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Abstract
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1. Introduction

This article is an expansion by Jim Pitman of a typescript with the same title which he
received from his father E. J. G. Pitman in November 1983. The aim of the typescript was
to derive the explicit form for the characteristic function of a stable distribution on the line,
by solving the associated functional equation (2.2) (below) and applying the theory of regular
variation, without appeal to the general Lévy–Khintchine representation of infinitely divisible
distributions, but with the necessary restrictions on the constants. In a letter dated the 6th of
November, 1983, my father wrote about the typescript:

I gave a rough version of the first four pages as long ago as when I was still at the University
of Tasmania. I included an improved version in my lectures at Chicago in 1969; but I was
unable to get the restrictions on the constants. That I succeeded in doing only this year.

To provide some context, this introduction and the following three sections offer a brief survey
of the theory of stable distributions on the line and their Lévy–Khintchine representations,
based on the classical theory of Eulerian integrals. The remaining sections follow my father’s
1983 typescript quite closely, with only minor changes of notation and arrangement of the
material, and addition of some references. The first four pages of the typescript, mentioned
above, became Section 5 of this article. The argument then involves some extensions of my
father’s work [22] relating regular variation of the tails of a distribution to regular variation of
its characteristic function near the origin. These results, which may be of some independent
interest, are presented in Section 6, followed by a proof of the main new result in Section 7.
The results on regular variation are finally applied in Section 8 to establish the restrictions on
the constants in the analytic form of the stable characteristic functions.

Let X be a real-valued random variable with distribution function F(x) := P(X ≤ x) and
characteristic function

φ(t) := E(eitX) =
∫ ∞

−∞
eitx dF(x).
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262 E. J. G. PITMAN AND J. PITMAN

The distribution ofX is called stable if, for each positive integern, withX1, . . . , Xn independent
random variables with the same distribution as X, there is the equality in distribution

X1 + · · · +Xn
D= anX + bn (1.1)

for some real constants an and bn with an > 0. See Section 2 for some equivalent forms and
variations of this definition. We aim to prove the following result.

Theorem 1.1. (Lévy–Khintchine representation of stable distributions [17], [19].) A function
φ is the characteristic function of a stable probability distribution on the real line if and only
if φ(t) = exp[ψ(t)] with

ψ(t) = ψα,c,β,μ(t) := iμt − |ct |α(1 − iβ sgn(t)ωα(t)), (1.2)

where

ωα(t) =

⎧⎪⎨
⎪⎩

tan
π

2
α if α �= 1, (1.3a)

− 2

π
log |t | if α = 1, (1.3b)

for some real α, c, β, μ with 0 < α ≤ 2, c ≥ 0, and |β| ≤ 1. (1.4)

Here, by definition, sgn(t) = t/|t | = 1(t > 0)− 1(t < 0) has value 1 or 0 or −1 according
to whether t > 0 or t = 0 or t < 0. This formulation of Theorem 1.1 follows the treatment by
Gnedenko and Kolmogorov [11, Section 34], with corrections indicated by Hall [14]. Following
Samorodnitsky and Taqqu [24, Definition 1.1.6], we encapsulate Theorem 1.1 as follows.

Definition 1.1. The probability distribution whose characteristic function has logarithm
ψα,c,β,μ(t) is denoted by Sα(c, β, μ). The notation X ∼ Sα(c, β, μ) signifies that a random
variable X has distribution Sα(c, β, μ) for some (α, c, β, μ) subject to the constraints (1.4).
Then X, or the distribution of X, is called stable with index α, or α-stable. Since ω2(t) ≡ 0,
the value of ψ2,c,β,μ(t) is unaffected by β. We adopt the convention that β = 0 for α = 2. So
S2(c, 0, μ) is the normal distribution with mean μ and variance 2c2.

Hall’s article [14] reviewed and corrected a number of derivations of Theorem 1.1 in the
literature up to 1980. All these derivations follow the classical approach via the more general
representation of distributions ofX that are infinitely divisible, meaning that, for every positive
integer n,

X
D= Xn,1 + · · · +Xn,n (1.5)

for some sequence ofn independent and identically distributed random variablesXn,1, . . . ,Xn,n.
If the distribution of X is stable as in (1.1), then (1.5) holds with Xn,i = (Xi − bn/n)/an.
Theorem 1.1 is then seen to be the specialization to the stable case of the following theorem.

Theorem 1.2. (Lévy–Khintchine representation of infinitely divisible distributions [17], [19].)
A function φ is the characteristic function of an infinitely divisible probability distribution on
the line if and only if φ(t) = exp[ψ(t)] with

ψ(t) = ibt − 1

2
σ 2t2 +

∫ ∞

−∞
(eitx − 1 − itτ (x))L(dx), (1.6)

where

• b is real,

• σ ≥ 0,
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• τ(x) is a bounded measurable truncation function such that τ(x)/x → 1 as x → 0,

• L is a Lévy measure on the line, meaning thatL({0}) = 0 and
∫ ∞
−∞(x

2 ∧ 1)L(dx) < ∞.

In Section 4 we review details of the Lévy–Khintchine representation (1.6) in the particular
case of stable laws, and the derivation of the ‘if’ part of Theorem 1.1, that the distribution
Sα(c, β, μ) is well defined, from the ‘if’ part of Theorem 1.2, which is relatively easy to prove
compared to its ‘only if’ part. This derivation in Section 4 relies on some classical evaluations
of Eulerian integrals, which are reviewed in Section 3. The ‘only if’ part of Theorem 1.1,
that every stable distribution is of the form Sα(c, β, μ) for some (α, c, β, μ) subject to the
constraints (1.4), takes much more work. For many decades, there seemed to be no alternative
to first establishing the ‘only if’ part of the general Lévy–Khintchine representation, which
involves a fair amount of analytic machinery, including compactness arguments, the Helly–
Bray theorem, and Lévy’s continuity theorem for characteristic functions, then specializing to
obtain the form of the Lévy measure of an infinitely divisible distribution that is stable.

The work of Geluk and de Haan [9] in 2000 seems to be the first published alternative to this
classical approach. Their approach is similar to that adopted here, using Fourier transforms
and theory of regular variation. Their treatment is also more complete. They start from the
characterization of stable laws ofX as limits in distribution of centred, scaled sumsX1+· · ·+Xn
of independent and identically distributed Xi , say

X1 + · · · +Xn − μn

cn

D−→ X, (1.7)

where all theXi have the same distribution asX1, but the limit distribution ofXmay differ from
the distribution ofX1. For instance, the most familiar form of the central limit theorem, starting
from any distribution of X1 with mean μ and variance σ 2, leads with μn = nμ and cn = √

nσ

to X with standard normal distribution. Geluk and de Haan go on to describe the domain of
attraction of each possible stable law of X, that is, the set of all possible distributions of X1
such that (1.7) holds for independent and identically distributed Xi , along with the associated
constants μn and cn. In this approach, the Lévy–Khintchine representation of stable laws
emerges as a byproduct of a comprehensive analysis of their domains of attraction. See also [7,
Section XVII.5], [21], and the references of [9] for other approaches to domains of attraction.

The present approach to the ‘only if’ part of Theorem 1.1 is both more direct and less
ambitious than the approach of Geluk and de Haan. It involves only an analysis of the functional
equation satisfied by the characteristic function of stable distribution, (2.2) below, without
consideration of domains of attraction. See also the text of Ramachandran and Lau [23, Chapter
3] for a similar analysis of the functional equation, with references to earlier work. For general
background on regular variation and its applications to probability theory, see the texts of Feller
[7], Bingham et al. [4], and Geluk and de Haan [8], and the historical article of Seneta [26]. See
also Kagan et al. [15] regarding characterization problems in probability and statistics, Kuczma
[18] and Aczél and Dhombres [1] for general background on functional equations, and [13]
and [12] for some more recent work on characterizations of multivariate stable laws through
functional equations satisfied by their characteristic functions.

