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We investigate experimentally and theoretically the streamwise transport and dispersion
properties of steady quasi-two-dimensional plane turbulent jets discharged vertically
from a slot of width d into a fluid confined between two relatively close rigid
boundaries with gap W ∼ O(d). We model the evolution in time and space of the
concentration of passive tracers released in these jets using a one-dimensional time-
dependent effective advection–diffusion equation. We make a mixing length hypothesis
to model the streamwise turbulent eddy diffusivity such that it scales like b(z)wm(z),
where z is the streamwise coordinate, b is the jet width, wm is the maximum time-
averaged vertical velocity. Under these assumptions, the effective advection–diffusion
equation for φ(z, t), the horizontal integral of the ensemble-averaged concentration, is
of the form ∂tφ + KaM0

1/2∂z

(
φ/z1/2

) = KdM0
1/2∂z

(
z1/2∂zφ

)
, where t is time, Ka (the

advection parameter) and Kd (the dispersion parameter) are empirical dimensionless
parameters which quantify the importance of advection and dispersion, respectively,
and M0 is the source momentum flux. We find analytical solutions to this equation for
φ in the cases of a constant-flux release and an instantaneous finite-volume release.
We also give an integral formulation for the more general case of a time-dependent
release, which we solve analytically when tracers are released at a constant flux over a
finite period of time. From our experimental results, whose concentration distributions
agree with the model, we find that Ka = 1.65 ± 0.10 and Kd = 0.09 ± 0.02, for both
finite-volume releases and constant-flux releases using either dye or virtual passive
tracers. The experiments also show that streamwise dispersion increases in time as t2/3.
As a result, in the case of finite-volume releases more than 50 % of the total volume of
tracers is transported ahead of the purely advective front (i.e. the front location of the
tracer distribution if all dispersion mechanisms are ignored and considering a ‘top-hat’
mean velocity profile in the jet); and in the case of constant-flux releases, at each
instant in time, approximately 10 % of the total volume of tracers is transported ahead
of the advective front.

Key words: jets, mixing and dispersion, shallow water flows

1. Introduction
In the event of a spill of pollutants, waste or any other tracers into a river, it is

crucial to predict how the tracers are advected and dispersed by the flow after they

† Email address for correspondence: jl501@cam.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jl501@cam.ac.uk
https://doi.org/10.1017/jfm.2012.388


Dispersion and mixing in quasi-two-dimensional jets 213

reach a relatively shallow basin, such as a lake or the sea shelf. Such predictions can
be used to monitor the spread of the tracers, control their impact on the environment
and assess any potential damage. One of the most important aspects of these shallow
river flows, and one which has raised the interest of scientists for more than 20 years,
is the emergence of large-scale eddy structures and meanders at some distance away
from the river mouth. These eddies and meanders have been visualized in nature on
several occasions due to sediments transported by the flow (see e.g. Giger, Dracos &
Jirka 1991; Jirka & Uijttewaal 2004; Rowland, Stacey & Dietrich 2009). Giger et al.
(1991) were interested in the entrainment and mixing in shallow water flows, whose
characteristic horizontal dimensions were much larger than the fluid-layer thickness
and where the flow developed in a confined environment. They showed that these
geophysical flows could be reproduced in laboratory experiments by confining plane
turbulent jets in the spanwise direction (i.e. the direction parallel to the line source of
the jet). Giger et al. (1991) observed that in the far field, or for z/W > 10 where z is
the spatial coordinate in the streamwise direction and W is the fluid-layer thickness in
the spanwise direction (i.e. W corresponded to the depth of the basin), the jet produced
similar large eddies and meanders as observed in shallow river flows. In Landel,
Caulfield & Woods (2012), we referred to turbulent plane jets in such a confined
geometry in the far field as quasi-two-dimensional jets. The present work is focused on
the advection and dispersion properties of such quasi-two-dimensional jets, particularly
when considering the transport of a passive scalar.

The essential characteristics of quasi-two-dimensional jets have been described
previously. Dracos, Giger & Jirka (1992) showed that the large planar counter-rotating
eddies observed in quasi-two-dimensional jets developed due to an inverse cascade
of quasi-two-dimensional turbulence. Chen & Jirka (1998) proved through linear
stability analysis that the meanders of the jet were the result of a sinuous instability.
According to Jirka & Uijttewaal (2004) the sinuous instability of the jet originated
from internal transverse shear across the jet. In Landel et al. (2012), we showed that
the time-averaged velocity field of quasi-two-dimensional jets could be modelled using
two-dimensional plane jet theory. We also studied the instantaneous velocity field and
revealed the interactions between the high-speed meandering core of the jet and the
large eddies alternating on its sides. We showed that these core and eddy structures
were self-similar with distance and continuously exchanged fluid between themselves,
as well as with the ambient fluid surrounding the jet. In particular, the eddies played
a key role in the entrainment of ambient fluid by means of engulfment at their
rear. Entrained fluid could either be trapped for a brief period in an eddy, where it
experienced strong mixing, or be directly incorporated in the core of the jet, where it
was advected downstream much more rapidly. We further hypothesized that because of
the difference in advection speed between the core and the eddies (we measured that
on average eddies travelled at approximately 1/4 of the speed of the core), initially
relatively close fluid parcels entrained by the jet should experience large streamwise
dispersion depending on whether they were drawn into the eddies or the core.

In order to study and model the transport, mixing and dispersion of tracers
in shallow river flows, we investigate the temporal and spatial evolution of the
concentration of tracers released in quasi-two-dimensional jets. The mixing properties
of turbulent jets have been studied experimentally many times. Uberoi & Singh (1975)
measured instantaneous temperature profiles in plane jets and found that they differed
from typical time-averaged Gaussian profiles. They reported a relatively well-mixed
interior while most of the mixing was performed at the turbulent–non-turbulent
interface of the jet. Schefer et al. (1994) also noted a difference between the
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instantaneous distribution and the time-averaged distribution of tracers in the case
of three-dimensional round turbulent jets. They attributed this discrepancy to the
development of large-scale vortical structures. Arguably, the dynamics of large-scale
vortical structures is different in quasi-two-dimensional jets from the case of three-
dimensional round or plane jets due to the confinement of the flow in one direction;
see Jirka (2001) for a discussion on large-scale flow structures in shallow flows, or
Landel et al. (2012) for quasi-two-dimensional jets specifically. Nevertheless, large-
scale vortical structures do have an influence on the mixing and dilution properties
of quasi-two-dimensional jets. Giger et al. (1991) reported that mixing efficiency
and dilution in quasi-two-dimensional jets tended to diminish with distance. From
turbulence spectral analysis and intermittency analysis, Dracos et al. (1992) argued
that the decrease of mixing efficiency was due to the development of quasi-two-
dimensional turbulence. Using laser-induced fluorescence in quasi-two-dimensional
jets, Chen & Jirka (1999) showed that quasi-two-dimensional turbulence induced
patchiness in the time-dependent distribution of the tracer concentration. They found
distinct regions of large concentration which corresponded to the large-scale turbulent
structures. Jirka (2001) reflected upon the impact of large vortical structures in shallow
river flows and emphasized their ability to transport relatively unmixed fluid over large
distances.

Dispersion in shear flows was first studied by Taylor (1953) for a laminar flow
in a pipe and then for a turbulent flow in a pipe (Taylor 1954). As discussed in
the review of Fischer (1973), the model developed in Taylor (1953, 1954), which
is that lateral shear can induce streamwise dispersion, was then applied to open
channel flows, such as the flow in estuaries. Fischer (1973) reported measurements
of the diffusion coefficient as a function of the transverse velocity gradient for both
laboratory experiments and field measurements (see e.g. Ward & Fischer 1971). In
his conclusion, Fischer (1973) pointed out the lack of theoretical models for open
channel flows. Chatwin & Allen (1985) reviewed the work on dispersion in rivers and
estuaries. They detailed the various nonlinear and non-stationary physical mechanisms
which can affect transport and dispersion in rivers and estuaries, and described past
theoretical and experimental work addressing these issues. They also discussed the
shortcomings of using (relatively short) time-averaged quantities (measured in field
work) instead of true ensemble-averaged quantities in the modelling of time-dependent
transport and dispersion. In their conclusion, Chatwin & Allen (1985) urged that
‘more well-designed laboratory experiments’ be conducted to complement theoretical
modelling and field measurements. Lewis (1997) gave a clear mathematical description
of the fundamental physical processes, such as shear dispersion and turbulent mixing,
and how they can be applied to the complex case of dispersion in estuaries. The
latest research advances about dispersion in rivers and estuaries are summarized in
MacCready & Geyer (2010).

Despite the large number of experimental studies, there appear to have been
relatively few attempts to provide a comprehensive model of the advection and
dispersion processes in quasi-two-dimensional jets. Moreover, most models assume
a steady state. Paranthoën et al. (1988) suggested a limited model for the initial
phase of the dispersion process in a turbulent plane jet. Then, from conservation of
mass in a classical plane jet, Chen & Jirka (1999) showed that the decay of the
time-averaged concentration of passive tracers C along the centreline of quasi-two-
dimensional jets followed C ∝ z−1/2. Using conservation of mass and the Reynolds-
averaged Navier–Stokes equation with the boundary-layer approximation for three-
dimensional round and plane jets, Law (2006) proposed an analytic solution for the
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time-averaged concentration distribution across the jet. To close the problem, he used
the common assumption that the turbulent diffusive term was proportional to the
gradient of the time-averaged concentration across the jet. He also assumed that the
coefficient of proportionality between these two quantities (the turbulent diffusivity)
was constant across the jet and depended only on the eddy diffusivity and the turbulent
Schmidt number; see e.g. Mathieu & Scott (2000) for more details.

Previous models often assume purely lateral entrainment, and then simple time-
averaged streamwise motion. Owing to the cross-stream variation in along-stream
velocity (due to the time-dependent core–eddy interaction and the time-averaged
Gaussian streamwise velocity distribution) quasi-two-dimensional jets inevitably have
significant along-stream dispersion. We want to investigate the implications of this
along-stream dispersion for tracer transport and how it affects advection in quasi-two-
dimensional jets.

In this paper, we propose a new one-dimensional model solving the time-dependent
effective advection–diffusion equation along the direction of the flow, based on mixing-
length theory. Mixing-length theory is appropriate because of the central role of large
eddies (scaling with the local jet width) on the dispersion within the flow. We find
analytical solutions in similarity form for the case of a constant-flux release and the
case of a finite-volume release of tracers, which appear to describe correctly some
new experimental measurements of tracer transport. We are able to formulate the
general solution for any time-dependent release in integral form, effectively by means
of a Green’s-function-like solution. We also show the importance of along-stream
dispersion mechanisms in quasi-two-dimensional jets, by comparing our full effective
advection–diffusion model with a simple advection model. In § 2 we present our model
hypothesis starting from the advection–diffusion equation, where the diffusive term
models the dispersion by the turbulent flow field of quasi-two-dimensional jets. In
§ 3 we derive analytical solutions for both a constant volume-flux release and an
instantaneous finite-volume release. We also show how to generalize the analytical
solution for an instantaneous finite-volume release into a solution for an arbitrary
time-dependent release. In § 4 we describe our experimental procedure. In § 5 we
first provide a qualitative assessment of our model hypothesis, then we compare our
theoretical predictions with experimental data obtained using dye tracking experiments
and complementary virtual particle tracking experiments in both the constant-flux and
the finite-volume cases. Finally, in § 6 we draw our conclusions.

2. Turbulent model hypothesis
To characterize the evolution of the concentration of tracers released in quasi-two-

dimensional jets, we consider the ideal model of a turbulent momentum jet in a two-
dimensional semi-infinite environment. Adopting the same conventions as Landel et al.
(2012), the flow is considered incompressible and statistically steady. The x-direction
is the lateral, cross-jet or horizontal direction and the z-direction is the streamwise,
axial or vertical direction. Assuming a plane flow in the domain, the velocity is
labelled u= (u,w) in a Cartesian coordinate system (x, z) with the origin at the nozzle
exit.

We consider the statistical effect of quasi-two-dimensional turbulence on the
concentration C(x, z, t) (where t is time) of passive tracers in the jet flow. We believe
that, on average, the interaction between the high-speed core and the growing eddies
has a strong streamwise dispersive effect. On the other hand, the horizontal (or cross-
jet) distribution of the tracer concentration remains, on average, confined laterally by
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the linearly-expanding straight-sided boundaries of the jet. We found in Landel et al.
(2012) that the average dye edges of quasi-two-dimensional dyed jets expand linearly
with streamwise distance: we discuss this point further in § 5.2. As we have already
mentioned, the transport and dispersion of tracers in quasi-two-dimensional jets is
more critical in the streamwise direction (Jirka 2001). Therefore, we choose to study
the ensemble-averaged horizontally-integrated concentration

φ(z, t)=
∫ ∞
−∞

CE(x, z, t) dx, (2.1)

where the ensemble-averaged concentration is defined as

CE(x, z, t)= 1
N

N∑
n=1

Cn(x, z, t), (2.2)

where N is the total number of realizations of an experiment and n designates the nth
realization.

Neglecting molecular diffusion under the assumption that it is less significant than
eddy diffusion processes (Mathieu & Scott 2000), we propose a heuristic equation
for the time-dependent transport and dispersion of the ensemble-averaged horizontally-
integrated concentration

∂tφ + ∂zMφ = kd∂z(bwm ∂zφ), Mφ = kawmφ, (2.3a,b)

where Mφ is the vertical (streamwise) concentration flux of tracers, ka and kd are
two empirical constants of proportionality, b(z) is the jet velocity width or e-folding
distance of the time-averaged vertical velocity at height z, and wm(z) is the maximum
time-averaged vertical velocity in the jet at height z. Landel et al. (2012) found

b(z)= Q0
2

√
2πM0

(
4
√

2α
M0z

Q0
2 + 1

)
and wm(z)=

√
2M0

Q0

(
4
√

2α
M0z

Q0
2 + 1

)−1/2

,

(2.4a,b)

where α is the entrainment coefficient (Morton, Taylor & Turner 1956), Q0 is the
initial volume flux of the jet, and M0 is the initial momentum flux, which is conserved
with distance in the z-direction (see Landel et al. 2012). In the one-dimensional
time-dependent effective advection–diffusion equation (2.3), we assume that advection
is governed by the mean flow, with characteristic velocity proportional to wm, i.e.
kawm. Moreover, we assume that dispersion is governed by eddy processes and lateral
shear (similarly to Taylor dispersion in turbulent shear flows: Taylor 1954), such that
the eddy diffusion coefficient scales like the local characteristic velocity wm(z) and
the local characteristic size b(z) of the core and eddy structure of the jet. This is
analogous to a ‘mixing-length’ model (Prandtl 1925), where the mixing length is the
local characteristic width of the jet, and where streamwise transport and dispersion are
dominant.

The quantities b and wm can be rewritten in power-law form using (2.4a) and
(2.4b) (neglecting the virtual origins, i.e. considering an ideal point source for the jet)
respectively, to obtain the effective advection–diffusion equation for the horizontally-
integrated ensemble-averaged concentration φ,

∂tφ + ∂zMφ = KdM0
1/2 ∂z

(
z1/2∂zφ

)
, Mφ = KaM0

1/2 φ

z1/2
, (2.5a,b)
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where the constants Ka and Kd are a dimensionless advection parameter and
a dimensionless dispersion parameter, respectively, which we will determine
experimentally. The parameters Ka and Kd can be related to ka and kd using (2.4a)
and (2.4b) if we, again, neglect the virtual origins

Ka = ka(
2α
√

2
)1/2 and Kd = 2kd

(
α
√

2
π

)1/2

, (2.6a,b)

with α ≈ 0.068 (Landel et al. 2012). It is interesting to note that in (2.5) the dispersion
term increases with distance like z1/2, whereas the advection term decreases with
distance like z−1/2.

