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1 Introduction

We examine the equations considered in [7] for the dynamics of alveolar macrophages faced with
an inhalation of quartz particles in the lungs. The paper [7] of Tran et al. should be better known
than it is. Not only does it make a contribution to the important environmental health problem of
understanding how the lungs react to continuous exposure to dust, but it also introduces a novel
and challenging class of coagulation–death type equations.

Coagulation–fragmentation equations arise in a wide variety of contexts, e.g. in molecular
beam epitaxy in material science, planetoid evolution, colloid suspensions and plankton dynam-
ics in the ocean. The mathematics of such equations is challenging and is intensively pursued
at present. For an introduction to this modelling framework, we recommend [8]. For up-to-date
presentations, the reader is referred to [2] and the forthcoming two-volume extensive treatment
in [1], which in particular discusses the main mathematical techniques available for proving the
existence of solutions.

Coagulation–fragmentation equations can evolve in different ways, depending on the details of
the process. Convergence (in different topologies) to equilibria or to similarity solutions, finite-
time blowup (gelation) [2] and even periodic behaviour [5] are possible.

In the usual coagulation–fragmentation literature (see the references above), the unknowns
are concentrations cn(t) of clusters composed of n monomer building blocks, while in our case
the equivalent unknowns are Mn(t), concentrations of cells that contain n dust particles as well
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as the concentration of the dust particles themselves, the equivalent of monomers in standard
coagulation–fragmentation systems. In biology, there are many situations in addition to dust
ingestion where cell populations are structured by cell contents (e.g. cytokine concentration or
DNA lesions following exposure to radioactive radiation) and the present study is a step towards
understanding such systems.

In this paper, we discuss the model itself and the structure of its equilibria, leaving issues
of global existence and stabilisation to future work. The structure of equilibria is a challenging
problem in its own right; we provide criteria for existence and non-existence of equilibria, solve
completely the particular case of piecewise constant coefficients, analyse the asymptotics of infi-
nite sums that arise in the study of equilibria, and in Section 5 pose an open question concerning
exact multiplicity of equilibria of interest to experts in special function theory.

We show that in some parameter regimes, it is possible to have more than one equilibrium.
In such cases, convergence to a steady state can coexist with unbounded growth (depending on
the initial condition); to the best of our knowledge, the system we are considering is the first
coagulation–fragmentation system that has the potential for exhibiting such a behaviour.

2 The model

If we denote by Mi, the concentration of macrophages containing i quartz particles (which we
will call the i-th cohort), by x the concentration of quartz, by r (which can be a function of x the
rate of supply of new macrophages, following [7], but without a priori truncation, we obtain the
following equations:

dM0

dt
= r − k0xM0 − (p0 + q0)M0,

dMi

dt
= ki−1xMi−1 − kixMi − (pi + qi)Mi, i ≥ 1,

(2.1)

where ki is the rate of phagocytosis of a macrophage containing i particles of quartz, pi is the
transfer rate of macrophages in the i-th cohort to the mucociliary escalator, i.e. the rate of their
removal together with their quartz baggage and qi is the rate of death of the i-th cohort which
results in the release of the quartz burden.

Note that unlike [7], we do not impose an upper limit on the number of particles a macrophage
can contain. What is not done in [7] is to provide an equation for the evolution of the concentra-
tion of x; their interest is in the system dynamics following an instance of inhalation, while we
are more concerned with analysing system behaviour under continuous influx of quartz. Thus,
we add to (2.1) the following equation:

dx

dt
= α − x

∞∑
i=0

kiMi +
∞∑

i=0

qiiMi. (2.2)

Here, α the rate of inhalation of quartz.
Thus, the object of our study is the system (2.1) and (2.2), considered as an infinite-

dimensional dynamical system on a suitable sequence space. Before we analyse it, let us remark
that hence (2.1) and (2.2) is an example of a coagulation–death system, in which the ‘monomers’
(quartz particles) are structurally different from ‘clusters’ (cells containing these particles); this
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shows the versatility of coagulation–fragmentation framework and, in particular, its suitability
to describe phagocytosis phenomena (e.g. of neutrophils consuming bacteria).

As in [7], we make the assumptions that ki and pi are non-increasing in i. We allow qi to grow
with i.

The model of [7] is biologically sophisticated, also involving neutrophils and communication
between neutrophils and macrophages. In (2.1), r should express the amount of ‘distress’ in the
system, embodied in the number of macrophages with more than a sublethal load of quartz, i.e.
those that are more likely to die and release their load than to be removed via the mucociliatory
escalator. In other words, if the sublethal load is s particles per cell, a biologically reasonable
assumption is that r is a bounded increasing function of

∑∞
i=s+1 Mi (see equations (7) and (8) in

[7]). In the present work we take r to be a constant, but our analysis here illuminates the more
general case described above as well.

