = 0.03 ml Vs = 0.09 ml Vs = 0.12 ml

Figure 13. Experimental displacement pattern of miscible ring at t = 180 s under the condition of cgc =
0 wt% (μc = 0.89 mPa s), cgs = 19 wt% (μs = 1.6 mPa s), R = 0.59, b = 0.05 mm and Q = 1.74 ×
10−3 ml s−1 with the sample volume (a) Vs = 0.03 ml, (b) Vs = 0.09 ml and (c) Vs = 0.12 ml.

sample volume without VF patterns, and have a good qualitative agreement with the
corresponding numerical simulation results. Here we emphasise that critical sample
volume in viscous fingering with finiteness has been reported experimentally for the first
time. On the other hand, there is, so far, no experimental verification of the existence of a
critical sample volume in rectilinear VF with one fluid sandwiched between the layers of
other fluid. Thus, we can conclude that the smaller the area occupied by the more viscous
fluid, the weaker is the instability; which is the effect of the finiteness on the VF dynamics,
as for classical radial VF it is reported that the instability is abated with an increase in the
initial area occupied by a less viscous fluid (Sharma et al. 2020).

So far, we have noticed the existence of critical parameters Rcrit, as,crit for the occurrence
of instability for a fixed U0. However, it must be noted that all the critical parameters
for the instability are closely related to each other; changing any one of the governing
parameters changes the parameters at the boundary of the stable and unstable zones. Thus,
finding a relation between all the parameters is beyond the scope of the present work.
However, it is mentioned that we performed the VF experiments at least twice for each
experimental condition. And we have ensured reproducibility regarding the threshold of
onset of instability by the sample volume and the mobility ratio.

Pramanik & Mishra (2013) considered rectilinear displacements and reported identical
instability features for a sample of width larger than the corresponding critical width for
fixed values of log-mobility ratio and Péclet number. On similar lines, we ask the following
question in context with the annulus: How does finiteness above a critical area/volume of
the sample affect the onset and patterns of VF?

With an increase in the area occupied by the more viscous fluid, the two fronts get a
distant apart. Consequently, there exists a critical area as,crit after which VF is observed for
a given U0 and R as discussed in § 4.3.1. In figure 14, we present the temporal evolution of
fingering patterns for r1 = 15 mm (figure 14a), 30 mm (figure 14b) and 50 mm (figure 14c)
that correspond to the area of the miscible ring more than as,crit = π(r2

1,crit − r2
in). It is

clearly observed that the fingering patterns appear at the same time (at t ≈ 50 s in figure 14)
for all the cases. Hence, it is evident that the onset of VF and the early unstable patterns are
independent of the area of the miscible ring, or equivalently r1 for a fixed value of R and
U0. This shows that if finiteness is large enough not to diffuse away the viscosity gradient
in the system, the two fronts evolve independent of each other, i.e. the outer stable front has
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Viscous fingering of miscible annular ring

r1 = 15 mm

t = 0 s t = 10 s t = 50 s t = 100 s

r1 = 30 mm

r1 = 50 mm

t = 0 s t = 10 s t = 50 s t = 200 s

(a)

(b)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 14. Computational result of temporal evolution of concentration s1 for U0 = 1.5 mm s−1 and (a) R =
1, r1 = 15 mm, (b) R = 1, r1 = 30 mm, (c) R = 1, r1 = 50 mm. The plots have been cropped to show only up
to a radius of 80 mm.

no effect on the fingering dynamics at the inner front. This is valid before the interaction
of the two fronts, which depends upon r1. Thus, for area as > as,crit, the finiteness has no
effect on the initial dynamics similar to those observed in the rectilinear geometry (De
Wit et al. 2005; Hota et al. 2015). In fact, we summarise that the onset time of instability,
defined as the time when the fingers appear for the first time, is the same ∀r1 � r1,crit. We
quantify the onset time ton with the help of σ 2

VF, defined in § 4.2 as the minimum time
when σ 2

VF > 0. We prove through this quantification, and show in figure 15, that the onset
time for r1 = 30, 50 mm is the same at t ≈ 10 s. Also, σ 2

VF curves for the two r1 shown
are very close to each other up to t = 200 s, indicating similar VF dynamics up to this
time. For t � 200 s, the difference between the two curves increases with time indicating
that the outer front affects the VF after this time. Thereby, we can conclude that above a
critical area, the finiteness does not have any effect on the initial VF dynamics.

