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Cluster randomized trials: Another problem
for cost-effectiveness ratios
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Objectives: This work has investigated under what conditions cost-effectiveness data
from a cluster randomized trial (CRT) are suitable for analysis using a cluster-adjusted
nonparametric bootstrap. The bootstrap’s main advantages are in dealing with skewed
data and its ability to take correlations between costs and effects into account. However,
there are known theoretical problems with a commonly used cluster bootstrap procedure,
and the practical implications of these require investigation.
Methods: Simulations were used to estimate the coverage of confidence intervals around
incremental cost-effectiveness ratios from CRTs using two bootstrap methods.
Results: The bootstrap gave excessively narrow confidence intervals, but there was
evidence to suggest that, when the number of clusters per treatment arm exceeded 24, it
might give acceptable results. The method that resampled individuals as well as clusters
did not perform well when cost and effectiveness data were correlated.
Conclusions: If economic data from such trials are to be analyzed adequately, then there
is a need for further investigations of more complex bootstrap procedures. Similarly,
further research is required on methods such as the net benefit approach.

Keywords: Randomized controlled trials, Clustered data, Health services research,
Economics

Cluster randomized trials (CRTs) are experimental investi-
gations in which groups of individuals (clusters) are ran-
domized rather than separate individuals (8). The relative
complexity of CRTs has led to much methodological work
concerning their design and analysis (19), but the analysis
of cost-effectiveness data from these trials has received lit-
tle attention. The conceptual issues arising in this context
have been explored (12); briefly, there are four problems, the
first two of which are already well-known in the context of
individually randomized trials.

First, if the analysis is in terms of an incremental cost-
effectiveness ratio (ICER), traditional statistical analysis is
problematic. One difficulty is that the variance of a ratio
of two stochastic variables cannot, generally, be calculated
exactly (6). Asymptotically, the ratio of two standard nor-
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mal variables follows a Cauchy distribution. Unfortunately,
the theoretical mean of a Cauchy distribution does not ex-
ist, and the sample mean is unstable—the average ICER
over any number of observations exhibits the same degree
of variation as one single observation (20). In any case, in
practice, the cost and effect differences in the numerator and
denominator of the ratio are unlikely to be standard normal;
therefore, the resulting sampling distribution is unknown (2).
Hence, both determining sample size calculations and us-
ing parametric analytical methods have proved difficult for
cost-effectiveness studies. The second well-known problem
concerns negative cost-effectiveness ratios. The ICER can be
negative from a negative numerator or denominator, but the
implications of these two scenarios are very different. Infer-
ences must be drawn carefully then, if an ICER confidence
interval crosses zero.

Clustered data present two additional problems. First,
the data requirements for a properly powered or analyzed
cost-effectiveness study are even more onerous than an indi-
vidually randomized trial. Previous work has illustrated the
need for prior data on intracluster correlation coefficients
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(ICCs) and on correlations between costs and effects at the
cluster and individual level (12). Second, the use of the non-
parametric bootstrap (3;9) introduces new problems in the
analysis of clustered data. Specifically, to ensure that the
bootstrap estimate (of, say, a mean) is valid for each replica-
tion, bootstrapped data must be independently and identically
distributed. When stratification, cluster sampling, or proba-
bility weights are introduced, this assumption is violated.
Work has been carried out in the 1980s and 1990s to general-
ize the bootstrap to survey sampling and regression analysis
(7;17). For example the Stata statistical package bootstraps
whole clusters (7;18), but then the second moments of the
bootstrap estimates are biased downward (although consis-
tent with respect to the number of clusters). The resulting
confidence intervals are likely to be too narrow, particularly
when the number of clusters takes a value typical of many
CRTs (7).

The aim, therefore, was to compare the coverage of con-
fidence intervals estimated from two cluster-adjusted boot-
strap procedures for an ICER with that expected from theo-
retically correct confidence intervals (at a nominal 95 percent
level). The simulated data used for these purposes encapsu-
lated common features of CRTs with potential implications
for the validity of the methods of analysis. Specifically, the
following were incorporated: relatively few clusters; skewed
cost distributions at both individual and cluster levels; dif-
ferent variances and, hence, ICCs between treatment groups;
various correlations between costs and effects.