A simple instance of allowable coefficients for which the structure of equilibria can be anal-
ysed explicitly will be considered in Section 3.1 below. The structure of the equilibria in a more
general case, where the coefficients satisfy some power law relations, will be considered in
Section 3.2.

3 Equilibria

We start by proceeding formally and then justify our steps in the sections below. Suppose system
(2.1) and (2.2) has an equilibrium. Then, the M0 equation at equilibrium can be solved for M0 in
terms of x (and r) to give

M0 = r

k0x + p0 + q0
.

Similarly, M1 will be given by

M1 = rk0x

(k0x + p0 + q0)(k1x + p1 + q1)
.

Continuing recursively, we have

Mi =
rxi

∏i−1
j=0 kj∏i

j=0(kjx + pj + qj)
.

Setting di = (pj + qj)/kj, we can rewrite this as

Mi = rxi

ki
∏i

j=0(x + dj)
, i ≥ 0. (3.1)

3.1 A piecewise constant class of coefficients

A simple instance of allowable coefficients is to take all ki equal to k and,

pi =
{

1 if i ≤ N ,

0 if i ≥ N + 1,
and qi =

{
0 if i ≤ N ,

1 if i ≥ N + 1.
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Then dj = 1/k, and using (3.1) we easily compute

∞∑
i=0

kiMi = k
∞∑

i=0

Mi = r

x + 1/k

∞∑
i=0

(
x

x + k

)i

= rk, (3.2)

and
∞∑

i=0

iqiMi =
∞∑

i=N+1

iMi

= 1

k

r

x + 1/k

∞∑
i=N+1

i

(
x

x + 1/k

)i

= 1

k

r

x + 1/k

(
x

x + 1/k

)N+1 ∞∑
i=0

(i + N + 1)

(
x

x + 1/k

)i

= 1

k

r

x + 1/k

(
x

x + 1/k

)N+1
( ∞∑

i=0

i

(
x

x + 1/k

)i

+ (N + 1)
∞∑

i=0

(
x

x + 1/k

)i
)

= 1

k

r

x + 1/k

(
x

x + 1/k

)N+1 (
k2x(x + 1/k) + k(N + 1)(x + 1/k)

)
= r

(
x

x + 1/k

)N+1 (
kx + (N + 1)

)
. (3.3)

Thus, plugging (3.2) and (3.3) into equation for the equilibrium quartz concentration we obtain

α

r
−FN ,k(x) = 0, (3.4)

where

FN ,k(x) := kx

(
1 −

(
x

x + 1/k

)N+1
)

− (N + 1)

(
x

x + 1/k

)N+1

. (3.5)

Proposition 1 For all r, k > 0 and N ∈N, there is α∗ such that (3.4) has no solutions if α > α∗.

Proof It suffices to observe that FN ,k(0) = 0, F ′
N ,k(0) = k > 0 and

lim
x→+∞ FN ,k(x) = lim

x→+∞

[
kx

(x + 1/k)N+1 − xN+1

(x + 1/k)N+1
− (N + 1)

(
x

x + 1/k

)N+1
]

= lim
x→+∞

[
(N + 1)

(
x

x + 1/k

)N+1

+ O(x−1) − (N + 1)

(
x

x + 1/k

)N+1
]

= 0.

This implies that FN ,k has an absolute maximum in R
+. Defining α∗ := r max

R+ FN ,k , the result

follows.

We now prove that, for each α ∈ (0, α∗), there are exactly two solutions of (3.4).
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Proposition 2 Let r, k > 0 and N ∈N. Let α∗ := r max
R+ FN ,k . Then, for every α ∈ (0, α∗), there

are exactly two solutions of (3.4).

Proof To prove the result, we establish that FN ,k has a single stationary point in R
+, which,

then, must be the absolute maximum whose existence was established above. This, together with
the already proved facts that FN ,k(0) = 0 and limx→+∞ FN ,k(x) = 0, proves the result.

Let y := x
x+1/k . Then x = y/k

1−y and

F̃N ,k( y) :=FN ,k(x( y)) = y

1 − y

(
1 − yN+1

)− (N + 1)yN+1

= y

1 − y

(
1 − yN+1 − (N + 1)(1 − y)yN

)
= y

1 − y

(
1 − (N + 1)yN + NyN+1

)︸ ︷︷ ︸
=: fN ( y)

.

Since dx
dy = 1

k
1

(1−y)2 > 0, we have sgn F̃ ′
N ,k( y) = sgn F ′

N ,k(x( y)). Thus, we need only to study the

function in the new variable y ∈ [0, 1). Observing that f ′
N ( y) = −N(N + 1)yN−1 + N(N + 1)yN =

−N(N + 1)yN−1(1 − y), we have

F̃ ′
N ,k( y) = 1

(1 − y)2
fN ( y) + y

1 − y
f ′
N ( y)

= 1

(1 − y)2

(
1 − (N + 1)yN + NyN+1 − N(N + 1)(1 − y)2yN

)
= 1

(1 − y)2

(
1 − (N + 1)2yN + N(2N + 3)yN+1 − N(N + 1)yN+2

)︸ ︷︷ ︸
=: pN ( y)

.