In order to experimentally explore the influence of the volume of the sample above
the critical value on the onset of VF, we consider three different volumes of the
high viscous fluid (cgs = 60 wt%, μs = 9.5 mPa s) as Vs = 0.01, 0.03 and 0.09 ml
which correspond to r1 ∼ 7.97, 13.82, 23.94 mm, respectively. The numerical simulations
performed in figure 14(a,b) are close to these parameters. However, through numerical
simulations, the effect of finiteness on initial VF dynamics have been captured for
a larger r1 in figure 14(c), which is not possible experimentally due to the limited
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Figure 15. Variance due to fingering: σ 2
VF , for R = 1 with different r1. The difference between the two curves

is negligible up to t = 200 s, indicating a similar dynamics at least up to this time. The inset shows the zoomed
plot up to t = 100 s.

dimensions of the Hele-Shaw cell. The less viscous fluid is obtained by taking the
glycerol concentration in the sample fluid to be cgc = 0 wt% (μc = 0.89 mPa s, so
that R = 2.4). The temporal evolution of the snapshots from the experiments shown in
figure 16 appear indistinguishable with a stable displacement observed up to t = 30 s,
and the onset time of VF is almost the same, ≈ t = 40 s for all Vs shown. Thus, it is
verified numerically as well as experimentally that the finiteness initially affects the VF
dynamics only if the two fronts can interact with each other, in which case the instability is
suppressed.

4.4. Persistent radial fingering instability
It is reported for the rectilinear geometry that the frontal or rear stable interface acts as
a barrier to the fingers which ultimately diffuse into a single finger (De Wit et al. 2005;
Mishra et al. 2008). However, we observe that for a radial displacement, a finite number
of fingers always remain even after the two fronts interact. It is interesting to see that as
the fingers diffuse into the outer front, after some time they only evolve as frozen fingers
independent of each other, without generation of new fingers, as evident by comparison at
t = 260, 500 s in figure 17(a). This is due to the finite width of the annulus, the availability
of the sample is limited and the area available for the fingers to evolve increases with
time for the radial displacement, contrary to a constant area in case of the rectilinear
displacement. Hence, a finite number of fingers always remain, making VF with finiteness
in radial displacement a never ending process. The persistent nature of the fingers is also
evident experimentally in figure 18(a). Even after running the experiments up to t = 595 s,
distinct fingers are visible. However, to see if fingers evolve independently, the experiments
need to be run for a longer time, which is beyond the scope of the present work due to the
limited dimensions of the Hele-Shaw cell.

4.5. Effect of flow rate
The flow rate with which the carrier is injected is another factor affecting VF, in addition
to the viscosity contrast and the amount of sample. A higher flow rate results in a stronger
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Viscous fingering of miscible annular ring

Vs = 0.01 ml

t = 0 s t = 20 s t = 30 s t = 40 s

Vs = 0.03 ml

Vs = 0.09 ml

(a)

(b)

(c)

Figure 16. Temporal evolution of experimental displacement pattern of miscible ring at t = 0, 20, 30 and
40 s from left to right obtained under the condition of cgc = 0 wt% (μc = 0.89 mPa s), cgs = 60 wt% (μs =
9.5 mPa s), R = 2.4, b = 0.05 mm and Q = 1.74 × 10−3 ml s−1 with the sample volume (a) Vs = 0.01 ml,
(b) Vs = 0.03 ml and (c) Vs = 0.09 ml.

t = 20 s t = 60 s t = 140 s t = 260 s t = 500 s

t = 10 s t = 30 s t = 70 s t = 130 s t = 250 s
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Figure 17. Computational result: temporal evolution of concentration for R = 2, r1 = 50 mm and various
injection velocities (a) U0 = 3 mm s−1, (b) U0 = 6 mm s−1. The time in a column is so chosen that the
same amount of carrier is injected up to that time for each U0.
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t = 595 s t = 235 s t = 83 s

t = 593 s t = 233 s t = 81 s

ri ro

(a) (b) (c)

(d) (e) ( f )

Figure 18. Experimental displacement pattern of miscible ring under the condition of cgc = 0 wt% (μc =
0.89 mPa s), cgs = 60 wt% (μc = 9.5 mPa s), R = 2.4, b = 0.05 mm for different flow rates: (a) Q = 0.526 ×
10−3 ml s−1, (b) Q = 1.33 × 10−3 ml s−1, (c) Q = 3.76 × 10−3 ml s−1; (d) Q = 0.526 × 10−3 ml s−1,
(e) Q = 1.33 × 10−3 ml s−1, ( f ) Q = 3.76 × 10−3 ml s−1. Here, Vs = 0.03 ml in panels (a–c), and Vs = 0.12
ml in panels (d–f ). A finger is highlighted using dashed lines in panel (a) and the position of the finger’s inner
and outer edge at a given time used to calculate finger length in the experiments is shown.

