
Forum
Interference to 

Walter Blanchard

I read Captain Gylden! ’s account of failure of his  set (Vol. 50, , May ) with
some interest. A few days earlier we had had a few thunderstorms while I had my
personal hand-held  running, using its own built-in antenna and a  volt battery. It
was lying on a bench inside a wooden hut where I keep some of my amateur radio
equipment. After one particularly close flash and bang, which produced a one-inch spark
from my transceiver antenna, the transceiver locked up and stopped responding to
keyboard commands. Then I noticed the  set had also stopped working, showing only
random symbols on its readout. I feared the worst but, after switching them both off,
leaving them for a few minutes, and then back on again, they worked perfectly.

Microprocessors locking up in strong local electrostatic fields, perhaps? Maybe if I
had simply left them alone they would have started working again after the charge had
leaked away. Next time I nearly get hit by lightning I’ll try it.

 

. Satellite navigation. . Interference. . Reliability.

Note from Editor

As indicated after Captain Gylden! ’s paper in May , reports of failures of 

receivers, for whatever reason, would be welcomed by the Institute.

‘Fast Craft and the  ’

Hanno Weber writes

The May  issue of the Journal contains an essay by R. D. Pike< on fast craft. I very
much agree with his opinion on factual matters. However, I do not agree with the
author’s legal opinion on the existing  and I would like to suggest for
consideration a much simpler solution in the future .

Nowadays, fast vessels do take early actions. These early manoeuvres are never
covered by Rule (b) and only sometimes by Rule (a)(ii). In the majority of
encounters the fast craft does not wait until she becomes a stand-on vessel ; she acts under
Rule (a) at a long distance; that is, before there is ‘ risk of collision’ and a consequent
duty to give way}stand on.

Action at such an early stage is specifically required already today in all cases where
a vessel is obliged NOT TO IMPEDE the passage or safe passage of another vessel. It


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.   

seems proper to classify fast craft in the same way so that they are required not to impede
the safe passage of other vessels. There should be no need for special lights and shapes,
and local needs could be covered by local rules.



< Pike, R. D. (). Fast craft and the . This Journal, 50, .

 

. Collision regulations. . Fast craft.

‘ Future of Radar Enhancers ’

Richard M. Trim writes

It was with the greatest interest that I read the two important papers by Dr N. Ward,
published in the May edition of the Journal of Navigation.<,=

In his paper on the ‘Future of Radar Target Enhancers ’,< Dr Ward draws attention
to the characteristic of a radar target enhancer () in that it has a maximum microwave
output power (saturated output) which, as a result of radar signal processing, can result
in a diminishing displayed  response as range decreases, possibly resulting in the
suppression of the  response at close range.

A relative advantage of the passive radar reflector over the  is that it does not have
such a saturation characteristic so that it is less susceptible to suppression due to radar
signal processing.

As I suggested in my paper ‘Radar Transponders and Radar Echo Enhancers ’,>
published in the Journal of Navigation in September , one approach could be to
combine an  with a passive radar reflector. In this way, the benefits of 

performance at medium and longer ranges would be combined with the absence of
saturation effects in the case of the passive reflector.

A further advantage of the use of a passive reflector could be that it might give a useful
echo enhancement at S-Band, especially at close range which, as Dr Ward points out,
is not provided by an X-Band-only .

A potential disadvantage of a passive radar reflector of useful performance, especially
in the context of sailing yachts, is its size, weight and windage and the risk of it snagging
rigging.



< Ward, N. (). The future of radar beacons. This Journal, 50, .
= Ward, N. (). The future of radar target enhancers. This Journal, 50, .
> Trim, R. M. (). Radar transponders and radar echo enhancers. This Journal, 48, .

 

. Radar. . Radar reflectors. . Radar target enhancers.
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‘Traditional Aids to Navigation: The Next 
Years.’

C. Colchester

In the May  issue of the Journal, a paper on this subject< was presented by Captain
Turner on behalf of the General Lighthouse Authorities. I read the paper with interest,
and in general concur with their assessment of the situation. However, I think that the
situation regarding visual Aids to Navigation (AtoN) needs further consideration.

In paragraph  – ‘Assumptions regarding AtoN provision’ – it is stated that ‘visual
AtoN will continue to be required for the next  years and probably beyond for
confirmation of position and for position fixing for some ships ’. It seems to me that
although this is probably correct, the requirement for visual AtoN, particularly fixed
beacons and larger lights, mainly concerns the need to keep a visual lookout.

