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Abstract

The three-dimensional~3D! turbulent mixing zone~TMZ ! evolution under Rayleigh–Taylor and Richtmyer–Meshkov
conditions was studied using two approaches. First, an extensive numerical study was made, investigating the growth of
a random 3D perturbation in a wide range of density ratios. Following that, a new 3D statistical model was developed,
similar to the previously developed two-dimensional~2D! statistical model, assuming binary interactions between
bubbles that are growing at a 3D asymptotic velocity. Confirmation of the theoretical model was gained by detailed
comparison of the bubble size distribution to the numerical simulations, enabled by a new analysis scheme that was
applied to the 3D simulations. In addition, the results for the growth rate of the 3D bubble front obtained from the
theoretical model show very good agreement with both the experimental and the 3D simulation results. A simple 3D
drag–buoyancy model is also presented and compared with the results of the simulations and the experiments with good
agreement. Its extension to the spike-front evolution, made by assuming the spikes’ motion is governed by the single-
mode evolution determined by the dominant bubbles, is in good agreement with the experiments and the 3D simulations.
The good agreement between the 3D theoretical models, the 3D numerical simulations, and the experimental results,
together with the clear differences between the 2D and the 3D results, suggest that the discrepancies between the
experiments and the previously developed models are due to geometrical effects.

Keywords: Numerical simulations; Rayleigh–Taylor instability; Richtmyer–Meshkov instability; Statistical model;
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1. INTRODUCTION

The Rayleigh–Taylor~RT! instability occurs when a fluid
accelerates another fluid of higher density. The related
Richtmyer–Meshkov~RM! instability occurs when a per-
turbed interface between two fluids is impulsively acceler-
ated by a shock wave. These two instabilities are of major
importance in a large variety of physical systems such as
inertial confinement fusion~ICF; Haan, 1995! and various
astrophysical phenomena~Remingtonet al., 1997!.

Under unstable conditions, small initial perturbations on
the interface between two fluids grow into bubbles of light
fluid penetrating the heavy fluid and spikes of heavy fluid
penetrating the light fluid. The primary interest of this work
is in the late time evolution of the turbulent mixing zone

~TMZ ! between the two fluids, seeded by an initial random
perturbation.At this stage, the growth rate of the TMZ is pri-
marily determined by the strong nonlinear interactions be-
tween the different harmonic modes of the initial perturbation.
In the real space, these interactions are expressed by the con-
tinuous generation of larger and larger bubbles, accompa-
nied by a decrease in the total number of bubbles~Sharp,
1984;Bernal,1988;Haan,1989,1991;Glimm&Sharp,1990;
Alonetal., 1993,1995;Shvartsetal., 1995;Oferetal., 1996!.

Alon et al. ~1994! applied a bubble competition model
~Sharp, 1984; Glimm & Sharp, 1990! to study the temporal
evolution of the RT and RM instability fronts, modeling
them by an array of two-dimensional~2D! bubbles rising
with their single-mode velocity and competing with their
smaller neighbors to form larger bubbles. The large-scale
structure in the mixed region exhibits a self-similar behav-
ior, and the asymptotic behavior of the RT bubble front was
found to behB5 aBAgt2 with aB > 0.05, in agreement with
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previous studies~Youngs 1984, 1991; Read, 1984!. The RM
front was found to scale at late times ashB 5 aBt uB with
uB > 0.4, a new result that was confirmed by full 2D numer-
ical simulations~Alon et al., 1994, 1995; Rikanatiet al.,
1998!. The spike-front evolution was obtained using the
single-mode bubble-to-spike asymmetry of the dominant
mode of the system~Alon et al., 1995!.