Let us consider the polynomial pN in [0, 1]. It is clear that pN (0) = 1 and pN (1) = 0.
Its derivative is p′

N ( y) = N(N + 1)yN−1qN ( y), where qN ( y) := −(N + 1) + (2N + 3)y − (N +
2)y2. We easily conclude that the zeros of qN ( y) are y1 = N+1

N+2 and y2 = 1, and that
sgn

(
y − N+1

N+2

)
sgn qN ( y) > 0. This means that pN has a minimum at y = N+1

N+2 and must be an
increasing function in the interval

(
N+1
N+2 , 1

)
. Since pN (1) = 0, this implies the value of pN ( y) at

y = N+1
N+2 must be negative, which, together with pN (0) > 0 and the fact that pN is strictly decreas-

ing in
(
0, N+1

N+2

)
, means, due to the intermediate value theorem, that there is one, and only one,

zero of pN in this set, and hence in (0, 1), i.e. there is a single stationary point of FN ,k in R
+.

3.2 Power type coefficients

We consider now the more complex case of coefficients satisfying some power relations.

Theorem 3 Let Mi be given by (3.1). Assume that z = infi di > 0. Assume also that qi/ki grows
no faster than a power of i. Then for all x ≥ 0

∞∑
i=0

kiMi < ∞ and
∞∑

i=0

iqiMi < ∞.
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Proof This follows by the Ratio Test, as

ki+1Mi+1

kiMi
= x

x + di+1
≤ x

x + z
< 1,

for all i. Also,

(i + 1)qi+1Mi+1

iqiMi
= 1 + i

i

(qi+1/ki+1)

qi/ki

x

x + di+1
.

Pick ε = 1

2

(
z + x

x
− 1

)
. We can find N = N(x) such that

1 + i

i

(qi+1/ki+1)

qi/ki
≤ (1 + ε),

for all i ≥ N . But then for all i ≥ N , we have that

(i + 1)qi+1Mi+1

iqiMi
≤ 1

2

(
x

x + z
+ 1

)
< 1.

So the equation for equilibrium quartz concentration can be written in the form

α

r
= x

x + d0
+ 1

x + d0

∞∑
i=1

(
x − i

qi

ki

) i∏
j=1

x

x + dj
=: F(x). (3.6)

Our first main result provides a quite general sufficient condition for the existence of equilibria.

Theorem 4 Assume that z := infi di > 0 and also that qi/ki grows no faster than a power of i.
Let ρi := pi/ki.

If di = o(iρi) as i → ∞, then F(x) → ∞ (as x → ∞) and consequently we have an equilibrium
(3.6) for all α, r.

If iρi = O(di) as i → ∞, then F(x) is bounded. Thus, there exists m > 0 such that there exists
an equilibrium for α/r < m and no equilibrium for α/r ≥ m.

Finally, if iρi = o(di) as i → ∞ then F(x) is bounded and we have F(x) → 0 (as x → ∞). In
this case, there exists m > 0 such that there exists an equilibrium for α/r ≤ m and no equilibrium
for α/r > m.

In order to prove Theorem 4, we have to study F(x) in more detail.
Since di := pi+qi

ki
= ρi + qi

ki
, we have

F(x) = x

x + d0
+ 1

x + d0

∞∑
i=1

(
x − i

qi

ki

) i∏
j=1

x

x + dj

= x

x + d0
+ 1

x + d0

∞∑
i=1

(
x − idi + iρi

) i∏
j=1

x

x + dj
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=
⎧⎨⎩ x

x + d0
− 1

x + d0

∞∑
i=1

(
idi − x

) i∏
j=1

x

x + dj

⎫⎬⎭︸ ︷︷ ︸
=: G(x)

+ 1

x + d0

∞∑
i=1

iρi

i∏
j=1

x

x + dj
.

(3.7)

Proposition 5 With the above assumptions and notation, we have that G(x) = 0, ∀x ≥ 0.

Proof Since G(0) = 0, it is sufficient to consider the case x > 0. We prove that the sum S of the
series

1

x

∞∑
i=1

(
idi − x

) i∏
j=1

x

x + dj
(3.8)

is equal to 1 for all values of x > 0. Let Sn denote the partial sums of (3.8) and set

an = 1 − Sn.