2. Stable distributions

The definition of stability (1.1) can be written in terms of distribution functions as

Fn∗(x) = F

(
x − bn

an

)
for all real x, (2.1)
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where Fn∗ is the n-fold convolution of F with itself. Equivalently, in terms of characteristic
functions,

φ(t)n = φ(ant) exp[ibnt] for all real t. (2.2)

Starting in Section 5, we take the functional equation (2.2) satisfied by φ as the defining
property of stability, then proceed to characterize all solutions of this functional equation that
are characteristic functions of some probability distribution on the line. But a number of
variations and generalizations of the stability concept also deserve mention. And there is no
doubt that in the applications of stable laws, their representation as infinitely divisible laws,
especially their description as stochastic integrals with respect to Poisson processes governed
by the stable Lévy measure [24, Chapter 3], is of utmost importance.

First, there is the characterization of stable distributions as limits in distribution of centred
and scaled sums of independent and identically distributed random variables, as in (1.7). Then
there is the condition that, for two independent copies of X, X1 and X2, and every pair of
positive reals a and b, there exists a positive real c and a real d such that

aX1 + bX2
D= cX + d. (2.3)

The equivalence of these three variations of the definition of stability is elementary, and
discussed in many texts. See, for instance, [7, Section VI.1]. See also [24] for a comprehensive
account of the theory of stable distributions and its applications to the construction of stable
non-Gaussian random processes.

The following byproduct of Theorem 1.1 is established by elementary arguments in Section 5.

Corollary 2.1. The only possible form of the constants an in (1.1) is an = n1/α for some 0 <
α ≤ 2. Then, in (2.3),

aα + bα = cα, 0 < α ≤ 2.

The distribution of X is called symmetric if X
D= −X and strictly stable if any one of the

following equivalent conditions is satisfied:

• (2.3) holds with d = 0;

• (1.1) holds with bn = 0;

• (1.7) holds with μn = 0.

By inspection of the characteristic function (1.2), and appeal to the uniqueness theorem for
characteristic functions, X is

• symmetric ⇐⇒ either (α = 2 and μ = 0) or (0 < α < 2, μ = 0, and β = 0);

• strictly stable ⇐⇒ either (0 < α ≤ 2 and μ = 0) or (α = 1 and β = 0).

Note the subtle difference between the cases α �= 1 and α = 1:

• if α �= 1 then, for every α-stable X, no matter what the value of β, there is a constant μ
such the shift X − μ is strictly stable;

• if α = 1 then the distribution of X is strictly stable for β = 0, but, for β �= 0, no shift of
X is strictly stable.

This difference is indicative of a discontinuity in the parametrisation of Sα(c, β, μ) at α = 1,
β �= 0, discussed further in the next section. The same difference is apparent in the following
straightforward corollary of (1.2).
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Corollary 2.2. IfX ∼ Sα(c, β, μ)andSn := X1 + · · · +Xn is the sum ofn independent copies
Xi of X, then Sn ∼ Sα(n

1/αc, β, nμ). Equivalently,

Sn
D=

⎧⎨
⎩
n1/αX + μ(n− n1/α) if α �= 1,

nX + 2

π
cβn log n if α = 1.

It is a well-known consequence of Theorem 1.1, by Fourier inversion, that each nondegener-
ate stable law has a bounded and continuous density. For instance, in the strictly stable case, up
to a change of location and scale, the density ofX can be written as (see [28, Theorem V.7.13])

fθ (x) = 1

π

∫ ∞

0
exp[−uα] cos(xu+ θuα) du for all real x, (2.4)

where θ is a real parameter subject to |θ | ≤ | tan(πα/2)|. Unfortunately, there seem to be few
more explicit formulae for fθ except in familiar special cases: the Gaussian case α = 2, the
Cauchy case α = 1, and the one-sided Lévy case with α = 1/2 which arises from first-passage
times of Brownian motion. See [29] for a deeper study of stable densities. As remarked in [28,
Theorem V.7.26], Theorem 1.1 implies that, for an integrable function of the form (2.4), for
some real θ ,

fθ (x) ≥ 0 for all real x ⇐⇒ |θ | ≤
∣∣∣∣ tan

π

2
α

∣∣∣∣.
This seems to be very hard to prove directly; so considerable work must be done to establish
the limitation |β| ≤ 1 in the parametrization (1.2) of stable laws.

The terminology used here has evolved over time. Lévy used the terms stable and quasi-
stable, instead of strictly stable and stable. Lévy also introduced the term semi-stable for
distributions of X such that (1.1) holds for n = 2, or, equivalently, (2.3) holds for a = b. Lévy
characterized all distributions with this property, which is weaker than stability, but which can
nonetheless be approached via the theory of infinitely divisible distributions. Another closely
related concept is that of a self-decomposable distribution, or distribution of class L. See [25]
for a comprehensive treatment of all these notions, their generalizations to higher dimensions,
and their applications to the theory of stochastic processes with independent increments. Steutel
and van Harn [28, Chapter V] offered a more elementary treatment of self-decomposable and
stable distributions on the line, including a proof of Theorem 1.1 using a representation of
self-decomposable distributions. See also [3] regarding Lévy processes. Another research
monograph with extensive treatment of stable distributions and their applications is [29].

3. Eulerian integrals

The Fourier transforms of probability distributions on the line, especially those of stable
distributions, are closely related to various Eulerian integrals. These definite integrals were
first evaluated informally by Euler in the 18th century, then studied with increasing degrees of
rigour in the 19th century by Legendre, Cauchy, Dirichlet, Saalschütz, and others. See [32,
Section XII] for an account of Eulerian integrals from the viewpoint of classical analysis, with
references to original sources.

Starting from Legendre’s definition of the gamma function for positive real r ,

�(r) :=
∫ ∞

0
t r−1e−t dt, r > 0,
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there is the basic recursion
�(r + 1) = r�(r) (3.1)

obtained by integration by parts for r > 0. The definition of �(r) can then be extended to all
real r except r = 0,−1,−2, . . . , either by repeated use of the recursion (3.1), or by Euler’s
reflection formula

�(r)�(1 − r) = π

sin πr
. (3.2)

While the definition of �(r) for complex r by analytic continuation has added profoundly to
the theory of the gamma and related functions [32], the focus here is on the classical integral
representations of�(r) for real r , especially r = −αwith 0 < α < 1 or 1 < α < 2, which cases
are of special importance for the evaluation of stable characteristic functions. The following
theorem presents these classical integral representations of �(r) for r < 1.

Theorem 3.1. (Euler–Cauchy–Saalschütz.) For each real number r < 1 except 0,−1,−2, . . . ,
and each nonzero complex number z with Re(z) ≥ 0,

∫ ∞

0
xr−1

(
e−zx −

∑
0≤i<−r

(−zx)i
i!

)
dx = �(r)z−r . (3.3)

Here the compensating sum
∑ := ∑

0≤i<−r required to make the integral converge

• is an empty sum
∑ = 0 for 0 < r < 1; and

• for r with −(k+ 1) < r < −k ≤ 0 for some nonnegative integer k,
∑ = ∑

0≤i≤k is the
sum of the first k + 1 terms in the Maclaurin series of e−zx .