3. Mathematical model
In order to test our turbulent model hypothesis, we impose different, appropriate

initial, boundary and integral conditions on solutions to the general effective
advection–diffusion equation (2.5), for example,

φ(z, 0)= 0 for z> 0, φ(z, t)→ 0 as z→∞ and (3.1a,b)∫ ∞
0
φ(z, t) dz∝ tϑ for t > 0. (3.1c)

Equation (3.1a) imposes that the concentration is zero everywhere initially; (3.1b)
imposes that, at all time, the concentration vanishes at infinity; and (3.1c) imposes
that, for t > 0, the total integrated concentration evolves as a power law of time. The
integral condition (3.1c) effectively controls the release of the passive tracers in the jet.

In this theoretical section, we solve (2.5) analytically for three different sets of
initial boundary and integral conditions. We consider the simple case of a constant-
flux release of passive tracers (i.e. we impose ϑ = 1 in (3.1c)), which we solve by
analysing either the concentration (see § 3.2) or the concentration flux (see § 3.3).
In the second case, presented in § 3.4, we consider an instantaneous release of a
finite volume of passive tracers at the origin of the jet (i.e. we impose ϑ = 0 in
(3.1c)). Then, based on the solution for the instantaneous finite-volume release, in
§ 3.5 we show how to formulate, in integral form, the solution for a general and more
realistic time-dependent release of tracers governed by a source function, which has an
arbitrary time dependence, using a Green’s function approach. We give an analytical
solution in the case where the source function models a constant-flux release over a
finite period of time T0. We further show that the solutions for the first two simpler
cases of a constant-flux release and an instantaneous finite-volume release are the two
asymptotic limits of the more general solution when T0→∞ and t� T0, respectively.

We choose to solve the problems of a constant-flux release and a finite-volume
release because we can reproduce them experimentally, and thus test our turbulent
model hypothesis and the various associated assumptions, stated in § 2, against
experimental measurements (presented in § 5). Before deriving the solutions of the
three cases, we use below a similarity transformation to simplify the partial differential
equation (2.5) into an ordinary differential equation (ODE), which we can then solve.

3.1. Similarity transformation
We introduce the dilation transformation

ž= εaz, ť = εbt, φ̌ = εcφ(ε−až, ε−b ť), (3.2)
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and so (2.5) becomes

εb−c∂ťφ̌ + ε(3/2)a−cKaM0
1/2 ∂ž

(
φ̌

ž1/2

)
= ε(3/2)a−cKdM0

1/2 ∂ž

(
ž1/2∂žφ̌

)
. (3.3)

If b = 3a/2, then (2.5) is invariant under this transformation. This suggests that we
look for a solution for (2.5) of the form

φ(z, t)= t2c/(3a) y(η) with η = z

t2/3M0
1/3 . (3.4)

Thus (2.5) becomes(
2c

3a
− Ka

2η3/2

)
y+

(
(2Ka − Kd)

2η1/2
− 2η

3

)
y′ − Kdη

1/2y′′ = 0. (3.5)

The general effective advection–diffusion problem has thus been simplified to the
ODE (3.5). This second-order ODE, written in similarity form, captures both the
temporal and spatial streamwise evolution of the concentration of tracers in a
quasi-two-dimensional steady turbulent jet. Most importantly, (3.5) allows not only
for streamwise advection transport, but also for streamwise turbulent dispersion.
Furthermore, we can note that the time evolution implicit in (3.5) depends on the
ratio of two dilation constants, c/a. This ratio can be determined using the integral
condition for conservation of concentration (3.1c), which becomes, using (3.4), for
t > 0∫ ∞

0
φ(z, t) dz= t2c/(3a)

∫ ∞
0

y
( z

t2/3

)
t2/3M0

1/3dη =M0
1/3t(2c/(3a)+2/3)

∫ ∞
0

y(η) dη ∝ tϑ .

(3.6)

Therefore, this condition can hold for all t > 0 if and only if

c

a
= 3ϑ − 2

2
. (3.7)

3.2. Constant-flux release: concentration
In the case of a release of tracers at a constant source flux F, if the general effective
advection–diffusion equation (2.5) is satisfied for z > 0, t > 0 and if, in addition,
φ(z, t) satisfies (following (3.1a–c) with ϑ = 1)

φ(z, 0)= 0 for z> 0, φ(z, t)→ 0 as z→∞ and∫ ∞
0
φ(z, t) dz= Ft for t > 0,

(3.8a–c)

then the condition (3.8c) can hold for all t > 0 if and only if a= 2c according to (3.7)
with ϑ = 1. Thus, (3.4) becomes

φ(z, t)= t1/3y(η) with η = z

t2/3M0
1/3 . (3.9)

In this case, the initial boundary value problem for φ(z, t), defined by (3.5) with
a= 2c, (3.8a–c) and (3.9), reduces to(

1
3
− Ka

2η3/2

)
y+

(
(2Ka − Kd)

2η1/2
− 2η

3

)
y′ − Kdη

1/2y′′ = 0, (3.10)
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subject to the conditions

y(η)→ 0 as η→∞,
∫ ∞

0
y(η) dη = F

M0
1/3 for t > 0. (3.11a,b)

Equation (3.10) can then be rewritten using

y(η)= s1/3(Ka/Kd−1)p(s) with s= 4η3/2

9Kd
, (3.12)

to obtain

p′′ + p′ +


1
3

(
Ka

Kd
− 2
)

s
+

1
4
−
(

1
3

(
Ka

Kd
− 1

2

))2

s2

 p= 0. (3.13)

Making the change of variable p = e−s/2W, we obtain the Whittaker differential
equation (Gradshteyn & Ryzhik 2007). The Whittaker functions Wk,m[s] and Mk,m[s]
are two linearly independent solutions of the Whittaker differential equation, where

k = 1
3

(
Ka

Kd
− 2
)
, m= 1

3

(
Ka

Kd
− 1

2

)
. (3.14a,b)

Therefore, the solution of (3.13) is

p(s)= e−s/2(JWWk,m + JMMk,m)[s], (3.15)

where JW and JM are constants of integration which will be determined using the
boundary conditions (3.11a,b). We can rewrite (3.15) in the similarity form

y(η)=
(

4η3/2

9Kd

)1/3(Ka/Kd−1)

e−
(

2η3/2/9Kd

)
(JWWk,m + JMMk,m)

[
4η3/2

9Kd

]
= JWW + JMM ,

(3.16)

defining two linearly independent solutions: W (involving Wk,m), and M (involving
Mk,m) of the underlying equation (3.15). Since m − k − 1/2 = 0, we can actually
simplify the Whittaker functions Wk,m and Mk,m (see equations (13.18.5) and (13.18.4)
for Wm−1/2,m and Mm−1/2,m, respectively, in the National Institute of Standards and
Technology Digital Library of Standards and Technology (NIST 2012)),

W (η)=
(

4η3/2

9Kd

)1/3

0

[
2
3

(
Ka

Kd
− 1

2

)
,

4η3/2

9Kd

]
, (3.17)

M (η)= 2
3

(
Ka

Kd
− 1

2

)(
4η3/2

9Kd

)1/3

γ

[
2
3

(
Ka

Kd
− 1

2

)
,

4η3/2

9Kd

]
, (3.18)

where 0[g, ζ ] = ∫∞
ζ

hg−1e−h dh is the upper incomplete gamma function and γ[g, ζ ] =∫ ζ
0 hg−1e−h dh is the lower incomplete gamma function. We can prove that, as η→∞,

W (η→∞)∼ e−η
3/2
η(Ka/Kd−3/2), M (η→∞)∼ η1/2, (3.19a,b)

(see equation (8.11.2) in NIST 2012 for the asymptotic expansion of the upper
incomplete gamma function) for Ka > Kd/2. We will find later that for our

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.388


220 J. R. Landel, C. P. Caulfield and A. W. Woods

experimental data Ka appears to be substantially greater than Kd, which is consistent
with this requirement. In order to satisfy the far-field boundary condition (3.11a)
requiring decay of y, JM = 0 so that the solution depends on W alone. JW can then be
determined using the boundary condition (3.11b):

JW = F

M0
1/3

∫ ∞
0

W (η) dη
. (3.20)

Therefore, the general solution of the effective advection–diffusion problem for the
case of a constant-flux release at the source is, in similarity form, for Ka > Kd/2

yF(η)= 2F

3KdM0
1/30

[
2
3

(
Ka

Kd
+ 1
)]η1/20

[
2
3

(
Ka

Kd
− 1

2

)
,

4η3/2

9Kd

]
, (3.21)

where 0[g] = ∫∞0 hg−1e−h dh is the gamma function.
Interestingly, in the purely advective limit where Kd → 0, corresponding to a so-

called ‘top-hat’ mean velocity profile in the jet (see e.g. Turner 1986) with no
turbulent dispersion parametrized, (3.10) becomes(

1
3
− Ka

2η3/2

)
y+

(
Ka

η1/2
− 2η

3

)
y′ = 0, (3.22)

which integrates to

yF,a(η)=
{

J1η
1/2, 0 6 η < ηa,

J2η
1/2, ηa < η,

(3.23)

where J1 and J2 are integration constants, and

ηa =
(

3Ka

2

)2/3

(3.24)

is the location of the advective front considering ‘top-hat’ mean velocity profiles in
the jet. Using the boundary condition at infinity (3.11a), we obtain J2 = 0. J1 can be
determined using the integral condition (3.11b). Therefore, the similarity solution of
the purely advective problem for the case of a constant-flux release at the source is

yF,a(η)=


F

KaM0
1/3 η

1/2, 0 6 η < ηa,

0, ηa < η.
(3.25)

We have plotted the non-dimensional quantities yF/
(
F/M0

1/3
)

and yF,a/
(
F/M0

1/3
)

as functions of the similarity variable η = z/
(
t2/3M0

1/3
)

in figure 1. The five different
curves show the concentration profile in similarity form for different values of Ka

and Kd. As we increase Ka (determining the advection strength), the maximum of the
curve is displaced upwards, further away from the origin, while if we increase Kd

(determining the dispersion strength), the front drops less rapidly, and there is still
asymmetry about the maximum. As expected, without dispersion (i.e. in the ‘top-hat’
limit Kd → 0 with no turbulent dispersion) the distribution of tracers yF,a/

(
F/M0

1/3
)

has a discontinuity at ηa, the location of the advective front (defined in (3.24)), where
it vanishes.
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FIGURE 1. Plot of the variation of the non-dimensional similarity solution yF/
(
F/M0

1/3
)
,

defined in (3.21), as a function of the similarity variable η = z/
(
t2/3M0

1/3
)

for the problem of
advection–dispersion in the case of a constant flux at the source and for different values of the
advection and dispersion parameters, Ka and Kd, respectively. In the ‘top-hat’ limit Kd → 0
with no turbulent dispersion, we use the non-dimensional similarity solution yF,a/

(
F/M0

1/3
)

defined in (3.25).

We can observe in figure 1 that for the solution yF of the general effective
advection–diffusion problem a non-negligible portion of the volume of tracers is
transported faster than the advective speed, due to the combined effects of advection
and dispersion processes. We can compute the portion of the total volume of tracers
βF which travels ahead of the advective front via

βF =

∫ ∞
ηa

yF dη∫ ∞
0

yF dη
. (3.26)

Using (3.21), we obtain

βF =
0

[
2
3

(
Ka

Kd
+ 1
)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)
0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1
)] . (3.27)

The ratio βF remains constant in time and space because (3.27) does not depend on
η. Moreover, βF depends only on the ratio Kd/Ka. We have plotted βF as a function
of Kd/Ka in figure 2(a), in a log–log plot. We can prove that βF tends asymptotically
to 0 and indeed βF ∼ O

(
(Kd/Ka)

1/2
)

as Kd/Ka→ 0 (see equation (8.11.10) in NIST
2012), thus implying that the portion of tracers in the dispersive front becomes smaller
as Kd/Ka increases (see figure 1 for the change in the distribution of yF with various
Ka and Kd). It appears that βF ≈ 0.5 (Kd/Ka)

1/2 (plotted with a dashed curve) as
Kd/Ka → 0, but we could not establish the magnitude of the pre-multiplying factor
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FIGURE 2. Constant-flux case for the tracer concentration. (a) A log–log plot of the
theoretically predicted variation of βF (defined in (3.27)), the portion of the total volume
of tracers released which travels ahead of the advective front ηa (defined in (3.24)), as
a function of Kd/Ka (plotted with a solid line), with the experimentally determined value
(obtained from the best fit of the constant-flux case shown in figure 14) marked with a cross,
and the asymptotic curve 0.5 (Kd/Ka)

1/2 plotted with a dashed line. (b) A log–log plot of the
theoretically predicted variation of ξF (defined in (3.29)), the normalized distance between
the average location of the volume of tracers travelling ahead of the advective front and the
location of the advective front ηa, as a function of Kd/Ka (plotted with a solid line), with the
experimentally determined value (obtained from the best fit of the constant-flux case shown in
figure 14) marked with a cross, and the curve 0.5 (Kd/Ka)

0.5 plotted with a dashed line.

through asymptotic analysis. We can also compute the normalized distance between
the average location of the volume of tracers travelling ahead of the advective front
and the location of the advective front ηa,

ξF = 1
ηa


∫ ∞
ηa

yFη dη∫ ∞
ηa

yF dη
− ηa

 , (3.28)

which yields

ξF = 3
5

(
3Kd

2Ka

)2/30

[
2
3

(
Ka

Kd
+ 2
)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)5/3

0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1
)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)
0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

] − 1.

(3.29)

We plot ξF as a function of Kd/Ka in figure 2(b), in a log–log plot. The distance ξF

can be considered as the normalized distance between the dispersive front (average
location of the particles travelling ahead of the advective front) and the advective
front ηa (defined in (3.24)). In time and space coordinates, the distance between the
dispersive front zF and the advective front za is zF − za = ξFηat2/3. So the distance
between the dispersive front and the advective front increases with time like t2/3. We
can also see in figure 2(b) that ξF→ 0 and it appears that ξF ≈ 0.5 (Kd/Ka)

0.5 (plotted
with a dashed curve) as Kd/Ka→ 0, thus implying that the front becomes sharper as
Kd/Ka decreases (see also figure 1).
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FIGURE 3. Plot of the variation of the normalized similarity solution yM/F, defined in (3.30),
as a function of the similarity variable η = z/

(
t2/3M0

1/3
)

for the concentration flux of tracers
in the case of a constant flux at the source F and for different values of the advection and
dispersion parameters, Ka and Kd, respectively. In the ‘top-hat’ limit Kd→ 0 with no turbulent
dispersion parametrized, we use the normalized piecewise-constant similarity solution yM,a/F,
defined in (3.31).

3.3. Constant-flux release: concentration flux
We can now study in space and time a somewhat more physically relevant quantity, i.e.
the vertical (or streamwise) concentration flux of tracers Mφ = KaM0

1/2φ/z1/2 defined
in (2.5b). Thus, the solution of the concentration flux of tracers for the case of a
constant source flux is, for Ka > Kd/2,

Mφ(z, t)= yM(η)= F

1− Kd

2Ka

0

[
2
3

(
Ka

Kd
− 1

2

)
,

4η3/2

9Kd

]
0

[
2
3

(
Ka

Kd
− 1

2

)] with η = z

t2/3M0
1/3 , (3.30)

where we use the solution for the horizontally-integrated concentration φ = φF = t1/3yF,
with yF defined in (3.21). We can note that at the origin η = 0 the solution yM depends
on both F and a function of the ratio Kd/Ka.