We will show by induction that

an = (n + 1)xn∏n
j=1(x + dj)

. (3.9)

Obviously, we have for n = 1

a1 = 1 − S1 = 1 − 1

x

1∑
i=1

(idi − x)
i∏

j=1

x

x + dj

= 1 − 1

x
(d1 − x)

x

x + d1
= 2x

x + d1
,

as required. Assume (3.9) is true for some n. Then

an+1 = 1 − Sn+1

= 1 −
⎛⎝Sn + 1

x
((n + 1)dn+1 − x)

n+1∏
j=1

x

x + dj

⎞⎠
= an − xn ((n + 1)dn+1 − x)

n+1∏
j=1

1

x + dj

= (n + 1)xn∏n
j=1(x + dj)

− xn ((n + 1)dn+1 − x)
n+1∏
j=1

1

x + dj

= xn (n + 1)(x + dn+1) − ((n + 1)dn+1 − x)∏n+1
j=1 (x + dj)

= (n + 2)xn+1∏n+1
j=1 (x + dj)

.

This proves (3.9) for all n ≥ 1.
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Now an → 0 as n → ∞ follows trivially from

0 < an = (n + 1)
xn

n∏
j=1

(x + dj)

< (n + 1)
( x

x + z

)n −→ 0, as n → +∞.

So we conclude that S = lim Sn = lim(1 − an) = 1. Hence, G(x) = 0 holds also for all x > 0.

Using Proposition 5 we conclude that, with the power law assumptions on the coefficients, F
can be written as

F(x) = 1

x + d0

∞∑
i=1

iρi

i∏
j=1

x

x + dj
=:

1

x + d0
H(x). (3.10)

With the help of the next proposition, we can get some information on the growth order of
H(x).

Proposition 6 Assume that z = infi di > 0. Then we have, for x ≥ 0,

∞∑
i=1

di

i∏
j=1

x

x + dj
= x.

Proof The equality is trivially satisfied for x = 0. Thus we just have to consider the case x > 0,
where we set

bn = x −
n∑

i=1

di

i∏
j=1

x

x + dj
.

We prove by induction that

bn = xn+1∏n
j=1(x + dj)

. (3.11)

This is clearly true for n = 1:

b1 = x − d1
x

x + d1
= x2

x + d1
.

Now assume that (3.11) is satisfied for some n ≥ 1. Then we have

bn+1 = bn − dn+1

n+1∏
j=1

x

x + dj

= xn+1∏n
j=1(x + dj)

− dn+1xn+1∏n+1
j=1 (x + dj)

= xn+1 x + dn+1 − dn+1∏n+1
j=1 (x + dj)

= xn+2∏n+1
j=1 (x + dj)
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as proposed. Finally, we have

0 < bn ≤ x

(
x

x + z

)n

→ 0, as n → ∞.

This implies lim bn = 0 and proves the proposition for x > 0.

We are now ready to prove Theorem 4.

Proof First, suppose that di = o(iρi) (as i → ∞). Fix some ε > 0 and suppose that di ≤ εiρi for
i ≥ i0 = i0(ε). Then we have (also by applying Proposition 6)

H(x) =
∞∑

i=1

iρi

i∏
j=1

x

x + dj

=
i0−1∑
i=1

iρi

i∏
j=1

x

x + dj
+

∞∑
i=i0

iρi

i∏
j=1

x

x + dj

≥
i0−1∑
i=1

iρi

i∏
j=1

x

x + dj
+ 1

ε

∞∑
i=i0

di

i∏
j=1

x

x + dj

=
i0−1∑
i=1

(
iρi − 1

ε
di

) i∏
j=1

x

x + dj
+ 1

ε

∞∑
i=1

di

i∏
j=1

x

x + dj

= O(1) + x

ε
.

Consequently,

lim inf
x→∞

H(x)

x
≥ 1

ε
.

Since ε > 0 can be arbitrarily chosen, we have H(x)/x → ∞ (as x → ∞) and, thus,

F(x) = H(x)

x + d0
→ ∞, as x → ∞.

Since F(0) = 0 and F(x) is continuous, it follows that there exists an equilibrium in all cases.
Next, suppose that iρi = O(di), i.e. there is a constant K > 0 such that iρi ≤ Kdi for all i ≥ 1.

Hence,

H(x) =
∞∑

i=1

iρi

i∏
j=1

x

x + dj
≤ K

∞∑
i=1

di

i∏
j=1

x

x + dj
= K x

and consequently F(x) is bounded. Clearly, if we set

m := sup
x≥0

F(x),

then there exists no equilibrium if α/r > m and again since F(0) = 0 and by continuity there is
an equilibrium if α/r < m.
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Finally, if iρi = o(di) as i → ∞, then it follows (as above) that F(x) = o(x) (as x → ∞). By
continuity, there exists

m := max
x≥0

F(x).

Hence, then there exists no equilibrium if α/r > m and an equilibrium if α/r ≤ m.