During the next decade, it seems fairly certain that the main, and quite likely
secondary means, of navigating all ships, large and small, will be some form of
radionavigation, very likely involving some form of electronic chart. At the same time,
we may expect radar to develop and be carried on all ships, apart from yachts, and that
this will be the main means of collision avoidance. However, it has still never been
suggested that these navigation aids will substitute for the need to keep a visual lookout
and, even in the future, it is envisaged that the bridge watchkeeper will spend most of
his time on this activity. This means that, in spite of back-up systems and alarms (cf : for
example, the grounding of the Royal Majesty), the first indication of trouble in the
navigation system could very likely be the sighting of a visual AtoN. In other words, it
will really only be possible to dispense with visual AtoN when there is no longer any
need for visual watchkeeping.

My second point is that, if future AtoNs are no longer mainly required as ‘bearing
references ’, but rather as ‘hazard warnings ’, then it would be necessary to re-examine
the specifications, specifically the flash lengths of the lights. IALA makes no
recommendations on this subject, but the US Coast Guard maintains that the human eye
can perceive a flash length as short as ± seconds, although it is not possible to take
an accurate bearing unless the flash is repeated in a group.

If flash lengths could be made this short, possibly by using flash-tube equipment or the
proposed laser, then the energy requirement, even on a , candela light, could
theoretically be cut to a level equivalent to a buoy light. This should lead to much
reduced maintenance and infrastructure costs, and incidentally, make the saving to be
achieved by cancellation of the light, insignificant.



< Turner, N. M. (). Traditional aids to navigation: the next  years. This Journal, 50,
.

 

. Marine navigation. . Aids to navigation. . Lights
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Middle Latitude Sailing Revisited

Roy Williams

. . Many problems in navigation can be best viewed and solved as
problems in analytical geometry. We only need to understand the geometry of two
‘navigable ’ surfaces ; the sphere and the ellipsoid of revolution. The ellipsoidal model
is generated by revolving an ellipse about its minor axis and this model is used as a global
model for the surface of the Earth. The eccentricity of the meridian ellipse is small
(E ±) so we sometimes refer to this surface as a ‘ spheroid’ since the surface is still
‘ sphere-like’. The physical Earth is, in fact, referred to as a ‘geoid’ whose surface is
that which approximates global mean sea level. The mathematical representation of the
geoid is not trivial and the ellipsoid of revolution is an extremely good approximation
to it.

The first (and, in the past, most frequently used) approximation to the shape of the
Earth in navigation is a sphere. This is not such a bad approximation if used consistently
but bad practices crept in, among which was the habit of using methods of computation
which contained elements from the spherical and ellipsoidal models in the same formula.
For example, the following mistake was made in two different publications of nautical
tables ; a correction to apply to the mean latitude in order to obtain the ‘middle latitude’
for an observer travelling along the arc of a rhumb line was computed from a formula
which determined the cosine of the middle latitude by the ratio of difference of latitude
and difference of meridional parts. As is well known, the difference of latitude is the
number of minutes of arc of the meridian on the surface of a sphere but the difference
of meridional parts used to compute the cosine of the middle latitude was taken from
ellipsoidal data. If the meridian distance along the arc of the meridian of the ellipsoid
had been used instead of the difference of latitude, then the formula would have been
correct. As it was, the table made no sense, yet it was published through several editions
of the nautical tables and the error went apparently unnoticed. It seems that the theory
behind the method of computation known as Middle Latitude Sailing was never widely
understood by navigators.

Although the method is now mainly historical, it is the purpose here to give a rigorous
derivation of the theory behind the method known as ‘Middle Latitude Sailing’. This is
a method of computation which is used by an observer travelling along the arc of a rhumb
line mainly when the angle between the meridian and the rhumb line is large.
W. M. Smart< presented a complete analysis of Middle Latitude Sailing for both the
sphere and the ellipsoid. We will use a different approach to Smart and make one or two
additional comments. In both cases the theory relies upon the computation of meridional
parts provided by the method of Mercator Sailing so that the method of Middle Latitude
Sailing does not exist independently. We will set the Earth in a spherical coordinate
system whose origin coincides with the centre of the Earth but we use a system which
is not quite standard for these coordinates ; r is, as usual, the distance of a point from
the origin, but θ is the longitude and φ is the geocentric latitude. Since arc length and
geodetic (astronomical) latitude are intrinsic properties of the surface we use the
standard notation for intrinsic coordinates and denote the arc length by s and the
geodetic latitude by ψ.