For comparison with a purely advective flow, in the limit Kd → 0 (relevant, as
already noted, to ‘top-hat’ mean velocity profiles in the absence of parametrized
streamwise turbulent dispersion) the concentration flux is

yM,a(η)=
{

F, 0 6 η < ηa,

0, ηa < η,
(3.31)

according to yF,a, defined in (3.25), and (2.5b) with φ = φF,a = t1/3yF,a.
We have plotted the normalized tracer flux yM/F, as well as yM,a/F, as functions

of the similarity variable η = z/
(
t2/3M0

1/3
)

in figure 3. The five different curves
show the concentration profile in similarity form for different values of Ka and Kd.
As we increase the advection parameter the flux of tracers extends from the origin
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FIGURE 4. Constant-flux case for the tracer flux. (a) A log–log plot of the theoretically
predicted variation of βM (defined in (3.33)), the portion of the total concentration flux of
tracers ahead of the advective front ηa (defined in (3.24)), as a function of Kd/Ka (plotted
with a solid line), with the experimentally determined value (obtained from the best fit of the
constant-flux case shown in figure 14) marked with a cross, and the curve 0.33 (Kd/Ka)

0.5

plotted with a dashed line. (b) A log–log plot of the theoretically predicted variation of ξM
(defined in (3.35)), the normalized distance between the average location of the concentration
flux of tracers ahead of the advective front and the location of the advective front ηa, as
a function of Kd/Ka (plotted with a solid line), with the experimentally determined value
(obtained from the best fit of the constant-flux case shown in figure 14) marked with a cross,
and the curve 0.5 (Kd/Ka)

0.5 plotted with a dashed line.

into a plateau before dropping smoothly at the front and eventually vanishing at
large η. In the purely advective case (i.e. in the ‘top-hat’ limit Kd → 0 with no
turbulent dispersion), the solution yM,a/F has a discontinuity at the location of the
advective front ηa (defined in (3.24)). The steepness of the front tends to decrease
with increasing dispersion parameter. Moreover, we can see that the value at the origin
yM(η = 0)/F decreases with decreasing Kd/Ka, from yM(0)/F→∞ as Kd/Ka→∞ to
yM(0)/F→ 1 as Kd/Ka→ 0.

In a similar fashion to the previous subsection (cf. (3.26) and (3.28)), we can
compute the portion of the total concentration flux of tracers βM which is ahead of the
advective front ηa via

βM =

∫ ∞
ηa

yM dη∫ ∞
0

yM dη
. (3.32)

Using (3.30), we obtain

βM =
0

[
2
3

(
Ka

Kd
+ 1

2

)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)2/3

0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1

2

)] . (3.33)

As before, the ratio βM remains constant in time and space because (3.33) does not
depend on η; and βM depends only on the ratio Kd/Ka. We have plotted βM as a
function of Kd/Ka in figure 4(a), in a log–log plot. Similarly to βF, it appears that
βM → 0 and βM ≈ 0.33 (Kd/Ka)

0.5 (plotted with a dashed curve) as Kd/Ka→ 0, thus
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implying that the portion of the tracer flux in the dispersive front becomes smaller as
Kd/Ka decreases. Figure 3 shows the change in the distribution of yM with various Ka

and Kd. We can also compute the normalized distance between the average location of
the tracer flux ahead of the advective front and the location of the advective front ηa,

ξM = 1
ηa


∫ ∞
ηa

yMη dη∫ ∞
ηa

yM dη
− ηa

 , (3.34)

which yields

ξM = 1
2

(
3Kd

2Ka

)2/30

[
2
3

(
Ka

Kd
+ 3

2

)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)4/3

0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1

2

)
,

2Ka

3Kd

]
−
(

2Ka

3Kd

)2/3

0

[
2
3

(
Ka

Kd
− 1

2

)
,

2Ka

3Kd

] − 1.

(3.35)

We plot ξM in figure 4(b), in a log–log plot. Similarly to ξF (see figure 2b), we
can also see in figure 4(b) that ξM → 0 and ξM ≈ 0.5 (Kd/Ka)

0.5 (plotted with a
dashed curve) as Kd/Ka→ 0, thus implying that the front becomes sharper as Kd/Ka

decreases.

3.4. Finite-volume release: instantaneous release fundamental solution
We can also consider an instantaneous finite-volume release localized at the source of
a quasi-two-dimensional steady turbulent jet. If the general (2.5) is satisfied for z > 0,
t > 0 and if, in addition, φ(z, t) satisfies (following (3.1a–c) with ϑ = 0)

φ(z, 0)= Bδ(z), φ(z, t)→ 0 as z→∞,
∫ ∞

0
φ(z, t) dz= B for t > 0,

(3.36a–c)

where B is a constant representing the total volume of tracers released and δ(z) is a
Dirac delta function, then the condition (3.36c) can hold for all t > 0 if and only if
c=−a according to (3.7) with ϑ = 0. Thus, (3.4) becomes

φ(z, t)= t−2/3y(η) with η = z

t2/3M0
1/3 . (3.37)

In this case, the initial boundary value problem for φ(z, t), defined by (3.5) with
c=−a, (3.36a–c) and (3.37), reduces to(

−2
3
− Ka

2η3/2

)
y+

(
(2Ka − Kd)

2η1/2
− 2η

3

)
y′ − Kdη

1/2y′′ = 0, (3.38)

subject to the conditions

y(η)→ 0 as η→∞,
∫ ∞

0
y(η) dη = B

M0
1/3 for t > 0. (3.39a,b)

Equation (3.38) can be rearranged as

−2
3
(ηy)′ + Ka

(
y

η1/2

)′
− Kd

(
η1/2y′

)′ = 0, (3.40)
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and thus integrated twice to obtain

y(η)= ηKa/Kd exp
[
− 4

9Kd
η3/2

]

×
(

J4 + 2J3

3

(
− 4

9Kd

)2/3(Ka/Kd−1)
γ

[
2
3

(
1− Ka

Kd

)
,− 4

9Kd
η3/2

])
, (3.41)

where J3 and J4 are two integration constants and, once again, γ[g, ζ ] = ∫ ζ0 hg−1e−h dh
is the lower incomplete gamma function. Since η > 0 and the function γ[g, ζ ] is
complex for ζ < 0, J3 must equal zero. J4 can be determined by integrating (3.41),∫ ∞

0
y(η) dη = J4

(
3
2

)4/3(Ka/Kd+1/4)

Kd
2/3(Ka/Kd+1)0

[
2
3

(
Ka

Kd
+ 1
)]

, (3.42)

and applying the integral condition (3.39b) to obtain

J4 = B(
3
2

)4/3(Ka/Kd+1/4)

Kd
2/3(Ka/Kd+1)0

[
2
3

(
Ka

Kd
+ 1
)]

M0
1/3

. (3.43)

Therefore, the ‘fundamental’ solution of the effective advection–diffusion problem for
the case of an instantaneous finite-volume release initially localized as a delta function
at z= 0 is

yδ(η)= B(
3
2

)4/3(Ka/Kd+1/4)

Kd
2/3(Ka/Kd+1)0

[
2
3

(
Ka

Kd
+ 1
)]

M0
1/3

ηKa/Kd

× exp
[
− 4

9Kd
η3/2

]
. (3.44)

We have plotted the non-dimensional quantity yδ/
(
B/M0

1/3
)

as a function of
the similarity variable η = z/

(
t2/3M0

1/3
)

in figure 5. The three different curves
show the concentration profile in similarity form for different values of Ka and Kd.
Unsurprisingly, we find that the location of the peak, ηmax = (3Ka/2)

2/3, only depends
on Ka. Increasing Ka shifts the peak upwards away from the origin, while increasing
Kd spreads the width of the distribution. There is always to a greater or lesser extent
asymmetry, with the leading edge being more diffuse than the rear.

Interestingly, in the ‘top-hat’, purely advective limit Kd → 0 with no turbulent
dispersion equation (3.40) integrates to(

Ka

η1/2
− 2η

3

)
y= J5, (3.45)

where J5 is a constant of integration. In order to satisfy the boundary condition at
infinity (3.39a) as well as the integral condition (3.39b), J5 = 0 for all 0 6 η < ηa

and ηa < η, where ηa = (3Ka/2)
2/3 is the location of the advective front as defined in

(3.24). We can note that the formula of ηa is the same in both the constant-flux case
and the finite-volume case. Therefore, the similarity solution of the purely advective
problem for the case of an instantaneous finite-volume release initially localized as a
delta function at z= 0 is

yδ,a = Bδ(η − ηa). (3.46)
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FIGURE 5. Plot of the variation of the non-dimensional fundamental similarity solution
yδ/
(
B/M0

1/3
)
, defined in (3.44), as a function of the similarity variable η = z/

(
t2/3M0

1/3
)

for the problem of advection–dispersion in the case of an instantaneous finite-volume release
at the source and for different values of the advection and dispersion parameters, Ka and Kd,
respectively.

As expected, without dispersion the initial Dirac delta distribution of tracers persists
for all time. The delta function is located in the similarity domain at ηa = (3Ka/2)

2/3,
the location of the (purely) advective front. In time and space coordinates, this
means that the volume of tracers is located at za = (3Ka/2)

2/3 t2/3 and travels
at the speed wa = KaM0

1/2z−1/2 in the streamwise direction. We can notice that
the location of the advective front ηa is the same as the location of the peak
of the tracer concentration in the general effective advection–diffusion problem:
ηa = ηmax = (3Ka/2)

2/3. Consequently, and similarly to the constant-flux case, in the
general effective advection–diffusion problem a non-negligible portion of the volume
of tracers is transported faster than the advective speed due to the combined effects of
advection and dispersion processes. We can compute the portion of the total volume of
tracers βB which travels ahead of the advective front via

βB =

∫ ∞
ηa

yδ dη∫ ∞
0

yδ dη
. (3.47)

Using (3.44), we obtain

βB =
0

[
2
3

(
Ka

Kd
+ 1
)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1
)] , (3.48)

where, once again, 0[g, ζ ] = ∫∞
ζ

hg−1e−h dh is the upper incomplete gamma function.
As in the constant-flux release case βF defined in (3.27), the ratio βB remains constant
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FIGURE 6. Finite-volume case for an instantaneous release. (a) A plot of the theoretically
predicted variation of βB (defined in (3.48)), the portion of the total volume of tracers released
which travels ahead of the advective front ηa (defined in (3.24)), as a function of Kd/Ka
(plotted with a solid line), with the experimentally determined value (obtained from the best
fit of the constant-flux case shown in figure 14) marked with a cross, and the asymptotic value
βB = 0.5 plotted with a dashed line. (b) A log–log plot of the theoretically predicted variation
of ξB (defined in (3.50)), the normalized distance between the average location of the volume
of tracers travelling ahead of the advective front and the location of the advective front ηa,
as a function of Kd/Ka (plotted with a solid line), with the experimentally determined value
(obtained from the best fit of the constant-flux case shown in figure 14) marked with a cross,
and the curve 0.66 (Kd/Ka)

0.5 plotted with a dashed line.

in time and space because (3.48) does not depend on η. Moreover, βB depends only on
the ratio Kd/Ka. We have plotted βB as a function of Kd/Ka in figure 6(a). However, in
contrast to βF, we can prove that βB→ 1/2 (plotted with a dashed line) as Kd/Ka→ 0
(see equation (8.11.10) in NIST 2012), thus implying that the distribution of tracers
yδ becomes more symmetrical with respect to the peak value as Kd/Ka decreases.
Figure 5 shows the change in the distribution of yδ with various Ka and Kd. We can
also compute the normalized distance between the average location of the volume of
tracers travelling ahead of the advective front and the location of the advective front
ηa,

ξB = 1
ηa


∫ ∞
ηa

yδη dη∫ ∞
ηa

yδ dη
− ηa

 , (3.49)

which yields

ξB =
(

3Kd

2Ka

)2/30

[
2
3

(
Ka

Kd
+ 2
)
,

2Ka

3Kd

]
0

[
2
3

(
Ka

Kd
+ 1
)
,

2Ka

3Kd

] − 1. (3.50)

We plot ξB in figure 6(b), in a log–log plot. Similarly to the constant-flux case ξF

defined in (3.29), the normalized distance ξB can also be considered as the distance
between the dispersive front, i.e. the average location of the particles travelling ahead
of the advective front, and the advective front ηa. In time and space coordinates, the
distance between the dispersive front zB and the advective front za is zB − za = ξBηat2/3.
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This distance increases with time as t2/3, as we observed in the constant-flux case.
We can also see in figure 6(b) that ξB→ 0, and it appears that ξB ≈ 0.66 (Kd/Ka)

0.5

(plotted with a dashed curve) as Kd/Ka→ 0, thus implying that the spreading of the
tracer distribution becomes small compared with the distance between the peak and the
origin as Kd/Ka decreases (see also figure 5).

3.5. Finite-volume release: time-dependent release general solution
The solution φδ(z, t) = t−2/3yδ(η) is the response of the system described by the
effective advection–diffusion equation (2.5) to a finite volume released instantaneously
at t = 0 and distributed spatially according to a Dirac delta function δ(z). Due to the
linearity of (2.5), we can construct from this ‘fundamental’ solution φδ an integral
expression for the general solution φg for a finite volume B being released at the origin
z = 0 over a period of time such that φg(0, t) = f (t). Without loss of generality, we
choose to normalize the source function f (t):∫ ∞

−∞
f (t) dt = 1. (3.51)

Therefore, the general solution φg can be expressed as the following integral:

φg(z, t)=
∫ t

0
(t − τ)−2/3 yδ(ητ )f (τ ) dτ with ητ = z

(t − τ)2/3 M0
1/3
. (3.52)

The case of a truly instantaneous release of a finite volume at (z, t) = (0, 0) is
physically impossible to realize in an experiment. It is also not ideal in the modelling
of real flows. A more realistic set of initial boundary conditions is to have a finite
volume released at a constant flux over a finite period of time 0 6 t 6 T0. This problem
can be defined in terms of the following conditions:

φT0(z, t)→ 0 as z→∞,
∫ ∞

0
φT0(z, t) dz=


Bt

T0
, 0 6 t 6 T0,

B, T0 < t,
(3.53a,b)

with φT0 satisfying the general (2.5) for z > 0, t > 0. The solution to this initial
boundary value problem can be computed using (3.52) with the source function

fT0(t)=
H(t)− H(t − T0)

T0
, (3.54)

where H is the Heaviside function (i.e. H(t) = 0 for all t < 0 and H(t) = 1 for all
t > 0). We find that the solution to the integral (3.52) with the source function fT0
described by (3.54) is

φT0(z, t)= 2Bz1/2

3KdM0
1/2T00

[
2
3

(
Ka

Kd
+ 1
)]
0 [2

3

(
Ka

Kd
− 1

2

)
,

4z3/2

9KdM0
1/2t

]

−


0, 0< t 6 T0,

0

[
2
3

(
Ka

Kd
− 1

2

)
,

4z3/2

9KdM0
1/2(t − T0)

]
, T0 < t.

 (3.55)

The upper incomplete gamma function, 0[g, ζ ] = ∫∞
ζ

hg−1e−h dh, requires g> 0, hence
this solution is well-defined only for Ka > Kd/2. As we mentioned previously, we will
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FIGURE 7. Variation with scaled time t̆ = t/T0 of the normalized absolute deviation dev(t̆),
defined in (3.58), of the general solution φT0(z, t), defined in (3.55), and the fundamental
solution φδ(z, t) (defined by (3.44) and (3.37)). The data are computed numerically for
different values of the advection and dispersion parameters.

find later that for our experimental data Ka appears to be substantially greater than Kd.
Note that this solution cannot be written in similarity form because of the dependence
on the time constant T0.