Consider now the case where the coefficients are given by the following power laws:

pi = i−p, qi = iq and ki = i−k ,

for i ∈N
+ and non-negative constants p, q and k, Let p0, q0 and k0 �= 0 be given. Then, writing

a := q + k ≥ 0 and b := k − p ∈R, we have di = ia + ib and ρi = ib.
By a direct application of Theorem 4, we get the following property:

Corollary 7 Suppose that a ≥ 0 and b > −2.
If b > a − 1, (2.1) and (2.2) has an equilibrium for all α/r.
If b = a − 1, there is a value m > 0 such that for α/r < m, (2.1) and (2.2) has an equilibrium

and no equilibria if α/r ≥ m.
If b < a − 1, there is a value m > 0 such that for α/r ≤ m, (2.1) and (2.2) has an equilibrium

and if α/r > m, there are none.

4 Precise asymptotics

It is also an interesting problem to obtain precise asymptotics for the case where di = ia + ib and
ρi = ib, b < a. In order to make our analysis slightly easier, we will concentrate on the case

di = ia and ρi = ib.

We will use the following notation:

Ka,b(x) =
∞∑

i=1

ib+1
i∏

j=1

x

x + ja
, Ha,b(x) =

∞∑
i=1

ib+1
i∏

j=1

x

x + ja + jb
. (4.1)

Then, we have the following result:

Theorem 8 Suppose that a > 0, b > −2 and let Ka,b(x) be given by (4.1). Then as x → ∞, Ka,b(x)
admits an asymptotic expansion such that

Ka,b(x) ∼ �
(

b+2
a+1

)
(a + 1)1−(b+2)/(a+1)

x
b+2
a+1 + O

(
x

b+1
a+1

)
,

if b > −1 and

Ka,b(x) ∼ �
(

b+2
a+1

)
(a + 1)1−(b+2)/(a+1)

x
b+2
a+1 + O (1) ,

if b ≤ −1.

The proof is mainly based on the following asymptotic series representation:
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Lemma 9 Let R(a, A; v) denote the infinite sums

R(a, A; v) =
∞∑

i=1

e−via+1
iA,

where a, v > 0 and A are real. The following holds:

1. If (A + 1)/(a + 1) is different from 0, −1, −2, . . ., then as v → 0,

R(a, A; v) ∼ �
(

A+1
a+1

)
a + 1

v− A+1
a+1 +

∞∑
k=0

(−1)k

k! ζ (−A − k(a + 1))vk , (4.2)

where ζ (·) is the Riemann zeta function.
2. If (A + 1)/(a + 1) = −k0 for some integer k0 ≥ 0 then, as v → 0,

R(a, A; v) ∼ (−1)k0

(a + 1)k0!
(

1 + (Hk0 + aγ ) log
1

v

)
vk0

+
∑

k≥0, k �=k0

(−1)k

k! ζ (−A − k(a + 1))vk ,
(4.3)

where Hk = 1 + 1
2 + · · · 1

k denotes the k-th harmonic number, H0 = 0, and
γ = 0.5772156 . . . is the Euler–Mascheroni constant.

Proof We recall (see, e.g. [3, Part I]) that the Mellin transform of a function f (v) is given by

f̂ (s) =
∫ ∞

0
f (v)vs−1 dv,

and converges usually in a strip a1 < (s) < a2. Under suitable regularity assumptions (e.g. that
f (v) is continuous and of bounded variation), the function f (v) can be recovered from the integral

f (v) = 1

2π i
lim

T→∞

∫ C+iT

C−iT
f̂ (s)v−s ds,

where a1 < C < a2.
In our case, it is an easy exercise to show that the Mellin transform of R(a, A; v) is given by

R̂(a, A; s) =
∫ ∞

0
R(a, A; v)vs−1 dv = �(s)ζ ((a + 1)s − A), (4.4)

The integral converges for (s) > max
(
0, A+1

a+1

)
. Consequently, we have

R(a, A; v) = 1

2π i

∫ C+i∞

C−i∞
�(s)ζ ((a + 1)s − A)v−s ds,

where C > max
(
0, A+1

a+1

)
. Since the �-function decreases exponentially fast on vertical lines, we

could replace the limit limT→∞
∫ C+iT

C−iT by the indefinite integral
∫ C+i∞

C−i∞ .
The function �(s)ζ ((a + 1)s − A) has a meromorphic continuation to the whole complex plane.

The only singularities are simple poles coming from �(s) at s = −k with residue

Res(�(s), −k) = (−1)k

k! (k = 0, 1, 2, . . .),
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and the simple pole of ζ ((a + 1)s − A) at s = A+1
a+1 with residue

Res

(
ζ ((a + 1)s − A),

A + 1

a + 1

)
= 1

a + 1
.

The idea is to shift the integral in (4.4) to the left and to collect residues of the polar singularities
that are passed. There are (again) no convergence problems of the integral due to the � factor.

