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Abstract

The three-dimension&BD) turbulent mixing zoné TMZ ) evolution under Rayleigh—Taylor and Richtmyer—Meshkov
conditions was studied using two approaches. First, an extensive numerical study was made, investigating the growth of
a random 3D perturbation in a wide range of density ratios. Following that, a new 3D statistical model was developed,
similar to the previously developed two-dimensioli2D) statistical model, assuming binary interactions between
bubbles that are growing at a 3D asymptotic velocity. Confirmation of the theoretical model was gained by detailed
comparison of the bubble size distribution to the numerical simulations, enabled by a new analysis scheme that was
applied to the 3D simulations. In addition, the results for the growth rate of the 3D bubble front obtained from the
theoretical model show very good agreement with both the experimental and the 3D simulation results. A simple 3D
drag—buoyancy model is also presented and compared with the results of the simulations and the experiments with good
agreement. Its extension to the spike-front evolution, made by assuming the spikes’ motion is governed by the single-
mode evolution determined by the dominant bubbles, is in good agreement with the experiments and the 3D simulations.
The good agreement between the 3D theoretical models, the 3D numerical simulations, and the experimental results,
together with the clear differences between the 2D and the 3D results, suggest that the discrepancies between the
experiments and the previously developed models are due to geometrical effects.

Keywords: Numerical simulations; Rayleigh—Taylor instability; Richtmyer—Meshkov instability; Statistical model;
Three-dimensional

1. INTRODUCTION (TMZ) between the two fluids, seeded by an initial random
erturbation. At this stage, the growth rate of the TMZ is pri-
arily determined by the strong nonlinear interactions be-
Richtmyer—MeshkovRM) instability occurs when a per- weenthe dlfferentharm_onlc mo_des oftheinitial perturbation.
Inthe real space, these interactions are expressed by the con-

turbed interface between two fluids is impulsively acceler—tinuous eneration of laraer and laraer bubbles. accompa-
ated by a shock wave. These two instabilities are of major 9 9 g f P

) ; : . nied by a decrease in the total number of bublk&sarp,
importance in a large variety of physical systems such 3% 984- Bernal 1988 Haan. 1989 1991: Glimm & Sharp, 1990:
inertial confinement fusioflCF; Haan, 199band various ’ ’ ' ' ' ' ’ '

astrophysical phenomeri&emingtonet al, 1997). Alonetal, 1993,1995; Shvarttal, 1995; Ofeetal., 1996.

i e . Alon et al. (1994 applied a bubble competition model
Under unstable conditions, small initial perturbations On(Shar 1984: Glimm & Sharp, 199 study the temporal
the interface between two fluids grow into bubbles of light P, ' B, y P

fluid penetrating the heavy fluid and spikes of heavy fluid VOIUtion of the RT and RM instability fronts, modeling

penetrating the light fluid. The primary interest of this work th_em by_ an array of two-d|m_enS|0n(ﬂD) bUb.bIeS rsing
is in the late time evolution of the turbulent mixing zone with their single-mode velocity and competing with their

smaller neighbors to form larger bubbles. The large-scale
. _ structure in the mixed region exhibits a self-similar behav-
Address correspondence and reprint requests to: Daniella Kartoon, De- dth totic behavi fthe RT bubble front

partment of Physics, NRCN, P.O. Box 9001, Beer-Sheva 84190, IsraefOrs @n € asymptotic behavior of the ubble front was

E-mail: danyk@bgumail.bgu.ac.il found to behg = ag Agt? with ag = 0.05, in agreement with
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The Rayleigh-TaylofRT) instability occurs when a fluid P
accelerates another fluid of higher density. The relate
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previous studie§Youngs 1984, 1991; Read, 1984he RM 2. FULL 3D NUMERICAL SIMULATIONS

front was found to scale at late times las= agt’ with

0g = 0.4, a new result that was confirmed by full 2D numer-

ical simulations(Alon et al, 1994, 1995; Rikanatet al,  2.1. Simulation description

1998. The spike-front evolution was obtained using the

single-mode bubble-to-spike asymmetry of the dominanifhe numerical simulations presented in this work were

mode of the systerfAlon et al., 1995. performed using the 3D arbitrary Lagrangian—Eulerian
Experimental work done by Dimonet al.with the Linear  hydrodynamics code LEEOR3D with interface tracking