We can prove (see the Appendix) that the solution φT0(z, t), described in (3.55),
satisfies

φT0(z, t)= φδ(z, t) for
t

T0
� 1. (3.56)

So, the general solution for a rectangular source function converges asymptotically
to the fundamental solution φδ(z, t)(defined by (3.44) and (3.37)) in the limit t� T0.
It is interesting to study how fast φT0 converges towards φδ. We can define the
dimensionless distance z̆ and the dimensionless time t̆ using the scalings for length and
time scales T0

2/3M0
1/3 and T0, respectively, such as

z̆= z

T0
2/3M0

1/3 , t̆ = t

T0
, (3.57a,b)

where breves denote non-dimensional variables. The evolution in time of the
normalized absolute deviation of the general solution φT0 from the fundamental
solution φδ is

dev(t̆)=

∫ ∞
0
|φT0(z̆, t̆)− φδ(z̆, t̆)| dz̆∫ ∞

0
φδ(z̆, t̆) dz̆

for
t

T0
> 1, (3.58)

a non-dimensional quantity which only depends on the advection and dispersion
parameter Ka and Kd, and in particular does not depend on the total injected volume
of tracers B, on the initial momentum M0 or on the period of injection T0. We
plot dev(t̆) in figure 7 for 1 6 t/T0 6 30. We compute the deviation numerically for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.388


Dispersion and mixing in quasi-two-dimensional jets 231

x

z

d = 5 mm

Electronic valves

Peristaltic 
pump

Overflow

H
 =

 1
 m

L = 1 m

W = 0.01 m

u

w

2b(z)

CCD camera

Blue back-light tape

PIV study area

FIGURE 8. Schematic diagram of the experimental apparatus.

three different sets of values of Ka and Kd. We can see that all the curves decrease
asymptotically towards zero as t/T0 increases. The deviation is smaller than 0.1, which
can be considered as a threshold value of near convergence, for t/T0 > 11, t/T0 > 4.7
and t/T0 > 11 for the sets of advection and dispersion parameters (Ka = 1,Kd = 0.1),
(Ka = 1,Kd = 1) and (Ka = 10,Kd = 1), respectively. It appears that the deviation
depends mainly but not entirely on the ratio Kd/Ka.

Furthermore, we can note that in (3.55), if we take the limit T0→∞ and define
F = B/T0, then we find

φT0→∞(z, t)= t1/3yF(η), (3.59)

with η = z/
(
t2/3M0

1/3
)

consistently with (3.9). So, the solution for the constant-flux
case described in (3.21) is equivalent to the asymptotic solution of the general solution
φT0 if the period of release T0 extends to infinity.

4. Experimental procedure
We conduct our experiments in a slight modification of the experimental apparatus

we used in Landel et al. (2012), as shown schematically in figure 8. We conduct three
distinct sets of experiments using two qualitatively different techniques. Each set of
experiments is designed to provide experimental data that can be compared with the
three theoretical predictions derived in the previous section for a constant-flux release,
an instantaneous finite-volume release, and a non-instantaneous finite-volume release.
In the first set of experiments, we measure the distribution of the concentration of
dye as it is released at a constant flux at the source of quasi-two-dimensional steady
turbulent jets. The second set of experiments involves what we believe to be a new
technique, which consists of tracking large quantities of virtual particles evolving as
passive tracers in the velocity field of quasi-two-dimensional steady turbulent jets. The
velocity field is measured in experiments with real jets (as opposed to numerically
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computed jets) by using particle image velocimetry (PIV). We designed this technique,
which we designate as virtual particle tracking, to obtain data for an instantaneous
release to compare with our mathematical model. We also consider virtual particle
tracking to be complementary to experiments tracking the dispersion of the ‘real’ dye
tracer. In the third set of experiments, we measure the distribution of the concentration
of dye following the release of finite volumes of dye at the source into quasi-two-
dimensional steady turbulent jets. For physical reasons, which will be detailed below,
we cannot release finite volumes of dye instantaneously in the jets, and so such
physical dye releases inevitably extended over a finite time interval.

For all the experiments, the jet Reynolds number at the source is approximately
within the range 2100 6 Rej = dws/ν 6 4000, where ws is the source velocity and
ν is the kinematic viscosity of water. In the jet, the Reynolds number (defined as
Re= bwm/ν) increases with streamwise distance from the source like z1/2. We find that
in the region where the jet can be considered quasi-two-dimensional (i.e. for z/d > 20),
the Reynolds number is greater than 5000. Therefore, we believe that the flow is fully
turbulent in the area of study.

4.1. Constant-flux releases of dye
We fill the 1 m(L) × 0.01 m(W) × 1 m(H) tank displayed in figure 8 with fresh tap
water. A vertical jet of constant source volume flow rate is discharged into the tank
using a peristaltic pump (520DU/R2 Watson–Marlow variable speed pump) fed by a
constant-head tank.

The injection mechanism for the constant-flux releases of dye in steady turbulent
quasi-two-dimensional jets consists of a syringe-pump connected to a small needle
inserted into a single main tube. The needle is located 0.2 m upstream of the
nozzle. After the jet has reached a steady state in the tank, a mixture of red food
dye ‘Fiesta Red’ (Allura Red AC, E129) and tap water (with a dye concentration
of 1.8 % per weight) is injected at a constant flow rate, 0.11 cm3 s−1. We study
19 constant-flux releases of dye in steady turbulent jets with jet Reynolds number
2240 6 Rej = dws/ν 6 3870.

To measure the dye concentration, we perform the experiments in a dark room.
Following Dalziel et al. (2008), we attach a 0.54 m× 0.54 m electroluminescent Light
Tape (Electro-LuminX Lighting Corporation) to the external surface of the rear side
of the tank, centred on the jet axis and with the bottom of the tape at the height
of the nozzle. It provides a constant and uniform source of near-monochromatic
cyan light of approximately 400 cd m−2. This wavelength is close to the peak of
the ‘Fiesta Red’ dye absorption spectrum. We measure the transmitted light intensity
with a high-speed 8 bit grey-scale camera (Fastcam SA1.1 – Photron) mounted with
an 85 mm focal-length lens (f-stop 5.6). The camera is located 3 m away from the
tank, which is sufficient to have negligible parallax error. We also take care to reduce
any light pollution from reflection or other sources, in particular by installing a black
frame around the study area. The camera records 640 × 848 pixel images covering
the entire study area, which spans −40 6 x/d 6 40 and 0 6 z/d 6 100 (where x is
the coordinate in the lateral, cross-jet or horizontal direction, and z is the coordinate
in the streamwise or vertical direction; the origin is at the centre of the nozzle
slot and d = 5 mm is the nozzle width), and part of the black frame (in order to
have a black intensity reference). For each video we set the origin in time, t = 0,
at the image preceding the first image in which dye is seen by the camera. The
frequency of image acquisition is set at 60 Hz. Following the calibration method
and the algorithm described by Coomaraswamy (2011) and based on Cenedese &
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Dalziel (1998), we perform the calibration in situ. We record the intensity measured
by the camera for 23 known concentrations of dye, ranging from 0 to 2 % per weight.
A fitting curve using a third-order polynomial in the logarithm of the normalized
intensity gives us a continuous and monotonic relationship between the intensity and
the concentration. All the images recorded by the camera, either for the calibration
process or for the experiments, are analysed using the software code DigiFlow
(Sveen & Dalziel 2005). This procedure enables us to obtain accurate measurements
of the (spanwise-integrated) dye concentration in time and space for each
experiment.

4.2. Instantaneous finite-volume releases of virtual particles
We track virtual particles in experimentally measured velocity fields of quasi-two-
dimensional steady turbulent jets. We use the velocity fields measured by us previously
as reported in Landel et al. (2012) and obtained using a PIV technique (as described
in Sveen & Dalziel 2005). We measure the jet velocity in a 0.4 m × 0.4 m
study area centred on the jet axis (as shown in figure 8) and covering a height
from z = 0.2 m to 0.6 m. We use the camera described above (mounted with a
62 mm focal-length lens) at a frequency of image acquisition 250 Hz and for a
duration of 21.8 s. The 1024 × 1024 pixel images provide us with spatially and
temporally resolved velocity fields for six steady turbulent jets at source volume
flow rates 33.2, 37.0 and 40.3 cm3 s−1. The jet Reynolds number is in the range
3320 6 Rej 6 4030. We find that the divergence of each velocity field is insignificant
(typically mean(|∇ · u|)/mean(|∇ × u|)≈ 5 %, where mean(·) represents an average in
time and space), so they can be considered as incompressible. Using these computed
velocity fields, we seed in each of them 201 × 51 pixel clusters of (massless) virtual
particles located in a rectangular evenly-distributed cluster at −8.8 6 x/d 6 7 and
44.4 6 z/d 6 48.3 (i.e. within the characteristic local width of the jet). The release can
be considered instantaneous as a cluster of virtual particles is injected in the flow field
within a single time step. The possibility of releasing instantaneously a large number
of particles constitutes the main reason for the use of this technique in this study.
This important advantage, compared with the non-instantaneous dye finite-volume
releases (discussed below), allows us to reproduce more easily the instantaneous
release constraint imposed in the mathematical model in (3.36a).

We release individual clusters every 0.4 s in each experiment and study a total
of 256 clusters representing 2 624 256 virtual particles. For each cluster the virtual
particles evolve in time and space as passive tracers advected by the flow. For each
simulation we set the origin in time, t = 0, at the first image in which the particle
cluster is seeded. The simulation of a cluster stops as soon as a virtual particle reaches
the top boundary of the velocity field. Finally, we record the location in time and
space of the tracers and analyse the results using DigiFlow. By averaging 256 virtual
particle experiments we obtain a smooth distribution of the particle concentration in
time and space, which we compare with the dye experiments and the theoretical
prediction in § 5.

Different techniques involving particle tracking have been used to study dispersion,
mixing and transport in jets or other types of flows. In previous studies, the particles
were either real and tracked by an imaging analysis technique (see e.g. Yang et al.
2000; Sveen & Dalziel 2005), or purely numerical and evolving in numerically
resolved flows (see e.g. Dutkiewicz, Griffa & Olson 1993; Luo et al. 2006; Picano
et al. 2010). However, we have not been able to find any mention in the literature
of using virtual particles in the velocity field of real flows. This technique requires
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a spatially and temporally resolved computation of the velocity field, which can be
done, for example, using a PIV technique. We can then seed some (massless) virtual
particles in the velocity field and track their trajectory as they are advected as passive
tracers by the flow. The advantages of this complementary technique are numerous: the
resolution is only limited by the resolution of the acquisition of the velocity field; it is
not restricted to the computation limitations encountered in full numerical simulations,
but can be used for any laboratory experiment; a large quantity of virtual particles
can be seeded instantaneously in the jet (thus satisfying, in our case, the constraint
imposed in the theoretical model for an instantaneous finite-volume release); and their
initial distribution can be completely arbitrary.

4.3. Finite-volume releases of dye

The experimental procedure for the finite-volume releases of dye in steady turbulent
quasi-two-dimensional jets is very similar to the experimental procedure for the
constant-flux releases of dye (described in § 4.1). We fill the tank displayed in
figure 8 with fresh tap water. A vertical jet of constant source volume flow rate is
discharged into the tank using the same peristaltic pump described above and fed by a
constant-head tank.

For the injection mechanism of the finite-volume releases of dye, the main tube
divides into two approximately 80 cm before the nozzle (see figure 8). The two tubes
are recombined approximately 15 cm before the nozzle. Two valves located just before
the recombining junction control the flow for each pipe separately. We monitor the
valves to allow the flow to go through one section or the other exclusively. We open
and close the valves electronically so that a steady jet flow is maintained in the tank
before and after switching the valves. Although we observe a small perturbation (a
pressure wave) in the tank we believe it does not perturb the experiment significantly.
The purpose of this two-tube system is to release a finite volume of dye in a
steady turbulent jet. The procedure for each experiment is as follows. We inject a
5 cm3 mixture of the same red food dye described above and tap water (with a dye
concentration of 2 % per weight) into the closed tube approximately 5 mm upstream
of the valve. Meanwhile, water flows at a constant source volume flow rate through
the other tube to produce a turbulent jet in the tank. After the jet reaches a steady
state, we switch the valves to redirect the whole flow into the section containing the
red dye, thus releasing a finite volume of dye into the established jet. We conduct
26 finite-volume releases of dye in steady turbulent jets with jet Reynolds number
2170 6 Rej 6 4870. It is important to note that, although great care is taken during
the experiments and different protocols have been tested, instantaneous finite-volume
releases of dye cannot be achieved for practical reasons. We find that the time of
injection, although relatively short (of the order of 0.5 s), cannot be considered as
instantaneous, as we will discuss in § 5.4. We believe that the main reason for this
injection delay is some laminar Taylor dispersion (Taylor 1953) of the dye as it
is transported in the short section of tube (approximately 0.2 m long) leading to
the tank.

We perform the measurements of the dye concentration for the finite-volume
releases using exactly the same technique as described for the constant-flux releases.
From the transmitted light intensity recorded by the high-speed camera described
above, we can compute the dye concentration in the study area, spanning −40 6 x/d 6
40 and 0 6 z/d 6 100, at a frequency of 60 Hz. We obtain accurate measurements of
the dye concentration in time and space for each experiment.
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5. Experimental results
Similarly to Landel et al. (2012), we find that the natural scalings for length and

time in our problem are d, the source width, and (d2/Q0), respectively. Therefore,
when considering our experimental data we will always scale quantities with these
scalings, i.e.

z= dz̃, t =
(

d2

Q0

)
t̃, (5.1a,b)

where tildes denote non-dimensional variables. Although the initial momentum flux
M0 is also a natural scaling parameter in the theoretical model (see (2.4b), (2.5) and
(3.4)), we do not use it as a scaling parameter in this section because we could not
measure it directly in the experiments. Instead of M0, we use the equivalent ratio
Q0

2/d. In Landel et al. (2012), we found M0 ≈ 〈M〉 = 0.55
(
Q0

2/d
)
, where 〈M〉 is the

space- and time-averaged momentum flux in quasi-two-dimensional jets. In particular,
the non-dimensional similarity variable η = z/

(
t2/3M0

1/3
)
, defined in the model (see

§ 3.1), is replaced by ηexp = z/
(

t2/3
(
Q0

2/d
)1/3
)

, so that

ηexp

η
=
(

M0d

Q0
2

)1/3

≈ 0.82. (5.2)

This non-dimensionalization also affects the advection and dispersion parameters Ka

and Kd, defined in the model (see § 2). As a consequence, the advection and dispersion
parameters Ka,exp and Kd,exp, that we use in this section, are related to Ka and Kd as
follows:

Ka,exp

Ka
= Kd,exp

Kd
=
(

M0d

Q0
2

)1/2

≈ 0.74. (5.3)

We omit the subscript exp in ηexp, Ka,exp and Kd,exp hereafter in this section.
To test our turbulent model hypothesis developed in § 2 and which led to the

general effective advection–diffusion (2.5), we choose to compare the theoretical
predictions, developed in § 3, first with experiments realized in the constant-flux
case. The initial boundary and integral conditions (3.8a–c) imposed in the constant-
flux case are simpler to satisfy experimentally than the initial boundary and integral
conditions imposed in the finite-volume case (3.36a–c), which require an instantaneous
release of finite volumes of tracers. Instantaneous finite-volume releases of virtual
particles are then tested against the theoretical prediction, before studying the more
challenging case of a non-instantaneous finite-volume release of dye. In each case, we
are particularly interested in whether the natural scaling of the model z ∝ t2/3 agrees
with the experimental results and, if so, we then estimate from the experimental data
the two key parameters: the advection parameter Ka and the dispersion parameter Kd.
Since the experiments in the constant-flux case are simpler to realize, we believe
that the estimates of Ka and Kd measured in this case are more accurate than in the
other two cases. Therefore, we consider the values of Ka and Kd measured in the
constant-flux case as reference values, while the values measured in the other two
cases are used to determine the confidence interval of Ka and Kd. Before presenting
the quantitative experimental results, we give below a qualitative assessment of our
turbulent model hypothesis and motivate the utility of the new, yet complementary,
virtual particle tracking technique (described in § 4.2) in understanding the transport,
dispersion and mixing properties of quasi-two-dimensional jets.
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FIGURE 9. (a) Grey-scale picture of a dyed jet (Rej = 3850) rising in the tank. The average
dye edges are plotted with black lines (half-spreading angle, 〈θdye〉 = 12.4◦, Landel et al.
2012). (b) Passive tracers (Pliolite particles) shown as streaks in a typical jet (Rej = 4080).
(c) Trajectories of the passive tracers shown in (b) and identified by imaging analysis (for
a duration of 0.2 s). (d) Instantaneous velocity field (arrows) of the jet shown in (b). (e)
Trajectories of virtual particles (for approximately 0.3 s) seeded at the same initial locations
as the particles identified in (c) and evolving as passive tracers in the time-dependent velocity
field shown in (d).