If Re(z) > 0, identity (3.3) holds for all real r except for r = 0,−1,−2, . . . , with an absolutely
convergent integral on the left, and z−r on the right defined by its principal value, that is,

z−r := |z|−re−ir arg(z) = eir arctan(θ/λ)

(λ2 + θ2)r/2
if z = λ− iθ for λ > 0, θ ∈ R,

where arg(z ∈ [−π/2, π/2] is the principal value of the argument of z with Re z ≥ 0. So the
simplest case of (3.3) for r > 0 with

∑ = 0 for z = λ− iθ with λ > 0 and θ ∈ R reads

∫ ∞

0
xr−1e−λxeiθx dx = �(r)

(λ− iθ)r
= �(r)

ei arctan(θ/λ)r

(λ2 + θ2)r/2
, r > 0, λ > 0, θ ∈ R.

For fixed r > 0 and λ > 0, this function of θ , multiplied by λr/�(r), is the characteristic
function of the gamma distribution with parameters (r, λ) on the positive half-line. As indicated
by Feller [7, p. 502], this formula follows easily from the series expansion of eiθx in powers of
x by integrating term-by-term.

For r < 1 and Re(z) ≥ 0, the integral in (3.3) is an improper integral
∫ ∞

0 := limT→∞
∫ T

0 ,
which may or may not be absolutely convergent, depending on the choices of r and z. Let
I (z, r) denote the value of this integral. The key observation is that, for r < 0, provided r is
not a negative integer, and if z �= 0 has Re(z) ≥ 0, integration by parts gives

I (r, z)
r

z
= I (r + 1, z);
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hence, easily I (r, z) = �(r)z−r by reduction to the case r > 0, using the gamma recursion
(3.1) to define �(r) for r < 0. In particular, for z = −iθ , with θ real and nonzero, on the
right-hand side of (3.3) we see that

z−r = (−iθ)−r = |θ |−r exp

[
i sgn(θ)

π

2
r

]
= |θ |−r

(
cos

π

2
r + i sgn(θ) sin

π

2
r

)
.

So (3.3) gives, for all real θ �= 0 and noninteger r < 1,∫ ∞

0
xr−1(eiθx −
r,θx) dx = �(r)|θ |−r

(
cos

π

2
r + i sgn(θ) sin

π

2
r

)
, (3.4)

where the compensating sum 
r,θx is


r,θx =

⎧⎪⎨
⎪⎩

0 if 0 < r < 1,

1 if − 1 < r < 0,

1 + iθx if − 2 < r < −1,

and so on. For general noninteger r < 1, the real and imaginary parts of (3.4) can be unpacked
as ∫ ∞

0
xr−1

(
cos θx −

∑
0≤k<−r/2

(−1)k(θx)2k

(2k)!
)

dx = �(r)|θ |−r cos
π

2
r (3.5)

and∫ ∞

0
xr−1

(
sin θx −

∑
0≤k<−(r+1)/2

(−1)k(θx)2k+1

(2k + 1)!
)

dx = �(r)|θ |−r sgn(θ) sin
π

2
r. (3.6)

The following corollary of Theorem 3.1 provides some useful variants of these formulae.

Corollary 3.1. For each positive real κ that is not an odd integer, and all real θ �= 0,∫ ∞

0
x−κ

(
cos θx −

∑
0≤j<(κ−1)/2

(−1)j (θx)2j

(2j)!
)

dx = C(κ)|θ |κ−1, (3.7)

where

C(κ) = �(1 − κ) sin

(
π

2
κ

)
= π/2

�(κ) cos(πκ/2)
, (3.8)

and, for each positive real κ that is not an even integer, and all real θ �= 0,∫ ∞

0
x−κ

(
sin θx −

∑
0≤j<(κ−2)/2

(−1)j (θx)2j+1

(2j + 1)!
)

dx = S(κ) sgn(θ)|θ |κ−1, (3.9)

where

S(κ) = �(1 − κ) cos

(
π

2
κ

)
= π/2

�(κ) sin(πκ/2)
,

so that
C(κ)

S(κ)
= tan

(
π

2
κ

)
. (3.10)
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These formulae, at first for positive noninteger κ with the first expressions forC(κ) and S(κ)
involving �(1−κ), and the consequent ratio (3.10), are read from (3.5) and (3.6) for r = 1−κ ,
using

cos
π

2
(1 − κ) = sin

π

2
κ and sin

π

2
(1 − κ) = cos

π

2
κ.

The alternative expressions for C(κ) and S(κ) involving �(κ) are then read from Euler’s
reflection formula (3.2) and the sine duplication formula sin(2θ) = 2 sin θ cos θ for θ = κπ/2.
The formulae for the cosine integral (3.5) with κ an even integer, with C(κ) evaluated by
continuity using the expression with �(κ), and for the sine integral (3.9) for κ an odd integer,
with similar evaluation of S(κ), are obtained by analytic continuation.

The case κ = 1 of the sine integral (3.9), with S(1) = π/2, is of particular importance. This
is the Dirichlet integral [5, p. 315]∫ ∞

0

sin θx

x
dx = sgn(θ)

π

2
, (3.11)

which is the basis of the Fourier inversion formulae for the characteristic function of a probability
distribution, which are recalled in Section 6. See also [30] for an application of (3.7) to give
formulae for fractional moments in terms of the characteristic function, and [22] for further
applications to the analysis of characteristic functions.

4. Infinitely divisible laws

To establish the the existence of the distribution denoted Sα(c, β, μ) in Definition 1.1, that is,
the ‘if’ part of Theorem 1.1, it must be shown that each of the functions presented in (1.2) is the
characteristic function of a probability distribution on the line. For, that done, it follows easily
that the distribution Sα(c, β, μ) is stable with index α, as indicated already in Corollary 2.2.

For α = 2, the distribution S2(c, β, μ) is just normal with mean μ and variance 2c2.
Stability of the normal distribution follows by evaluation of its characteristic function, or by
the convolution formula for normal densities.

For 0 < α < 2, following Lévy, a random variableXwith the Sα(c, β, μ) distribution can be
exhibited as a limit of centred compound Poisson variables. More generally, it is straightforward
to show that, for every triple (b, σ 2, L) as in Theorem 1.2,

• the function φ defined by (1.6) is the characteristic function of an infinitely divisible
probability distribution on the line; and

• a random variable X with this distribution can be constructed as the limit in distribution
of a suitably centred sequence of compound Poisson variables.

This argument appears in many places—see, e.g. [7, Section XVII.2], [16, Corollary 15.8], or
[6, Equation (7.7)]—so will not be repeated in detail here.

To provide a complete account of the Lévy–Khintchine representation of stable distributions,
with correct values of the constants, it is necessary to specify the choice of truncation function
τ(x) appearing in the general Lévy–Khintchine representation (1.6). Some common choices
are

τ(x) := x

(1 + x)2
([11], [20]),

τ(x) := sin x ([7, Chapter XVII]),

τ(x) := x 1(|x| ≤ 1) ([16, Theorem 15.9]).
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For a particular infinitely divisible characteristic function whose logarithm ψ has the Lévy–
Khintchine representation (1.6), whatever the choice of τ , the integral in the Lévy–Khintchine
representation is absolutely convergent. The difference between the integrals associated with
two different truncation functions, say τ1 and τ2, is just ict for the integral

c =
∫ ∞

−∞
(τ1(x)− τ2(x))L(dx),

which is absolutely convergent by the properties of τ1, τ2, and L listed in Theorem 1.2. So
replacement of τ1 by τ2 just increments b by c. As Hall [14] observed, the passage from (1.6) to
(1.2) for the stable Lévy measure (displayed in (4.4) below) requires some care to avoid errors
in the sign of β. This argument is made unnecessarily complicated in many sources by the
common choice of truncation functions other than the choice τ(x) = sin x advocated by Feller.
Use of τ(x) = sin x greatly simplifies the computation of the Lévy–Khintchine integrals for the
α-stable Lévy measures, as indicated in the following corollary, which combines and simplifies
presentations of [7, Chapter XVII] and [33, Equation (M), p. 11].

