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Abstract

The paper discusses the risk of ruin in insurance coverage of an epidemic in a closed
population. The model studied is an extended susceptible–infective–removed (SIR) epi-
demic model built by Lefèvre and Simon (Methodology Comput. Appl. Prob. 22, 2020)
as a block-structured Markov process. A fluid component is then introduced to describe
the premium amounts received and the care costs reimbursed by the insurance. Our inter-
est is in the risk of collapse of the corresponding reserves of the company. The use of
matrix-analytic methods allows us to determine the distribution of ruin time, the proba-
bility of ruin, and the final amount of reserves. The case where the reserves are subjected
to a Brownian noise is also studied. Finally, some of the results obtained are illustrated
for two particular standard SIR epidemic models.
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1. Introduction

The risks of an epidemic are difficult to assess and to guarantee. Nowadays, some insurance
companies offer financial protection against such exposures. However, the use of classical
epidemic models in insurance is still in its infancy.

There is a vast literature on mathematical models for the spread of infectious diseases. Much
of the theory is taken up in the books of Diekmann and Hesterbeek [8] and Diekmann et al. [9]
for the deterministic approach and Daley and Gani [7] and Andersson and Britton [1] for the
stochastic approach.

Susceptible–infective–removed (SIR) models form an important class of epidemic models.
In the simplest formulation of a SIR-type model, a closed population is subdivided into three
groups of individuals: the susceptibles (S), who are in good health but are susceptible to con-
tracting the disease; the infectives (I), who have contracted the disease and are able to transmit
it; and the removed cases (R), who have permanently left the infected status through recovery
or death. The only possible transitions between groups are S → I (infection of suceptibles) and
I → R (removal of infectives). Let S(t), I(t), and R(t) be the numbers of susceptibles, infectives,
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Ruin problems for epidemic insurance 485

and removals at time t ≥ 0, with the respective initial values S(0) = n, I(0) = m, R(0) = 0. The
population being closed, R(t) = n + m − S(t) − I(t), so that only the process {S(t), I(t)} may be
followed. The epidemic terminates at the first moment Te when there are no more infectives
present in the population, i.e. such that I(Te) = 0, which occurs almost surely in finite time. We
will focus specifically on epidemic models of this type.

For insurance coverage of epidemics, the pioneering work is by Feng and Garrido [10],
who deal with the classical SIR model, called a general epidemic, in its deterministic version.
Lefèvre et al. [18] pursued that study by examining the Markovian version of the general epi-
demic model. The central idea is that the insurance receives a premium from each susceptible
at rate a > 0 and reimburses medical expenses to each infective at rate b > 0. The objective
there is to set the premium level a by applying the well-established equivalence principle in
life insurance.

In this paper, we consider a similar but much broader framework, and this time, we are
interested in the risk of ruin for the insurance company. For example, for the general epidemic
model mentioned before, we write the associated reserves process {F(t)} as

F(t) = u + P(t) − E(t), t ≥ 0, (1.1)

where u is the initial amount of reserves, and P(t) and E(t) respectively denote the income
received and expenses incurred by the insurance up to time t. These can be represented by the
area under functionals of the epidemic trajectory, i.e.

P(t) =
∫ t

0
a(S(y), I(y)) dy, E(t) =

∫ t

0
b(S(y), I(y)) dy, (1.2)

where a(.) and b(.) are appropriate positive functions. A simple case for P(t) and E(t) is when

P(t) = a
∫ t

0
S(y) dy, E(t) = b

∫ t

0
I(y) dy,

with a, b > 0, which is the assumption made in Lefèvre et al. [18].
The company is ruined at the first moment Tr when the reserves become zero, i.e. such

that F(Tr) = 0, insofar as this occurs, which requires that Tr < Te. Our objective is to discuss
various issues related to this risk of ruin. Such a subject does not seem to have been studied so
far. It is worth comparing (1.1) with the traditional reserves process in insurance (see e.g. the
book of Asmussen and Albrecher [3]). In both cases, the reserves vary according to the arrival
of premiums and claims. The crucial difference is that these quantities are not modeled here
exogenously, but come from the very evolution of the epidemic.

The SIR epidemic class considered covers and generalizes a variety of standard models,
such as general and fatal epidemics. It was introduced in Lefèvre and Simon [19] as a block-
structured Markov process. The insurance premiums and costs are not necessarily constant per
individual, but are provided by arbitrary functions. We will mainly obtain the distribution of
the time of ruin, the probability of ruin, and the final amount of reserves. To this end, the joint
evolution of the epidemic and reserves processes will be described as a Markov-modulated
fluid flow model, which then allows us to work using matrix-analytic methods (see e.g. the
books of Latouche and Ramaswami [17] and He [13]).

Fluid flow models have been studied by many researchers, including Asmussen [2],
Ramaswami [21], Bean et al. [5], and Latouche and Nguyen [16], amongst others. They were
first introduced in telecommunications and operations research, but have been used later in
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486 C. LEFÈVRE AND M. SIMON

various other fields of application. This is the case in the theory of risk and ruin in the actuarial
sciences. Much can be found in the review of Badescu and Landriault [4] and the references
therein. The use of fluid flows in the context of epidemic insurance is an original approach to
our knowledge.

The paper is organized as follows. In Section 2, we present the generalized SIR epidemic
model considered and the fluid model describing the insurance risk process. In Section 3,
we derive the joint distribution of the time of ruin and the associated epidemic state, with
the probability of ruin as a particular case. In Section 4, we determine the distribution of the
amount of reserves when the epidemic dies out, first regardless of the occurrence of a possible
ruin, then when ruin occurs (or not) before the end of the epidemic. The expected amounts of
the corresponding final reserves are also deduced. In Section 5, we add a Brownian noise to
the fluid model for the reserves and show that the distributions of the ruin time and the final
reserves can be obtained in rather similar ways. In Section 6, we illustrate and comment on
some of our results by examining two particular standard SIR models: the general epidemic
and the fatal epidemic.

2. Epidemics and insurance

We begin by defining the extended SIR epidemic model constructed by Lefèvre and Simon
[19] (Section 2.1). Next, we introduce a fluid model to describe the evolution of the reserves
of the insurance company (Section 2.2). Finally, we present the matrix framework adapted to
the proposed approach (Section 2.3).

2.1. A class of SIR-type epidemics

We are concerned with SIR epidemic models whose propagation is described by a bivariate
Markov process {Y(t)} = {S(t), ϕ(t)}.

The variable S(t) counts the susceptibles present in the population at time t. Initially,
S(0) = n. If ever infected, a susceptible becomes an infective before being finally removed.
Thus, S(t) decreases with time and the susceptible state space is {n, n − 1, . . . , 0}.

The variable ϕ(t) represents the state of the infection process at time t. In classical mod-
els such as the general epidemic, ϕ(t) is simply the number I(t) of infectives in the population.
However, ϕ(t) may be more general. It can be multivariate, of the form ϕ(t) = (I1(t), . . . , Iv(t)),
to represent the number of infectives in several groups which differ in their behaviors or infec-
tivity levels. Individual transitions from one group to another are then possible. For example,
an individual could enter the I1 group when he has been exposed to the infection but is not yet
contagious, and then move into the I2 group when he becomes contagious (as in a so-called
SEIR model). The infection process can also be of the form ϕ(t) = (I(t), E(t)) where {E(t)} is
an external Markov environment, climatic or economic, which affects the model parameters.

The states of ϕ(t) which can be reached at a given time depend, of course, on the number of
susceptibles present. When there are s susceptibles, the infection state space is a finite set Es of
transient states and an absorbing state denoted by {0}. The epidemic process ends in this state
{0} when all sources of infection are extinguished. This will occur at the (almost surely finite)
time Te; i.e.