5.1. Qualitative assessment
The purpose of this qualitative assessment is twofold. Firstly, we want to study how
the dynamical structure of steady turbulent quasi-two-dimensional jets affects their
transport and dispersion properties. We have developed our turbulent model hypothesis,
stated in § 2, from the qualitative understanding of these properties. Secondly, we
use in this study a new complementary technique to analyse the transport and
dispersion properties of the jets, which we introduced in the previous section as virtual
particle tracking. We give a qualitative overview of this technique, as well as some
justifications and motivations for its use in a more systematic and rigorous approach to
obtain quantitative results (which will be presented in § 5.3).

In the far field of quasi-two-dimensional jets, i.e. z > 20 d for W = 2 d (Dracos et al.
1992), the core forms a high-speed undulating region, which grows on average in an
expanding straight-sided triangular section. Outside the core we observe large counter-
rotating eddies, which develop on alternate sides of the core and grow linearly with
distance. Moreover, we showed in Landel et al. (2012) that the core–eddy structure
is self-similar with distance z. The characteristic sinuous core and the large growing
eddies can be observed in figure 9(a), which is an instantaneous grey-scale picture
of a constant-flux release of dye in a steady-state quasi-two-dimensional jet with
Rej = 3850 (shown five seconds after injection; the average dye edges are plotted with
black lines, half-spreading angle 〈θdye〉 = 12.4◦, Landel et al. 2012). The instantaneous
core–eddy structure can also be seen in figure 9(b). In figure 9(b), a superposition
of 50 images (i.e. for a duration of 0.2 s) of the filming of an experiment (obtained
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(a) (b)

0 t (s)1 2 3

(c)

FIGURE 10. (a) Schematic diagram describing the structure of quasi-two-dimensional jets.
(b) Instantaneous velocity field displayed in figure 9(d) with three rectangular clusters of
virtual particles initially seeded: at the centre of an eddy (plotted in light grey); between the
eddy and the core (plotted in grey); and in the core of the jet (plotted in dark grey). (c) Typical
trajectories of three virtual particles evolving in the time-dependent velocity field shown in
(b) and initially seeded: in an eddy (cluster outlined in light grey) (plotted with pluses);
between the eddy and the core (cluster outlined in grey) (plotted with squares); and in the core
(cluster outlined in dark grey) (plotted with crosses). The particle locations are plotted every
0.02 s and each colour corresponds to a time period of 0.2 s (see colour scale).

in our previous study, Landel et al. 2012), where passive tracers (0.23 mm Pliolite
VTAC particles) were mixed with a quasi-two-dimensional jet (Rej = 4080), depicts
the tracers as streaks, thus revealing the Eulerian structures in the flow (see Landel
et al. 2012 for more details).

We compute two different types of results from the experiment with passive tracers
shown in figure 9(b). We can consider the tracers as Lagrangian particles and track
their trajectory in time using a particle tracking algorithm implemented in DigiFlow
(Dalziel 1992; Sveen & Dalziel 2005). Figure 9(c) shows the trajectories identified by
the algorithm, at the same time instant as the jet displayed in figure 9(b). Particles
have been tracked for 50 images (i.e. for a duration of 0.2 s) and reveal very
similar flow patterns to the streaks in figure 9(b). However, this technique has some
limitations, as the number of particles tracked for a certain time period decreases
quickly with increasing time period. We also have very little control over the initial
distribution of the particles (usually spatially homogeneous), and cannot, for example,
reproduce an instantaneous finite-volume release of these particles. To remedy these
limitations, we have developed a complementary virtual particle tracking technique,
which we presented in § 4.2. We seed in the velocity field (displayed in figure 9d)
of the experimental jet shown in figure 9(b) some virtual particles in order to track
their trajectory as they are advected as passive tracers by the flow. As a qualitative
validation of this technique, we have seeded the virtual particles so that their initial
distribution is identical to the initial distribution of the (real) particles identified in
figure 9(c). The resulting trajectories of the virtual particles are plotted in figure 9(e)
for a period of approximately 0.3 s. The trajectories of the virtual particles are very
similar to the real trajectories of the particles in figures 9(b) and 9(c), and thus reveal
the same core–eddy structure. We believe that the virtual particle tracking technique
can provide meaningful information about the transport and dispersion properties of
quasi-two-dimensional jets and complements the dye release experiments.

The schematic diagram displayed in figure 10(a) summarizes the structure of quasi-
two-dimensional jets. The time-averaged mean picture of quasi-two-dimensional jets
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is associated with a triangular shape encapsulating all the flow structures, while the
time-dependent picture shows a sinuous core flanked by large growing eddies. We
believe that the interaction between the core and the eddies results in large streamwise
dispersion as the fluid experiences intense stretching at the interface between the core
and the eddies. The eddies also play a crucial role in the entrainment and mixing
of ambient fluid. From the observations of dyed jets such as the jet illustrated in
figure 9(a), we find that fluid can be entrained from the ambient by the eddies and
then either drawn within the eddies or incorporated into the core. We also believe that
fluid can be exchanged between the eddies and the core. On the other hand, we have
not observed any dyed fluid being detrained completely from the jet to the ambient,
thus suggesting that there are no dead zones in the flow where jet fluid is completely
left behind in the quiescent ambient.

These processes can be revealed by applying the virtual particle tracking technique
to the core and the eddies of a quasi-two-dimensional jet. In the velocity field of the
jet presented in figure 9(d) and reproduced in figure 10(b), we seed three clusters
of virtual particles. The first cluster, composed of 3721 virtual particles, distributed
in a square and initially seeded at the centre of an eddy is shown in light grey in
figure 10(b). The second cluster, composed of 7381 virtual particles, distributed in
a rectangle and initially seeded between the eddy and the core is shown in grey in
figure 10(b). The last cluster, composed of 3721 virtual particles, distributed in a
square and initially seeded in the core of the jet is shown in dark grey in figure 10(b).
Figure 10(c) shows the typical trajectories of one single particle from each cluster.
The particle locations are plotted every 0.02 s and each colour corresponds to a time
period of 0.2 s (see colour scale). The particle starting in the eddy (plotted with
pluses) moves slower than the other two particles and its trajectory forms two loops
characteristic of the fact that it is transported within the eddy. The particle starting
in the core (plotted with crosses) is transported quickly and has a slightly sinuous
trajectory, which is characteristic of the transport within the core. On the other hand,
the trajectory of the particle chosen approximately at the interface between the eddy
and the core (see Landel et al. 2012 for a thorough discussion on the identification
of the core and eddy structures) is often more complex (plotted with squares) and can
be transported from the core to the eddy, or indeed from the eddy to the core. In the
present case the particle starts in the core and is then drawn into the neighbouring
eddy as the trajectory forms one loop. This is a simple illustration of the possible
exchange of fluid parcels between the different structures.

Figure 11 shows the simultaneous evolution in time of all the particles in the three
clusters as they are passively advected by the jet velocity field shown in figure 10(b).
Each colour corresponds to a particular time instant, starting from black and finishing
with white and with a time step of 0.2 s between each colour (we use the same
colour scale as in figure 10c). Again, we can clearly see that the virtual particles
are transported much faster in the core of the jet (see figure 11c) than in the eddy
(see figure 11a). On the other hand, mixing is more intense in the eddy than in the
core. The cluster initially seeded in the eddy disintegrates very rapidly compared to
the cluster initially seeded in the core. The cluster initially seeded between the eddy
and the core (see figure 11b) experiences considerable stretching in the streamwise
direction (its vertical maximum extent is ten times larger than its horizontal maximum
extent after a few time steps), owing to the shear layer at the interface between the
core and the eddy. We can notice that some virtual particles are drawn into the eddy
while others remain in the core. This emphasizes the time-dependent exchange of
fluids between the core and the eddies pointed out above. We can also observe the
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(a) (b) (c)

FIGURE 11. Evolution in time of the virtual particles seeded in the velocity field shown in
figure 10(b) as they are advected by the flow (each colour corresponds to a particular time
instant): (a) cluster initially distributed at the centre of an eddy and shown in light grey in
figure 10(b); (b) cluster initially distributed between the eddy and the core and shown in grey
in figure 10(b); (c) cluster initially distributed in the core of the jet and shown in dark grey in
figure 10(b). Each colour corresponds to a time period of 0.2 s, we use the same colour scale
as in figure 10(c).

delaying effect (with the colour scheme) of the eddies, in which tracers have a longer
residency time than in the core.

When ensemble-averaged, we believe that the streamwise dispersive mechanisms
revealed by the virtual particles in figure 11 can be modelled as an enhanced
dispersion coefficient, as stated in the turbulent hypothesis presented in § 2. The
main assumption we make in (2.3), pertaining to the streamwise turbulent eddy
diffusion coefficient (i.e. it scales like bwm, where b is the jet width, defined in
(2.4a), and wm is the maximum time-averaged vertical velocity, defined in (2.4b)), can
be physically justified from the study of both the structures and the velocity profile of
quasi-two-dimensional jets (see Landel et al. 2012 for velocity measurements in quasi-
two-dimensional jets). The core–eddy structure is self-similar with height, thus the
local characteristic size of the jet, b(z), appears as a relevant length scale. Moreover,
the local maximum time-averaged vertical velocity is the second physically meaningful
variable in the problem of dispersion, because all mixing and dispersive mechanisms
should scale like wm(z). In the rest of this section, we compare ensemble-averaged
experimental results with the theoretical predictions found in § 3 and based on our
turbulent model hypothesis.

We believe that the flow in a quasi-two-dimensional jet is appropriate for the
application of particle tracking velocimetry because the three-dimensionality of the
flow can be considered insignificant in the first order. In § 4.2 we report that the
mean divergence of the flow is small compared with the mean vorticity. Moreover,
Dracos et al. (1992) found that the flow of quasi-two-dimensional jets is primarily
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governed by a two-dimensional inverse cascade of turbulence, except at scales of the
order of (or less than) the gap width of the tank W. Therefore, we believe that particle
tracking velocimetry can give physically meaningful information about the dispersion
in quasi-two-dimensional jets. However, we believe that mixing properties cannot be
directly examined from the results we present in this study for technical reasons.
The measurements of the velocity fields (performed using particle image velocimetry),
though well-resolved in time (the time resolution is one order of magnitude smaller
than the Kolmogorov time scale, τηK ≈ 40 ms), do not have the spatial accuracy
necessary to investigate the finest scales of turbulence in our flow (the Kolmogorov
length scale is of the order of ηK ≈ 0.2 mm, as discussed in Landel et al. 2012).
In fact, we believe that the three-dimensional small-scale turbulence, typically of the
order of W = 1 cm or less, cannot be adequately resolved in this study, with only a
two-dimensional velocity field.

5.2. Constant-flux releases of dye
We present in figure 12(a–c) experimental results and theoretical predictions of
constant-flux releases of dye in quasi-two-dimensional steady turbulent jets. The
spatial distribution of the concentration C(x, z, t) is plotted using a colour scale
(see colour scale at the top of figure 12a–c) at different non-dimensional times,
74 6 t̃ 6 374, to show the evolution of the dye concentration in the jet. In figure 12(a),
we plot the ensemble-averaged concentration of the 19 experiments, which were
conducted at different jet Reynolds number, 2240 6 Rej 6 3870 (see § 4.1). We also
plot the average dye edges (half-spreading angle, 〈θdye〉 = 12.4◦) with thick white
lines and the average boundaries of the core (half-spreading angle, 7◦ starting from
z = 20d) with thin white lines (Landel et al. 2012). We can observe some dispersion
of the dye at the leading edge, which indicates the streamwise dispersion discussed
above. It is also apparent that the dye is transported first through the core (i.e. within
the thin white lines) before mixing across the full width of the jet (i.e. filling the
triangle delimited by the average dye edges shown with thick white lines). The
characteristic sinuous instability of the core (clearly visible in figure 9a) does not
appear in figure 12(a) because of the averaging process.

Our model is inherently one-dimensional, and so obviously cannot predict the
distribution of the concentration across the jet (i.e. in the x-direction). In the
partial differential equation (2.3), we consider the concentration integrated along the
horizontal axis and study the evolution of φ(z, t) rather than C(x, z, t). We present
the horizontally-integrated experimental concentration φF,exp(z, t) in figure 12(b) in
normalized and redistributed form using

C(x, z, t)=

φF,exp(z, t)

2l(z)
, −l(z)6 x 6 l(z),

0, otherwise,
(5.4)

where

l(z)= tan
(〈θdye〉

)
(z− z0) for z > 0 (5.5)

is the local horizontal distance between the average dye edges (plotted with thick
white lines in figure 12a) and z0 is the space virtual origin defined below in (5.7a).
Alongside in figure 12(c), we show the equivalent theoretical prediction computed
from (3.21) for yF(η), based on the assumption of a constant-flux release at the
origin of the jet. To compute the theoretical prediction yF, we use Ka = 1.65 and
Kd = 0.09 for the advection and dispersion parameters, respectively. These parameters
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(a) (b) (c) (d) (e) ( f )

(a) (b) (c) (d) (e) ( f )

(a) (b) (c) (d) (e) ( f )

(a) (b) (c) (d) (e) ( f )

(a) (b) (c) (d) (e) ( f )

1.80 20

FIGURE 12. Distribution in space and non-dimensional time t̃ = t/(d2/Q0) of the
concentration of dye (plotted using the two colour scales shown at the top for figures a–c and
d–f, respectively) in the case of constant-flux releases (a–c) and finite-volume releases (d–f )
in turbulent quasi-two-dimensional jets. (a) Ensemble average of 19 experiments, the average
dye edges plotted with thick white lines (half-spreading angle, 〈θdye〉 = 12.4◦, Landel et al.
2012) and the average boundaries of the core plotted with thin white lines (half-spreading
angle, 7◦ starting from z = 20d, Landel et al. 2012). (b) Spatial horizontal average of the
distribution shown in (a) (defined in (5.4)). (c) Theoretical prediction based on (3.21) and
using Ka = 1.65 and Kd = 0.09. (d) Ensemble average of 26 experiments, the average dye
edges plotted with thick white lines (half-spreading angle, 〈θdye〉 = 12.4◦) and the average
boundaries of the core plotted with thin white lines (half-spreading angle, 7◦ starting from
z= 20 d). (e) Spatial horizontal average of the distribution shown in (d) (defined in (5.9)). (f )
Theoretical prediction based on (3.55) using Ka = 1.65, Kd = 0.09 and T0 = 183(d2/Q0).
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Data
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FIGURE 13. (a) Evolution in time of the non-dimensional integrated concentration of dye.
The experimental data are plotted with pluses, a linear fit is plotted with a black line.
(b) Evolution in time of the distribution of the normalized ensemble-averaged horizontally-
integrated experimental concentration shown in similarity form yF,exp in the case of
constant-flux releases (plotted with dashed curves as a function of the similarity variable

η = z/
(

t2/3
(
Q0

2/d
)1/3
)

for the time interval 2 6 t̃ 6 118 and with thin solid curves for the

time interval 118 6 t̃ 6 353). The time-averaged data yF,exp, for 118 6 t̃ 6 353, are plotted
with a thick solid curve.

are optimized by obtaining the best least-squares fit between the experimental
concentration yF,exp (i.e. the similarity form of φF,exp(z, t), transformed using (3.9)),
and the theoretical prediction yF. Before plotting the theoretical prediction yF in
figure 12(c), we transform yF into its physical form φF(z, t) using (3.9), then normalize
it (similarly to φF,exp(z, t)) by the local distance 2l(z) between the average dye edges,
and finally redistribute it uniformly, assuming a top-hat spatially-averaged profile,
within these boundaries, i.e.