Corollary 4.1. Suppose that 0 < α < 2. For X with the α-stable distribution Sα(c, β, μ), let

b =
{
μ+ βcα tan

π

2
if α �= 1, (4.1a)

μ if α = 1. (4.1b)

Then, from (1.2), the logarithm of the characteristic function of X − b is

ψα,c,β(t) :=

⎧⎪⎪⎨
⎪⎪⎩

−cα
(

|t |α − iβ tan

(
π

2
α

)
(|t |α − 1)

)
if α �= 1, (4.2a)

−c
(

|t | + i
2

π
t log |t |

)
if α = 1. (4.2b)

This function admits the Lévy–Khintchine integral representation

ψα,c,β(t) =
∫ ∞

−∞
(eitx − 1 − it sin x)Lα,c,β(dx) (4.3)

as in (1.6), with truncation function τ(x) = sin x and b = σ 2 = 0, for the Lévy measure

Lα,c,β(dx) = [(1 − β) 1(x < 0)+ (1 + β) 1(x > 0)] cα dx

2K(α)|x|1+α , (4.4)

where

K(α) := −�(−α) cos
π

2
α = �(2 − α)

α(1 − α)
cos

π

2
α (4.5)

is a continuous and strictly positive function of α for 0 < α < 2, with evaluation by continuity
at α = 1:

K(1) := π

2
. (4.6)

As observed by Zolotarev [33, Equation (M), p. 11], the function ψα,c,β(t) in (4.3) and (4.4)
is a continuous function of α, c, β, t as (α, c, β) ranges over the allowed parameter space

0 < α < 2, c ≥ 0, −1 ≤ β ≤ 1, and − ∞ < t < ∞.
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For X ∼ Sα(c, β, μ) and b = bα(c, β, μ) as in (4.1), the distribution of X − b is a weakly
continuous function of (α, c, β). However, the shift b is a spectacularly discontinuous function
of α, c, β, μ at α = 1, β �= 0: as α increases to 1, the factor tan(πα/2) explodes up to +∞,
while as α decreases to 1, the same factor explodes down to −∞, and the value of b at 1 is
just μ. Thus, the parametrization of Sα(c, β, μ) is extremely discontinuous at α = 1, β �= 0.
See [24, Equation (1.1.10), p. 7] for further discussion of this issue. See also [9, Theorem 1]
for a description of the domain of attraction of each stable distribution, using the distribution
whose characteristic function has logarithm (4.2) for c = 1 as a convenient representative of the
equivalence class of all stable distributions of a given type (meaning equivalent up to a change
of location and scale).

Corollary 4.1 follows easily from the integral evaluations of the following lemma, as
indicated in [7, Section XVII.3, pp. 568–570] and [33, Equation (1.17), p. 9].

Lemma 4.1. For 0 < α < 2 and K(α) as in (4.5)–(4.6), let

ψα(t) := −K(α)|t |α
(

1 − i sgn(t) tan

(
π

2
α

))
.

Then there are the integral representations

ψα(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0
(eitx − 1)

dx

xα+1 if 0 < α < 1, (4.7)∫ ∞

0
(eitx − 1 − itx)

dx

xα+1 if 1 < α < 2. (4.8)

Moreover, the Lévy–Khintchine characteristic exponent

ψ̃α(t) :=
∫ ∞

0
(eitx − 1 − it sin x)

dx

xα+1 for 0 < α < 2 (4.9)

is jointly continuous in (t, α), and given by

ψ̃α(t) = −K(α)
[
|t |α − it tan

(
π

2
α

)
(|t |α−1 − 1)

]
for α �= 1, (4.10)

ψ̃1(t) = −π
2

|t | − it log |t | for α = 1. (4.11)

Proof. As recognized by Lévy [20, Section 57, (35’) and p. 200, Deuxieme cas], the integral
representations (4.7) and (4.8) are the instances r = −α of the Eulerian integrals (3.4). See
also [7, Section XVII.3, p. 568] and [24, Exercise 3.14, p. 170] for other derivations of these
definite integrals. The equality of imaginary parts of (4.7) for t = 1 gives∫ ∞

0
sin x

dx

xα+1 = Imψα(1), 0 < α < 1.

This yields (4.9) for 0 < α < 1 with ψ̃α(t) = ψα(t)− it Imψα(1) as in (4.10). Similarly, (4.8)
gives ∫ ∞

0
(sin x − ix)

dx

xα+1 = Imψα(1), 1 < α < 2;
hence, (4.9) for 1 < α < 2. It is easily shown using (4.9) that ψ̃α(t) is jointly continuous
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in (t, α). So (4.11) for α = 1 is obtained in the limit, using (4.6) together with

lim
α→1

(1 − α) tan

(
π

2
α

)
= 2

π
and lim

α→1

tα−1 − 1

α − 1
= log |t |.

As a check, see also [33, Equation (1.17), p. 9] where Qα = αψ̃α(t) and the formulae (4.10)
and (4.11) appear in the middle of the following page. �

For the function ψα,c,β(t) defined by (4.2), the integral representation (4.3) follows imme-
diately, by taking a linear combination of contributions from the positive and negative half-
lines. To complete the proof of existence of the Sα(c, β, μ) distribution, it remains only to
show that ψ̃α(t) is the logarithm of a characteristic function for each 0 < α < 2. But it
is well known and easily proved that this is the limit of the logarithm of the characteristic
function of a suitably centred sequence of compound Poisson variables which converges in
probability, and the conclusion follows. See [24, Theorem 3.12.2] for a comprehensive account
of the Poisson representation of stable random variables, and numerous other representations
of random variables X ∼ Sα(c, β, μ).

Following the classical approach of Lévy and Khintchine, the ‘only if’ part of Theorem 1.1
can now be deduced from the ‘only if’ part of the Lévy–Khintchine representation infinitely
divisible distributions (Theorem 1.2). See [11, Section 34], other sources cited in [14], or the
presentation of Kallenberg [16, Theorem 15.9] in the broader context of stable Lévy processes,
where Theorem 1.2 can be read from [16, Corollary 15.8 and Theorem 15.12].

5. Analysis of the functional equation

Suppose throughout this section thatX is a random variable with a stable distribution. So the
sum, Sn, of n independent random variables, each with the same distribution asX, is distributed
like anX + bn, where an, bn are real and an > 0. If φ(t) is the characteristic function of X,
the characteristic function of Sn is E(eit (anX+bn)) = φ(ant)eibnt , so φ satisfies the functional
equation (2.2).

Here and in the following,m and nwill always denote positive integers. To avoid trivialities,
we will assume throughout that the distribution of X is nondegenerate, meaning it is not
concentrated at a single point. Equivalently (see, e.g. [7, Lemma XV.1.4]), in terms of the
characteristic function,

|φ(t)| < 1 for some real t.

In this section we derive some first consequences of (2.2), including the following proposition.
See also [20, Section 95], [7, Theorem VI.1.1], [28, Section V.7, Theorems 7.1 and 7.14], and
[23, Section 3.1] for similar treatments.

Proposition 5.1. The norming constants an associated with a nondegenerate stable distribu-
tion are necessarily of the form an = n1/α for some α > 0.

It will be shown by Lemma 5.4 in the next section that necessarily α ≤ 2, yielding
Corollary 2.1 as a first step towards the ‘only if’ part of Theorem 1.1. We will make use
of the following elementary lemma.