Te = inf{t > 0 | ϕ(t) = 0}. (2.1)

The initial infection state ϕ(0) is often difficult to evaluate. It is therefore assumed to be
random, with probability mass function given by the row vector π of components

πi = P (ϕ(0) = i), i ∈ En. (2.2)
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Returning to the bivariate Markov process {Y(t)}, its state space is {0} ∪ Vn ∪ Vn−1 ∪ · · · ∪
V0, where {0} is still the absorbing state, and each set Vs = {(s, i), i ∈ Es} contains the possible
transient states when there are s susceptibles. The associated generator is defined by

(2.3)

where 0τ , the transpose of 0, is a row vector with all entries equal to 0, and

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(n)

v(n−1)

v(n−2)

v(n−3)
...

v(1)

v(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(n) B(n) 0 0 · · · 0 0

0 A(n−1) B(n−1) 0 · · · 0 0

0 0 A(n−2) B(n−2) · · · 0 0

0 0 0 A(n−3) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · A(1) B(1)

0 0 0 0 · · · 0 A(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

in which, for each s = 0, . . . , n,

• v(s) is a column vector of dimension |Es| such that vi(s), i ∈ Es, is the rate of absorption
in {0} from the state (s, i);

• B(s) is a rectangular matrix of dimensions |Es| × |Es−1| such that Bi,j(s) is the rate at
which one of the s suceptibles is infected with a change of infectious state from i ∈ Es to
j ∈ Es−1;

• A(s) is a square matrix of dimension |Es| such that Ai,j(s) for i �= j is the rate at which the
infection jumps from i ∈ Es to j ∈ Es without any change in the number s of susceptibles,
and Ai,i(s), i ∈ Es, is defined to satisfy the relations

v(0) + A(0)1 = 0 and v(s) + A(s)1 + B(s)1 = 0, 1 ≤ s ≤ n, (2.5)

where 1 is a column vector with all entries equal to 1.

We recall that in the traditional general epidemic model, ϕ(t) denotes the number of infec-
tives, each remaining infectious during an exponential period and able to infect any susceptible
according to a Poisson process. The current epidemic model generalizes the general epidemic
insofar as (i) ϕ(t) counts the infectives but may also incorporate other infection sources, (ii) all
the transitions between phases are possible and the sojourn distributions are of phase-type, and
(iii) the infection process is general and an infection can arbitrarily affect the current phase.
The flexibility of the modeling considered here was underlined by Lefèvre and Simon [19] by
examining four extensions of the general epidemic, namely with arbitrary contagion rates, a
detection process of infectious agents, the influence of a random environment, and interference
between disease strains.

2.2. Fluid model for the risk process

We now propose a simple way to insert an insurance risk process as part of an epidemic
process that is spreading within a company.
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The insurance plan. The goal of the insurance is to collect premiums from people in good
health and provide care coverage to those infected. On the one hand, the insurance receives
premiums at a continuous rate that depends on the state occupied by {Y(t)}. Specifically, when
Y(t) = (s, i), the amount of the premium collected is assumed to be a(s, i) per time unit. For
example, a(s, i) = as means that the premium is charged at the rate a for the susceptibles; this
is the simple case presented in the introduction. If the removed individuals also contribute to
the premium at a continuous rate c, then a(s, i) = as + c(n + m − s − i). The function a(s, i)
can be nonlinear to take into account, for example, group effects in premium collection.

On the other hand, the insurance reimburses medical expenses at a continuous rate which
also depends on the state occupied by {Y(t)}. Specifically, when Y(t) = (s, i), the amount reim-
bursed is assumed to be b(s, i) per time unit. For instance, b(s, i) = bi means that coverage is
provided at the rate b for the infectives, as considered in the introduction. If the company also
pays a logistic cost at rate l when the number of infectives exceeds a fixed threshold i�, then
b(s, i) = bi + l1(i>i�). The function b(s, i) can depend on s in some special cases; for example,
the level of coverage could become limited if there are not enough healthy people.

Therefore, the difference between the two rates,

c(s, i) = a(s, i) − b(s, i), (2.6)

represents the net instantaneous income rate of the insurance company when Y(t) = (s, i). It
may be positive or negative, depending on the values of s and i.

The reserves process. To the epidemic model {Y(t)}, here called the phase process, we asso-
ciate a new process {F(t)}, called fluid flow, where the variable F(t) represents the reserves of
the insurance at time t. Initially F(0) = u ≥ 0, the starting capital of the company. The process
{F(t)} varies according to {Y(t)} through the function of income rate c(Y(t)). More precisely,

d

dt
F(t) =

{
c(s, i) if t < Te and Y(t) = (s, i),

0 if t ≥ Te.
(2.7)

Note that F(t) takes values on the real line and can increase or decrease over time. Its
trajectories are continuous and piecewise linear.

We can now look at the joint process {F(t), Y(t)}. It corresponds to a Markov-modulated
fluid flow as studied by Bean et al. [5] and others mentioned in the introduction. The process
is characterized by the previous sub-generator Q, defined in (2.3), (2.4), and (2.5), and the
diagonal matrix C of the income rates (2.6), given by

C =

⎡⎢⎢⎢⎢⎣
C(n) 0 · · · 0

0 C(n−1) · · · 0
...

...
. . .

...

0 0 · · · C(0)

⎤⎥⎥⎥⎥⎦ , (2.8)

where C(s), s = 0, . . . , n, is the diagonal matrix of dimension |Es| such that Ci,i(s) = c(s, i),
i ∈ Es.

It is clear that the reserves F(t) can become negative before the ending time Te of the epi-
demic (see (2.1)), thus leading to the ruin of the insurance company. We denote by Tr the time
of the ruin, if it actually occurs, i.e.

Tr = inf{t > 0 | F(t) < 0}. (2.9)
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A main objective of our work is to discuss the two situations in which the insurance company
is ruined or not during the epidemic.

2.3. Preliminaries

It is obvious that ruin can only occur when the infection process {ϕ(t)} is in a state
(s, i) associated with a negative rate c(s, i). Consequently, it is appropriate in what follows to
separate the states (s, i) in which the reserves F(t) increase and those in which they decrease.
For each s, we thus define Es = E+

s ∪ E−
s , where

E+
s = {i ∈ Es | c(s, i) > 0} and E−

s = {i ∈ Es | c(s, i) < 0}.
To simplify, we assume that c(s, i) is never zero, but this assumption can be lifted without
difficulty. By adopting this subdivision, we can rewrite the row vector π in (2.2) as [π+, π−]
and partition the matrices A(s), B(s), C(s) in (2.4), (2.5) into the form

A(s) =
[

A++(s) A+−(s)

A−+(s) A−−(s)

]
, B(s) =

[
B++(s) B+−(s)

B−+(s) B−−(s)

]
, C(s) =

[
C+(s) 0

0 C−(s)

]
.

Next, defining

V+
s = {(s, i) | i ∈ E+

s } and V−
s = {(s, i) | i ∈ E−

s },
we reorganize the matrices Q, C according to the state order (V+

n ∪ V+
n−1 ∪ · · · ∪ V+

0 ) ∪ (V−
n ∪

V−
n−1 ∪ · · · ∪ V−

0 ). This leads to the partition

Q =
[

Q++ Q+−
Q−+ Q−−

]
, C =

[
C+ 0

0 C−

]
, (2.10)

where

Q++ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A++(n) B++(n) 0 0 · · · 0 0

0 A++(n−1) B++(n−1) 0 · · · 0 0

0 0 A++(n−2) B++(n−2) · · · 0 0

0 0 0 A++(n−3) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · A++(1) B++(1)

0 0 0 0 · · · 0 A++(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

(2.11)

Q+−, Q−+, Q−− are defined in the same way but with the appropriate indices; and

C+ =

⎡⎢⎢⎢⎢⎣
C+(n) 0 · · · 0

0 C+(n−1) · · · 0
...

...
. . .

...

0 0 · · · C+(0)

⎤⎥⎥⎥⎥⎦ , (2.12)

with C− again built similarly. It is with this matrix structure (2.10), (2.11), (2.12) that we
will work.
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3. Ruin time and probability of ruin

This section is concerned with the case where Tr < Te. Our goal is to obtain the joint distri-
bution of the time of ruin Tr and the corresponding epidemic state Y(Tr). As usual, 1A denotes
the indicator variable of a random event A. We will determine the following Laplace transform:

E
[
e−θTr 1Tr<Te, Y(Tr)=(s,j)

]
,

where θ ≥ 0, 0 ≤ s ≤ n, and j ∈ E−
s (by the very construction of the model).