C(x, z, t)=

φF(z, t)

2l(z)
, −l(z)6 x 6 l(z),

0, otherwise,
(5.6)

where l(z) is defined in (5.5).
Comparing the data (figure 12b) with the theoretical prediction (figure 12c), we

can see that the propagation of the front as well as its dispersion appear to have
been correctly modelled (i.e. the scaling is correct), with only a small difference
near the source. This mismatch is probably due to the zone of flow establishment
of the jet (see e.g. Yannopoulos & Noutsopoulos 1990). There is a necessary time
and distance of adjustment before the experimental data can match the theoretical
prediction, because the theoretical prediction is based around the assumption that the
jet characteristic properties are given by the similarity power laws (2.4a,b). Giger et al.
(1991) and Dracos et al. (1992) reported that the structure of quasi-two-dimensional
jets was different near the source, where three-dimensional effects were important.
They found that the self-similar core and eddy structure (which is key in the dispersion
mechanisms of the jet) only developed beyond approximately z > 20 d (for the aspect
ratio W/d = 2). Therefore, we might expect our model to be appropriate for z > 20d.

We display in figure 13(a) the evolution in time of the non-dimensional integrated
concentration of dye released in the experiments shown in figure 12(a). We can see
that the experimental data (plotted with pluses) increase approximately linearly in time
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(a linear fit is plotted with a black line). Therefore, the constant-flux integral condition
(3.8c) assumed in the model is satisfied experimentally.

We show in figure 13(b) the evolution in time of the distribution in similarity
space of the normalized experimental data yF,exp, plotted for nine successive time
periods in the range 2 6 t̃ 6 353. As we explained earlier, yF,exp is computed from the
ensemble-averaged horizontally-integrated experimental concentration for the constant-
flux releases φF,exp using (3.9) at every instant in time t̃. We also use the following
virtual origins in space and time:

z0 =− Q0
2

4
√

2αM0

, t0 = z0d

Q0
. (5.7a,b)

The space virtual origin z0 is simply the virtual origin of quasi-two-dimensional jets
(Landel et al. 2012). The time virtual origin t0 represents the time needed to travel
the distance |z0|, from the jet virtual origin to the nozzle, at the average source jet
velocity Q0/d. We shift the origins in space and time from (z= 0, t = 0) (where z= 0
corresponds to the height of the nozzle and t = 0 corresponds to the time instant
when the dye first appears from the nozzle) to (z0, t0) by applying the following
transformation between the new and old coordinates:

znew = zold − z0, tnew = told − t0. (5.8a,b)

For simplicity, we omit the subscripts ‘new’ and ‘old’ hereafter. In Landel et al.
(2012), we found α ≈ 0.068 and M0 ≈ 〈M〉 = 0.55

(
Q0

2/d
)
. So, the non-dimensional

virtual origins in space and time are z̃0 = t̃0 ≈ −4.7. Except for the data in the
time interval, 2 6 t̃ 6 118 (plotted with dashed curves), the data corresponding to
the time interval, 118 6 t̃ 6 353 (plotted with thin solid curves), seem to have a
similar distribution. The experimental concentration distribution converges rapidly, in
time, towards an asymptotic profile in similarity space (y, η). We approximate this
asymptotic distribution by the time-averaged distribution yF,exp for 118 6 t̃ 6 353
(plotted with a thick solid curve in figure 13b). The rapid convergence of the data
in similarity space is very important because it means that the similarity scalings
derived from the model, φF(z, t) = t1/3yF(η) (with η ∝ z/t2/3), are the appropriate
scalings for this phenomenon. We can notice in figure 13(b) that near η = 0 the data
are incomplete. Small values of η ∝ z/t2/3 are equivalent to small values of z compared
with t2/3, or large values of t2/3 compared with z. The incomplete data near η = 0
are simply due to a lack of spatial resolution near the source and a finite time of
observation in the experiments.

We present the experimental data yF,exp in figure 14 (the ensemble average is plotted
with pluses and the standard deviation, STD, with dotted curves). We compute the best
least-squares fit using the theoretical formula (3.21), where Ka and Kd are optimized
under the constant-flux constraint (3.11b). The best fit (plotted with a solid curve) is
found for Ka = 1.65 and Kd = 0.09. We can see that the model captures the main
characteristics of the data. The concentration increases from zero at the origin (where
the first derivative is infinite) to a peak value and then decreases smoothly at the front.
The front of the curve agrees with the theoretical fit, and so the dispersion processes
appears to have been correctly modelled. The rear of the experimental data appears
slightly more linear than the theoretical prediction. This mismatch is probably due to
the zone of flow establishment discussed above.

The ratio between the advection parameter and the dispersion parameter is
approximately Kd/Ka = 0.055. Using the advection parameter, we can compute
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FIGURE 14. Constant-flux case, in similarity form. Plots of the ensemble average (pluses)
and standard deviation (STD) (thin dotted curves) of the normalized experimental dye
concentration yF,exp (pluses) and best least-squares fit using yF from (3.21) and with Ka = 1.65

and Kd = 0.09 (solid curve) as a function of the similarity variable η = z/
(

t2/3
(
Q0

2/d
)1/3
)

.

theoretically the location of the advective front (considering ‘top-hat’ mean velocity
profiles in the jet with no turbulent dispersion), ηa = 1.83, based on (3.24). We
can also measure from the experimental data the portion of the dye which travels
ahead of the advective front βF,exp = 0.12 (computed using (3.26)), which is close to
the theoretical prediction βF = 0.10 (shown with a cross in figure 2a) based on the
ratio Kd/Ka = 0.055 and using (3.27). Thus, at each instant in time a non-negligible
proportion of the total volume of tracers having been released travels ahead of the
advective front ηa. Finally, we can also determine from the experimental data the
normalized distance between the average location of the volume of tracers travelling
ahead of the advective front and the location of the advective front ηa, ξF,exp = 0.16
(computed using (3.28)). This value is larger than the theoretical prediction based on
the ratio Kd/Ka = 0.055 and using (3.29), ξF = 0.13 (shown with a cross in figure 2b).
Here ξF is a measure of the spread of the front of the distribution compared with the
distance of the peak from the origin.

All these agreements between the data yF,exp and the best least-squares fit yF

suggest that our model can predict the shape of the concentration distribution of a
finite-volume release of tracers in quasi-two-dimensional jets. We believe that the
constant-flux experiments are the most straightforward experiments performed in this
study. Therefore, the values of the advection and the dispersion parameters Ka = 1.65
and Kd = 0.09, respectively, found in this case will be used in the next cases as
reference values. Furthermore, these results clearly reveal the importance of dispersion
processes in the transport of passive tracers by quasi-two-dimensional jets. As is
clear in figure 14, the front of the distribution of the concentration in the similarity
space (y, η) is not sharp but smooth due to dispersion. Were the transport of passive
tracers by quasi-two-dimensional jets purely governed by advective processes alone,
in the sense of a ‘top-hat’ mean velocity profile in the jet with Kd → 0 and with
no parametrized streamwise turbulent dispersion, the distribution of the concentration
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FIGURE 15. Constant-flux case, in similarity form. Plots of the ensemble average (pluses)
and standard deviation (STD) (thin dotted curves) of normalized experimental dye flux yM,exp,
theoretical prediction yM using (3.30) and with Ka = 1.65 and Kd = 0.09 (solid curve), and
best least-squares fit yM,fit using (3.30) and with Ka,fit = 1.55 and Kd,fit = 0.07 (dashed curve)

as a function of the similarity variable η = z/
(

t2/3
(
Q0

2/d
)1/3
)

.

in similarity space would drop much more rapidly at the front, as shown by the
distributions of yF,a in figure 1 (plotted with a thin solid curve and a thin dashed
curve). It is also important to note that more than 10 % of the total volume of tracers
released, at any time, propagates ahead of the advective front.

We plot the normalized ensemble-averaged experimental results for the concentration
flux of dye yM,exp/F in figure 15 with pluses, while the standard deviation of the data
(STD) is plotted with thin dotted curves. The experimental concentration flux of dye
Mφ,exp is computed using the expression (2.5b) with Ka = 1.65, as found above for
the best fit of yF,exp in the constant-flux case (see figure 14), and the virtual origins
described in (5.7a,b). Then, according to (3.30), the similarity form is yM,exp =Mφ,exp.
We compute the theoretical prediction yM (plotted with a solid curve) using the
theoretical formula (3.30) with Ka = 1.65 and Kd = 0.09, the reference values obtained
in the constant-flux case for yF (see figure 14). We also compute the best least-squares
fit yM,fit using the theoretical formula (3.30), where Ka,fit and Kd,fit are optimized.
The best fit (plotted with a dashed curve) is found for Ka,fit = 1.55 and Kd,fit = 0.07.
Indeed, the values of the advection and dispersion parameters for the best fit and the
theoretical prediction are actually very similar. The theoretical prediction matches with
the data at the front, with the dispersion processes appearing to have been correctly
modelled, but near the origin the data drop towards zero instead of remaining constant.
The absence of a plateau near the origin in the experimental results is presumably
due to the time and distance of adjustment before the experimental data can match
the theoretical prediction, which we mentioned previously as being associated with the
zone of flow establishment.

We can measure from the experimental data the proportion of the dye flux being
ahead of the advective front βM,exp = 0.09 (computed using (3.32)), which is close
to the theoretical prediction βM = 0.06 (shown with a cross in figure 4a) based
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FIGURE 16. (a) Vertical distribution of the normalized horizontally-integrated concentration
of virtual particles φv,exp(z, t)/φmax(t) (plotted with solid curves) at different non-dimensional
times. The results have been averaged for 256 releases of identical clusters in the velocity
fields of quasi-two-dimensional turbulent jets of source volume flow rates 33.2, 37.0 and
40.3 cm3 s−1. The location of the front of the ensemble-averaged cluster is plotted as a
function of time with a thick dashed curve. (b) Evolution in time of the distribution in
similarity form of the normalized ensemble-averaged horizontally-integrated experimental
concentration of virtual particles yv,exp (plotted with dashed curves for the time interval
48 6 t̃ 6 205 and with thin solid curves for the time intervals 205 6 t̃ 6 401) as a

function of the similarity variable η = z/
(

t2/3
(
Q0

2/d
)1/3
)

. The time-averaged data yv,exp,

for 205 6 t̃ 6 401, are plotted with a thick solid curve.

on the ratio Kd/Ka = 0.055 and using (3.33). We can also determine from the
experimental data the normalized distance between the average location of the volume
of tracers travelling ahead of the advective front and the location of the advective front
(considering ‘top-hat’ mean velocity profiles in the jet with no turbulent dispersion)
ηa, ξM,exp = 0.19 (computed using (3.34)). This value is somewhat larger than the
theoretical prediction based on the ratio Kd/Ka = 0.055 and using (3.35), ξM = 0.12
(shown with a cross in figure 4b).

The study of the flux of dye in the constant-flux case also demonstrates the ability
of the model to predict both advective and diffusive processes. It is clear from the
observation of the front of the profile in figure 15 that quasi-two-dimensional jets
diffuse tracers in a qualitatively different manner from the ‘top-hat’ purely advective
case yM,a presented in figure 3 (plotted with a thin solid curve and a thin dashed
curve). Moreover, we measure that approximately 10 % of the total concentration flux
of tracers is located ahead of the advective front.

5.3. Instantaneous finite-volume releases of virtual particles
We now compare our effective advection–diffusion model with experiments conducted
using finite-volume releases of tracers in quasi-two-dimensional jets. The initial
boundary and integral conditions imposed in the finite-volume case (3.36a–c) are more
difficult to reproduce experimentally because they require an instantaneous release. As
we discussed in § 4.3, an instantaneous release is not physically possible in laboratory
experiments, but it can be achieved using virtual particles. So, we first investigate the
case of finite volumes of virtual particles released in the velocity field of quasi-two-
dimensional jets, before analysing the more difficult problem of finite-volume releases
of dye, presented in § 5.4.
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We show in figure 16(a) the non-dimensionalized vertical distribution, at
eight different times, of the horizontally-integrated normalized concentration
φv,exp(z̃, t̃)/φmax( t̃ ) (where φmax( t̃ ) is the maximum value of φv,exp(z̃, t̃) in time, and
z̃= z/d and t̃ = t/(d2/Q0) as defined in (5.1a,b), respectively) of the ensemble average
of 256 virtual particle clusters released instantaneously, as finite volumes, in the
experimental velocity field of quasi-two-dimensional jets with source volume flow
rates 33.2, 37.0 and 40.3 cm3 s−1 (see § 4.2). At each time, we bin the data into one
hundred evenly-spaced intervals extending from the origin to the maximum vertical
extent of the ensemble-averaged cluster. The thick dashed curve shows the location of
the front zf of the ensemble-averaged cluster in time, which reaches the top boundary
of the velocity field at approximately t̃ = 290, after the release time. The location of
the front follows the expected power law zf ∝ t2/3 (Landel et al. 2012). As we can
see, the ensemble-averaged cluster rapidly changes from an initial rectangular shape
to a smoother rounded profile as it is advected by the jet. At early times t̃ 6 150,
the dispersion of the particles appears to differ slightly between the front and the rear
of the ensemble-averaged cluster. The front is sharper and drops more rapidly, while
the rear has a longer tail. This is probably due to the fact that at the beginning most
particles are advected quickly by the core of the jet, while the rest are trapped in the
lateral eddies where they move more slowly. As reported in Landel et al. (2012), the
time-averaged vertical speed of an eddy is approximately 25 % of the maximum speed
of the core. However, at later times the cluster seems to spread more symmetrically
between the front and the rear. We believe this is due to the continuous exchange of
material between the core and the eddies.

We apply the similarity transformation (3.37) to the ensemble-averaged experimental
concentration φv,exp to obtain the similarity form yv,exp, normalized by the total volume
of virtual particles Bv,exp = 2 624 256. We use the space virtual origin z0 defined in
(5.7a). The time virtual origin cannot be the same as defined in the simple (5.7b)
because the jet velocity is not constant between the jet virtual origin z0 and the
location of release of the virtual particles (i.e. 44.4 6 z/d 6 48.3). We determine the
time virtual origin so that the location of the front in time z̃f ( t̃ ) (plotted with a thick
dashed curve in figure 16a) best fits (using a least-squares fit) a straight line in a
log–log plot. We show in figure 16(b) the evolution in time of the distribution in
similarity space of the normalized experimental data yv,exp, plotted for nine successive
time periods in the range 48 6 t̃ 6 401. We can see that yv,exp seems to converge
towards an asymptotic distribution after 205 6 t̃. To illustrate this, the data for
48 6 t̃ 6 205 are plotted with dashed curves, while the data for 205 6 t̃ 6 401 are
plotted with thin solid curves. We approximate the asymptotic distribution by the
time-averaged distribution yv,exp for 205 6 t̃ 6 401 (plotted with a thick solid curve in
figure 16b). Similarly to the constant-flux case, the convergence of these finite-volume
data in similarity space implies that the similarity scalings derived from the model,
φδ(z, t)= t−2/3yδ(η) (with η ∝ z/t2/3), are the appropriate scalings for this phenomenon.