Lemma 5.1. If φ is the characteristic function of a nondegenerate probability distribution,
with |φ(t)| < 1 for some t , then

(i) |φ(ct)| ≤ |φ(t)| for some real c and all real t �⇒ |c| ≥ 1;

(ii) |φ(c1t)| = |φ(c2t)| for some c1 > 0, c2 > 0, and all real t �⇒ c1 = c2.
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Proof. It follows from the assumption of (i) that |φ(cnt)| ≤ |φ(t)|. If |c| < 1, cn → 0 as
n → ∞, and, therefore, 1 ≤ |φ(t)|. Hence, |c| ≥ 1.

If the assumption of (ii) holds, |φ(t)| = |φ(c2t/c1)|. Therefore, c2/c1 ≥ 1. Similarly,
c1/c2 ≤ 1, and so c2/c1 = 1. �

Lemma 5.2. The constants an and bn associated with a nondegenerate stable distribution of
X as in (1.1) or (2.1) or (2.2) are such that

1 = a1 < a2 < · · · , (5.1)

amn = aman, (5.2)

bm(n− an) = bn(m− am). (5.3)

Moreover, the characteristic function of a stable distribution has no real zeros.

Proof. By assumption, the distribution is not degenerate, so |φ(t)| is not identically equal
to 1. Observe that φ(t)n = φ(ant)eibnt for all real t , an > 0, and real bn, so

|φ(an+1t)| = |φ(t)| |φ(ant)| ≤ |φ(ant)|,

whence |φ(an+1t/an)| ≤ |φ(t)|. Thus, an+1 ≥ an; but an+1 = an would imply that |φ(t)| ≡ 1,
and, therefore, an+1 > an. This gives (5.1).

Next, to see that φ has no zeros, observe that |φ(t)|2 = |φ(a2t)|, so |φ(t/a2)|2 = |φ(t)|,
and, hence,

φ(t) = 0 �⇒ φ

(
t

a2

)
= 0 �⇒ φ

(
t

an2

)
= 0 �⇒ φ(0) = 0.

So φ(t) �= 0 for real t .
Turning to the proofs of (5.2) and (5.3), observe that

φ(t)mn = φ(amt)
neinbmt = φ(amant)e

i(nbm+ambn)t .

But also

φ(t)mn = φ(anamt)e
i(mbn+anbm)t = φ(amnt)e

ibmnt .

Equating these expressions gives, for all positive integers m and n, |φ(amnt)| = |φ(anamt)|;
hence, amn = anam by Lemma 5.1(ii). Similarly,

ei(nbm+ambn)t = ei(mbn+anbm)t ;

hence, nbm + ambn = mbn + anbm, which is (5.3). �

The proof of Proposition 5.1 is completed by the following lemma, which appears in the
same context in the texts of Bergström [2, Section 8.4] and Ramachandran and Lau [23,
Proposition 1.1.9].

Lemma 5.3. If a sequence an is strictly increasing and satisfies the functional equation amn =
aman, then an = nk for some k > 0.
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Proof. If p is a positive integer, amp = a
p
m. If 1 < m < n, there is a positive integer q such

that the first inequality below holds, implying successively each of the others:

np ≤ mq < np+1,

a
p
n ≤ a

q
m < a

p+1
n ,

p log an ≤ q log am < (p + 1) log an,

(p + 1) log n > q logm ≥ p log n,

p

p + 1

log an
log n

<
log am
logm

<
p + 1

p

log an
log n

.

When p → ∞, this gives

log an
log n

= log am
logm

= some constant k;

hence, log an = k log n, and so an = nk with k > 0. �
5.1. The case α �= 1

The arguments in this subsection and the next follow an approach also developed by
Ramachandran and Lau [23, Lemma 3.1.4]. Continuing to assume that φ is a nondegenerate
stable characteristic function with associated constants an and bn, we know from Lemma 5.3
that an = nk for k = 1/α > 0. Suppose now that k �= 1. It follows from (5.3) that

bn = γ (n− an) = γ (n− nk),

where γ is a real constant. Now, from (2.2),

n logφ(t) = logφ(nkt)+ iγ (n− nk)t, n(logφ(t)− iγ t) = logφ(nkt)− iγ nkt.

Set
ψ0(t) = logφ(t)− iγ t. (5.4)

Then, successively,
ψ0(n

kt) = nψ0(t),

ψ0

(
nkt

nk

)
= nψ0

(
t

nk

)
,

ψ0

(
t

nk

)
= ψ0(t)

n
,

ψ0

(
mk

nk
t

)
= mψ0

(
t

nk

)
= m

n
ψ0(t).

Thus, for any positive rational r , and, hence, also by continuity for all r > 0 and t > 0,
ψ0(r

kt) = rψ0(t); hence,

ψ0(rt) = r1/kψ0(t) = rαψ0(t) = tαψ0(r),

recalling that α = 1/k. Taking r = 1 we obtain, for t > 0,

ψ0(t) = tαψ0(1) = −(c − ic1)t
α,

with c and c1 real. That is, from definition (5.4), for t > 0, logφ(t) = iγ t − (c − ic1)t
α . For

t < 0, by complex conjugation,

logφ(t) = logφ(|t |) = logφ(|t |) = iγ t − (c + ic1)|t |α.
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Combine the two cases to obtain

logφ(t) = iγ t − c|t |α(1 − ic′ sgn(t)) (5.5)

with c′ = c1/c. Here c ≥ 0 because |φ(t)| = exp[−c|t |α] ≤ 1, and c �= 0 by the assumption
that the distribution is not degenerate.

Lemma 5.4. The index α of a stable law is such that 0 < α ≤ 2.

Proof. It is enough to consider the case α �= 1. Let U(t) be the real part of φ(t) for real t .
Then (5.5) gives 1 − U(t) ∼ c|t |α as t → 0. Recall that, for the characteristic function of a
random variable X,

lim
t→0

1 − U(t)

t2
= E(X2),

finite or infinite; see, for instance, [6, Equations (3.8)–(3.9)]. If α > 2, this would give
E(X2) = 0. Thus, α ≤ 2. �

See also [7, p. 171] for another proof that α ≤ 2.

Lemma 5.5. In representation (5.5) for α �= 1, the constant c′ is subject to the constraint
c′ = β tan πα/2, where −1 ≤ β ≤ 1, if 0 < α < 2, and c′ = 0 if α = 2.

See Section 8 for the proof.
Combining the above results, we finally have (1.3a),

logφ(t) = iγ t − c|t |α
(

1 − iβ tan

(
π

2
α

)
sgn(t)

)

for 0 < α ≤ 2, α �= 1, −1 ≤ β ≤ 1, and c > 0. This is of the form (1.2) for α �= 1, just with
μ replaced by γ and cα replaced by c.

5.2. The case k = 1, an = n, α = 1

From (2.2), n logφ(t) = logφ(nt)+ ibnt . Set Bn = bn/n. Then we have

r logφ(t) = logφ(rt)+ iBrrt (5.6)

for r = n ∈ N, and want to extend this to all rational r > 0. First,

mn logφ(t) = m(logφ(nt)+ iBnnt) = logφ(mnt)+ iBmmnt + iBnmnt.

Thus, Bmn = Bm + Bn. Next, (5.6) for r = n and with t replaced by t/n gives

1

n
logφ(t) = logφ

(
t

n

)
− iBn

t

n
,

so (5.6) extends to r = 1/n, with B1/n = −Bn. By similar arguments we can show that (5.6)
extends to r = m/n, with

Bm/n = Bm + B1/n = Bm − Bn.