To begin, we construct two first-passage matrices �θ and �θ (x), x ≥ 0, which will play a
central role in the analysis. For 0 ≤ s ≤ v ≤ n, i ∈ E+

v , j ∈ E−
s , we define

(�θ )(v,i),(s,j) ≡ (�θ (v, s))i,j =E
[
e−θTr 1Tr<Te,Y(Tr)=(s,j) | F(0) = 0, Y(0) = (v, i)

]
,

and for 0 ≤ s ≤ v ≤ n, i ∈ E−
v , j ∈ E−

s , we define

(�θ )(v,i),(s,j) (x) ≡ (�θ (x;v, s))i,j

=E
[
e−θTr 1Tr<Te,Y(Tr)=(s,j) | F(0) = x, Y(0) = (v, i)

]
.

These expectations give the Laplace transforms of the ruin time Tr with the state Y(Tr) when
ruin arises before the end time Te, under the condition that the reserves process starts for �θ at
the level 0 in an ascending phase (i ∈ E+

v ), and for �θ (x) at the level x in a descending phase
(i ∈ E−

v ).
As the number of susceptibles can only decrease, the matrices �θ and �θ (x) have an upper

triangular block structure of the form

�θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�θ (n, n) �θ (n, n−1) �θ (n, n−2) · · · �θ (n, 0)

0 �θ (n−1, n−1) �θ (n−1, n−2) · · · �θ (n−1, 0)

0 0 �θ (n−2, n−2) · · · �θ (n−2, 0)
...

...
...

. . .
...

0 0 0 · · · �θ (0, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

�θ (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�θ (x;n, n) �θ (x;n, n−1) �θ (x;n, n−2) · · · �θ (x;n, 0)

0 �θ (x;n−1, n−1) �θ (x;n−1, n−2) · · · �θ (x;n−1, 0)

0 0 �θ (x;n−2, n−2) · · · �θ (x;n−2, 0)
...

...
...

. . .
...

0 0 0 · · · �θ (x;0, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

Note that a subspace E+
v may be empty, so that the corresponding matrix �θ (v, s) is not defined.

Similarly, if E−
v is empty, the matrix �θ (x;v, s) does not exist. This also occurs with the matrix

Uθ (v, s) in (3.5) below and all the matrices defined in Section 4. In these cases, the parts of the
equations that contain them will be ignored.

The Laplace transform mentioned above can be expressed from the block matrices of �θ (u)
and of the first row of �θ . The notation {. . .}j in (3.3) below means the jth component of the
row vector {. . .}.
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Proposition 3.1. For 0 ≤ r ≤ n, j ∈ E−
n−r,

E
[
e−θTr 1Tr<Te, Y(Tr)=(n−r,j)

]
=

{
π−�θ (u;n, n − r) + π+

r∑
l=0

�θ (n, n − l)�θ (u;n − l, n − r)

}
j

. (3.3)

Proof. The result is easily derived from the definition of �θ and �θ (x). With the probabili-
ties in π−, the fluid process F(t) starts from the level u in a descending phase, and the matrix
�θ (u;n, n − r) gives the Laplace transform of Tr with S(Tr) = n − r when Tr < Te.

With the probabilities in π+, the process F(t) starts from the level u in an ascending phase.
Thus, it must first return to the level u before Te, and the susceptibles present at that time
will number, say, n − l. The process F(t) is then at the level u in a descending phase and the
previous argument is again applicable. �

To apply Proposition 3.1, we must first determine the blocks in the matrices of �θ and
�θ (x). From the definition of �θ (x), we notice (see e.g. Ramaswami [21]) that �θ (x) can be
expressed in the exponential form

�θ (x) = eUθ x, (3.4)

where Uθ is a sub-generator with the same block structure as �θ , i.e.

Uθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Uθ (n, n) Uθ (n, n−1) Uθ (n, n−2) · · · Uθ (n, 0)

0 Uθ (n−1, n−1) Uθ (n−1, n−2) · · · Uθ (n−1, 0)

0 0 Uθ (n−2, n−2) · · · Uθ (n−2, 0)
...

...
...

. . .
...

0 0 0 · · · Uθ (0, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

We now show that the blocks of the matrices �θ and Uθ can be obtained recursively. Let 1B
be the indicator function of a non-random set B, and denote by |C−(s)| the entrywise absolute
value of C−(s).

Proposition 3.2. For 0 ≤ k ≤ s ≤ n, the matrices �(s, s − k) and U(s, s − k) satisfy the identi-
ties

(C+(s))−1[A++(s) − θ I]�θ (s, s − k) + (C+(s))−1B++(s)�θ (s − 1, s − k) 1s,k>0

+
k∑

l=0

�θ (s, s − l)Uθ (s − l, s − k)

= −(C+(s))−1A+−(s) 1k=0 − (C+(s))−1B+−(s) 1s>0,k=1 (3.6)

and

Uθ (s, s − k) =|C−(s)|−1[A−−(s) − θ I] 1k=0 + |C−(s)|−1B−−(s) 1s>0,k=1

+ |C−(s)|−1A−+(s)�θ (s, s − k)

+ |C−(s)|−1B−+(s)�θ (s − 1, s − k) 1s,k>0. (3.7)
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Proof. To derive (3.6), we start by expressing �θ (s, s − k) with respect to the level of the
reserves at time τ = min (τ1, τ2), where τ1 is the end of the first ascent and τ2 the moment of
the first contamination. This gives

�θ (s, s − k) =
∫ ∞

0
e(C+(s))−1[A++(s)−θI]y(C+(s))−1A+−(s)�θ (y;s, s − k)dy

+ 1s>0

∫ ∞

0
e(C+(s))−1[A++(s)−θI]y(C+(s))−1B+−(s)�θ (y;s − 1, s − k)dy

+ 1s>0

∫ ∞

0
e(C+(s))−1[A++(s)−θI]y(C+(s))−1B++(s)

·
k∑

l=1

�(s − 1, s − l)�θ (y;s − l, s − k)dy. (3.8)

Let us multiply both sides of (3.8) by (C+(s))−1[A++(s) − θ I] and integrate by parts the three
integrals in the right-hand side. Note from (3.4) that �′

θ (y) = �θ (y)Uθ , so that using the block
structures (3.2) and (3.5),

�′
θ (y; s − l, s − k) =

k∑
v=l

�θ (y; s − l, s − v)Uθ (s − v, s − k). (3.9)

From (3.8) and using (3.9), we then obtain

(C+(s))−1[A++(s) − θ I]�θ (s, s − k) = −(C+(s))−1A+−(s)�θ (0; s, s − k)

− 1s>0 (C+(s))−1B+−(s)�θ (0; s − 1, s − k)

− 1s>0 (C+(s))−1B++(s)
k∑

l=1

�θ (s − 1, s − l)�θ (0; s − l, s − k)

−
k∑

v=0

�θ (s, s − v)Uθ (s − v, s − k). (3.10)

Since �θ (0; s − l, s − k) = I 1k=l, (3.10) gives the desired relations (3.6).
To obtain (3.7), we express �θ (x; s, s − k) with respect to the level of the reserves at time

τ ∗ = min (τ ∗
1 , τ2), where τ ∗

1 is now the end of the first descent and τ2 is still the moment of the
first contamination. This yields

�θ (x; s, s − k) = e|C−(s)|−1[A−−(s)−θI]x [I 1k=0 + F(x)], (3.11)

where

F(x) =1s>0

∫ x

0
e−|C−(s)|−1[A−−(s)−θI]y|C−(s)|−1B−−(s)�θ (y; s − 1, s − k)dy

+
∫ x

0
e−|C−(s)|−1[A−−(s)−θI]y|C−(s)|−1A−+(s)

·
k∑

l=0

�θ (s, s − l)�θ (y; s − l, s − k)dy

https://doi.org/10.1017/apr.2020.66 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.66


Ruin problems for epidemic insurance 493

+ 1s>0

∫ x

0
e−|C−(s)|−1[A−−(s)−θI]y|C−(s)|−1B−+(s)

·
k∑

l=1

�θ (s − 1, s − l)�θ (y; s − l, s − k)dy. (3.12)

Now, (3.4) implies that �′
θ (0) = Uθ ; hence Uθ (s, s − k) = �′

θ (0; s, s − k). Thus, differentiating
(3.12) with x = 0 gives

Uθ (s, s − k) = |C−(s)|−1[A−−(s) − θ I][I 1k=0 + F(0)] + F′(0). (3.13)

By definition, F(0) = 0 and we obtain from (3.11) that

F′(0) = 1s>0 |C−(s)|−1B−−(s)�θ (0; s − 1, s − k)

+ |C−(s)|−1A−+(s)
k∑

l=0

�θ (s, s − l)�θ (0; s − l, s − k)

+ 1s>0 |C−(s)|−1B−+(s)
k∑

l=1

�θ (s − 1, s − l)�θ (0; s − l, s − k). (3.14)

From (3.13) and (3.14), we deduce (3.7) using again that �θ (0; s − l, s − k) = I 1k=l. �
The blocks inside �θ and Uθ can be computed recursively from the relations (3.6) and (3.7)

as follows.