Electric Motor (LEM) apparatug Dimonte & Schneider, (Oferet al, 1996. The program was used in the Eulerian

1996, 2000; Schneidet al., 1998; Dimonte, 1999%verified  mode with a typical simulation mesh of 80 80 X 80

the predicted scaling laws, but revealed somewhat differergomputation cells. Initial conditions for the velocity

scaling parameters—in particulgy and the scaling param- field were derived from the flow potentiab(x,y,z) =

eterb = hg/()). Recent work has suggested that these dis2_, ao cos(k, x)-cos(k,y)-e 7, werek = \kZ + k2 and

crepancies are due to the fact that the experimental resul2D < k./2m,k /27 < 40. Final results were found to be

were compared to 2D models and simulations, and has préasensitive to the choice of the random phaagsThe ve-

sented preliminary three-dimensioridD) models and sim- locities were calculated as the gradients of the potential.

ulation results that were found to be in good agreement witirhese initial conditions resulted in the creation of about 450

the experimentgKartoon, 2000; Shvartst al., 2000; Oron  bubbles in the linear stage. Calculations with different spec-

et al, 2001J). tra and resolutions did not show significantly different re-
In the present work, we extend the 3D results to all densults. A simpleP = (p — pg)c? equation of state was used

sity ratios. In Section 2, we present the numerical simulatiorfor both the heavy and the light fluids, where the sound

results for Atwood numbers ranging between 0.2 and 0.98speed: was taken to the incompressible lingit> v. Simu-

In Section 3, we present a bubble competition model for thdations were performed at density ratios ranging from 1.5 to

evolution of a 3D bubble front. In Section 4, we discuss the99, corresponding to Atwood numbers in the range 0.2—

3D spike front using the results of the simulations and &0.98. The interface between the light and the heavy fluid in

simple drag—buoyancy model. In Section 5, we summarize typicalA = 0.5 simulation is plotted in Figure 1 at several

and discuss the results. stages of the instability evolution.

Fig. 1. The interface between the heavy and the light fluid in four typical consecutive frames frokwtl®e5 3D RT simulation. a:
t=0.5b:t=1.0,cit=1.5,d:t=2.0.
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2.2. Simulation results numerical and analytical work&¥oungs, 1984; Aloret al.,,

The simulations were analyzed using both the One_1995),wherea§3appears to have a 3D value of about half

dimensional1D) volume fraction and the 3D surface sep- Its'l'zhljeoe:]veéra e wavelenath of the svstem was calculated
arating the heavy and the light fluids. 9 g y

The 1D volume fraction of the light fluid obtained from using two separate methods: The first one was simply divid-

the simulations was used to measure the TMZ width in the-'9 the cross section of the vesseby the number of the

same manner used to analyze the experimental redikts fising bubbles:

monte & Schneider, 1996The threshold values of the per-

centage for the bubble and the spike fronts were usually Vet = i_ 1)
taken to be 5% and 95%, respectively, in accordance with Nup

the values used by Dimonte.

The 3D surface was analyzed to give the total number of The second method of calculating the average wave-
bubblesN, and their spatial positions. An acceleration length used the Delaunay triangulation scheme to calculate
criterion was used to define the rising bubbles in the RTthe average distant¢eof each rising bubble from its closest
case: An acceleratingleceleratingbubble was assumed to neighbors:
be rising(sinking). Following Gardneet al. (1988, a ve-
locity criterion was used to define the rising bubbigg in ) = 1 S, @
the RM case: A bubble with a positiieegative velocity Ny, <
was assumed to be risir(ginking). Ny, and Ngown are the
number of rising and sinking bubbles, respectively, where Anexample of the evolution of the average wavelength in
Neotal = Nup + Naown (S€€ Fig. 28 The portion of the rising time using the two methods is given in Figure 2b.
bubbles out of the whole ensemble was close to 50% for all
density ratiogsee insert in Fig. 2aUsing this scheme, the  The Delaunay triangulation scheme was also used to ob-
bubble-front height was obtained by averaging over the tipsain the wavelength distribution from the simulations and to
of the rising bubbles. This 3D definition showed good agreeconstruct a Voronoi diagram to visualize the distribution of
ment with the 1D definition of the bubble-front height. Fit- the bubbles, as shown in Figure 4. The wavelength distribu-
ting the bubble-front height to @z Agt? law in the RT case tion is a key feature of the statistical model that will be
and aagt? law in the RM case gave the 3@ and 6g, discussed in Section 3.
respectively, in various density ratios. The mean wavelength of the bubblgs from Eq. 1 was