This defines Br for all positive rationals r , in such a way that (5.6) holds and

Brs = Br + Bs, r > 0, s > 0. (5.7)
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By continuity of φ, (5.6) serves to define Br as a continuous function of r for all real r > 0.
The functional equation (5.7) then extends by continuity from all positive rational r and s to all
positive real r and s. Let B(r) := Br . Then, for p and q real,

B(ep+q) = B(ep)+ B(eq).

The function B(ep) is a continuous and linear function of p; therefore,

B(ep) = λp for some real λ, B(r) = λ log r,

and r logφ(t) = logφ(rt)+ iλ(log r)rt.

Set t = 1 and logφ(1) = −c + iy. Then, for all real r > 0,

logφ(r) = iyr − cr − iλr log r, |φ(r)| = e−cr .

Therefore, c > 0, and we may set λ = cc′:

logφ(t) = iyt − c(t + ic′t log t), t > 0. (5.8)

To obtain the desired conclusion of (1.2) with (1.3b) in this case, it remains to prove the
following Lemma, which will be done in Section 8.

Lemma 5.6. In (5.8) for the case α = 1, c′ = 2β/π for some −1 ≤ β ≤ 1.

6. Tail balance for regularly varying distributions

Let X be a real-valued random variable governed by a probability measure P, with distribu-
tion function F . To accommodate the Fourier transform framework adopted in this section, it
is necessary to take F to be the intermediate distribution function

F(x) := 1
2 [P(X < x)+ P(X ≤ x)] (6.1)

as considered by Lévy [20, p. 39]. Following the notation of [22], for x > 0, form the tail sum
and tail difference functions

H(x) := 1 − F(x)+ F(−x), K(x) := 1 − F(x)− F(−x). (6.2)

The main result in this section is Theorem 6.2, which is applied in Section 8 to complete
the characterization of the stable distributions by showing that the constant β appearing in
the previous Lemmas 5.5 and 5.6 is constrained to lie in the interval [−1, 1]. Theorem 6.2
establishes a general tail balance result K(x)/H(x) → β ∈ [−1, 1] for F with characteristic
function φ(t) that is regularly varying with suitable index as t → 0. This is done using the
asymptotic behaviour of Fourier cosine and sine transforms of F , that is, the the real and
imaginary parts of the characteristic function:

φ(t) = U(t)+ iV (t) =
∫ ∞

−∞
cos tx dF(x)+ i

∫ ∞

−∞
sin tx dF(x).

Equivalently, in terms of the tail functions, we have the formulae obtained by integration by
parts [22, p. 424]:

1 − U(t)

t
=

∫ ∞

0
H(x) sin tx dx,

V (t)

t
=

∫ ∞

0
K(x) cos tx dx, for t �= 0, (6.3)
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and the associated inversion formulae

H(x) = 2

π

∫ ∞

0

1 − U(t)

t
sin tx dt, K(x) = 2

π

∫ ∞

0

V (t)

t
cos tx dt, for x > 0. (6.4)

As observed in [4, Section 8.1.4, p. 336], these inversion formulae follow easily, by a linear
combination of components using (6.2), from the inversion formula of Gil-Paez [10], i.e.

F(x) = 1

2
− 1

π

∫ ∞

0

Im[e−itxφ(t)]
t

dt = 1

2
+ 1

2π

∫ ∞

0

eitxφ(−t)− e−itxφ(t)

it
dt, (6.5)

in which the choice of the intermediate version (6.1) of the distribution function F is essential
if F has discontinuities. For degenerate F , (6.5) reduces to the Dirichlet integral (3.11), and
the general case of (6.5) follows by a Fubini argument. Note that the integrals involved in the
inversion formulae (6.5) and (6.3) are improper, obtained as limits of

∫ T
ε

as ε ↓ 0 and T ↑ ∞.
See [31] for further discussion. The better-known inversion formula of Lévy [20, p. 38],

F(y)− F(x) = 1

2π
lim
T ↑∞

∫ T

−T
(e−itx − e−ity)φ(t)

it
dt, (6.6)

is the difference of two evaluations of (6.5), which can also be derived quite easily from (6.6)
[20, p. 39].

The relations between the asymptotic behaviours of H and K at ∞ and of U and V at 0
involve the basic cosine and sine integral evaluations C(k) and S(k) of Corollary 3.1. That is,

S(k) := �(1 − k) cos
π

2
k =

∫ ∞

0

sin x

xk
dx for 0 < k < 2,

where S(1) = π/2 is the Dirichlet integral, and

C(k) := �(1 − k) sin
π

2
k =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

cos x

xk
dx for 0 < k < 1,∫ ∞

0

cos x − 1

xk
dx for 1 < k < 3.

The following two lemmas were established in [22]. See also [4, Section 8.1.4, p. 336] and
[27] for various generalizations.

Lemma 6.1. ([22].) If H(x) is regularly varying at ∞ with index −k, 0 < k < 2, i.e. for all
λ > 0, H(λx)/H(x) → λ−k as x → ∞, then

1 − U(t) ∼ S(k)H

(
1

t

)
as t ↓ 0.

Conversely, if 1 − U(t) is regularly varying at 0 with index k, 0 < k < 2, then

H(x) ∼ 1 − U(1/x)

S(k)
as x → ∞.

Here the notation ‘∼’ is used to denote asymptotic equivalence, meaning that the ratio of
two expressions tends to 1 in the specified limit regime.
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Lemma 6.2. ([22].) If K(x) is regularly varying with index −k at ∞, and if also K(x) is
monotonic when x is large, then

V (t) ∼ C(k)K

(
1

t

)
as t ↓ 0 if 0 < k < 1, (6.7)

whereas if 1 < k < 3 then the distribution has a finite mean μ, and

V (t)− μt ∼ C(k)K

(
1

t

)
as t ↓ 0 if 1 < k < 3. (6.8)

See [22, Theorem 8, p. 440]. (There is a misprint on page 441. The second line should read
2n− 1 < m < 2n+ 1.)

For the proof of Theorem 6.2 below, we need the following unsurprising theorem, which is
not given in [22], nor, to the authors’ knowledge, anywhere else in the literature.

Theorem 6.1. If V (t) is regularly varying at 0 with index k, 0 < k < 2, k �= 1, and if also
K(x) is monotonic when x is great, then

K(x) ∼ V (1/x)

C(k)
as x → ∞. (6.9)

This is established in much the same way as the converse part of Lemma 6.1 for 1 − U(t)

and H(x). See [22, p. 432]. The details of this argument are provided in Section 7.

Theorem 6.2. If 1 − U(t) is regularly varying at 0 with index k, 0 < k < 2, k �= 1, and

V (t) ∼ c′(1 − U(t)) as t ↓ 0,

then

c′ = β tan
π

2
k, where β = lim

x→∞
K(x)

H(x)
∈ [−1, 1]. (6.10)

Proof. By application of Lemma 6.1, the assumption on 1 − U(t) gives

H(x) ∼ 1 − U(1/x)

S(k)
as x → ∞, 1 − U(t) ∼ S(k)H

(
1

t

)
as t ↓ 0,

V (t) ∼ c′(1 − U(t)) ∼ c′S(k)H
(

1

t

)
as t ↓ 0. (6.11)

In the following analysis we will apply the preceding results with both |X| andX+ := max(X, 0)
in place of X. However, the notation F , K , and H should always be understood relative to the
original distribution of X. Let

W(t) := t

∫ ∞

0
H(x) cos tx dx. (6.12)

Observe from (6.2) and (6.3) that W(t) is the imaginary part of the characteristic function of
|X| for X with characteristic function U(t)+ iV (t). So, by Lemma 6.2 applied to |X| instead
of X,

W(t) ∼ C(k)H

(
1

t

)
as t ↓ 0 if 0 < k < 1 (6.13)
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and