METHODS

Conceptualizing Cost-Effectiveness Data
from a CRT

Nature of Effect and Cost Data. The interdepen-
dence of costs and effects necessitated a degree of joint
consideration of these factors. However, because costs were
conceptualized as being dependent upon effects, the latter
were considered independently. Regarding these, effects at
both the individual and cluster levels were assumed to be
natural clinical units (such as blood pressure) that allowed
appeals to the central limit theorem and so were generated
from normal distributions. Whereas alternative distributional
assumptions for effect data await future work, non-normality
was introduced for the cost data. Specifically, three issues
were considered. First, the expected distribution of individ-
ual patient costs among those normally eligible for treatment.
Second, the extent to which cost distributions within clusters
are representative of this population distribution has implica-
tions for the ICC and the distributional assumptions. Third,
this might be influenced by the introduction of an interven-
tion. For instance, as detailed previously, the existence of one
unrepresentative cluster (such as a London teaching hospital)
in one treatment group may affect the ICC, independently of
treatment, or the treatment could directly change the ICC and
the distribution (12).

Correlations between Costs and Effects. In
a clustered setting, there are two potential levels of
correlation—between costs and effects for an individual and
between those for a cluster. For example, effective health-care
organizations could exhibit high average costs on average,
whereas within an organization the cost of treating an indi-
vidual patient may be unrelated to their outcome. Although
such ecological fallacies are possible, in practice, high posi-
tive correlations at one level would be unlikely to be observed
with high negative correlations at the other level. The follow-
ing scenarios, therefore, were considered to be most realistic:
(i) zero cluster level correlation (where, for instance, costs
are determined by purely geographical factors unrelated to
clinical effects), but non-zero correlation at the individual
level; (ii) vice versa (no correlation at an individual level but,
for instance, where referral centers might have higher costs
but lower success rates due to case mix); and (iii) the two
correlations are approximately the same.

Data Generation Process

Data were constructed assuming n individuals in each of
2k clusters. Of these, nk individuals were randomized to an
intervention and nk to a control/alternative intervention.

Effects. Effects (E) followed a random effects model
utilized in previous research (13) with an additional grand
mean that was arbitrarily set to 100. The effect of treatment
was set such that the coefficient of variation was 0.25, to
be realistic and to reduce the probability that the estimated
ICER was distributed symmetrically (1).

Costs. Costs (C) followed a similar random effects
model with additional restrictions: in particular, a cluster-
level correlation factor and an individual-level correlation
factor were introduced. The grand mean cost was arbitrarily
set to 1,000, and the cost of treatment was set such that the
coefficient of variation was 0.5 in value—again to be realis-
tic and reduce the probability that the estimated ICER was
distributed symmetrically (1).

Parameters Varied in the Simulation Model

As noted, normal distributions were utilized for all effect
data. Individual level cost data were lognormally distributed.
So as to ensure the generation of ICERs that were not too
symmetrical (which would defeat the object of testing the
methods’ relative merits for skewed data), lognormal dis-
tributions for the between-cluster cost distributions in both
treatment arms were used (11). The following six factors
were then varied: the control group ICC, intervention ICC,
number of clusters, cluster size, cost, and effect correlations
at cluster and individual levels.

ICCs. With the total variance (between-cluster plus the
within-cluster variance) arbitrarily fixed at 100, the “control”
group ICCs used were 0.01 and 0.1. For each of these val-
ues, the intervention ICC was (i) the same; (ii) doubled, as a
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result of an appropriate increase in the between-cluster vari-
ance; (iii) doubled, by decreasing the within-cluster variance;
(iv) halved, by decreasing the between-cluster variance; or
(v) halved, by increasing the within-cluster variance.

Sample Sizes. The number of clusters in each group
(k) was six or twelve, reflecting the numbers of clusters re-
cruited in many CRTs. The cluster size (n) was twenty-five
or fifty; coupled with the cluster sizes, these values allowed
alternative configurations to be investigated for a given total
trial size.

Correlations between Costs and Effects. The
correlations for each level of variation were set at −1, −0.5,
0, 0.5, and 1. Effects and costs were initially generated from
normal distributions, and it was at this point that these cor-
relations were incorporated. The cost data required transfor-
mation (exponentiation) to produce lognormal distributions,
which had the effect of shrinking the actual correlations to-
ward zero. Thus, the above five were ex ante (planned) corre-
lations, whereas the ex post (resulting) correlations between
lognormally distributed cost data and normally distributed
effect data were closer to zero. Whereas five correlations
at each of two levels gave twenty-five possible correlation
combinations, given the conceptual points made earlier, only
thirteen combinations were actually used in the simulations
(Table 1).