For comparatively small gains in accuracy, the problem of computing course and
distance or final position for an observer travelling along the arc of a rhumb line on the
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Q R

a

ds

P r cos φ dθ S

r sec[ψ–φ] dφ

Fig. 1

surface of an ellipsoid requires some fairly high-powered numerical methods to aid its
solution, but it does stimulate a lot of theoretical interest and the best way to find a
numerical solution still promotes discussion in the pages of the Journal of Navigation.
Williams= had a paper published in  concerning the computation of distance along
the arc of a rhumb line and, since then, Sadler> and others have written on the same
theme. The latest contributions, which are well worth reading, are by Carlton Wippern?
and Bennett.@

.  . A rhumb line is a curve on a surface of revolution which cuts
all the meridians at the same angle α ;  ! α ! <

=
π. ‘Rhumb’ comes from the Greek

ρ/ υµβο| meaning spiralling. The curve is also known as a loxodrome which is also
derived from greek words λοξο| (oblique) δροµο| (course). On the surface of a sphere
or an ellipsoid of revolution a rhumb line is a curve of finite length which spirals
endlessly to limit points at the poles. When α ¯ <

=
π then the curve is a parallel of latitude

and when α ¯  the curve is a meridian.
.   . The coordinate angles φ and θ and the geodetic

angle ψ are measured in radians and, over the surface of the ellipsoid, lie in the ranges.

®<

=
π % φ, ψ % <

=
π (North positive)

 % θ ! π (East positive).

However, for an observer sailing along the arc of a rhumb line from a point P
;
(φ

;
, θ

;
)

to the point P
n
(φ

n
, θ

n
) we must admit the circumstances where the difference of

longitude rθ
n
®θ

;
r " π since the rhumb line spirals endlessly.

All measurements of distance or length of arc given by the formulae which follow are
expressed in the units of the length of one minute of arc of the equator which is the
geographical mile. The length of the geographical mile will, of course, vary according
to the dimensions of the ellipsoid which is used to approximate the shape of the Earth.
Since all angles are expressed in radians the term a(θ

n
®θ

;
) which represents the

difference of longitude is then in minutes of arc a being the equatorial radius.
.          

  . Let us consider an observer on the surface of the terrestrial ellipsoid
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.   

travelling from a point P
;
to a point P

n
along the arc of a rhumb line on course α. At a

point P along the track let the differential element of the rhumb line be ds (see Fig. ).
PQ(¯ r sec [ψ®φ] dφ) lies along the tangent to the meridian through P and is the
differential element of the meridian distance. PS (¯ r cosφ dθ) lies along the tangent to
the parallel of latitude through P and is the differential element of departure.

If we denote the departure by λ then the departure made good by an observer
travelling along the rhumb line track from the point P

;
where the geocentric latitude is

φ
;
, the geodetic (astronomical) latitude is ψ

;
and the longitude is θ

;
to the point P

nwhere the geocentric latitude is φ
n
, the geodetic latitude is ψ

n
and the longitude is θ

nis given by

λ ¯&
θ
n

θ
;

r cosφ dθ. ()

On the surface of the ellipsoid r is a function of φ as given by

r[φ] ¯ a 0 ®e=

®e= cos= φ1
where a is the equatorial radius of the ellipsoid. φ can be expressed in terms of ψ by

tanφ ¯ (®e=) tan ψ ()

and ψ is a function of θ given in implicit form by

ρ[ψ] cot [<
?
π­<

=
ψ] ¯ ρ[ψ

;
] cot [<

?
π
;
­<

=
ψ
;
] e(cotα)(θ−θ

;
) (a)

if the observer is in the ‘navigable ’ latitudes, or

ρ[ψ] tan [<
?
π®<

=
ψ] ¯ ρ[ψ

;
] tan [<

?
π®<

=
ψ
;
] e−(θ−θ

;
)(cotα) (b)

if the observer is in high latitudes and where

ρ[ψ] ¯ a0­e sin ψ

®e sin ψ1
<
=
e

.

Equations () and () are found from considerations of the geometry of the ellipse,
equation (a) is the image of the rhumb line in the Mercator projection and equation
(b) is the equation of the equiangular spiral which is the image of the rhumb line in
the stereographic plane.

To express the integrand r cosφ in equation () as a function of θ is therefore possible,
but not very practical. We can find an exact expression for the departure without doing
so. Equation () defines a mapping between the closed interval [ψ

;
, ψ

n
] of the geodetic

latitude and the closed interval [φ
;
, φ

n
] of the geocentric latitude which is both one-to-

one and onto. Similarly, each of the equations (a) and (b) defines a mapping between
the closed interval [θ

;
, θ

n
] of the longitude (where we must admit the possibility that

rθ
n
®θ

;
r " π), and the closed interval [ψ

;
, ψ

n
] of the geodetic latitude. These mappings

are both one-to-one and onto, and so are their inverses. The compound mapping
between the closed interval [θ

;
, θ

n
] of the longitude and the closed interval [φ

;
, φ

n
] of

the geocentric latitude defined by the successive applications of equations () and either
of equations (a) or (b) are therefore also one-to-one and onto.