W(t)− E|X|t ∼ C(k)H

(
1

t

)
as t ↓ 0 if 1 < k < 2. (6.14)

For x > 0, consider the right-hand tail probability function

R(x) := 1 − F(x) = 1
2 (H(x)+K(x)), (6.15)

which is monotonic. Then, by (6.3) and (6.12), the function

t

∫ ∞

0
R(x) cos tx dx = 1

2
(W(t)+ V (t))

is the imaginary part of the characteristic function of X+. Supposing first that 0 < k < 1, we
see from (6.11) and (6.13) that

1

2
(W(t)+ V (t)) ∼ 1

2
(C(k)+ c′S(k))H

(
1

t

)
as t ↓ 0. (6.16)

By Theorem 6.1 applied to X+ instead of X,

R(x) ∼ (C(k)+ c′S(k))H(x)
2C(k)

= 1

2

(
1 + c′

tan kπ/2

)
H(x) as x → ∞. (6.17)

But 0 ≤ R(x)/H(x) ≤ 1 by (6.2) and (6.15), so conclusion (6.10) follows for 0 < k < 1. Also,
if 1 < k < 2, the same relation (6.17) holds, leading to the same conclusion. To see this, observe
that, for 1 < k < 2, the assumptions of the theorem imply that E|X| < ∞ and E(X) = 0,
so E(X+) = 1

2 E|X|. It follows from (6.14) that (6.16) still holds provided a term E(X+)t is
subtracted from the left-hand side, which implies the same asymptotics for the imaginary part
of the characteristic function of the centred random variableX+−E(X+). Theorem 6.1 applied
to this centred variable then gives (6.17), at first with R(x + E(X+)) instead of R(x), but then
also without the shift, by application of the regular variation of H(x). �

7. Proof of Theorem 6.1

We require the following results.

Lemma 7.1. If V (t) is of one sign in the right-hand neighbourhood of 0 then

K1(x) :=
∫ x

0
K(u) du = 2

π

∫ ∞

0

V (t) sin xt

t2
dt, (7.1)

K2(x) :=
∫ x

0
K1(u) du = 2

π

∫ ∞

0

V (t)(1 − cos xt)

t3
dt. (7.2)

Proof. The inversion formula for K(x) in (6.4) gives

K1(x) = 2

π

∫ x

0
du

∫ ∞

0

V (t)

t
cos ut dt.

Because V (t) is of one sign in the right-hand neighbourhood of 0, and cos xt → 1 as t → 0,
V (t)/t is integrable over (0, T ) for each 0 < T < ∞. So∫ x

0
du

∫ T

0

V (t)

t
cos ut dt =

∫ T

0
dt

∫ x

0

V (t)

t
cos ut du =

∫ T

0

V (t)

t2
sin xt dt.
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If we can show that
∫ T

0 t−1V (t) cos ut dt is bounded for 0 < T < ∞ and 0 < u < x, then this
will prove (7.1). Now

∫ 1
0 t

−1V (t) cos ut dt is bounded for all u > 0, and

∫ T

1

V (t)

t
cos ut dt =

∫ T

1
dt

∫ ∞

−∞
sin vt cos ut

t
dF(v).

The modulus of the integrand is at most 1. Therefore,

∫ T

1

V (t)

t
cos ut dt =

∫ ∞

−∞
dF(v)

∫ T

1

sin vt cos ut

t
dt,

where ∫ T

1

sin vt cos ut

t
dt =

∫ T

1

sin(v + u)t + sin(v − u)t

2t
dt

=
∫ (v+u)T

v+u
sin t

2t
dt +

∫ (v−u)T

v−u
sin t

2t
dt,

which is bounded for all T , v, and u. The integral
∫ T

1 t−1V (t) cos ut dt will be bounded; hence,
so will be

∫ T
0 , and (7.1) follows. Result (7.2) is then obvious, since we start with an integrand

which is absolutely integrable with respect to t over 0 < t < ∞. �
Proof of Theorem 6.1. It is assumed thatK(x) is ultimately monotonic, andV (t) is regularly

varying with index k, where 0 < k < 2. So V (t) will be of one sign in some right-hand
neighbourhood of 0, and

K2(x)

x2V (1/x)
= 2

π

∫ ∞

0

V (t/x)

V (1/x)

1 − cos t

t3
dt.

When x → ∞, V (t/x)/V (1/x) → tk , and the integrand converges to t3−k(1 − cos t). Since
V (1/x) is of index −k at ∞, corresponding to any h > 0, there exist A > 0 and B > 0 such
that, when x > B, ∣∣∣∣ V (t/x)V (1/x)

∣∣∣∣ <
{
Atk+h when t > 1,

Atk−h when t < 1.

See [22, Lemma 2, p. 426]. Take h = 1 − k/2, so that k + h = 1 + k/2. When x > 1, the
modulus of the integrand will be at mostA(1 − cos t)/t2−k/2, which is integrable over (1,∞).
Therefore, when x → ∞,∫ ∞

1

V (t/x)

V (1/x)

1 − cos t

t3
dt →

∫ ∞

1

1 − cos t

t3−k dt.

Similarly, taking h = k/2, we can show that

∫ 1

0

V (t/x)

V (1/x)

1 − cos t

t3
dt →

∫ 1

0

1 − cos t

t3−k dt.

Thus, as x → ∞,

K2(x)

x2V (1/x)
→ 2

π

∫ ∞

0

1 − cos t

t3−k dt = 2

π
C(3 − k). (7.3)
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Therefore,

K2(x) ∼ 2

π
C(3 − k)x2V

(
1

x

)
,

and so is regularly varying at ∞ with index 2−k. Also,K(x) → 0 as x → ∞ and is ultimately
monotonic, so is ultimately of one sign. SoK1(x) := ∫ x

0 K(u) du is ultimately monotonic and
K2(x) := ∫ x

0 K1(u) du is regularly varying with index 2 − k. It follows [22, Lemma 3, p. 427]
that K1(x) is regularly varying at ∞ with index 1 − k.

If 0 < k < 1, a second application of the same lemma shows thatK(x) is regularly varying
at ∞ with index −k. The required conclusion (6.9) then follows from (6.7) above.

If 1 < k < 2 then V (t) will be of index greater than 1, and the distribution will have a finite
mean value K1(∞) = ∫ ∞

0 K(u) du. This mean value must be 0. Otherwise, V (t) would have
a term μt , and be of index 1. So

∫ ∞
0 K(x) dx = 0 and

K1(x) :=
∫ x

0
K(u) du = −

∫ ∞

x

K(u) du,

regularly varying at ∞ with index 1−k < 0. The lemma quoted above will not apply. However,
the lemma below is proved in the same way as the lemma quoted above, and will imply that
K(x) is of index −k at ∞. Conclusion (6.9) will then follow from (6.8). �
Lemma 7.2. If G(x) is monotonic when x is great, and

∫ ∞
x
G(u) du is regularly varying with

index k′ < 0 at ∞, then G(x) is regularly varying with index k′ − 1.

When k = 1, the function K1(x) will be of index 0, and neither lemma will apply. In fact,
Theorem 6.1 is not true for k = 1.

8. Restrictions on the constants

Proof of Lemma 5.5. Start from representation (5.5), for a stable distribution of X with
characteristic exponent α, with 0 < α < 2 and α �= 1,

logφ(t) = iγ t − c(1 − ic′)tα, t > 0.