In figure 17, we compare the time-averaged ensemble-averaged virtual particle data
yv,exp with the theoretical prediction of the fundamental solution yδ (plotted with a
solid curve), which assumes an instantaneous release. The ensemble average is plotted
with crosses and the standard deviation, STD, is plotted with dotted curves. We
compute the theoretical prediction yδ using (3.44) with Ka = 1.65 and Kd = 0.09, the
reference values obtained in the constant-flux case for yF (see figure 14). We also
compute the best least-squares fit yδ,fit (plotted with a dashed curve in figure 17) using
(3.44), where Ka,fit and Kd,fit are optimized under the finite-volume constraint (3.39b).
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FIGURE 17. Finite-volume case, instantaneous release, in similarity form. Plots of the

variation with similarity variable η = z/
(

t2/3
(
Q0

2/d
)1/3
)

of the ensemble average (plotted

with pluses) and standard deviation (STD) (plotted with thin dotted curves) of the normalized
time-averaged experimental concentration of virtual particles yv,exp (plotted with pluses),
theoretical prediction yδ defined by (3.44) with Ka = 1.65 and Kd = 0.09 (plotted with a
solid curve), and best least-squares fit using yδ,fit defined by (3.44) with Ka,fit = 1.62 and
Kd,fit = 0.09 (plotted with a dashed curve).

The best least-squares fit between yv,exp and yδ,fit is obtained for Ka,fit = 1.62 and
Kd,fit = 0.09. Once again, these best-fit values are quite similar to the reference values.

We can see that the model captures the main characteristics of the data. The
concentration increases from zero at the origin (where the first and second derivatives
also vanish) to a peak value and then decreases at the front, following the theoretical
prediction yδ. The location of the peak of yv,exp, which is also the location of the
advective front, is at ηa,exp = 1.83. Using the advection parameter Ka = 1.65, we can
compute theoretically a very similar value ηa = 1.83, based on (3.24). We can also
measure from the experimental data the portion of the virtual particles which travels
ahead of the advective front βB,exp = 0.49 (computed using (3.47)), which is very close
to the theoretical prediction βB = 0.54 (shown with a cross in figure 6a) based on
the ratio Kd/Ka = 0.055 and using (3.48). (A value βB of 0.5 means that the virtual
particles are symmetrically distributed with respect to the concentration peak.) Finally,
we can also determine from the experimental data the normalized distance between the
average location of the volume of tracers travelling ahead of the advective front and
the location of the advective front (considering ‘top-hat’ mean velocity profiles in the
jet with no parametrized streamwise turbulent dispersion) ηa, ξB,exp = 0.13 (computed
using (3.49)). This value is somewhat smaller than the theoretical prediction based on
the ratio Kd/Ka = 0.055 and using (3.50), ξB = 0.17 (shown with a cross in figure 6b).
Here ξB is a measure of the spread of the distribution compared with the distance of
the peak from the origin.

All these agreements between the data yv,exp and the theoretical prediction yδ,
and between the advection and dispersion parameters of the constant-flux case
and the finite-volume case, suggest that our model can predict the shape of the
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concentration distribution of an instantaneous finite-volume release of tracers in quasi-
two-dimensional jets. Furthermore, it clearly reveals the importance of dispersion
processes in the transport of passive tracers by quasi-two-dimensional jets. As is
clear in figure 16(b), the distribution of the concentration in the similarity space (y, η)
converges in time towards a distribution with a finite width. Were the transport of
passive tracers by quasi-two-dimensional jets purely governed by advective processes
alone (i.e. in the sense of a ‘top-hat’ mean velocity profile in the jet with no turbulent
dispersion), the distribution of the concentration in similarity space would rather shrink
towards a distribution of negligible width (similar to a Dirac delta function), even with
a non-instantaneous release of tracers. It is also important to note that approximately
half of the total volume of tracers in figure 17 travels ahead of the advective front, at a
normalized averaged distance ξB ≈ 0.17 (defined in (3.50) with Kd/Ka = 0.055).

5.4. Finite-volume releases of dye
We also present in figure 12(d–f ) experimental results and theoretical predictions
of finite-volume releases of dye in quasi-two-dimensional steady turbulent jets. The
spatial distribution of the concentration C(x, z, t) is plotted using a colour scale (see
colour scale at the top of figure 12d–f ) at different non-dimensional times, 56 6 t̃ 6
533, to show the evolution of the patch of dye as it is advected, mixed and dispersed
by the jet. In figure 12(d) we plot the ensemble average of the 26 experiments, which
were conducted at different jet Reynolds numbers, 2170 6 Rej 6 4870 (see § 4.3). We
also plot the average dye edges (half-spreading angle, 〈θdye〉 = 12.4◦) with thick white
lines and the average boundaries of the ‘core’ (half-spreading angle, 7◦ starting from
z = 20d) with thin white lines (Landel et al. 2012). Similarly to the constant-flux
results presented in figure 12(a–c), we can observe that the interaction between the
core and the eddies, as described in Landel et al. (2012), results in large streamwise
dispersion. As we explained earlier, we model this streamwise dispersion using an
enhanced turbulent eddy diffusion coefficient which scales like bwm.

We present the horizontally-integrated experimental concentration φB,exp(z, t) in
figure 12(e) in normalized and redistributed form using

C(x, z, t)=

φB,exp(z, t)

2l(z)
, −l(z)6 x 6 l(z),

0, otherwise,
(5.9)

where l(z) = tan(〈θdye〉)(z − z0), as defined in (5.5), is the local horizontal distance
between the average dye edges (plotted with thick white lines in figure 12d), and
z0 is the space virtual origin defined in (5.7a). Alongside in figure 12(f ), we show
the equivalent theoretical prediction φT0(z, t) computed from (3.55) and based on the
assumption of a finite volume being released at a constant-flux during a finite period
of time T0 = 183

(
d2/Q0

)
. We discuss this particular value in more detail below.

To compute φT0 , we use Ka = 1.65 and Kd = 0.09 for the advection and dispersion
parameters, respectively, the reference values obtained in the constant-flux case for
yF (see figure 14). Before plotting the theoretical prediction φT0 in figure 12(f ), we
normalize it (similarly to φB,exp(z, t)) by the local distance 2l(z) between the average
dye edges, and finally redistribute it uniformly, assuming a top-hat spatially-averaged
profile, within these boundaries, i.e.

C(x, z, t)=

φT0(z, t)

2l(z)
, −l(z)6 x 6 l(z),

0, otherwise,
(5.10)
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FIGURE 18. (a) Evolution in time of the integral of the dye concentration over the whole
domain for: the experimental data φB,exp (plotted with pluses); the theoretical prediction
φδ (plotted with a solid line), defined by (3.44); and the theoretical prediction φT0
(plotted with a dotted line), defined by (3.55). The dashed line indicates the time instant
t̃90 = 183 when approximately 90 % of the total integrated concentration of dye (‘seen’
by the imaging analysis) has entered the tank. (b) Plots of the variation with similarity
variable η = z/

(
t2/3
(
Q0

2/d
))

of the evolution in time of the normalized ensemble-averaged
horizontally-integrated experimental concentration plotted in similarity form, yB,exp (computed
from φB,exp using (3.37)), in the case of finite-volume releases of dye. The data are plotted at
12 different time instants for 0 6 t̃ 6 979, with time increasing as the amplitude of the data
increases.

where l(z) is defined in (5.5).
Although the comparison between the experimental data in figure 12(e) and the

theoretical prediction in figure 12(f ) is not perfect at early times and near the origin,
as the theoretical concentration seems to travel slightly slower than the experimental
concentration for t̃ 6 222, it improves at later times as the jet advects and diffuses
the dye. As we mentioned above, this mismatch is probably due to the zone of flow
establishment of the jet. There is a necessary time and distance of adjustment before
the experimental data can match the theoretical prediction, because the theoretical
prediction is based around the assumption that the jet characteristic properties are
given by the similarity power laws (2.4a,b).

In these experiments, we naturally are not able to release finite volumes of dye
instantaneously. Aspects of the experimental dye release are revealed in figure 18(a),
where we show the evolution in time of the integral of the dye concentration over
the whole domain

∫∞
0 φB,exp(z, t) dz (plotted with pluses). These data represent the total

volume of dye ‘seen’ by the imaging analysis in the window frame −40 6 x/d 6 40
and 0 6 z/d 6 100. The dashed line indicates the time instant t̃90 = 183, when
approximately 90 % of the total volume of dye ‘seen’ by the imaging analysis has
entered the tank. We can see that the total volume of dye increases almost steadily for
t̃ 6 t̃90. Then, the total volume of dye reaches a maximum at t̃ ≈ 290 before decreasing
smoothly as the dye is transported outside the window frame. These data clearly show
that the release of dye occurs over a finite period of time and is not instantaneous.

The effect of the spreading in time of the release of dye can also be seen in the
evolution in time of the concentration distribution in the jets. In figure 18(b), we show
the non-dimensional experimental concentration in similarity form yB,exp (computed
from φB,exp using (3.37) at each instant in time). We normalize yB,exp by the total
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injected volume B and plot it at 12 different instants in time for 0 6 t̃ 6 979, with
time increasing as the amplitude of the data increases. The space and time virtual
origins described in (5.7a,b) are used to compute yB,exp. Ideally, if the dye were
released instantaneously at the origin, as described in the integral and initial boundary
conditions (3.36a–c), all the curves should be identical and collapse on a single profile.
Instead, we observe a gradual increase of the area under the curves. The data do not
appear to have yet reached an asymptotic distribution. It can also be noticed that the
curves at late times (for 290 6 t̃) are not plotted over the whole range 0 6 η 6 3.5,
but stop at some values η < 3.5. These curves are incomplete because for 290 6 t̃, the
front of the dye located at the height zf has already moved outside the image frame,
i.e. zf /d > 100, and thus we cannot visualize the full distribution of the dye in space.

It is clear from both figures 18(a,b) that the release of the dye is not instantaneous
and that the data have not yet reached an asymptotic distribution in similarity space.
Thus, we cannot use the theoretical prediction yδ defined in (3.44) to model these
experiments, as we did in the case of finite-volume releases of virtual particles
presented above, because the fundamental solution yδ assumes an instantaneous release
of the finite volume of tracers (see the integral and initial boundary conditions
(3.36a–c)). Therefore, we compare the experimental data φB,exp(z, t) with the general
solution φg(z, t), described in (3.52) and based on the convolution of the fundamental
solution φδ with a source function f (t) = φg(0, t). The source function can model the
more general and realistic case of a time-dependent release.

To compute the general solution φg(z, t), we need to define the source function f (t),
which represents the rate at which the overall integrated volume of tracers changes
with time. In figure 18(a), we observe that the total integrated concentration of dye∫∞

0 φB,exp(z, t) dz increases almost linearly with time for t̃ 6 t̃90. Hence, we choose to
model the source function as simply a non-zero constant for 0 6 t̃ 6 t̃90 and zero for
t̃90 6 t̃:

ft̃90( t̃ )= H( t̃ )− H(t̃ − t̃90)

t̃90
. (5.11)

Using such a rectangular source function, the general solution φg(z, t) corresponds to
the particular solution φT0 (with T0 = t90), described in (3.55). We plot the resulting
theoretical integrated concentration

∫∞
0 φT0(z, t) dz with a dotted curve in figure 18(a).

We can see that the match with the data (plotted with pluses) is, at least until the dye
is advected beyond the spatial range of the camera (for t̃ 6 290), better than for the
model assuming an instantaneous release φδ (plotted with a solid line).

We compute the theoretical prediction φT0 , based on the source function ft̃90 with
T0 = t90 = 183(d2/Q0), using the virtual origins described in (5.7a,b). We compare the
distribution of the experimental data φB,exp (plotted with pluses) and the theoretical
prediction φT0 (plotted with solid curves) in figure 19 at nine different times for
0 6 t̃ 6 418. We compute φT0 using the advection and dispersion parameters Ka = 1.65
and Kd = 0.09, respectively, the reference values obtained in the constant-flux case
for yF (see figure 14). We also show the best least-squares fit φT0,fit (plotted with
dashed curves in figure 19), computed using the theoretical formula (3.55) and
the source function ft̃90 (see (5.11)) with T0 = t90 = 183(d2/Q0). The advection and
dispersion parameters Ka,fit and Kd,fit, respectively, are optimized under the finite-
volume constraint (3.36c). The best least-squares fit between φB,exp and φT0,fit is
obtained for Ka,fit = 1.75 and Kd,fit = 0.09, still quite close to the reference values.
Overall, we observe reasonable agreement between φT0 and φB,exp. At early times,
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FIGURE 19. Plots at various times of the vertical distribution of the horizontally-integrated
concentration of dye as a function of the non-dimensional distance z/d in the case
of finite-volume releases for: ensemble-averaged experimental data φB,exp (plotted with
pluses); theoretical prediction φT0 (plotted with solid curves), based on (3.55) using the
reference advection and dispersion parameters Ka = 1.65 and Kd = 0.09, respectively, and
the source function ft̃90(t) as defined in (5.11); and best least-squares fit φT0,fit (plotted
with dashed curves), based on (3.55) using the advection and dispersion parameters
Ka,fit = 1.75 and Kd,fit = 0.09, respectively, and the source function ft̃90(t) as defined in (5.11).
Times: (a) t/(d2/Q0) = 0, (b) t/(d2/Q0) = 51, (c) t/(d2/Q0) = 103, (d) t/(d2/Q0) = 155,
(e) t/(d2/Q0) = 207, (f ) t/(d2/Q0) = 259, (g) t/(d2/Q0) = 311, (h) t/(d2/Q0) = 363,
(i) t/(d2/Q0)= 418.

for t̃ 6 100, the match between the data and the model is not perfect because the
experimental concentration profile adjusts partially due to the lack of self-similarity in
the jet. We believe this issue is related to the zone of flow establishment discussed
previously. Then, both the advection (location of the peak in time) and the dispersion
(width of the curve) seem to agree. There is a consistent mismatch at the rear where
the data seem to be more spread out. This is probably due to some residue of dye
in the tube still being injected in the jet at late times, and apparently stretching and
diffusing the experimental dye concentration. In fact, we can see in figure 18(a) that
even after t̃ > t̃90 the total integrated dye concentration detected by the camera is
still increasing. We further believe that for times greater than the time instant of the
maximum of the curve plotted with pluses in figure 18(a) (i.e. approximately t̃ > 290),
more dye is released in the study area due to the Taylor dispersion in the nozzle
tube though at a smaller rate than the dye being advected out of the study area by
the jet. In our study we have decided to make the simplifying assumption that the
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FIGURE 20. Finite-volume case, in similarity form. Plots of the variation with similarity
variable η = z/

(
t2/3
(
Q0

2/d
))

of the non-dimensionalized theoretical prediction yT0 , based on
(3.55), computed at t̃ = 150 (thin solid curve), t̃ = 300 (dotted curve), and t̃ = 450 (dashed
curve), using the reference advection and dispersion parameters Ka = 1.65 and Kd = 0.09,
respectively, and the source function ft̃90(t) as defined in (5.11). The asymptotic distribution
of yT0 (plotted with a thick solid curve) is equal to yδ and can be computed using (3.44) with
Ka = 1.65 and Kd = 0.09.

dye is released at a constant rate for a finite time: for 0 < t̃ < t̃90. The time evolution
of the total integrated concentration resulting from this assumption is plotted with a
dotted curve in figure 18(a). We can see that this assumption does not perfectly model
the experimental data (plotted with pluses in figure 18a). Therefore, we believe that
the consistent late-time mismatch at the rear between the theoretical and experimental
curves in figure 19 is simply due to the fact that our simplifying assumption does not
take into account the delayed injection of the residual dye in the tank.