Induced algorithm.

(i) First, for each 0 ≤ s ≤ n, we take k = 0, so that (3.7) gives

Uθ (s, s) = |C−(s)|−1[A−−(s) − θ I] + |C−(s)|−1A−+(s)�θ (s, s), (3.15)

and after insertion in (3.6), Z ≡ �θ (s, s) satisfies the Riccati equation

(C+(s))−1[A++(s) − θ I]Z + Z|C−(s)|−1[A−−(s) − θ I] + Z|C−(s)|−1A−+(s)Z

= −(C+(s))−1A+−(s). (3.16)

It can be proved that �θ (s, s) is the minimal nonnegative solution of the equation (3.16)
(see [5]). This equation can be solved numerically in an efficient way using the algo-
rithms proposed e.g. by Asmussen [2], Bini et al. [6], or Guo [12]. Once �θ (s, s) is
known, Uθ (s, s) is provided by (3.15).

(ii) Next, for each 1 ≤ s ≤ n, we take k = 1, so that from (3.7),

Uθ (s, s − 1) = |C−(s)|−1[B−−(s) + A−+(s)�θ (s, s − 1) + B−+(s)�θ (s − 1, s − 1)],
(3.17)

and by injecting this into (3.6), we find that Z ≡ �θ (s, s − 1) is the unique solution of
the Sylvester equation

G(s)Z + ZUθ (s − 1, s − 1) = −(C+(s))−1[B+−(s) + B++(s)�θ (s − 1, s − 1)]

− �θ (s, s)|C−(s)|−1[B−−(s) + B−+(s)�θ (s − 1, s − 1)],
(3.18)
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where G(s) is defined as

G(s) = (C+(s))−1[A++(s) − θ I] + �θ (s, s)|C−(s)|−1A−+(s). (3.19)

Remember that �θ (s, s) and Uθ (s − 1, s − 1) were computed in Step (i). The equa-
tion (3.18) can be efficiently solved numerically (see e.g. Gardiner et al. [11]). When
�θ (s, s − 1) is obtained, Uθ (s, s − 1) follows from (3.17).

(iii) The same procedure applies successively to each k = 2, . . . , s. From (3.7), Uθ (s, s − k)
is given by

Uθ (s, s − k) = |C−(s)|−1 [
A−+(s)�θ (s, s − k) + B−+(s)�θ (s − 1, s − k)

]
. (3.20)

From (3.6) and (3.20), Z ≡ �θ (s, s − k) is the unique solution of the Sylvester
equation

G(s)Z + ZUθ (s − k, s − k) = −
k−1∑
l=1

�θ (s, s − l)Uθ (s − l, s − k)

−[(C+(s))−1B++(s) + �θ (s, s)|C−(s)|−1B−+(s)]�θ (s − 1, s − k), (3.21)

where G(s) is defined in (3.19). After solving (3.21), we get Uθ (s, s − k) from (3.20).

Once the blocks of Uθ are known, the exponential �θ (x) is efficiently evaluated from (3.4)
using the block triangular structure of Uθ (see e.g. Kressner et al. [14]).

Ruin probability. Obviously, (3.3) with θ = 0 gives an expression for

P (Tr < Te, Y(Tr) = (n − r, j)),

the probability that ruin will occur and that there are n − r susceptibles and j infectives present
at that time in the population.

Differentiating (3.3) with respect to θ and taking θ = 0 yields the moments of the ruin time
when this arises. In particular,

E
[
Tr 1Tr<Te, Y(τ )=(n−r,j)

] = {π−�′
0(u; n, n − r)

+ π+
r∑

l=0

[� ′
0(n, n − l)�0(u; n − l, n − r) + �0(n, n − l)�′

0(u; n − l, n − r)]}j. (3.22)

Since from (3.4)
�′

θ (x) = x�θ (x)U′
θ ,

the application of (3.22) only requires the calculation of the blocks of � ′
θ and U′

θ . This can be
done by differentiating the relations (3.6) and (3.7).

4. Final amount of reserves

Our objective in this section is twofold. First, we want to determine the distribution of F(Te),
the amount of reserves at the end of the epidemic, regardless of whether ruin has occurred
before time Te. Second, we will determine the distribution of F(Te) when ruin occurs (or not)
before Te. As a corollary, we will obtain the corresponding expectations of the final amount of
reserves.
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We start by introducing two matrices �∗ and �∗(x), x ≥ 0, which involve the stopping times
(4.1) below for the reserves:

Tx = inf{t > 0 | F(t) = x}, x ≥ 0. (4.1)

Note that T0 ≡ Tr. For 0 ≤ s ≤ v ≤ n, i ∈ E−
v , j ∈ E+

s , we define(
�∗)

(v,i),(s,j) ≡ (
�∗(v, s)

)
i,j = P (T0 < Te, Y(T0) = (s, j) | F(0) = 0, Y(0) = (v, i)),

and for 0 ≤ s ≤ v ≤ n, i ∈ E+
v , j ∈ E+

s , we define(
�∗)

(v,i),(s,j) (x) ≡ (
�∗(x; v, s)

)
i,j

= P (Tx < Te, Y(Tx) = (s, j) | F(0) = 0, Y(0) = (v, i)).

The former gives the probability of first return to the reserves level 0 with the state Y(T0)
before the epidemic end Te, under the condition that the reserves process starts at the level 0
in a descending phase (i ∈ E−

v ). The latter gives the probability of first passage to the higher
reserves level x before time Te, under the condition that the reserves process starts at the level
0 in an ascending phase (i ∈ E+

v ).
Like (3.4) for �θ (x), we have

�∗(x) = eU∗x (4.2)

for a sub-generator U∗. The matrices �∗, �∗(x), U∗ have the same block structures (3.1), (3.2),
(3.5) as �0, �0(x), U0 in Section 3, but are of different dimensions: the block �∗(v, s) is of
dimensions |E−

v | × |E+
s |, and the blocks �∗(x; v, s), U∗(v, s) are of dimensions |E+

v | × |E+
s |.

Note that the fluid process is homogeneous with respect to the level, which means that
only the distance between the starting level and the target level is relevant. In this sense, the
matrices �∗, �∗(x), U∗ can be considered as complementary to �0, �0(x), U0. As a result,
the blocks of �∗, U∗ can be computed by applying Proposition 3.2 to the level-reversed fluid
model {F̂(t), Y(t)}, which is defined as {F(t), Y(t)} but with the rates c(s, i) this time having
reversed signs.

4.1. Distribution of F(Te)

Initially, the level of reserves is u ≥ 0, the population contains n susceptibles, and the infec-
tion phase is of distribution (∼) π . At the end time Te, the amount of reserves F(Te) may be
positive or not, and we aim to calculate P (F(Te) > x) where x is any real number.

Since the fluid is homogeneous with respect to the level, we can write

P (F(Te) > x | F(0) = u, S(0) = n, ϕ(0) ∼ π) = πM(x − u; n), x ∈R,

where each M(x; s), for x ∈R, 0 ≤ s ≤ n, denotes a column vector of dimension |Es| with
components

Mi(x; s) = P (F(Te) > x | F(0) = 0, Y(0) = (s, i)), i ∈ Es.

According to the subdivision Es = E+
s ∪ E−

s , the vector M(x; s) is partitioned as

M(x; s) =
[

M+(x; s)

M−(x; s)

]
.