The values ofvg andé; calculated from the simulations used to calculate the self-similarity parameber hg/(\),
were found to be in good agreement with the experimentalhich indicates the mean aspect ratio of the rising bubbles.
results obtained by Dimonte and Schneid2000 in the  The values ob (Fig. 3¢, which were obtained from both the
LEM experiments, as shown in Figure 3a and 3b. The twdRT and the RM simulations, are in very good agreement
growth parameters show nearly Atwood independent behawvith the experiments. These results also confirm the assump-
ior. ag is similar to its 2D value, as obtained in previous tion used in the statistical model, tHat” = bR,

a) 450 ' ' ' ' b) 0.1

400} “s\~\ Nup 1 0.09[
@ 350| N Nitotal ] 0.08[
o \s~ 0.5
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2 300 N ~
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| N t 0.05
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Fig. 2. Quantitative results taken from tlle= 0.5 3D RT simulation. a: The temporal evolution of the total number of bulibieshedl

and the number of rising bubbléfill line). The insert shows the ratio between the rising and the total number of bubbles. b: The
temporal evolution of the mean wavelength of the rising bubbles calculated using two methods: dividing the overall area to the number
of rising bubblegfull line), and averaging over the different wavelengttiashegl.
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Fig. 3. Bubble parameter values as a functiorafs obtained from the 3D
RT simulations(down triangleg, the 3D RM simulationgup triangle$,
the 3D drag—buoyancy equation assuming= 0.05, the 3D statistical
model(x) and the Dimonteet al. (2000 experimentgdots. a: ag, b: 63,

c:b=hg/{A).

Note that from consistency considerations we compared
the mean aspect ratioof therising bubbles, rather than the

D. Kartoon et al.

the observation mentioned before that at any given time
only about half of the bubbles, both in RT and in RM, are
rising (see Fig. 2a UsingN,q, for the definition ofo would
have given the same good agreement with the experimental
results as reporte@d = d,).

The simulations’ results are supported by the predictions
of a simple drag—buoyancy model, also shown in Figure 3,
which was taken from AraZi2001) and Oronret al. (2001).

This model is based on the model suggested by Layzer
(1955 and Hechet al.(1994), with an extension to Atwood
numbers lower than 1:

du Cq 5
(P1+Ca',02)a—(,02_91)'9_7'!)2'“, ©)

wherep,; andp, are the fluid densitiegj is the velocity of

the bubble frontg is the acceleration, andl is the mean

wavelength of the bubbles. The added mass coefficiznt

and the drag coefficieny are both geometrical constants,

independent oA.

Solving this equation for two acceleration profiles—
constant for RT and impulsive for RM—qgives two equations
of motion for the bubble fronts, with three independent
parametersag, g, andb = hg/(A), the self-similarity pa-
rameter that is the same in both the RT and the RM cases
(Arazi, 2002, as shown in Figure 3c:

Cdhg(t) /1 2A hg(t)
RT: ot /Cd<—1+A>-g~ b (4

dt  Cy\1+A " bt

Using the known scaling laws for Rlhg = agAgt?) and
RM (hg = agt’%), we obtain the relating equations between
the three parameters:

1-A
0322-(1+A)-<m+Ca>-aB (6)

1
b= 2-C4(1+ A -ag’ @

The model’s single degree of freedom is degenerated by
settingag = 0.05, as seen in the simulations, the experi-
ments, and the statistical model that will be presented in
Section 3. The model results appearing in Figure 3, which
agree well with the experimental results and the simula-
tions, are obtained using the 3D geometrical constants
(Layzer, 1955; Hech¢t al,, 1994; Ororet al., 200)):

C.=1 Cy=2m. )

mean aspect ratio all the bubbles, as done by Dimonte and Substituting the 2D values of these constdfis= 2,Cy =