Data Analysis

For the data set generated for each simulation, two methods
of bootstrap confidence interval estimation were performed.
Bootstrapping was performed independently within each of
the two treatment groups, with the ICER being the statis-
tic of interest. The sampling structure was maintained in a
bootstrap replication by selecting k clusters with replacement
from each treatment group. For each of the two procedures,
2,000 bootstrap estimates of the ICER were performed.
A bias-corrected and accelerated (BCa) confidence interval
was then estimated at the same nominal percentage level
(95 percent). Given the nature of the BCa method, the result-
ing confidence interval need not be symmetric (10).

Bootstrap Method 1. Under the first procedure
(a “single bootstrap” denoted here by BS1), only clusters
were bootstrapped and each resampled cluster kept intact, as

Table 1. Combinations of (ex ante) Correlations between
Costs and Effects Utilized

Individual level correlation

−1 −0.5 0 0.5 1

Cluster level −1 X X
correlation −0.5 X X

0 X X X X X
0.5 X X
1 X X

utilized by Stata (18) when the cluster () option is added to
the bootstrap command. It can be shown that, for the boot-
strap estimates, the expected variance and covariance of the
resampled outcome data are slightly biased downward (7).
However, an estimator such as the sample mean is strongly
consistent (in that its bias is zero and is variance tends to
zero as the total sample size approaches infinity); the bias,
therefore, is small, unless the number of clusters is low.

Bootstrap Method 2. An alternative method (the
“double bootstrap” denoted here by BS2) involved resam-
pling individuals as well as resampling whole clusters. This
strategy used a first stage bootstrap applied to the esti-
mated cluster means (sampling with replacement), and a
second stage in which individuals were bootstrapped, in-
volving resampling the deviations from the estimated cluster
means. However, the estimated cluster means incorporate
both within- and between-cluster variability and any anal-
ysis restricted to the cluster means would overestimate the
variance in these means (7). Because incorporating the de-
viations from the estimated cluster means would effectively
double-count the within-cluster variance, the cluster means
were shrunk using Davison and Hinkley’s shrinkage esti-
mates.

Treatment of Negative ICERs and
Confidence Limits

Problems accrued whenever an estimated ICER or confi-
dence limit fell in either the top left or bottom right quadrant
of the cost-effectiveness plane. When the intervention was,
on average, more costly but less effective than the control,
the latter was dominant—any bootstrap estimates in the top
left-hand quadrant should not appear on the lower end of
the ranking (that is, the lower centiles) of the bootstrap
estimates (2).

Conversely, when the difference in mean effect was pos-
itive but the difference in mean costs was negative, interven-
tion dominated control. Ranking was nonsensical—greater
cost savings or greater incremental effectiveness is desired
but each would move the ICER in different directions (the
former making it more negative, the latter making it less
negative). A conclusion of (unquantifiable) dominance was
the only possible inference. Indeed, the coefficients of vari-
ation used for effects and, particularly, for costs meant that
at least some negative differences were expected, leading to
undefined lower confidence limits and perhaps estimates.

Performance Measures from the
Simulations

Consequently, the comparisons were in terms of coverage of
the various confidence intervals—that is, the percentage of
simulations for which the estimated confidence interval con-
tained the true value for the ICER. Distinguishing between
observed noncoverage rates according to whether there was a
spurious positive or negative treatment effect because skewed
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distributions were expected to have different implications for
them, the following percentages were obtained: (i) those for
which the estimated ICER confidence interval did not con-
tain the true ICER value and whose lower limit was greater
than this value; (ii) those for which the estimated ICER confi-
dence interval did not contain the true ICER value and whose
upper limit was less than this value; (iii) those for which
the estimated confidence interval contained the true ICER
value (calculated simply as 100 minus the sum of the other
two percentages. Ideally, then, (i) and (ii) should each be
2.5 percent, whereas (iii) should be 95 percent (the nominal
level). Test runs found that 20,000 simulations were sufficient
to reduce Monte Carlo variation to a level that enabled rea-
sonable comparisons of the various methods for the different
parameter sets.

RESULTS

Coverage Rates for Cost-Effectiveness
Confidence Intervals

For the two control group ICCs investigated, Tables 2 and 3
show the coverage percentages for each of the methods of
analysis for the various sample size combinations, averaging
over the sixty-five parameter combinations (thirteen corre-
lation combinations times five intervention ICC changes).
From these results, neither of the two methods reproduced
the nominal coverage of 95 percent but the BS2 method al-
ways achieved coverage closer to 95 percent than the BS1
method. When examining percentages along the diagonal
in each table, the BS1 method performed much better for
a large number of clusters and small cluster size compared
with vice versa. This finding was probably due to the slight
downward bias in the second moments; the degree of bias is
an inverse function of the number of clusters. However, the
double bootstrap did not exhibit this pattern. As the ICC in
the control group increased (across tables) the performances
of the bootstrap methods were noticeably poorer.