convection, triggering a rigorous instability. It is important to analyse how VF with a
finite sample is affected by flow rate. In order to experimentally explore the same, we
vary the flow rate for two different Vs. The experiments are performed under the condition
cgs = 60 wt% (μs = 9.5 mPa s), R = 2.4, b = 0.05 mm. The snapshots of experiments at
various time for different Q are plotted in figure 18. Each snapshot is taken at a time at
which for each flow rate the total displaced fluid volume is the same, being 0.31 ml for
Vs = 0.03 ml (see figure 18a–c) and 0.31 ml for Vs = 0.12 ml (figure 18d–f ). It is evident
that the number of fingers always increases with Q, similar to the VF with a miscible slice
in rectilinear geometry (Pramanik & Mishra 2015). However, we have observed that the
variation of the finger length with Q actually depends on Vs. To gain more insight into
the same, we calculate the number of fingers and measure the averaged finger length as
follows. We consider the blue finger surrounded by the dashed line in figure 18(a) to show
how to measure the finger length. We compute the finger length of the highlighted blue
finger by measuring the distances from the injection point to the positions of finger’s inner
and outer edge, denoted as ri and ro, respectively. The finger length, Lf , is then defined as
Lf = ro − ri. We consider this definition is reasonable as some fingers are curved similar
to the one considered within the dashed lines. We count the number of fingers manually
and measure Lf for each finger. We define the averaged finger length as the average value
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Figure 19. The number of fingers (filled square) and average finger length (filled circles) versus Q for the
fingering patterns shown in figure 18 for (a) Vs = 0.03 ml, (b) Vs = 0.12 ml.

of Lf . The number of fingers and the averaged finger length in the fingering pattern shown
in figure 18 are plotted in figure 19.

For a higher Vs, the area of the annulus is larger, providing more space for the fingers
to grow. Consequently, it is found that for a larger Vs, the finger length increases with Q
(see figure 19b), but for a smaller Vs the finger length is found to be independent of Q, as
evident in figure 19(a). This is reasonable because due to the limited sample for a small Vs,
the fingers stop growing at a certain length when the fingertips reach the outer interface.

Further, we numerically explore the dependence of finger length on sample area for
different flow rates. Numerically, we vary the flow rate Q by changing the injection velocity
U0. In figure 17, we show the temporal evolution of the concentration for various U0,
keeping R, r1 fixed. We compare the dynamics for different U0 at a time when the same
amount of carrier is injected for each U0. It is observed that the number of fingers for
a given volume of the carrier fluid injected has a direct dependence on the flow rate.
More fingers appear for a higher flow rate, which is clearly evident in figure 17. Also,
similar to the experiments, the variation of the length of the fingers with U0 depends on
the amount of sample. During the initial stages of VF when the sample is in abundance, the
VF dynamics are comparable to experiments with large Vs (figure 18d–f ), and when
the fingers start approaching the other front, the numerical results are comparable with
the small Vs experimental data (figure 18a–c). Hence, we fix r1 = 50 mm and vary only
U0. During the early stages of instability, on an average, the fingers are longer for a larger
injection velocity (compare for different U0 in first two columns of figure 17). This is
expected as the fingers travel faster for a higher U0 and the sample, or equivalently the
viscosity gradient, is enough to support the instability. However, the average finger length
in the third column of figure 17 appears the same for both the U0 in agreement with the
experiments (figure 19a). This is a consequence of the limited availability of the sample
and the barrier at the outer front preventing the fingers from growing further. Interestingly,
the average finger length decreases with time for the higher U0 as evident in the last two
columns of figure 17. This can be attributed to the diffusive mixing at the barrier which is
more for a larger injection velocity as the fingers travel faster and reach the barrier early.
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Figure 20. Computational result: concentration contour s1 = 0.99 in black dotted curves along with pressure
contours of solid curves for two injection velocity (a) U0 = 3 mm s−1, (b) U0 = 6 mm s−1 at different times.
The pressure contour shows slightly deformed patterns near the outerfront (dashed pink box) for both U0 when
t × U0 ≈ 180 mm as compared with the circular ones at t × U0 ≈ 60 mm. (c) Variance as a function of time
for various U0. Inset: σ 2(t) versus t × U0 showing the variation of variance hence finger length with U0. Here,
r1 = 50 mm, R = 2.