We show first that M(x; s) can be expressed in terms of only the vectors M(0; l) for 0 ≤ l ≤ s.
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Proposition 4.1. For x ≥ 0,

M+(x; s) =
s∑

l=0

�∗(x; s, l)M+(0; l), (4.3)

M−(x; s) =
s∑

l=0

�∗(s, l)M+(x; l), (4.4)

while for x < 0,

M−(x; s) = 1 −
s∑

l=0

�0( − x; s, l)1 +
s∑

l=0

�0( − x; s, l)M−(0; l), (4.5)

M+(x; s) = 1 −
s∑

l=0

�0(s, l)1 +
s∑

l=0

�0(s, l)M−(x; l). (4.6)

Proof. Consider (4.3). Starting from F(0) = 0 with s susceptibles and phase in E+
s , the fluid

process F(t) must reach the level x before time Te, and at that time there will remain l sus-
ceptibles, with 0 ≤ l ≤ s. This yields the factor �∗(x; s, l). Next, starting from the reserves x
with l susceptibles, the fluid process F(t) must be above the level x at time Te, hence the factor
M+(0; l).

For (4.4), the argument is similar. Starting from F(0) = 0 with s susceptibles and phase in
E−

s , the reserves process F(t) must first return to zero before time Te, say with l susceptibles,
hence �∗(s, l). Then, it must be above the level x at time Te, hence M+(x; l).

For (4.5), the difference of the first two terms in the right-hand side gives the probabilities
that starting from F(0) = 0 with s susceptibles and phase in E−

s , the reserves process does not
reach the level x before time Te. The third term contains the probabilities �0( − x; s, l) of
reaching the level x with l susceptibles, multiplied by the probabilities M−(0; l) of then being
above x at Te.

The reasoning to derive (4.6) is analogous. �
In fact, we observe from Proposition 4.1 that the computation of all the M(x; s) only requires

the determination of the vectors M+(0; l). Let us show now that these can be obtained by
recursion.

Proposition 4.2. For s = 0, . . . , n,

M+(0; s) = [
I − �(s, s)�∗(s, s)

]−1 g(s), (4.7)

where the vectors g(s) are given by

g(s)= 1 −
s∑

l=0

�0(s, l)1 + 1s>0 �0(s, s)
s−1∑
l=0

�∗(s, l)M+(0; l)

+1s>0

s−1∑
l=0

l∑
v=0

�0(s, l)�∗(l, v)M+(0; v). (4.8)

Proof. Arguing as for (4.4), we first express M+(0; s) as

M+(0; s) = 1 −
s∑

l=0

�0(s, l)1 +
s∑

l=0

l∑
v=0

�0(s, l)�∗(l, v)M+(0; v). (4.9)
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Indeed, the difference of the first two terms in the right-hand side gives the probabilities that
starting from F(0) = 0 with s susceptibles and phase in E+

s , the reserves process does not
return to the level zero before time Te. In the third term, �0(s, l) represents the probabilities of
returning to the level zero with l susceptibles. The process then is at level zero in a descending
phase, and �∗(l, v) gives the probabilities of reaching zero again (from below) before Te with
v susceptibles. Finally, it remains to compute the probabilities M+(0; v).

By rearranging (4.9), we then obtain[
I − �0(s, s)�∗(s, s)

]
M+(0; s) = g(s),

with g(s) defined by (4.8). Since the matrix �0(s, s)�∗(s, s) is strictly sub-stochastic, the
matrix I − �0(s, s)�∗

0 (s, s) is invertible, hence the formula (4.7) for M+(0; s). �

4.2. Distribution of F(Te) when Te > ( < ) Tr

Under the same initial conditions, we now determine the distribution of the amount of
reserves F(Te) in case the company is ruined or not before the final time Te. Note that F(Te) is
positive if the epidemic ends before ruin (i.e. when Te < Tr).

We start by writing

P (F(Te) > x, Tr < Te | F(0) = u, S(0) = n, ϕ(0) ∼ π) = πV(x; u, n), x ∈R,

P (F(Te) > x, Te < Tr | F(0) = u, S(0) = n, ϕ(0) ∼ π) = πW(x; u, n), x ≥ 0,

where V(x; y, s) and W(x; y, s), for y ≥ 0 and 0 ≤ s ≤ n, denote column vectors of dimension
|Es| with components

Vi(x; y, s) = P (F(Te) > x, Tr < Te | F(0) = y, Y(0) = (s, i)), i ∈ Es,

Wi(x; y, s) = P (F(Te) > x, Te < Tr | F(0) = y, Y(0) = (s, i)), i ∈ Es.

Like M(x; s) above, V(x; y, s) and W(x; y, s) can be partitioned according to the subdivision
Es = E+

s ∪ E−
s .

Let us determine these vectors. By definition, we directly see that for x ≥ 0,

W(x; y, s) = M(x − y; s) − V(x; y, s). (4.10)

On the other hand, V(x; y, s), x ∈R, is provided by the formulas (4.11) and (4.12) below once
the vectors M(x; s) have been obtained from Propositions 4.1 and 4.2.

Proposition 4.3. For x ∈R,

V−(x; y, s)=
s∑

l=0

�0(y; s, l)M−(x; l), (4.11)

V+(x; y, s)=
s∑

l=0

l∑
r=0

�0(s, l)�0(y; l, r)M−(x; r). (4.12)

Proof. From V(x; y, s), we know that F(t) starts from y with s susceptibles and phase in E−
s

or E+
s , then must go to the level 0 before Te, and finally must be above the level x at time Te. In

probabilistic terms, the first return to 0 is given by the matrices �0(y; s, l) if the initial phase is
in E−

s , and by the matrices �0(s, l)�0(y, l, r) if the initial phase is in E+
s . We thus deduce the

desired expansions (4.11) and (4.12), respectively. �
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4.3. Expectation of F(Te) in both cases

As a corollary, we will determine the expected amount of reserves at the end time Te, either
taking into account the possible ruin before, or not doing so.

For that, we define by h(s), 0 ≤ s ≤ n, the column vector of dimension |Es| with components

hi(s) =E [F(Te) | F(0) = 0, Y(0) = (s, i)], i ∈ Es.

Here too, the vector is partitioned according to the subdivision Es = E+
s ∪ E−

s , which gives
h(s) ≡ [h+(s), h−(s)]τ .

Proposition 4.4. Given F(0) = u ≥ 0, S(0) = n, ϕ(0) ∼ π , we have

E [F(Te)] = u + πh(n), (4.13)

E
[
F(Te)1Tr>Te

] =E [F(Te)] −E
[
F(Te)1Tr<Te

]
, (4.14)

E
[
F(Te)1Tr<Te

] = π−
n∑

l=0

�0(u; n, l)h−(l) + π+
n∑

l=0

l∑
v=0

�0(s, l)�0(u; l, v)h+(v), (4.15)

where the vectors h+(s), h−(s) are given by

h+(s)=
s∑

l=0

[( − U∗)−1](s,l) M+(0; l) −
s∑

l=0

l∑
v=0

�0(s, l) [( − U0)−1](l,v) [1 − M−(0; v)],

h−(s)=
s∑

l=0

l∑
v=0

�∗(s, l) [( − U∗)−1](l,v) M+(0; v) −
s∑

l=0

[( − U0)−1](s,l) [1 − M−(0; l)].

Proof. The equality (4.13) is immediate from the homogeneity of the fluid flow with respect
to the level. The formula (4.14) is obvious, as was the case for (4.10). The formula (4.15)
follows directly from Proposition 4.3. Thus, it remains to determine h(s).

First, consider h+(s). The expectation of a random variable X can be represented as

E [X] =
∫ ∞

0
P (X > x)dx −

∫ ∞

0
P (X < −x)dx.

We apply this identity to X = F(Te) when F(0) = 0 and Y(0) = (s, i), i ∈ E+
s . Using the previous

notation, this easily leads to the formula

h+(s) =
∫ ∞

0
M+(x; s) dx −

∫ ∞

0

s∑
l=0

l∑
v=0

�0(s, l)�0(x; l, v) [1 − M−(0; v)]dx.

From Proposition 4.1, we then obtain

h+(s) =
s∑

l=0

(∫ ∞

0
�∗(x; s, l)dx

)
M+(0; l)

−
s∑

l=0

l∑
v=0

�0(s, l)

(∫ ∞

0
�0(x; l, v)dx

)
[1 − M−(0; v)]. (4.16)
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By (3.4) and (4.2), �0(x) = exp (U0x) and �∗(x) = exp (U∗x), so that∫ ∞

0
�∗(x; s, l) dx = [( − U∗)−1](s,l) and

∫ ∞

0
�0(x; l, v) dx = [( − U0)−1](l,v).