Schneider2000. Therefore, the experimental valuestof

67) into Egs.(6) and(7) gives the 2D results that agree well

were calculated takingto be twice the reported bubble size with the 2D numerical simulations and statistical model

width d, rather tham = d,. This estimation ofi is based on
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b)

Fig. 4. The rising bubble Voronoi cell diagrams in four typical consecutive frames frorAthed.5 3D RT simulation. at = 0.5,
b:t=1.0,c:it=1.5,d:t=2.0.

tal results, especially in the values#f(by about a factor of b. Interacting The interactions between the bubbles oc-

2) andb (by about a factor of B cur through merging—two adjacent bubbles merge at
a ratew(A, ') to form a bigger(less drag-detained
7 2 12
3. ASTATISTICAL BUBBLE-MERGER MODEL bubble with a wavelengt A~ + A™.

The statistical-mechanics approach to the RT and RM instaAlthough in a 3D arrangement of bubbles the average num-
bilities discussed below is an extension to the 2D modeber of neighbors of each bubble is approximately 6, as can
presented by Alopt al.(1993 for theA=1 case, whichwas be seen in Figure 4, the interactions were assumed to be
based on the approach suggested by SH£Z§4 and Glimm  binary like in the 2D case, only with conservation of area
and Sharp(1990. Adaptations were made to fit the 3D rather than length. This scheme is supported by the simula-
geometry. In this model, we consider an ensemble of bubtions, where it was found that at all density ratios, the per-
bles arranged on a surface, characterized only by their dieentage of rising bubbles out of the whole ensemble was
ameterst;. The evolution of the bubbles is divided into two equal to 50% throughout the evolution of the bubble front
stages: (see, e.g., Fig. 2asimilar to the 2D simulations.
a. Floating: Each bubble grows according to its single- The Qvolution equati_on (.)f the 3D statistical model in the
mode asymptotic velocity determined by its diameterme"’m']cleld approximation Is
(“wavelength’). The 3D single mode velocities in the

A =1 case were obtained by Layz@R55 using the ag3P(A,t) * . .
potential flow modelHechtet al., 1994: N ——— = _293D()"t)JO g D w*(A, 1) dA
) _ oA A
RT: Ug= 5 9) N f g, 1)-g® (VA2 = (V)2 1)
0
RM: Uy = — 2 10)
B e ( P = (02X d, (11
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N

whereg3P(A, t) is the number of bubbles with a wavelength
within dA of A at timet, andN(t) is the total number of a) 13

bubbles at time. This model results in a self-simildas- 16 —— 3D Sim.

ymptotic) wavelength distributiog®®(¢), wheres = A /{A). ) 3D Model
In the absence of a bubble-competition potential model in '

the 3D case, the merger rate between two bubbf&éA, A') 2 —-— 2D Model

was taken from the 2D model for RT and RMA= 1 (Alon
etal, 1994; Hechtet al, 1994. The 2D merger rate for RM

in A = 0 was taken from a vortex competition mod&i-
kanatiet al., 1998. A suitable time-scale adjustment was
used due to different time scales in the 2D and the 3D flows:
3P = C.w?P. The time scale paramet@is the ratio be-
tween the 3D and the 2D single-mode velocitigtecht

g(®)

etal, 1994:
UgD b) 2
RT: CRT=—5=13 (12) 1.8
ug 16l — 3D Sim.
usP 1.4] - -~~~ 3D Model A=0
B ey
RM: CRM = @3 =1.54a=1 ~ 2(a=0)- (13 10l “ ' 2N NU— 3D Model A=1
w1y ’-/ ’ — — 2D Model
Repeating the model's process numerically with different *osl ;
initial distributions of a large ensemble of bubbles for both 06l

the RT and the RM cases gives the asymptotic wavelength

distributiong®°(¢). The distributions are given in Figure 5, 04 ; )

with good agreement with the distributions obtained from o2l 4 .

the 3D simulations using the Delaunay triangulations. The Ool 05 ] 15 5 > 3
2D distributions(Alon et al,, 1995 are also given in Fig- &= I/<I>

ure 5 for comparison. Note that the 3D distributions are 6

narrower than the 2D ones, indicating that the 3D bubbles
are closer in size. Changing the merger rules between 2 and €) 14
6 neighbors had little effe¢less than 10%o0on the asymp-
totic distributions, as was demonstrated by Kart¢2®00
and Ororet al. (2001). 1
The mean bubble-front velocita) and merger ratéw)