Experimental work done by Dimonteet al.with the Linear
Electric Motor ~LEM ! apparatus~Dimonte & Schneider,
1996, 2000; Schneideret al., 1998; Dimonte, 1999! verified
the predicted scaling laws, but revealed somewhat different
scaling parameters—in particularuB and the scaling param-
eterb 5 hB0^l&. Recent work has suggested that these dis-
crepancies are due to the fact that the experimental results
were compared to 2D models and simulations, and has pre-
sented preliminary three-dimensional~3D! models and sim-
ulation results that were found to be in good agreement with
the experiments~Kartoon, 2000; Shvartset al., 2000; Oron
et al., 2001!.

In the present work, we extend the 3D results to all den-
sity ratios. In Section 2, we present the numerical simulation
results for Atwood numbers ranging between 0.2 and 0.98.
In Section 3, we present a bubble competition model for the
evolution of a 3D bubble front. In Section 4, we discuss the
3D spike front using the results of the simulations and a
simple drag–buoyancy model. In Section 5, we summarize
and discuss the results.

2. FULL 3D NUMERICAL SIMULATIONS

2.1. Simulation description

The numerical simulations presented in this work were
performed using the 3D arbitrary Lagrangian–Eulerian
hydrodynamics code LEEOR3D with interface tracking
~Ofer et al., 1996!. The program was used in the Eulerian
mode with a typical simulation mesh of 803 80 3 80
computation cells. Initial conditions for the velocity
field were derived from the flow potentialf~x, y, z! 5

(kx, ky
a0 cos~kx x!{cos~ky y!{e2kz, werek 5 !kx

2 1 ky
2 and

20 , kx02p, ky02p , 40. Final results were found to be
insensitive to the choice of the random phasesa0. The ve-
locities were calculated as the gradients of the potential.
These initial conditions resulted in the creation of about 450
bubbles in the linear stage. Calculations with different spec-
tra and resolutions did not show significantly different re-
sults. A simpleP 5 ~ r 2 r0!c2 equation of state was used
for both the heavy and the light fluids, where the sound
speedc was taken to the incompressible limitc .. v. Simu-
lations were performed at density ratios ranging from 1.5 to
99, corresponding to Atwood numbers in the range 0.2–
0.98. The interface between the light and the heavy fluid in
a typicalA5 0.5 simulation is plotted in Figure 1 at several
stages of the instability evolution.

Fig. 1. The interface between the heavy and the light fluid in four typical consecutive frames from theA 5 0.5 3D RT simulation. a:
t 5 0.5, b:t 5 1.0, c:t 5 1.5, d:t 5 2.0.
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2.2. Simulation results

The simulations were analyzed using both the one-
dimensional~1D! volume fraction and the 3D surface sep-
arating the heavy and the light fluids.

The 1D volume fraction of the light fluid obtained from
the simulations was used to measure the TMZ width in the
same manner used to analyze the experimental results~Di-
monte & Schneider, 1996!. The threshold values of the per-
centage for the bubble and the spike fronts were usually
taken to be 5% and 95%, respectively, in accordance with
the values used by Dimonte.

The 3D surface was analyzed to give the total number of
bubblesNtotal and their spatial positions. An acceleration
criterion was used to define the rising bubbles in the RT
case: An accelerating~decelerating! bubble was assumed to
be rising~sinking!. Following Gardneret al. ~1988!, a ve-
locity criterion was used to define the rising bubblesNup in
the RM case: A bubble with a positive~negative! velocity
was assumed to be rising~sinking!. Nup andNdown are the
number of rising and sinking bubbles, respectively, where
Ntotal 5 Nup 1 Ndown ~see Fig. 2a!. The portion of the rising
bubbles out of the whole ensemble was close to 50% for all
density ratios~see insert in Fig. 2a!. Using this scheme, the
bubble-front height was obtained by averaging over the tips
of the rising bubbles. This 3D definition showed good agree-
ment with the 1D definition of the bubble-front height. Fit-
ting the bubble-front height to aaBAgt2 law in the RT case
and aaBt uB law in the RM case gave the 3DaB and uB,
respectively, in various density ratios.