Substituting this in (4.16), we deduce the stated formula. We can proceed in the same way for
h−(s). �

The blocks [( − U0)−1](l,v) of ( − U0)−1, as well as the blocks [( − U∗)−1](l,v) of ( − U∗)−1,
can be efficiently calculated using the identities U0U−1

0 = I and U∗(U∗)−1 = I together with
the block structure (3.5).

5. Fluid flow with Brownian noise

Consider again a SIR epidemic model whose propagation is described by the Markov pro-
cess {Y(t)} with generator given by (2.3)–(2.4). For the fluid flow of the reserves, we suppose
now that the process {F(t)} is no longer piecewise linear but is perturbed by a Brownian noise.
More precisely, if Y(t) = (s, i) at time t < Te, we modify (2.7) by defining

dF(t) = c(s, i) dt + ν(s, i) dW(t), (5.1)

where the c(s, i) are the rates given by (2.6), the ν(s, i) are strictly positive coefficients, and
{W(t)} is a standard Brownian motion. Thus, the reserves process now evolves as a Brownian
motion with drift c(s, i) and standard deviation ν(s, i). The addition of a Brownian noise com-
ponent has the advantage of incorporating some variability in the premiums collected and the
medical expenses reimbursed by the insurance.

In the Brownian setting, it is no longer necessary to separate the states according to the sign
of the drift. We will work with the generator Q and the matrix of rates C structured according
to the partition of states Vn ∪ Vn−1 ∪ · · · ∪ V0, i.e. of the previous forms (2.4) and (2.8). We
also define the matrix 
 of volatility parameters,


 =

⎡⎢⎢⎢⎢⎣

(n) 0 · · · 0

0 
(n−1) · · · 0
...

...
. . .

...

0 0 · · · 
(0)

⎤⎥⎥⎥⎥⎦ , (5.2)

where 
(s), s = 0, . . . , n, is the diagonal matrix of dimension |Es| such that 
i,i(s) = ν(s, i),
i ∈ Es.

5.1. Ruin time distribution

Let Tx, x ≥ 0, be the stopping times defined by (4.1), with T0 ≡ Tr the time of ruin. We
introduce two matrices �θ (x) and �∗

θ (x), θ ≥ 0, defined by

(�θ )(v,i),(s,j)(x) ≡ (�θ (x; v, s))i,j

=E
[
e−θT0 1T0<Te,Y(T0)=(s,j) | F(0) = x, Y(0) = (v, i)

]
,

(�∗
θ )(v,i),(s,j)(x) ≡ (

�∗
θ (x; v, s)

)
i,j

=E
[
e−θT0 1T0<Te,Y(T0)=(s,j) | F(0) = −x, Y(0) = (v, i)

]
,
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where 0 ≤ s ≤ v ≤ n, i ∈ Ev, j ∈ Es. As with (3.4) and (4.2), it is easy to see that

�θ (x) = eUθ x and �∗
θ (x) = eU∗

θ x (5.3)

for some (sub-)generators Uθ and U∗
θ . The matrices �θ (x), �∗

θ (x) and Uθ , U∗
θ can still be

written in the block-structured triangular forms (3.2) and (3.5), but here they are of different
dimensions |Ev| × |Es|.

Consider Tr < Te. The Laplace transform of the time of ruin Tr jointly with the epidemic
state Y(Tr) is given by (5.4) below in terms of the blocks of the first row of �θ (u). Using (5.3),
these matrices can be calculated efficiently once the blocks of Uθ are obtained from (5.5).

Proposition 5.1. For 0 ≤ r ≤ n, j ∈ En−r, we have

E
[
e−θTr 1Tr<Te, Y(Tr)=(n−r,j)

] = {π�θ (u; n, n − r)}j , (5.4)

where for 0 ≤ k ≤ s ≤ n, the matrices Uθ (s, s − k) satisfy the identities

1k=0 2(
(s))−2(A(s) − θ I) + 1k=1 2(
(s))−2B(s) + 2(
(s))−2C(s)Uθ (s, s − k)

+
k∑

l=0

Uθ (s, s − l)Uθ (s − l, s − k) = 0.
(5.5)

Proof. The formula (5.4) is obtained by the same reasoning as (3.3) in Proposition 3.1. To
derive (5.5), we will use a well-known Wiener–Hopf factorization for the Brownian motion,
which is stated below (see e.g. Sato [22, Corollary 45.8]).

Let {B(t)} be a Brownian motion with drift d and standard deviation σ , and let τ be an
independent exponential variable of parameter μ. Define the two random variables

Z1 = − inf
0≤t≤τ

B(t) and Z2 = B(τ ) − inf
0≤t≤τ

B(t). (5.6)

Then Z1 and Z2 are independent exponential variables with respective parameters ω and η

given by

ω = d

σ 2
+

√
d2

σ 4
+ 2μ

σ 2
and η = −d

σ 2
+

√
d2

σ 4
+ 2μ

σ 2
. (5.7)

Let us fix s and k. To begin, we note that �θ (x; s, s − k) can be expressed as the matrix of
first passage probabilities to the level 0, starting from the level x > 0, under the constraint that
this first passage occurs before the ringing of an exponential clock of parameter θ . In other
words,

(�θ (x; s, s − k))i,j = P (Tr < min (Te, κθ ), Y(Tr) = (s − k, j) | F(0) = x, Y(0) = (s, i)),

where κθ is an independent exponential variable of parameter θ . Thanks to this interpretation,
we will determine (�θ (x; s, s − k))i,j using the Wiener–Hopf factorization above to analyze the
possible paths before the first moment τ where either there is a phase transition or the clock
rings. A similar argument was applied by Asmussen [2] in a different context.

For each i ∈ Es, we define the parameters ωi and ηi provided by (5.7) for a Brownian motion
of drift d = c(s, i) and standard deviation σ = ν(s, i), and an exponential variable τ of param-
eter μ = θ − Ai,i(s). Starting at the level x in phase i, the reserves process may reach the level
0 before time τ , or not. According to the result related to (5.6), the first case occurs with a
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probability equal to P (Z1 > x) = exp ( − ωix). In the second case, we use this result again, so
that by conditioning on Z1, Z2, and the new phase after time τ , we get

(�θ (x; s, s − k))i,j = 1i=j 1k=0 e−ωix

+
∑
r∈Es

∫ x

0

∫ ∞

0
ωie

−ωiuηie
−ηivPi,r (�θ (x − u + v; s, s − k))r,j dv du (5.8)

+ 1s>0

∑
r∈Es−1

∫ x

0

∫ ∞

0
ωie

−ωiuηie
−ηivP̂i,r (�θ (x − u + v; s − 1, s − k))r,j dv du,

where P and P̂ are the transition probability matrices of the jump chain from Es to Es and
Es−1, i.e.

Pi,r = P (ζ < κθ , Y(ζ ) = (s, r) | Y(0) = (s, i)), i, r ∈ Es,

P̂i,r = P (ζ < κθ , Y(ζ ) = (s − 1, r) | Y(0) = (s, i)), i ∈ Es, r ∈ Es−1,

where ζ is the first time that there is a transition in the process {Y(t)}. Therefore, we have from
(2.3) and (2.4) that

P = I + �−1(A(s) − θ I) and P̂ = �−1B(s), (5.9)

where � is the diagonal matrix of terms θ − Ai,i(s). Let us differentiate each side of (5.8) with
respect to x and take x = 0, also using (5.3). We then obtain, in matrix notation,

Uθ (s, s − k) = −�ω 1k=0 + �ωL, (5.10)

where

L =
∫ ∞

0
�ηe−�ηv

(
P�θ (v; s, s − k) + P̂�θ (x; s − 1, s − k)1s>0

)
dv,

and �ω and �η are the diagonal matrices of the terms ωi and ηi, respectively. Now, integrating
L by parts, with (3.9) and �θ (0; s − l, s − k) = I 1k=l, we can rewrite (5.10) as

Uθ (s, s − k) = 1k=0 �ω(P − I) + 1k=1 �ωP̂ + �ω

∫ ∞

0
e−�ηvP�θ (v; s, s)dv Uθ (s, s − k)

+
k∑

l=1

�ω

∫ ∞

0
e−�ηv

(
P�θ (v; s, s − l) + 1s>0 P̂�θ (x; s − 1, s − l)

)
dv Uθ (s − l, s − k).