These properties of the mappings show that we can therefore apply the mean value
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theorem for integrals to equation () whereby we find a value χ of φ corresponding to
a value θχ of θ where θ

;
% θχ % θ

n
and where φ

;
% χ % φ

n
such that

λ ¯
r[χ]
a

cos χ0a&
θ
n

θ
;

dθ1 . ()

Since  % (r[φ]}a) cos φ %  and the expression (r[φ]}a) cos φ is monotonically decreasing
in the closed interval [, <

=
π] then the mapping φ U cos−<(r[φ]}a) cos φ is both one-to-one

and onto and maps the interval [, <
=
π] onto itself. We can therefore find an angle ξ such

that

cos ξ ¯
r[χ]
a

cos χ. ()

The angle ξ is known as the Middle Latitude and equation () may be written

λ ¯ a(θ
n
®θ

;
) cos ξ

where θ is measured in radians and which is, for the navigator, the familiar formula

Departure ¯ DLong¬cos(mid lat).

We can also use the same argument for the latitude interval [®<

=
π, ] except that the

expression (r[φ]a) cos φ is then monotonically increasing so that, over the whole range
[®<

=
π, <

=
π] of latitude, we can find angle ξ whose sign is the same as χ and which satisfies

equation (). To calculate the value of the middle latitude and departure we recall the
‘ sailing triangles ’ shown here in Fig. a, b. In the figure P

;
and P

n
are points on the

surface of the ellipsoid and the points P$
;

and P$
n

are their images, respectively, in the
Mercator projection.

Departure

(DLP)
Meridian
distance

Distance

(a )

P0

Pn

Dlong

DMP

(b)
P*n

Fig. 2
P*n
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From the triangles in Fig. a, b (since the triangles are similar) we see that

Departure ¯ DLong 9

:
so that

cos(midlat) ¯



()

and this is the most practical method of determining departure and middle latitude.
We use the term Difference of Latitude Parts () to mean the same thing as

Meridian Distance. The term ‘Latitude Parts ’ was coined to use alongside ‘Meridional
Parts ’ on the surface of the ellipsoid (WilliamsA). The number of Latitude Parts at a
point P on a meridian at a given geodetic latitude, ψ, is the length of the meridian from
the equator to P in geographical miles.

The ratio } is stable and, for navigational purposes, can be calculated
accurately using only the arithmetic available on a hand calculator when the difference
of latitude is as little as one minute of arc except in the small region of a few minutes
of arc either side of the equator where we may assume anyway that the value of the limit
of the ratio is unity.

.         . As the difference of latitude,
∆φ, approaches zero and the geodetic latitude approaches the constant value ψ

;
we find

that the cosine of the middle latitude also approaches a limit which is given by

Lim
∆φU

;

0

1¯
cosψ

;

o[®e= sin= ψ
;
]
.

For an observer travelling along the parallel to latitude ψ ¯ ψ
;
from the point where the

longitude is θ
;

to the point where the longitude is θ
n

the departure is the distance
travelled and this is

distance ¯
a[θ

n
®θ

;
] cosψ

;

o[®e= sin= ψ
;
]
.

.  . A correct table showing the correction (in minutes of arc) to
apply to mean latitude in order to find the middle latitude on the surface of the WGS
ellipsoid is shown in the appendix. This table was calculated using  digit arithmetic
on a modern computer and only rounded on completion. The entries only differ in a few
cases with the entries in the similar table published in Inman’s Nautical TablesB which has
always been considered correct but, considering the year that these tables were
published, we believe we have the advantage with our modern computing aid. The table
applies to the Northern hemisphere, where positive corrections are North and negative
corrections are South. When applied in the Southern hemisphere then the situation is
reversed. There would, however, be no need to keep such a table since the computation
will find the cosine of the middle latitude directly from equation (). Entries in the first
line of the table where the mean latitude is °, such as the entry for  ° where the
correction is given as  minutes of arc, may seem unreal and indicate an apparent lack
of symmetry. The mathematics, however, has taken care of the fact that, in truth, the
path along the rhumb line from ° S to ° N should be considered in two separate
parts ; from ° S to ° and from ° to ° N. The mean latitudes for the separate pieces
would then be ° S and ° N, respectively. The correction to the mean latitude of °
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  . 

to find middle latitude would then be « in each hemisphere and this makes the middle
latitude into °« («) which is the correction to apply to the mean latitude of ° and
gives the same middle latitude in either case.

A. C         

Difference of latitude

Mean (°) ° ° ° ° ° ° ° ° ° °

          

          

          
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