The values ofaB anduB calculated from the simulations
were found to be in good agreement with the experimental
results obtained by Dimonte and Schneider~2000! in the
LEM experiments, as shown in Figure 3a and 3b. The two
growth parameters show nearlyAtwood independent behav-
ior. aB is similar to its 2D value, as obtained in previous

numerical and analytical works~Youngs, 1984; Alonet al.,
1995!, whereasuB appears to have a 3D value of about half
its 2D one.

The average wavelength of the system was calculated
using two separate methods: The first one was simply divid-
ing the cross section of the vesselS by the number of the
rising bubbles:

^l&eff 5 ! S

Nup

. ~1!

The second method of calculating the average wave-
length used the Delaunay triangulation scheme to calculate
the average distancel i of each rising bubble from its closest
neighbors:

^l& 5
1

Nup
( l i . ~2!

An example of the evolution of the average wavelength in
time using the two methods is given in Figure 2b.

The Delaunay triangulation scheme was also used to ob-
tain the wavelength distribution from the simulations and to
construct a Voronoi diagram to visualize the distribution of
the bubbles, as shown in Figure 4. The wavelength distribu-
tion is a key feature of the statistical model that will be
discussed in Section 3.

The mean wavelength of the bubbles^l& from Eq. 1 was
used to calculate the self-similarity parameterb 5 hB0^l&,
which indicates the mean aspect ratio of the rising bubbles.
The values ofb ~Fig. 3c!, which were obtained from both the
RT and the RM simulations, are in very good agreement
with the experiments. These results also confirm the assump-
tion used in the statistical model, thatbRT > bRM.

Fig. 2. Quantitative results taken from theA50.5 3D RT simulation. a: The temporal evolution of the total number of bubbles~dashed!
and the number of rising bubbles~full line!. The insert shows the ratio between the rising and the total number of bubbles. b: The
temporal evolution of the mean wavelength of the rising bubbles calculated using two methods: dividing the overall area to the number
of rising bubbles~full line!, and averaging over the different wavelengths~dashed!.
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Note that from consistency considerations we compared
the mean aspect ratiob of therising bubbles, rather than the
mean aspect ratio ofall the bubbles, as done by Dimonte and
Schneider~2000!. Therefore, the experimental values ofb
were calculated takingl to be twice the reported bubble size
width d2 rather thanl 5 d2. This estimation ofl is based on

the observation mentioned before that at any given time
only about half of the bubbles, both in RT and in RM, are
rising~see Fig. 2a!. UsingNtotal for the definition ofb would
have given the same good agreement with the experimental
results as reported~l 5 d2!.

The simulations’ results are supported by the predictions
of a simple drag–buoyancy model, also shown in Figure 3,
which was taken from Arazi~2001! and Oronet al. ~2001!.
This model is based on the model suggested by Layzer
~1955! and Hechtet al.~1994!, with an extension to Atwood
numbers lower than 1:

~ r1 1 Ca{r2!
du

dt
5 ~ r2 2 r1!{g 2

Cd

l
{r2{u2, ~3!

wherer1 andr2 are the fluid densities,u is the velocity of
the bubble front,g is the acceleration, andl is the mean
wavelength of the bubbles. The added mass coefficientCa

and the drag coefficientCd are both geometrical constants,
independent ofA.

Solving this equation for two acceleration profiles—
constant for RT and impulsive for RM—gives two equations
of motion for the bubble fronts, with three independent
parameters:aB, uB, andb 5 hB0^l&, the self-similarity pa-
rameter that is the same in both the RT and the RM cases
~Arazi, 2001!, as shown in Figure 3c:

RT:
dhB~t !

dt
5 ! 1

Cd
S 2A

11 A
D{g{

hB~t !

b
, ~4!

RM:
dhB~t !

dt
5

1

Cd
S12 A

11 A
1 CaD{

hB~t !

b{t
. ~5!