By working with X − γ instead of X, we can make γ = 0. Then

φ(t) = exp[−ctα](cos cc′tα + i sin cc′tα), t > 0,

which makes
1 − U(t) ∼ ctα and V (t) ∼ cc′tα as t ↓ 0. (8.1)

As V is regularly varying with index α, Theorem 6.2 applies for 0 < α < 1 with α �= 1.
The preceding argument does not cover the case α = 2. In that case

logφ(t) = −c(1 − ic′)t2, t > 0,

so φ(t) = exp[−c(1 − ic′)t2], which gives (8.1) with α = 2. It follows that the distribution
has a finite variance 2c, and zero mean. If X1, . . . , Xn are independent random variables with
this distribution, (X1 + · · · +Xn)/

√
2cn has a limit distribution which is standard normal: as

n → ∞,

φ

(
t√
2cn

)n
→ exp

(
−1

2
t2

)
, n logφ

(
t√
2cn

)
→ −1

2
t2,

−nc(1 − ic′)t2

2cn
= −1

2
t2(1 − ic′) → −1

2
t2.

Therefore, c′ = 0. This is consistent with c′ = β tan α/2 = β tan π = 0. �
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Proof of Lemma 5.6. This is the case k = 1. From (5.8) we have

φ(t) = eiyt−ct (cos(cc′t log t)− i sin(cc′t log t)), t > 0,

which makes
1 − U(t) ∼ ct and V (t) ∼ −cc′t log t as t ↓ 0.

As shown in (7.3),

K2(x)

x2V (1/x)
= 2

π

∫ ∞

0

V (t/x)

V (1/x)

1 − cos t

t3
dt → 2

π

∫ ∞

0

1 − cos t

t2
dt = 1 as x → ∞,

using (3.8) for κ = 2. Hence,

K2(x) ∼ x2V (1/x) ∼ cc′x log x as x → ∞. (8.2)

On the other hand, Lemma 6.1 gives

H(x) ∼ 1 − U(1/x)

S(1)
∼ 2c

πx
as x → ∞;

hence,

H1(x) :=
∫ x

0
H(u) du ∼ 2c

π
log x as x → ∞

and

H2(x) :=
∫ x

0
H1(u) du ∼ 2c

π
x log x as x → ∞. (8.3)

Moreover, |K(x)| ≤ H(x) by (6.2) and the triangle inequality. Therefore, |K2(x)| ≤ H2(x).
So (8.2) and (8.3) imply that |cc′| ≤ 2c/π , that is, c′ = 2β/π , where −1 ≤ β ≤ 1. �

Acknowledgements

Thanks to the referee for a careful reading of the paper and for a number of constructive
suggestions for improvement. Thanks also to Simon Ruijsenaars for catching a number of slips
in Section 3.

References

[1] Aczél, J. and Dhombres, J. (1989). Functional Equations in Several Variables (Encyclopaedia Math. Appl.
31). Cambridge University Press.

[2] Bergström, H. (1963). Limit Theorems for Convolutions. John Wiley, New York.
[3] Bertoin, J. (1996). Lévy Processes (Camb. Tracts Math. 121). Cambridge University Press.
[4] Bingham, N. H., Goldie, C. M. and Teugels. J. L. (1989). Regular Variation (Encyclopaedia Math. Appl.

27), revised edn. Cambridge University Press.
[5] Courant, R. (1936). Differential and Integral Calculus, Vol. II. Blackie, London.
[6] Durrett, R. (2010). Probability: Theory and Examples, 4th edn. Cambridge University Press.
[7] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley,

New York.
[8] Geluk, J. L. and de Haan, L. (1987). Regular Variation, Extensions and Tauberian Theorems (CWI Tract 40).

Mathematisch Centrum, Amsterdam.
[9] Geluk, J. L. and de Haan, L. (2000). Stable probability distributions and their domains of attraction: a direct

approach. Prob. Math. Statist. 20, 169–188.
[10] Gil-Pelaez, J. (1951). Note on the inversion theorem. Biometrika 38, 481–482.
[11] Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Independent Random

Variables. Addison–Wesley, Cambridge, MA.

https://doi.org/10.1017/apr.2016.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.55


282 E. J. G. PITMAN AND J. PITMAN

[12] Gupta, A. K., Nguyen, T. T. and Zeng, W.-B. (1997). Characterization of multivariate distributions through
a functional equation of their characteristic functions. J. Statist. Planning Infer. 63, 187–201.

[13] Gupta, A. K., Jagannathan, K., Nguyen, T. T. and Shanbhag, D. N. (2006). Characterizations of stable
laws via functional equations. Math. Nachr. 279, 571–580.

[14] Hall, P. (1981). A comedy of errors: the canonical form for a stable characteristic function. Bull. London Math.
Soc. 13, 23–27.

[15] Kagan, A. M., Linnik, Yu. V. and Rao, C. R. (1973). Characterization Problems in Mathematical Statistics.
John Wiley, New York.

[16] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[17] Khintchine, A. Ya. and Lévy, P. (1936). Sur les lois stables. C. R. Acad. Sci. Paris Sér. A 202, 374–376.
[18] Kuczma, M. (2009). An Introduction to the Theory of Functional Equations and Inequalities, 2nd edn., ed.

A. Gilányi. Birkhäuser, Basel.
[19] Lévy, P. (1924). Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bull. Soc. Math. France 52,

49–85.
[20] Lévy, P. (1954). Théorie de l’addition des variables aléatoires, 2nd edn. Gauthier-Villars, Paris.
[21] Mijnheer, J. L. (1975). Sample Path Properties of Stable Processes (CWI Tract 59). Mathematisch Centrum,

Amsterdam.
[22] Pitman, E. J. G. (1968). On the behavior of the characteristic function of a probability distribution in the

neighborhood of the origin. J. Austral. Math. Soc. 8, 423–443.
[23] Ramachandran, B. and Lau, K.-S. (1991). Functional Equations in Probability Theory. Academic Press,

Boston, MA.
[24] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models

with Infinite Variance. Chapman & Hall/CRC, New York.
[25] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions (Camb. Stud.Adv. Math. 68). Cambridge

University Press.
[26] Seneta, E. (2002). Karamata’s characterization theorem, Feller, and regular variation in probability theory.

Publ. Inst. Math. (Beograd) (N.S.) 71(85), 79–89.
[27] Soni, K. and Soni, R. P. (1975). Slowly varying functions and asymptotic behavior of a class of integral

transforms I, II, III. J. Math. Anal. Appl. 49, 166–179, 477–495, 612–628.
[28] Steutel, F. W. and van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line

(Monogr. Textbooks Pure Appl. Math. 259). Marcel Dekker, New York.
[29] Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability: Stable Distributions and Their

Applications. VSP, Utrecht.
[30] Von Bahr, B. (1965). On the convergence of moments in the central limit theorem. Ann. Math. Statist. 36,

808–818.
[31] Wendel, J. G. (1961). The non-absolute convergence of Gil-Pelaez’ inversion integral. Ann. Math. Statist. 32,

338–339.
[32] Whittaker, E. T. and Watson, G. N. (1927). A Course of Modern Analysis, 4th edn. Cambridge University

Press.
[33] Zolotarev, V. M. (1986). One-Dimensional Stable Distributions (Transl. Math. Monogr. 65). American

Mathematical Society, Providence, RI.

JIM PITMAN, University of California, Berkeley

Statistics Department, University of California, Berkeley, 367 Evans Hall, Berkeley, CA94720–3860, USA.
Email address: pitman@stat.berkeley.edu

https://doi.org/10.1017/apr.2016.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.55

	1 Introduction
	2 Stable distributions
	3 Eulerian integrals
	4 Infinitely divisible laws
	5 Analysis of the functional equation
	5.1 The case =1
	5.2 The case k = 1, an = n, = 1

	6 Tail balance for regularly varying distributions
	7 Proof of Theorem 6.1
	8 Restrictions on the constants
	Acknowledgements
	References