Using (5.10) with l substituted for k, this relation can be expressed as

1k=0 �η�ω(P − I) + 1k=1 �η�ω + P̂(�ω − �η)Uθ (s, s − k)

+
k∑

l=0

Uθ (s, s − l) Uθ (s − l, s − k) = 0. (5.11)

Finally, inserting in (5.11) the identities (5.9),

�ω − �η = 2(
(s))−2C(s), and �η�ω = 2(
(s))−2�,

we deduce the desired relations (5.5). �
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The blocks of Uθ can be computed recursively from (5.5) as follows.

Induced algorithm.

(i) First, for 0 ≤ s ≤ n, taking k = 0 implies that Z ≡ Uθ (s, s) is the unique sub-generator
satisfying the quadratic equation

Z2 + 2(
(s))−2C(s)Z + 2(
)−2(A(s) − θ I) = 0.

Various numerical procedures have been developed in the literature to solve such an
equation numerically (see e.g. Asmussen [2] or Latouche and Nguyen [15]).

(ii) Next, for 1 ≤ s ≤ n, taking k = 1 shows that Z ≡ Uθ (s, s − 1) is the unique solution of
the Sylvester equation

[Uθ (s, s) + 2(
(s))−2C(s)]Z + ZUθ (s − 1, s − 1) = −2(
(s))−2B(s).

(iii) Finally, for k = 2, . . . , s, we find that Z ≡ Uθ (s, s − k) is the unique solution of the
Sylvester equation

[Uθ (s, s) + 2(
(s))−2C(s)]Z + ZUθ (s − k, s − k) = −
k−1∑
l=1

Uθ (s, s − l)Uθ (s − l, s − k).

5.2. Distribution of F(Te)

Let us turn to the final amount of reserves. Similarly to the fluid model, we have
P (F(Te) > x) = πM(x − u; n) for x ∈R, where M(x; s) is a column vector with components

Mi(x; s) = P (F(Te) > x | F(0) = 0, Y(0) = (s, i)), i ∈ Es.

Here again, we no longer separate M(x; s) according to the sign of the drift.
We will express M(x; s) in terms of only the vectors M(0; l), 0 ≤ l ≤ s, which can then be

determined by recursion. Before that, we notice that, as in the fluid case, �∗
0(x) is defined as

�0(x) but for the level-reversed model {F̂(t), Y(t)} built with rates of reversed signs. Thus, the
blocks of U∗

0 are computed from (5.5) after replacing C(s) by −C(s).

Proposition 5.2. For x ≥ 0,

M(x; s) =
s∑

l=0

�∗
0(x; s, l)M(0; l), (5.12)

while for x ≤ 0,

M(x; s) = 1 −
s∑

l=0

�0( − x; s, l)1 +
s∑

l=0

�0( − x; s, l)M(0; l). (5.13)

The vectors M(0; s), 0 ≤ s ≤ n, are provided recursively from

M(0; s) = [
U0(s, s) + U∗

0 (s, s)
]−1

{
s∑

l=0

U0(s, l)1 −
s−1∑
l=0

[U0(s, l) + U∗
0 (s, l)]M(0; l)

}
. (5.14)

Proof. The formulas (5.12) and (5.13) are obtained using the same argument as for
Proposition 4.1. To get (5.14), we will proceed by approximation.
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Fix ε > 0 and define the vectors Mε(0; s) as M(0; s) but with the following additional con-
straint: the reserves process, which starts at level 0, each time it reaches 0 before Te, must also
reach the level ε before Te. In other words,

Mε,i(0; s) = P (F(Te) > x, κε ≥ κ0 | F(0) = 0, Y(0) = (s, i)),

where κy denotes the time of the last visit at level y before Te. Let us first show that Mε(0; s)
can be expressed as

Mε(0; s) =
s∑

l=0

�∗
0(ε; s, l)

[
1 −

l∑
r=0

�0(ε; l, r)1
]

+
s∑

l=0

l∑
r=0

�∗
0(ε; s, l)�0(ε, l, r)Mε(0; r).

(5.15)
Indeed, in the right-hand side, the first term gives the probability that the reserves process
reaches ε and does not return to 0 before Te, while the second term gives the probability that
the process reaches ε and return to 0 before Te. By grouping the Mε(0; s) on both sides of
(5.15), we get

Mε(0; s) = [I − �∗
0(ε; s, s)�0(ε; s, s)]−1

{ s∑
l=0

�∗
0(ε; s, l)[1 −

l∑
r=0

�0(ε; l, r)1]

+
s∑

l=0

l∑
r=0

�∗
0(ε; s, l)�0(ε; l, r)Mε(0; r)(1 − δs,l,r)

}
, (5.16)

where δs,l,r equals 1 when s = l = r, and 0 otherwise.
Now, from (5.3) with θ = 0, for ε small we have

�0(ε; s, l) = Iδs,l + εU0(s, l) + o(ε) and �∗
0(ε; s, l) = Iδs,l + εU∗

0 (s, l) + o(ε). (5.17)

By inserting (5.17), we obtain in (5.16) the following approximations:

I − �∗
0(ε; s, s)�0(ε; s, s) = −ε[U0(s, s) + U∗

0 (s, s)] + o(ε),
s∑

l=0

�∗
0(ε; s, l)[1 −

l∑
r=0

�0(ε; l, r)1] = −ε

s∑
l=0

U0(s, l)1 + o(ε),

s∑
l=0

l∑
r=0

�∗
0(ε; s, l)�0(ε; l, r)Mε(0; r)(1 − δs,l,r) = ε

s−1∑
l=0

[U0(s, l) + U∗
0 (s, l)]M(0; l) + o(ε).

Consequently, when ε → 0+, the identity (5.16) is reduced to the formula (5.14). �
Furthermore, we can determine the distribution of the amount F(Te) and its expectation,

when ruin does or does not occur before Te, in terms of the vectors M(x; s). The results are
similar to those in Propositions 4.3 and 4.4; the proofs are omitted.

Proposition 5.3. Given F(0) = u ≥ 0, S(0) = n, ϕ(0) ∼ π ,

P (F(Te) > x, Tr < Te) = π

n∑
l=0

�0(u; n, l)M(x; l),

P (F(Te) > x, Te < Tr) = πM(x − u; n) − π

n∑
l=0

�0(u; n, l)M(x; l).

https://doi.org/10.1017/apr.2020.66 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.66


504 C. LEFÈVRE AND M. SIMON

For the means, E [F(Te)] and E
[
F(Te)1Tr>Te

]
are provided by (4.13)–(4.14), and

E
[
F(Te)1Tr<Te

] = π

n∑
l=0

�0(u; n, l)h(l),

where the vectors h(s) are given by

h(s) =
s∑

l=0

[
( − U∗

0 )−1
]

(s,l)
M(0; l) −

s∑
l=0

[
( − U0)−1

]
(s,l)

[1 − M(0; l)].

6. Numerical illustrations

Let us consider an extension of the general epidemic {S(t), I(t)} where the infinitesimal
transition probabilities are

P (S(t + dt) = s, I(t + dt) = i − 1 | S(t) = s, I(t) = i) = μ(s, i) dt + o(dt),

P (S(t + dt) = s − 1, I(t + dt) = i + 1 | S(t) = s, I(t) = i) = β(s, i) dt + o(dt),
(6.1)

starting from S(0) = n, I(0) = m. Thus, the removal rates μ(s, i) and the infection rates β(s, i)
are arbitrary functions of the current state (s, i) with, of course, μ(s, 0) = β(s, 0) = β(0, i) = 0.
For the standard general epidemic,

μ(s, i) = μi and β(s, i) = βsi/(n + m), (6.2)

where the infection rate has a factor 1/(n + m) because permanent immunity occurs after
infection. For the so-called fatal epidemic,

μ(s, i) = μi and β(s, i) = βsi/(s + i), (6.3)

where the infection rate has now a factor 1/(s + i) because death inevitably follows infection
(see e.g. Picard and Lefèvre [20]). These two epidemic models are used below to illustrate
some of the theoretical results obtained.