Using the known scaling laws for RT~hB 5 aBAgt2! and
RM ~hB 5 aBt uB !, we obtain the relating equations between
the three parameters:

uB 5 2{~11 A!{S12 A

11 A
1 CaD{aB ~6!

b 5
1

2{Cd~11 A!{aB

. ~7!

The model’s single degree of freedom is degenerated by
settingaB 5 0.05, as seen in the simulations, the experi-
ments, and the statistical model that will be presented in
Section 3. The model results appearing in Figure 3, which
agree well with the experimental results and the simula-
tions, are obtained using the 3D geometrical constants
~Layzer, 1955; Hechtet al., 1994; Oronet al., 2001!:

Ca 5 1 Cd 5 2p. ~8!

Substituting the 2D values of these constants~Ca 5 2, Cd 5
6p! into Eqs.~6! and~7! gives the 2D results that agree well
with the 2D numerical simulations and statistical model
~Alon et al., 1995!. These results differ from the experimen-

Fig. 3. Bubble parameter values as a function ofAas obtained from the 3D
RT simulations~down triangles!, the 3D RM simulations~up triangles!,
the 3D drag–buoyancy equation assumingaB 5 0.05, the 3D statistical
model~x! and the Dimonteet al. ~2000! experiments~dots!. a: aB, b: uB,
c: b 5 hB0^l&.
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tal results, especially in the values ofuB ~by about a factor of
2! andb ~by about a factor of 3!.

3. A STATISTICAL BUBBLE-MERGER MODEL

The statistical-mechanics approach to the RT and RM insta-
bilities discussed below is an extension to the 2D model
presented byAlonet al.~1993! for theA51 case, which was
based on the approach suggested by Sharp~1984! and Glimm
and Sharp~1990!. Adaptations were made to fit the 3D
geometry. In this model, we consider an ensemble of bub-
bles arranged on a surface, characterized only by their di-
ametersdi . The evolution of the bubbles is divided into two
stages:

a. Floating: Each bubble grows according to its single-
mode asymptotic velocity determined by its diameter
~“wavelength”!. The 3D single mode velocities in the
A 5 1 case were obtained by Layzer~1955! using the
potential flow model~Hechtet al., 1994!:

RT: uB 5 ! gl

2p
~9!

RM: uB 5
1

2p

l

t
~10!

b. Interacting: The interactions between the bubbles oc-
cur through merging—two adjacent bubbles merge at
a ratev~l,l'! to form a bigger~less drag-detained!
bubble with a wavelength!l2 1 l'2.

Although in a 3D arrangement of bubbles the average num-
ber of neighbors of each bubble is approximately 6, as can
be seen in Figure 4, the interactions were assumed to be
binary like in the 2D case, only with conservation of area
rather than length. This scheme is supported by the simula-
tions, where it was found that at all density ratios, the per-
centage of rising bubbles out of the whole ensemble was
equal to 50% throughout the evolution of the bubble front
~see, e.g., Fig. 2a!, similar to the 2D simulations.

The evolution equation of the 3D statistical model in the
mean-field approximation is

N~t !{
]g3D~l, t !

]t
5 22g3D~l, t !E

0

`

g3D~l', t !v3D~l,l' ! dl'

1 E
0

l

g3D~l', t !{g3D ~Ml2 2 ~l' !2, t!

{ v3D ~Ml2 2 ~l' !2,l' ! dl', ~11!

Fig. 4. The rising bubble Voronoi cell diagrams in four typical consecutive frames from theA 5 0.5 3D RT simulation. a:t 5 0.5,
b: t 5 1.0, c:t 5 1.5, d:t 5 2.0.
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whereg3D~l, t ! is the number of bubbles with a wavelength
within dl of l at time t, andN~t ! is the total number of
bubbles at timet. This model results in a self-similar~as-
ymptotic! wavelength distributionIg3D~j!, wherej5l0^l&.