Assume first that A+1
a+1 is different from 0, −1, −2, . . .. If we shift the integral to (s) =

−M − 1
2 , where M is a positive integer and −M < A+1

a+1 then we have

R(a, A; v) = �
(

A+1
a+1

)
a + 1

v− A+1
a+1 +

M∑
k=0

(−1)k

k! ζ (−A − k(a + 1))vk

+ 1

2π i

∫ −M− 1
2 +i∞

−M− 1
2 −i∞

�(s)ζ ((a + 1)s − A)v−s ds

= �
(

A+1
a+1

)
a + 1

v− A+1
a+1 +

M∑
k=0

(−1)k

k! ζ (−A − k(a + 1))vk

+ O
(
vM+ 1

2

)
,

which proves the first part of the lemma.
If (A + 1)/(a + 1) = −k0 for some integer k0 ≥ 0, then �(s) and ζ ((a + 1)s − A) create a

double pole at s = −k0 with residue

Res
(
�(s)ζ ((a + 1)s − A)v−s, −k0

)= (−1)k0

(a + 1)k0!
(

1 + (Hk0 + aγ ) log
1

v

)
vk0

of the resulting function. This explains the difference from the first case and completes the proof
of the lemma.

We also need representations for finite sums of powers of integers that can be deduced from
the Euler–McLaurin summation formula, see e.g. [4, Chapter 9].

Lemma 10 We have the following representations or asymptotic series representation, resp.,
for the sums

∑n
j=1 ja, a > 0:

(a) If a is a non-negative integer,

n∑
j=1

ja = na+1

a + 1
+ na

2
+

�a/2�∑
k=1

B2k

a + 1

(
a + 1

2k

)
na+1−2k , (4.5)

where B2k is the Bernoulli number.
(b) If a is a real number different from the non-negative integers, we have the asymptotic

series expansion

n∑
j=1

ja ∼ ζ (−a) + na+1

a + 1
+ na

2
+
∑
k≥1

B2k

a + 1

(
a + 1

2k

)
na+1−2k . (4.6)
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We are now ready to prove Theorem 8. Let us write Ka,b(x) =∑∞
i=1 Pi(x), where Pi(x) :=

ib+1
∏i

j=1
1

1+ja/x , and note that, as x → ∞,

Pi(x) ∼ ib+1 exp

⎛⎝−
i∑

j=1

log

(
1 + ja

x

)⎞⎠ .

First of all, we prove that Pi(x) do not contribute significantly to Ka,b(x) if i > x3/(3a+2).

Lemma 11 We have ∑
i>x3/(3a+2)

Pi(x) ≤ Ke−cx1/(3a+1)

for some constants c, K > 0.

Proof First, we assume that ia > αx, where α will be chosen later. Then we have

Pi(x) = ib+1
i∏

j=1

1

1 + ja/x
≤

i∏
j=1

i1+b x

ja
= i1+b xi

(i!)a
.

Since i! ≥ (i/e)i and ia > αx, we thus obtain

Pi(x) ≤ ib+1

(
eax

ia

)i

≤ α−ieai+(1+b)i.

Consequently, if we choose α = e2a+(1+b), we have that Pi(x) ≤ e−ai and hence∑
i: ia>Ax

Pi(x) ≤
∑

i: ia>αx

e−ai ≤ K1e−c1x1/a ≤ K1e−c2x1/(3a+1)

for some constants c2, K1 > 0.
We now assume that x3/(3a+2) < i ≤ α1/ax1/a, with α chosen as above. In this case, we have

that ja/x ≤ α so that there exists a constant c3 > 0 such that

log

(
1 + ja

x

)
≥ c3

ja

x

for all j ≤ i. Consequently, there exists a constant c4 > 0 such that

Pi(x) = ib+1 exp

⎛⎝−
i∑

j=1

log

(
1 + ja

x

)⎞⎠
≤ ib+1 exp

⎛⎝−c3
1

x

i∑
j=1

ja

⎞⎠≤ ib+1 exp

(
−c4

ia+1

x

)
.

Note that for every real ρ, every σ > 0 and κ1, κ2 such that 0 < κ1 < κ2 there is a constant D
depending on these four numbers such that for all y > 0

yρe−κ2yσ ≤ De−κ1yσ
.
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Hence, there are constants K2 > 0 and c5, c6 > 0 such that∑
x3/(3a+2)<i≤α1/ax1/a

Pi(x) ≤ α(b+1)/ax(b+1)/a
∑

x3/(3a+2)<i≤α1/ax1/a

exp

(
−c4

ia+1

x

)
≤α(b+1)/ax(b+1)/ae−c5x1/(3a+1) ≤ K2e−c6x1/(3a+1)

.

Now pick c = min{c2, c6} and K = max{K1, K2} to complete the proof of the lemma.