1.2

. e . . Wos
in the self-similar flow regime are calculated by averaging &
over the asymptotic distributions. These quantities are used 0.6
to find the scaling parametefsee Kartoon, 2000; Oron 04
et al,, 2001): ’
0.2
agP = <u>éw> =0.055 63°= % =0.18 %% 05 1 15 2 25 3
E=I/<I>
P3P = E — @ = 0.66. (14) Fig. 5. The RT(a) and RM (b) scale-invariant wavelength distributions
(A) (@) from the 3D simulations il = 0.5(full line), the 3D bubble-merger model

(dashed, dotted and the 2D modeldashed-dotted c: The RT scale-

. L invariant wavelength distribution from the 3D simulations/Aat= 0.2
Note that the additional factor of 2 appearing in the denomidashed A= 0.5(30“6@ andA = 0.9 (full line).

inator ofag andfg and the numerator dff, in comparison to
the 2D cas€Alon et al, 1994, is due to the area conserva-
tion of the merging process.
The growth parameterss, 0z, andb agree well with the
experiments, the 3D numerical simulations, and the simple
drag—buoyancy model, as seen in Figure 3. with the agreement of the results of the model for RM in
An additional result of the numerical simulations, shownA = 0 andA = 1, may indicate the validity of the statistical
in Figure 5c, is that the asymptotic wavelength distributionmodel results over a wide range of Atwood numbers other
is nearly independent of the Atwood number. This, togethethanA = 1, for which it was originally formulated.
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4. THE SPIKE-FRONT EVOLUTION Taking a naive approach, in which both the bubble and the
spike fronts reach their asymptotic velocities together, the
ratio between the momentary velocities of the spikes and
the bubbles is obtained by simply taking the ratio between
their asymptotic velocities. The asymptotic velocities of the
spikes are calculated by simply interchanging the two den-
sitiesp, andp, in Eq. (3). This approach gives the approx-
imate expressions

In contrast to the bubble front, few, if any, analytical models
exist for the description of the spike-front evolution. It is

commonly accepted that the scaling laws for the spikes ar
similar to those of the bubbles, only with different scaling
parametergr andf: In the RT case the spike-front height

grows ashg = asAgt?, and in the RM case it grows &g =

agt’s.
The dependence afs andfs on the Atwood number, as
calculated from the 1D volume fraction in the simulations, , 1+A
N . . . RT: as= -ag (15
is given in Figure 6 and compared to the experimental re- 1-A

sults of Dimonteet al. In both panels the simulation results

are given using three cutoff percentage criteria: 90%, 95%, s A<1
and 100%. The moderate increase with the Atwood number RM: 65 = { 1 A-1
of agtaken from the numeric simulations is in good agree- '
ment with the experiments, as seen in Figure 6a. Note the . . . o
same qualitative dependence énof the three different These §|mple expressions are already in qualitative agree-
percentage criteria appearing in the figure. This behavior ign€Nt with the experimental results.

also apparent in andds, where three different percentage N0t that at timet,, at which the bubble-front height
criteria (0%, 5%, and 10%are all nearly independent 8¢ reaches its self-similar valu@g(t,) = bA), the spikes have
with values within 10%. not yet reached their asymptotic velocigt Atwood num-

The calculateds is consistent with the experimental re- bers grez_iter than)OT_herefore, more accurate expressions
sults up toA = 0.8, whereas it fails to follow the steep are obtained by taking the ratio between the momentary

increase at Atwood numbers greater than 0.8. This inconsi&/€locities of the spikes and the bubbles to be the ratio be-

tency is due to the sensitivity 6k to different definitions of tween their velocities at timig. Under this assumption, the _
the cutoff percentage used to determine the height of thgependence of the two parameters on the Atwood number is

spike tips, as can be seen in Figure 6b. Awide spread of th@Ptained(Arazi, 2003:
resultsis also apparentin the experimental results at Atwood

numbers greater than 0.8. [1+A [ [1-A |
. . . RT: =,/ 7——-tanh h b(1+A))) |-
A further extension of the drag—buoyancy model, first s 1—a o 1+ A% (exp(mb( ) |-as

presented by Aloet al. (1995, gives a prediction aksand

Osas afunction oA. The key assumption of the model is that

the spike periodicity is equal to that of the dominant bubble, 1-A

which operates as the driving force for the spikes;) (t) = (m) [exp(mb(1+A) —1]
(Ag)(1). This assumption is supported by the numerical simRM:  6s=1— —

ulations, where at both earlier and later times each pair of 1+ (
bubbles are seen to be separated by a spike, which indicates

that the periodicity of the two structures must be the same. (18

(16)