In the absence of a bubble-competition potential model in
the 3D case, the merger rate between two bubblesv3D~l,l'!
was taken from the 2D model for RT and RM inA51 ~Alon
et al., 1994; Hechtet al., 1994!. The 2D merger rate for RM
in A 5 0 was taken from a vortex competition model~Ri-
kanatiet al., 1998!. A suitable time-scale adjustment was
used due to different time scales in the 2D and the 3D flows:
v3D 5 C{v2D. The time scale parameterC is the ratio be-
tween the 3D and the 2D single-mode velocities~Hecht
et al., 1994!:

RT: CRT 5
uB

3D

uB
2D 5M3 ~12!

RM: CRM 5
uB

3D

uB
2D 5 1.5~A51! 2 2~A50! . ~13!

Repeating the model’s process numerically with different
initial distributions of a large ensemble of bubbles for both
the RT and the RM cases gives the asymptotic wavelength
distribution Ig3D~j!. The distributions are given in Figure 5,
with good agreement with the distributions obtained from
the 3D simulations using the Delaunay triangulations. The
2D distributions~Alon et al., 1995! are also given in Fig-
ure 5 for comparison. Note that the 3D distributions are
narrower than the 2D ones, indicating that the 3D bubbles
are closer in size. Changing the merger rules between 2 and
6 neighbors had little effect~less than 10%! on the asymp-
totic distributions, as was demonstrated by Kartoon~2000!
and Oronet al. ~2001!.

The mean bubble-front velocitŷ Su& and merger ratê Tv&
in the self-similar flow regime are calculated by averaging
over the asymptotic distributions. These quantities are used
to find the scaling parameters~see Kartoon, 2000; Oron
et al., 2001!:

aB
3D 5

^ Su&^ Tv&

8
> 0.055 uB

3D 5
^ Tv&

2
> 0.18

b3D 5
hB

^l&
5 2{

^ Su&

^ Tv&
> 0.66. ~14!

Note that the additional factor of 2 appearing in the denom-
inator ofaB anduB and the numerator ofb, in comparison to
the 2D case~Alon et al., 1994!, is due to the area conserva-
tion of the merging process.

The growth parametersaB, uB, andb agree well with the
experiments, the 3D numerical simulations, and the simple
drag–buoyancy model, as seen in Figure 3.

An additional result of the numerical simulations, shown
in Figure 5c, is that the asymptotic wavelength distribution
is nearly independent of the Atwood number. This, together

with the agreement of the results of the model for RM in
A 5 0 andA 5 1, may indicate the validity of the statistical
model results over a wide range of Atwood numbers other
thanA 5 1, for which it was originally formulated.

Fig. 5. The RT ~a! and RM ~b! scale-invariant wavelength distributions
from the 3D simulations inA5 0.5~full line!, the 3D bubble-merger model
~dashed, dotted!, and the 2D model~dashed-dotted!. c: The RT scale-
invariant wavelength distribution from the 3D simulations atA 5 0.2
~dashed!, A 5 0.5 ~dotted!, andA 5 0.9 ~full line!.
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4. THE SPIKE-FRONT EVOLUTION

In contrast to the bubble front, few, if any, analytical models
exist for the description of the spike-front evolution. It is
commonly accepted that the scaling laws for the spikes are
similar to those of the bubbles, only with different scaling
parametersa andu: In the RT case the spike-front height
grows ashS5 aSAgt2, and in the RM case it grows ashS5
aSt uS.

The dependence ofaS anduS on the Atwood number, as
calculated from the 1D volume fraction in the simulations,
is given in Figure 6 and compared to the experimental re-
sults of Dimonteet al. In both panels the simulation results
are given using three cutoff percentage criteria: 90%, 95%,
and 100%. The moderate increase with the Atwood number
of aS taken from the numeric simulations is in good agree-
ment with the experiments, as seen in Figure 6a. Note the
same qualitative dependence onA of the three different
percentage criteria appearing in the figure. This behavior is
also apparent inaB anduB, where three different percentage
criteria~0%, 5%, and 10%! are all nearly independent ofA,
with values within 10%.