Thus, it remains to consider i with i ≤ x3/(3a+2). In this case, we certainly have ja/x → 0 as
x → ∞, so we can use the Taylor expansion of log(1 + z) to proceed further. From this Taylor
series expansion, it follows that for every L ≥ 1 we have uniformly for j ≤ i

log (1 + ja/x) =
L−1∑
�=1

(−1)�−1 1

�

j�a

x�
+ O

(
jLa

xL

)
,

and consequently,

i∑
j=1

log (1 + ja/x) =
L−1∑
�=1

(−1)�−1 1

�

1

x�

i∑
j=1

j�a + O

(
iaL+1

xL

)
. (4.7)

In order to handle these terms, we will use Lemma 10.
With the help of the representation (4.7) and Lemma 10, we see that

∑i
j=1 log

(
1 + ja�/x

)
is

dominated by ia�+1/((a� + 1)x) followed by smaller order terms. Here we have to distinguish
between � = 1 and � ≥ 2. For � = 1, the dominating term ia+1/((a + 1)x) is unbounded if i ≤
x3/(3a+2), whereas the next order term ia/x (and all following terms) are bounded (in order) by
x−2/(3a+2). So all of them go to zero if x → ∞. If � ≥ 2, then the dominant terms ia�+1/((a� + 1)x)
(and, thus, all following terms) will go to zero, too. They are bounded (in order) by x(3−2�)/(3a+2) ≤
x−1/(3a+1).

Summing up, we obtain for i ≤ x3/(3a+2)

i∑
j=1

log (1 + ja/x) ∼ ia+1

(a + 1)x
+ S̃,

where S̃ collects terms of the form log 1
x that go to zero. Hence, using the Taylor series of the

exponential function we have

Pi(x) ∼ ib+1 exp

(
− ia+1

(a + 1)x

)(
1 + S̃ + 1

2
S̃2 + · · ·

)
,

which leads again to an asymptotic series representation for Pi(x) of the form

Pi(x) ∼ ib+1 exp

(
− ia+1

(a + 1)x

) (
1 + T̃

)
, (4.8)

where T̃ collects terms of the form const · iA/xB (with real A and integer B ≥ 1) that go to zero if
i ≤ x3/(3a+2).

This discussion shows that we are finally led to consider sums of the form∑
1≤i≤x3/(3a+2)

exp

(
− ia+1

(a + 1)x

)
iA.
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Since the sum of the missing terms can be estimated by∑
i>x3/(3a+2)

exp

(
ia+1

(a + 1)x

)
iA ≤ e−c7x1/(3a+1)

for some constant c7 > 0, it is sufficient to consider infinite sums of the form analysed in
Lemma 9.

We are now ready to complete the proof of Theorem 8.
Since (4.8) are asymptotic series for Pi(x), it follows that we can consider them always as finite

sums plus an error term of the same form. Thus we can sum over them, at least for i ≤ x3/(3a+2).
However, by Lemma 11, we can extend this summation over all i ≥ 1 since the resulting error is
negligible.

Considering the terms in T̃ , we see that the asymptotic representation is different for the case
of a being a positive integer, and for non-integer real positive a.

In the first case, by applying the (4.5) of Lemma 10 and observing that we just get positive
powers of n in the representation of the sums

∑i
j=1 j�a, 1 ≤ � < L, the asymptotic series expansion

(4.8) of Pi(x), i ≤ x3/(3a+2) can be written in the form

Pi(x) ∼ ib+1 exp

(
− ia+1

(a + 1)x

)(
1 +

∞∑
B=1

aB+�B/2�∑
A=1

c̃A,B
iA

xB

)
,

where A, B are now integers and c̃A,B are real constants.
This means that we also get an asymptotic series representation of Ka,b(x) of the form

Ka,b(x) ∼ R(a, 1 + b; 1/((a + 1)x)) +
∞∑

B=1

A=aB+�B/2�∑
A=1

c̃A,B
R(a, 1 + b + A; 1/((a + 1)x))

xB
. (4.9)

For non-integer a, we we can proceed in the same way as in the integer case. There are,
however, some differences in the course of the computations. First of all, the sums

∑i
j=1 j�a

do not have an explicit representations. By (4.6) of Lemma 10, we obtain an asymptotic series
expansion that contains also negative powers of i, namely ia+1−k for any k ≥ 0. This leads to an
asymptotic series expansion for Pi(x) of the form

Pi(x) ∼ ib+1 exp

(
− ia+1

(a + 1)x

)(
1 +

∞∑
B=1

A=�B/2�∑
A=−∞

cA,B
iA+aB

xB

)
,

where cA,B are again real constants and the sum ranges over all (even negative) integers A ≤
�B/2�. In completely the same way as above, we get from that an asymptotic series expansion
for Ka,b(x):

Ka,b(x) ∼ R(a, 1 + b; 1/((a + 1)x)) +
∞∑

B=1

A=�B/2�∑
A=−∞

cA,B
R(a, 1 + b + aB + A; 1/((a + 1)x))

xB
.