To quantify the variation of finger length with flow rate, we compute the variance σ 2(t),
as defined in equation (4.4), for two U0 and plot in figure 20. For each U0, σ 2(t) is a
non-monotonic function of time with a minimum occurring at different times. But the
dynamics for different injection velocity should be compared when the same amount
of carrier has been injected. Consequently, we plot σ 2(t) versus t × U0 in the inset of
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figure 20. It is observed that the minimum occurs independent of U0, which is also evident
from the deformed pressure contours near the outer front shown in figure 20(a,b): the
second column, at t × U0 = 180 mm. The non-deformed pressure contours near the outer
front (dotted uniform concentration contours) at t × U0 = 60 mm signify that the unstable
inner interface has not reached the stable outer interface and slightly deformed pressure
contours (inside dashed box in figure 20a,b) at t × U0 = 180 mm indicate the interaction
of both the fronts. Further, at t × U0 = 420 mm, it shows the outer interface is completely
affected due to the mixing phenomenon of the intermediate fluid layer.

Since, the variance represents spreading in the r direction, so σ 2(t) can be used to
explain the dependence of the length of fingers on amount of sample with the variation
of flow rate. As discussed in § 4.1.1 and also evident in figure 20, the minimum on
σ 2(t) signifies the inner front approaching the stable front with fingers away from the
barrier. Consequently, near the minimum, the σ 2(t) and hence the length of fingers is
more for larger injection velocity. With the passage of time, the fingers interact with the
outer front which restricts the fingers from penetrating farther and hence finger length
becomes independent of U0 when σ 2(t) coincides for the two injection velocities. After
the interaction, the fingers diffuse at the outer front resulting in a decrease in finger length
and variance with increasing flow rate.

5. Conclusion

The VF instability with one fluid in finiteness is explored in a radial geometry by
considering a miscible annular ring of more viscous fluid. It is observed both numerically
and experimentally that radial displacement in fact affects the VF dynamics and various
similarities and differences in VF with an annulus and VF with a slice are reported.
The ever increasing area available for VF and the spatially varying velocity in radial
displacement affects the instability in many ways. However, the limited amount of the
sample in the annulus results in features different from classical radial VF, as also observed
for immiscible fluids by Beeson-Jones & Woods (2015).

In contrast to transient VF dynamics in rectilinear VF (DeWit et al. 2005), the fingering
in an annular ring is found to be a persistent phenomenon with a finite number of fingers
always remaining whenever the log-mobility ratio is above a critical value. It is observed
that the existence of critical R is, however, a feature of radial VF with or without finiteness
(Sharma et al. 2020) and is attributed to the competition between convection and diffusion.
Further, the variance for classical radial VF is found to be increasing with time, however,
with one fluid confined in the annulus, the variance exhibits salient features depending
upon the log-mobility ratio capturing the effect of finiteness of the sample on VF. For no
viscosity gradient between the sample and the carrier, (R = 0), σ 2(t) decreases as time
progresses. On the other hand, the occurrence of fingers makes σ 2(t) a non-monotonic
function of time with a minimum indicating the interaction of the two fronts. The
minimum occurs quicker for a larger R indicating early interaction with increase in
log-mobility ratio. Although, the concentration fingers are found to be distant from the
outer front at the time corresponding to the minimum, the pressure is distorted near the
outer front signifying the interaction. This also indicates that the pressure grows/evolves
faster than the concentration. After the interaction of the two fronts, diffusion is again
found to dominate when the outer front prevents the fingers from penetrating farther,
which ultimately evolve as frozen fingers. The existence of fingers for all time for VF with
an annular ring is evident from the variance as well, since σ 2(t) only increases after the
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minimum. Interestingly, the variation of the length of the fingers with flow rate depends
on the amount of sample. For a higher flow rate, the fingers are longer when the sample is
in abundance or during initial stages of instability. The interaction of the two fronts makes
the finger length independent of the flow rate, which further decreases for higher flow rate
due to diffusive mixing at the barrier.

The existence of critical width of the sample for the occurrence of instability, and
the same onset of instability for any amount of sample above critical value for a fixed
R, U0(Q), is found to be independent of displacement as it exists both for rectilinear (Hota
et al. 2015) and radial displacement (present study). Also, the initial VF dynamics before
the two fronts interact is independent of the area of the sample above a critical area.
However, the experimental evidence of critical sample volume has been reported for the
first time in our work. Further, for all the facets of miscible VF of annular ring explored, an
agreement is found between the numerical and the experimental study. Thus, the present
study not only helps us to understand the difference between VF of a miscible slice and the
VF of an annular ring, but also provides an insight into the fluid dynamical aspect of radial
displacement of miscible fluid occurring in finiteness, and finds applications in analysing
the dynamics in small-scale contamination zones.
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