The calculateduS is consistent with the experimental re-
sults up toA > 0.8, whereas it fails to follow the steep
increase at Atwood numbers greater than 0.8. This inconsis-
tency is due to the sensitivity ofuS to different definitions of
the cutoff percentage used to determine the height of the
spike tips, as can be seen in Figure 6b. A wide spread of the
results is also apparent in the experimental results atAtwood
numbers greater than 0.8.

A further extension of the drag–buoyancy model, first
presented by Alonet al.~1995!, gives a prediction ofaS and
uSas a function ofA. The key assumption of the model is that
the spike periodicity is equal to that of the dominant bubble,
which operates as the driving force for the spikes:^lS&~t ! 5
^lB&~t !. This assumption is supported by the numerical sim-
ulations, where at both earlier and later times each pair of
bubbles are seen to be separated by a spike, which indicates
that the periodicity of the two structures must be the same.

Taking a naïve approach, in which both the bubble and the
spike fronts reach their asymptotic velocities together, the
ratio between the momentary velocities of the spikes and
the bubbles is obtained by simply taking the ratio between
their asymptotic velocities. The asymptotic velocities of the
spikes are calculated by simply interchanging the two den-
sitiesr1 andr2 in Eq. ~3!. This approach gives the approx-
imate expressions

RT: aS 5 !11 A

12 A
{aB ~15!

RM: uS 5 HuB A , 1

1 A 5 1.
~16!

These simple expressions are already in qualitative agree-
ment with the experimental results.

Note that at timetb, at which the bubble-front height
reaches its self-similar value~hB~tb! 5 bl!, the spikes have
not yet reached their asymptotic velocity~at Atwood num-
bers greater than 0!. Therefore, more accurate expressions
are obtained by taking the ratio between the momentary
velocities of the spikes and the bubbles to be the ratio be-
tween their velocities at timetb. Under this assumption, the
dependence of the two parameters on the Atwood number is
obtained~Arazi, 2001!:

RT: aS 5 !11 A

12 A
{tanhF!12 A

11 A
cosh21~exp~pb~11 A!!!G{aB

~17!

RM: uS 5 12
S12 A

11 A
D{@exp~pb~11 A!! 2 1#

11 S12 A

11 A
D{@exp~pb~11 A!! 2 1#

{~12 uB!.

~18!

Fig. 6. Spike parameter values as a function ofA as obtained from the 3D simulations using three percentage criteria: 90%~rectangle!,
95%~triangles!, and 100%~circles!, the simple~dashed! and the full 3D drag–buoyancy equation assumingaB 5 0.05~full line! and
the Dimonteet al. ~1999! experiments~dots!. a:aS, b: uS.
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The high sensitivity ofuB of Eq.~18! to b, in the range 0.9,
A , 1, sheds further light on the spread of the experimental
and numerical results presented above. The model results
are presented in Figure 6, and are in reasonable agreement
with the experiments and the simulations.

5. CONCLUSION

We have presented an extensive numerical and analytical
work establishing the prediction that the discrepancies be-
tween recent experiments and former models were due to
dimensionality effects. We presented a new analysis scheme,
which was used to investigate full 3D simulations per-
formed for a large range of density ratios. This analysis
allowed us to retrieve the 3D spatial distribution of the
interface separating the heavy and the light fluids, thus giv-
ing us a deeper understanding of the 3D bubble-merger
mechanism, and allowing further establishment of the 3D
statistical model also presented in this work. The results of
the simulations and the statistical model, together with a
simple drag–buoyancy model, agree well with the experi-
mental results, and thus form a consistent picture describing
the evolution of the 3D Rayleigh–Taylor and Richtmyer–
Meshkov late-time turbulent mixing zone.
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