(4.10)
Now, we are going to use the information in Lemma 9 to understand the leading terms and the

order of the remainder in (4.9) and (4.10).
In both cases, of integer and non-integer a, we have that for any fixed integer B, the expression

b + 2 + A

a + 1
− B (for integer a) and

b + 2 + aB + A

a + 1
− B (for non-integer a) are maximised by
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taking the largest allowable A in these two cases to give

b + 2

a + 1
+ 1

a + 1
(�B/2� − B) ,

and this is maximised by picking B = 1, 2 to give (b + 1)/(a + 1). Hence, if b > −1, the
asymptotic series (4.9) and (4.10) give, using (4.2)

Ka,b(x) ∼ �
(

b+2
a+1

)
(a + 1)1−(b+2)/(a+1)

x
b+2
a+1 + O

(
x

b+1
a+1

)
.

If b ≤ −1, we get

Ka,b(x) ∼ �
(

b+2
a+1

)
(a + 1)1−(b+2)/(a+1)

x
b+2
a+1 + O (1) ,

with the contributions to the O(1) term coming from R(a, 1 + b; 1/((a + 1)x)) term if b < −1. If
b = −1, the contributions to the O(1) term come again from the R(a, 1 + b; 1/((a + 1)x)) term,
and, if a is an integer, from the B = 1, A = 1 term in (4.9); if a is not an integer, the additional
contributions come from the B = 1, A = 0 and the B = 2, A = 1 terms in (4.10).

Remarks 1. Much more can be said using Lemma 9. For example, if b = −2 the leading term
of the asymptotic expansion of Ka,b(x) will be of order log x.

2. The case b = −1, a = 1 can be solved explicitly. There we have

K1,−1(x) ∼
√

π

2
x1/2 − 2

3
+

√
2π

24
x−1/2 + O(1/x).

3. It is easy to show that

Ka,b

( x

2

)
≤Ha,b(x) ≤Ka,b(x).

Another case that can be solved explicitly is the case of H1,0(x),

H1,0(x) =
∞∑

i=1

i
i∏

j=1

x

x + j + 1
.

In this case, Maple can compute the series and its asymptotics. We have

H1,0(x) = x − ex(�(x + 2) − �(x + 2, x))x−x−1,

where

�(x + 2, x) =
∫ ∞

x
e−ttx+1 dt

is the incomplete �-function. The asymptotic expansion as x → ∞ is

H1,0(x) ∼ x −
√

π

2
x1/2 + 5

3
+ O(x−1/2).
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5 Further remarks and conclusions

Corollary 7 is clearly non-optimal. Numerical evidence shows that the following conjecture
might be true:

Conjecture if b ≥ a − 1, the equilibrium is unique for all α/r and there are at most two
equilibria if b < a − 1.

To prove such a result, one might try to use the machinery of Pinelis [6]. The result for b ≥
a − 1 would follow if one could prove that H(x) is convex and for b < a − 1, by showing H(x)
is concave. However, these results are difficult to obtain even for Ka,b(x). It does seem that for
each fixed x, the second derivative of Ka,b(x) is an increasing function of b.

In the case of H1,0(x) considered above, numerically H1,0 appears to be convex. Hence if we
could prove that, and monotonicity of the second derivative in b for Ha,b(x) for every fixed x, the
desired results for Ha,b(x) would follow by the argument of Pinelis [6].

If b < a − 1, a possible strategy for proving, e.g. that Ka,b(x) is concave is to consider partial
sums of the infinite sum. For b ≥ a − 1, this strategy also works but is more interesting because
x/(x + 1) is concave. In that case, if Sn(x) is the partial sum, numerics indicate that S′′

n (x) is
positive for 0 < x < xn and xn → ∞ s n → ∞.

Note that for all integer values of a, b MAPLE can compute Fa,b(x) in terms of hypergeometric
functions. This, however, does not seem very useful.

From the biological point of view, b measures the efficiency of the mucociliatory escalator,
while a measures its inefficiency due to release of quartz in the lungs by macrophages with super-
critical load. Our results show that the ratio (b + 2)/(a + 1) is crucial in establishing whether the
system can deal with the quartz load; if it is less or equal to 1, there is a deposition rate α that
will overwhelm it, no matter what r is.

In summary, we have completed the model of [7] by including an equation for the evolution of
quartz concentration. The resulting mathematical object is a challenging system of coagulation–
death equations that require non-trivial asymptotic ideas in the discussion of the structure of
equilibria. Of course, the analysis in the paper is only part of the necessary mathematical work;
one also needs to establish global existence (using finite-dimensional truncations or methods
of semigroup theory) and stabilisation to equilibria (e.g. by exhibiting a suitable Lyapunov
function).
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