The epidemic process (6.1) is a particular case of the model built in Section 2.1. The
variable ϕ(t) here represents the number I(t) of infectives; therefore Es = {1, . . . , n + m − s}.
The generator of the Markovian process {S(t), I(t)} is then defined by (2.3) and (2.4) in
which v(s) = [μ(s, 1), 0, . . . , 0]τ is a column vector of dimension n + m − s, B(s) is the
(n + m − s) × (n + m − s + 1) matrix

B(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.8]0 β(s, 1) 0 0 0 · · · 0

0 0 β(s, 2) 0 0 · · · 0

0 0 0 β(s, 3) 0 · · · 0

0 0 0 0 β(s, 4) · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · β(s, n+m−s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and A(s) is the (n + m − s) × (n + m − s) matrix

A(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.8] − γ (s, 1) 0 0 0 · · · 0

μ(s, 2) −γ (s, 2) 0 0 · · · 0

0 μ(s, 3) −γ (s, 3) 0 · · · 0

0 0 μ(s, 4) −γ (s, 4) · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · −γ (s, n+m−s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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FIGURE 1. Distribution of S(Te), the final number of susceptibles, for the general epidemic (left) and the
fatal epidemic (right) when n = 47, m = 3 and μ = 1, β = 1.5.

where γ (s, i) = β(s, i) + μ(s, i) for all i ≥ 1. From (2.2), π is the row vector of dimension m
given by [0, . . . , 0, 1].

The associated risk process is a particular case of the fluid flow model of Section 2.2.
The reserves process {F(t)} evolves as a function of the epidemic {S(t), I(t)} via the (con-
ditional) differential equation (2.7) with c(s, i) = a(s, i) − b(s, i) as net income rate (see
(2.6)). For the examples below, each susceptible is assumed to pay premiums at a fixed rate
a, so that a(s, i) = as. On the other side, we suppose that each infective is reimbursed for their
healthcare costs either at a constant rate b, which yields b(s, i) = bi, or at a variable rate bi,
which yields b(s, i) = bi2. Indeed, the number of infected cases could influence the level of
care provided by medical units, and therefore the associated cost. With a rate bi, the cost of
care per individual increases linearly with the number of infectives present. A reverse influence
could also be possible, depending on the situation.

The premium level a per susceptible can be set according to various criteria. For
example, the usual equivalence principle in life insurance requires that E

[
benefit outgo

] =
E

[
premium income

]
, which gives the net premium rate

a∗ =
E

[∫ Te
0 b(I(u)) du

]
E

[∫ Te
0 S(u) du

] , (6.4)

where b(I(u)) is equal to bI(u) or b(I(u))2. This case is examined below, as it was in Lefèvre et
al. [18] and Lefèvre and Simon [19]. In addition, we also show the influence of the premium
level a by considering it as a free parameter with values around a∗.

Consider a population initially containing n = 47 susceptibles and m = 3 infectives, and
suppose that the epidemic is described by a general or fatal model with removal and infection
rates (6.2) or (6.3) with μ = 1 and β = 1.5. Figure 1 shows the graphs of the distribution
of S(Te), the number of suceptibles who ultimately escaped infection. This distribution was
determined by applying the results obtained in Section 2.2 of Lefèvre and Simon [19]. As is
well known, S(Te) typically has a bimodal distribution, for both models. The fatal epidemic is
expected to be more serious than the general epidemic because the infection rates are larger
(since 1/(s + i) ≥ 1/(n + m)). This explains the fact that S(Te) presents a mode close to 0 and
of high probability.
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TABLE 1. Values of a∗ for the general and fatal epidemics when n = 47, m = 3 and μ = 1, β = 1.5,
for b(s, i) = bi or b(s, i) = bi2 with b = 0.5.

General epidemic Fatal epidemic

b(s, i) bi bi2 bi bi2

a∗ 0.07 0.44 0.12 0.95
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FIGURE 2. Ruin probability, P (Tr < Te), in the general epidemic (n = 47, m = 3, μ = 1, β = 1.5),
as a function of the premium rate a when b(s, i) = bi (left) and b(s, i) = bi2 (right) with b = 0.5, for
u = 5, 10, 20.
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FIGURE 3. Expected reserves in case of non-ruin, E
[
F(Te)1Tr>Te

]
, in the general epidemic (n = 47,

m = 3, μ = 1, β = 1.5), as a function of the premium rate a when b(s, i) = bi (left) or b(s, i) = bi2 (right)
with b = 0.5, for u = 5, 10, 20.

In the following, we focus on the reserves process assuming different initial values u, the
premium rate a(s, i) = as, and the reimbursement rate for care b(s; i) = bi or b(s; i) = bi2. We
choose b = 0.5 and a, when it varies, in the interval [0, 2a∗] where a∗ is the reference premium
level (6.4) provided in Table 1.

Figures 2, 3, and 4 relate to the general epidemic. Figure 2 gives the graphs of P (Tr < Te),
the probability that ruin occurs, as a function of the premium rate a for the two previous
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FIGURE 4. Ruin probability, P (Tr < Te), in the general epidemic (n = 47, m = 3, μ = 1, β = 1.5), as a
function of the infection rate β when b(s, i) = bi (left) and b(s, i) = bi2 (right) with b = 0.5, for a = a∗(β)
and u = 5, 10, 20.
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FIGURE 5. Ruin probability, P (Tr < Te), in the fatal epidemic (n = 47, m = 3, μ = 1, β = 1.5), as a
function of the premium rate a when b(s, i) = bi (left) and b(s, i) = bi2 (right) with b = 0.5, for u =
5, 10, 20.

reimbursement rates with b = 0.5 and when u = 5, 10, 20. The calculations are performed
using the formula (3.3) derived in Section 3 (with θ = 0). We observe that this probability
decreases with a, and is higher when u is low or when the reimbursement is large (the case
with bi2), which is in agreement with intuition. Figure 3 gives the graphs of E

[
F(Te)1Tr>Te

]
,

the expected reserves when ruin does not occur, under the same parametric conditions. The
expectations are calculated using Proposition 4.4 in Section 4. As guessed, E

[
F(Te)1Tr>Te

]
increases with a, and is higher when u is high or when the reimbursement is small (the case
with bi). Figure 4 gives the graphs of P (Tr < Te) as in Figure 2, but this time as a function
of the infection rate β and when a = a∗(β) is provided by (6.4). We see that the probability
function is bell-shaped, i.e. it first increases and then decreases with β, and the decrease is
weaker when the reimbursement rate is large. A likely reason is that the premium rate a∗(β)
increases with the infection rate β, and after a certain level of β, a∗(β) is high enough to
decrease the risk of ruin.

Figures 5, 6, and 7 relate to the fatal epidemic. Figures 5 and 6 show the graphs of
P (Tr < Te) and E

[
F(Te)1Tr>Te

]
for the fatal epidemic, as did Figures 2 and 3 for the general
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FIGURE 6. Expected reserves in case of non-ruin, E
[
F(Te)1Tr>Te

]
, in the fatal epidemic (n = 47, m = 3,

μ = 1, β = 1.5) as a function of the premium rate a when b(s, i) = bi (left) and b(s, i) = bi2 (right) with
b = 0.5, for u = 5, 10, 20.
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FIGURE 7. P (Tr < Te) and E
[
F(Te)1Tr>Te

]
in the fatal epidemic (n = 47, m = 3, μ = 1, β = 1.5) with

Brownian noise, as a function of the initial reserves u when b(s, i) = bi with b = 0.5, for a = a∗ = 0.07
and ν(s, i) = νi with ν = 0, 0.5, 1.

epidemic. Numerical observations give rise to similar comments. Note that the infection is
significantly more severe in the fatal model, so the probability of ruin is much higher and the
expected reserves are much lower. Figure 7 gives the graph of these two statistics as functions
of the initial reserves u for the model of Section 5 with a Brownian noise of standard deviation
ν(s, i) = νi, say, with ν = 0, 0.2, 0.5. An interesting point is that a greater noise dispersion
implies, when u is large, a greater probability of ruin and larger expected reserves. Note also
that the amounts of expected reserves are very close to the initial level of reserves, which is a
consequence of our choice a = a∗ as the premium rate.
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