17

(1= 6g).

1%/:) Texp(mb(1+ A) — 1]

0.3 1

T
®  Experiments (LEM) ,' ®  Experiments (LEM)
a) ==" Simple 3D Drag-Bouyancy Model ,' b) 0.9| =~ Simple 3D Drag-Bouyancy Model| °
0.5 — 3D Drag-Bouyancy Model h | — 3D Drag-Bouyancy Model

- Simulations 100% 1 08 O simulations 100%
A Simulations 95%
0.7/L.B__Simulations 90%

A Simulations 95% !
O Simulations 90% b
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go.15 < 05
04 o o
0.1
03 ‘A. L] ° a
a]
02 _____________________________ B___
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0.1
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0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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Fig. 6. Spike parameter values as a functio\afs obtained from the 3D simulations using three percentage criteria(ré@%ngle,
95% (triangles, and 100%circles, the simple(dashed and the full 3D drag—buoyancy equation assumigg= 0.05(full line) and
the Dimonteet al. (1999 experimentgdots. a: as, b: s.
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The high sensitivity ofz of Eq.(18) tob, intherange 0.9<  DimontE, E. & ScHNEIDER, M.B. (2000. Density ratio depen-
A < 1, sheds further light on the spread of the experimental dence of Rayleigh—Taylor mixing for sustained and impulsive
and numerical results presented above. The model results acceleration historie®hys. Fluidsl2, 304-321.

are presented in Figure 6, and are in reasonable agreemepMM, J. & Suare, D.H. (1990. Chaotic mixing as a
with the experiments and the simulations. renormalization-group fixed poinBhys. Rev. Let64, 2137—

2139.
HaaN, S.W. (1989. Onset of nonlinear saturation for Rayleigh—
5. CONCLUSION Taylor growth in the presence of a full spectrum of modes.

We have presented an extensive numerical and analyticﬂAPhys' Rev. /39, 5812-5825.

o o . . AN, S.W. (1991). Weakly nonlinear hydrodynamic instabilities

work establishing the prediction that the discrepancies be- in inertial fusion.Phys. Fluids B3, 2349-2355.
tvyeen r.ecen.t experiments and former models W‘?re due tﬁAAN, S.W. (1995. Design and modeling of ignition targets for
dimensionality effects. We presented a new analysis scheme, he National Ignition FacilityPhys. Plasmag, 2480—2487.
which was used to investigate full 3D simulations per-Hgcur, J, Aron, U. & SuvarTs, D. (1994. Potential flow
formed for a large range of density ratios. This analysis models of Rayleigh—-Taylor and Richtmyer—Meshkov bubble
allowed us to retrieve the 3D spatial distribution of the fronts.Phys. Fluidss, 4019-4030.
interface separating the heavy and the light fluids, thus givKarToon, D. (2000. Evolution of a Three-Dimensional Random
ing us a deeper understanding of the 3D bubble-merger Perturbation under RT and RM Instabilitied1.Sc. Thesis.
mechanism, and allowing further establishment of the 3D Srael: Ben-Gurion University. _ o
statistical model also presented in this work. The results ofAYZER: D- (1955. On the instability of superimposed fluids in a
the simulations and the statistical model, together with 3 gravitational field Astrophys. J122 1-12.

. . . OFER, D., ALON, U., SHVARTS, D., McCrory, R.L. & VERDON,
simple drag—buoyancy model, agree well \.Nlth the EXPer- -~ p (1996. Modal model for the nonlinear multimode
mental results, and thus form a consistent picture describing Rayleigh-Taylor instabilityPhys. Plasmas, 3073-3090.
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