According to (3.56), the solution φT0(z, t) converges in time towards φδ(z, t).
Hence, we also expect the data φB,exp(z, t) to converge in time towards φδ(z, t). We
demonstrate this convergence by plotting in figure 20 the similarity form of the
theoretical prediction φT0 at t̃ = 150 (plotted with a thin solid curve), t̃ = 300 (plotted
with a dotted curve) and t̃ = 450 (plotted with a dashed curve). We also show the
asymptotic solution yδ, defined by (3.44) and computed using the reference advection
and dispersion parameters Ka = 1.65 and Kd = 0.09. We can measure the absolute
deviation, based on (3.58), between yT0 at t̃ = 300 when the integrated concentration
of dye is approximately maximum (see figure 18a) and the asymptotic solution yδ. We
find dev= 0.85, computed for t̃/T̃0 = 300/183≈ 1.64 and using (3.58). If we consider
that convergence is ‘achieved’ if dev 6 0.1, then we find that our experimental
data would be expected to achieve convergence for t̃/T̃0 > 13.6, or at t̃ > 2488.
We can estimate that the distance at which we should observe the concentration
distribution of the finite volumes of dye converge towards an asymptotic distribution
is z > ηa (13.6T̃0)

2/3
d ≈ 2 m, based on the location of the concentration peak at

convergence. Finally, we can predict the key characteristics of yδ, the asymptotic
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distribution of yB,exp (the similarity form of φB,exp computed using (3.37)), which are
actually identical to the characteristics of the theoretical prediction found for the
virtual particles because the advection and dispersion parameters are the same. So,
we can expect that the maximum concentration of the asymptotic distribution of yB,exp

is located at ηa = 1.83, based on (3.24) with Ka = 1.65; the portion of the virtual
particles which travels ahead of the advective front is βB = 0.54 (shown with a cross
in figure 6a), based on the ratio Kd/Ka = 0.055 and using (3.48); and the average
location of the volume of tracers travelling ahead of the advective front is ξB = 0.17
(shown with a cross in figure 6b), based on the ratio Kd/Ka = 0.055 and using (3.50).

6. Conclusion
In this theoretical and experimental study, we have analysed the time-dependent

transport and dispersion properties along the streamwise direction of quasi-two-
dimensional jets. We model the evolution in time and space of the concentration of
passive tracers using a one-dimensional time-dependent effective advection–diffusion
equation. We integrate the concentration across the jet in order to be able to solve
our proposed heuristic advection–diffusion (2.3). From the analysis of experimental
results we find that this simplification appears to be appropriate, because the tracer
distribution remains confined within the quasi-two-dimensional jet between two
linearly-expanding straight-sided boundaries (Landel et al. 2012). Neglecting any
molecular diffusion, we assume a streamwise turbulent eddy diffusion coefficient
proportional to the product of the local half-width of the jet b(z) ∝ z and the local
time-averaged maximum vertical velocity wm(z) ∝ z−1/2 (analogously to mixing length
theory). The streamwise turbulent eddy diffusion coefficient models physically the
interaction between the core and eddy structures of quasi-two-dimensional jets. (In
Landel et al. (2012), we showed that the core–eddy structure was self-similar with
height, with characteristic local length scale b(z), and with characteristic local velocity
scale wm(z).)

Using a streamwise turbulent eddy diffusion coefficient scaling like M0
1/2z1/2, we are

able to transform the effective advection–diffusion equation into a similarity form. We
solve analytically the resulting ordinary differential equation in the cases of a constant-
flux release and an instantaneous finite-volume release yielding a ‘fundamental
solution’. The solutions depend on two parameters, an advection parameter Ka and
a dispersion parameter Kd, which we determine using experimental measurements. We
also provide an integral formulation for the general problem of an arbitrary time-
dependent release of tracers governed by a source function. The integral formulation
for this more realistic case is the convolution between the fundamental solution found
for the instantaneous finite-volume release and the source function. We present an
analytical solution for the general problem in the case of a rectangular source function
(i.e. the flux of tracers at the jet source is constant for a finite period of time, T0, and
zero otherwise, thus releasing a finite volume). At large time (t� T0), this solution
converges towards the fundamental solution found for the instantaneous finite-volume
release. On the other hand, for T0→∞, this solution converges towards the solution
found for the constant-flux release.

Furthermore, we show theoretically that, owing to dispersion mechanisms, a non-
negligible portion of the total volume of tracers released travels ahead of the advective
front, in both the finite-volume and the constant-flux cases. The advective front
corresponds to the location of the tracers (in the finite-volume case) or the leading
front of the tracer distribution (in the constant-flux case) if all dispersion mechanisms
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are ignored, Kd = 0 and we assume a top-hat distribution for the velocity with no
turbulent dispersion. Owing to the self-similarity form of the flow, we also find that
the streamwise dispersion increases in time as t2/3.

We compare the theoretical model with experimental measurements obtained by
tracking the concentration of dye or virtual particles in time and space. We conduct
both constant-flux and finite-volume releases of dye in quasi-two-dimensional steady
turbulent jets. We also release finite volumes of virtual particles transported as passive
tracers instantaneously in the fully resolved time-dependent velocity fields of quasi-
two-dimensional steady turbulent jets. We consider the experimental data for constant-
flux releases of dye more accurate because the initial, boundary and integral conditions
imposed in the theoretical model are more straightforward to satisfy experimentally.
We find that the experimental results agree well with the theoretical prediction,
using either the horizontally-integrated concentration of dye φ or the streamwise
concentration flux of dye Mφ as defined in (2.1) and (2.5b), respectively. The similarity
scaling derived from the model η ∝ z/t2/3 is appropriate to study this phenomenon. We
find that what we refer to as our ‘reference’ values for the advection and dispersion
parameters are Ka = 1.65 and Kd = 0.09, respectively, determined from the study of
the concentration in the constant-flux dye experiments.

We largely confirm these results by the complementary experimental data obtained
with finite-volume releases of virtual particles. The data converge in similarity form
towards the fundamental theoretical solution, assuming an instantaneous finite-volume
release. The similarity scaling η ∝ z/t2/3 is also appropriate in this case. We find that
the best fits to the advection and dispersion parameters are Ka = 1.62 and Kd = 0.09,
respectively. In the case of finite-volume releases of dye, we find that the experimental
concentration distribution has not converged towards the asymptotic fundamental
solution, assuming an instantaneous release. We believe that this is principally due
to the fact that the dye could not be released instantaneously in the experiment.
The duration of the dye release introduces a new time scale T0, which affects the
concentration distribution. Until t� T0, the concentration distribution is in a transition
regime, which we model using the general model φT0 defined in (3.55), assuming a
rectangular source function. We find that the best fits to the advection and dispersion
parameters are Ka = 1.75 and Kd = 0.09, respectively. We also calculate that, in this
case, the distribution should ‘converge’, the normalized absolute deviation between
φT0 and φδ, defined in (3.58), is smaller than 0.1 towards the fundamental solution
φδ defined in (3.44) after a duration equal to approximately 14 times the time of
release of the dye (i.e. t > 14T0). In other words, the dye distribution should converge
towards an asymptotic distribution at z ≈ 2 m, at a distance larger than four times the
maximum distance of our study area.

Our model appears to be robust to variations in the initial boundary conditions of
the experiments. In the experiments with finite-volume releases of virtual particles,
even though the particles are released instantaneously but far away from the source,
the particle concentration distribution seems to converge rapidly in time towards a
stable asymptotic distribution predicted by the model. In the experiments with finite-
volume releases of dye, even though the dye is released near the source but not
instantaneously, we can prove that the dye concentration distribution will eventually
converge in time towards a stable asymptotic distribution predicted by the model.
Moreover, we can estimate the time before convergence and provide a model for the
transition regime.

Overall, the model largely appears to agree with the data, especially at the dispersive
front of the distribution. In table 1 we collect all the various key experimentally
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Case Theory Ka Kd Kd/Ka ηa β ξ

Constant-flux release (dye) yF 1.65 0.09 0.055 1.83 0.12–0.10 0.16–0.13
Constant-flux release (dye) yM 1.55 0.07 0.045 1.83 0.09–0.06 0.19–0.12
Instantaneous finite-volume yδ 1.62 0.09 0.056 1.83–1.83 0.49–0.54 0.13–0.17
release (virtual particles)
Finite-volume release (dye) φT0 1.75 0.09 0.051 1.83a 0.54a 0.17a

TABLE 1. Summary of the key experimental results found in the constant-flux and the
finite-volume cases. The values for the advection and dispersion parameters Ka and Kd

are obtained from the best least-squares fit of the experimental data. On the other hand,
ηa, β and ξ are computed theoretically using the ‘reference’ parameters Ka = 1.65 and
Kd = 0.09, found in the constant-flux case; if two values are indicated, the first value is
measured experimentally while the second value is computed theoretically using Ka = 1.65
and Kd = 0.09. a Theoretical value after φT0 converges to φδ .

determined quantities. By comparing the various models with all the experiments, we
are able to give an estimated range for the advection and dispersion parameters.
We find that the advection and dispersion parameters are Ka = 1.65 ± 0.10 and
Kd = 0.09 ± 0.02 respectively, and the ratio between the two is within the range
0.045 6 Kd/Ka 6 0.056. For both the constant-flux case and the instantaneous finite-
volume case, the location in similarity space of the advective front (as defined in
(3.24)) is found at ηa = 1.83. Then, in the case of constant-flux releases of tracers,
we find that, at each instant in time, approximately βF = 11 ± 1 % (as defined in
(3.27)) of the total volume of tracers having already been released is transported
ahead of the advective front, at an averaged normalized distance in similarity space
ξF = 0.145± 0.015 (as defined in (3.29)). In the case of an instantaneous finite-volume
release of tracers, about βB = 51.5 ± 2.5 % (as defined in (3.48)) of the total volume
of tracers released is transported ahead of the advective front ηa, at an averaged
normalized distance in similarity space ξB = 0.15± 0.02 (as defined in (3.50)).

In § 1, we discussed the importance of modelling correctly the transport and
dispersion of tracers in quasi-two-dimensional jet flows. We believe that the
model developed in the present work provides not only a strong insight into
these mechanisms but also a quantitative basis to predict them. Comparisons with
experimental data obtained using different techniques support the predictions of the
model. From this comparison, we can also measure accurately the strength of the
advection and the strength of the dispersion in quasi-two-dimensional jets, using
only an advection parameter Ka and a dispersion parameter Kd, respectively. Finally,
we have discovered that the streamwise dispersion increases in time like t2/3. In
other words, a significant amount of tracers released in quasi-two-dimensional jets
is transported faster than the speed predicted by a simple advection model. Such
predictions are crucial to many applications, particularly in the event of environmental
pollutions in rivers and lakes.
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Appendix. Proof of (3.56)
If t > T0, we have, according to (3.55),

φT0(z, t)= KT0

T0
z1/2

(∫ +∞
s(t)

ha−1e−h dh−
∫ +∞

s(t−T0)

ha−1e−h dh

)
, (A 1)

with

KT0 =
2B

3KdM0
1/20 [a+ 1]

, a= 2
3

(
Ka

Kd
− 1

2

)
and s(t)= 4z3/2

9KdM0
1/2t

. (A 2a–c)

Combining the two integrals, in the limit t� T0, (A 1) becomes

φT0(z, t)∼ KT0

T0
z1/2(s(t))a−1e−s(t) (s(t − T0)− s(t)) (A 3)

∼ KT0

z1/2

t
(s(t))ae−s(t). (A 4)

Using η = z/
(
t2/3M0

1/3
)
, (A 2b,c), we obtain

φT0(z, t)∼ t−2/3KT0M0
1/6

(
4

9Kd

)a

ηKa/Kd exp
[
− 4

9Kd
η3/2

]
. (A 5)

Finally, using (A 2a), we find

φT0(z, t)∼ t−2/3 B(
3
2

)2a+1

(Kd)
a+10 [a+ 1] M0

1/3

ηKa/Kd exp
[
− 4

9Kd
η3/2

]
(A 6)

= t−2/3yδ(η), (A 7)

where yδ is defined in (3.44), and hence (3.56) follows.

R E F E R E N C E S

CENEDESE, C. & DALZIEL, S. B. 1998 Concentration and depth fields determined by the light
transmitted through a dyed solution. In Proceedings of the 8th International Symposium on
Flow Visualization (ed. G. M. Carlomagno & I. Grant) ISBN 0 9533991 0 9, paper 061.

CHATWIN, P. C. & ALLEN, C. M. 1985 Mathematical models of dispersion in rivers and estuaries.
Annu. Rev. Fluid Mech. 17, 119–149.

CHEN, D. & JIRKA, G. H. 1998 Linear stability analysis of turbulent mixing layers and jets in
shallow water layers. J. Hydraul. Res. 36, 815–830.

CHEN, D. & JIRKA, G. H. 1999 LIF study of plane jet bounded in shallow water layer. J. Hydraul.
Engng 125, 817–826.

COOMARASWAMY, I. A. 2011 Natural ventilation of buildings: time-dependent phenomena. PhD
thesis, University of Cambridge.

DALZIEL, S. B. 1992 Decay of rotating turbulence: some particle tracking experiments. Appl. Sci.
Res. 49, 217–244.

DALZIEL, S. B., PATTERSON, M. D., CAULFIELD, C. P. & COOMARASWAMY, I. A. 2008 Mixing
efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids 20, 065106.

DRACOS, T., GIGER, M. & JIRKA, G. H. 1992 Plane turbulent jets in a bounded fluid layer.
J. Fluid Mech. 241, 587–614.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.388


258 J. R. Landel, C. P. Caulfield and A. W. Woods

DUTKIEWICZ, S., GRIFFA, A. & OLSON, D. B. 1993 Particle diffusion in a meandering jet.
J. Geophys. Res., Oceans 98, 16,487–16,500.

FISCHER, H. B. 1973 Longitudinal dispersion and turbulent mixing in open-channel flow. Annu. Rev.
Fluid Mech. 5, 59–78.

GIGER, M., DRACOS, T. & JIRKA, G. H. 1991 Entrainment and mixing in plane turbulent jets in
shallow water. J. Hydraul. Res. 29, 615–642.

GRADSHTEYN, I. S. & RYZHIK, I. M. 2007 Table of Integrals, Series, and Products, seventh
edition. Elsevier.

JIRKA, G. H. 2001 Large scale flow structures and mixing processes in shallow flows. J. Hydraul.
Res. 39, 567–573.

JIRKA, G. H. & UIJTTEWAAL, W. S. J. 2004 Shallow flows: a definition. In Shallow Flows (ed.
G. H. Jirka & W. S. J. Uijttewaal). pp. 3–11. Taylor & Francis.

LANDEL, J. R., CAULFIELD, C. P. & WOODS, A. W. 2012 Meandering due to large eddies and the
statistically self-similar dynamics of quasi-two-dimensional jets. J. Fluid Mech. 692, 347–368.

LAW, A. W. K. 2006 Velocity and concentration distributions of round and plane turbulent jets.
J. Engng Math. 56, 69–78.

LEWIS, R. 1997 Dispersion in Estuaries and Coastal Waters. Wiley.
LUO, K., KLEIN, M., FAN, J.-R. & CEN, K.-F. 2006 Effects on particle dispersion by turbulent

transition in a jet. Phys. Lett. A 357, 345–350.
MACCREADY, P. & GEYER, W. R. 2010 Advances in estuarine physics. Annu. Rev. Mar. Sci. 2,

35–58.
MATHIEU, J. & SCOTT, J. 2000 An Introduction to Turbulent Flow. Cambridge University Press.
MORTON, B. R., TAYLOR, G. I. & TURNER, J. S. 1956 Turbulent gravitational convection from

maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (2012) NIST Digital Library of

Mathematical Functions, version 2012-03-23. http://dlmf.nist.gov/.
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