It is tempting to conclude at this point that the double
bootstrap is the preferred method of analysis. However, it
was hypothesized that correlations between costs and effects
would have implications for the BS2 method. In particular,
the rescaling procedure introduced by the double bootstrap is

Table 2. Observed Coverage (%) for BS1 and BS2 Methodsa

(control ICC = 0.01)

Cluster size

25 50

Number of clusters per arm 6 88.44 88.44
94.15 93.98

12 91.42
93.98

a Within each box, the first number represents the average coverage of the
single bootstrap (BS1) method, whereasthe second represents the double
bootstrap (BS2) method. ICC, intracluster correlation coefficients.

Table 3. Observed Coverage (%) for BS1 and BS2 Methodsa

(control ICC = 0.1)

Cluster size

25 50

Number of clusters per arm 6 87.47 87.03
91.95 91.55

12 90.09
92.05

a Within each box, the first number represents the average coverage of the
single bootstrap (BS1) method, whereas the second represents the double
bootstrap (BS2) method.

performed upon costs and effects separately and, therefore,
takes no account of the correlation between them. It was
unclear in advance how this would affect the BS2 coverage.
The following sections, therefore, subdivide the coverage
results first by correlation combination and then by variance
changes for the BS2 method.

Coverage Subdivided by Correlation
Combination

Table 4 shows the coverage percentages for the BS2 method
for each correlation combination when averaged over the five
variance change combinations for a given control group ICC,
using six clusters of size 25 per arm as an example.

The poor performance as the control ICC increased was
again apparent. The BS2 method exhibited a 1 percent or
greater decrease in coverage for ICC = 0.1 compared with
ICC = 0.01 in eleven of the thirteen correlation combina-
tions. Although there was some evidence of this for BS1 (not
shown), a 1 percent decrease was apparent in only five of
thirteen combinations. This finding was not surprising, given
that the downward bias in the second moments is partly a
function of the between cluster variance.

It seems that either or both of the rescaling mecha-
nism and the second level of resampling utilized by the
BS2 method affected confidence interval coverage. For zero
cluster level correlation, as the individual level correlation
increased from −1 to 1, coverage fell consistently from
95.0 percent to 90.7 percent for ICC = 0.01 and from
93.6 percent to 87.9 percent for ICC = 0.1. On the other hand,
for zero individual level correlation, increases in the cluster
level correlation from −1 to 1 led to increases in the cover-
age, from 93.4 percent to 95.7 percent and from 89.4 percent
to 95.8 percent for the two ICCs, respectively. This difference
in behavior may well be due to the rescaling mechanism or
second level of resampling introduced by the BS2 method,
especially because such trends were not apparent for BS1.

Repeating the above analyses for a cluster size of
fifty rather than twenty-five led to the same patterns be-
ing observed (11). Moreover, for these other configura-
tions, the BS2 method exhibited little if any improvement in
matching the nominal 95 percent coverage probability. The
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Table 4. Observed Coverage by Correlation Combination for Six Clusters of Size 25 per Arm: BS2 Method

Individual level correlation

−1 −0.5 0 0.5 1

Control Cluster level correlation −1 94.45 93.40
ICC = 0.01 −0.5 94.37 93.96

0 94.99 94.85 94.60 93.86 90.65
0.5 95.21 94.54
1 95.65 93.38

Control Cluster level correlation −1 91.42 89.41
ICC = 0.1 −0.5 91.69 90.71

0 93.60 93.09 91.93 90.89 87.93
0.5 93.66 92.20
1 95.77 92.65

ICC, intracluster correlation coefficients.

performance of the BS1 method, however, improved for
every correlation combination. More formally, the statistical
consistency in the bootstrap moments was apparent; although
twelve clusters was not sufficient to achieve 95 percent cov-
erage, coverage was above 90 percent most of the time. Fur-
thermore, for both values of the ICC, where the cluster level
correlation was zero and the individual level correlation was
1, the BS1 method actually achieved better coverage than the
BS2 (11).

Coverage Subdivided by Change in ICC

When coverage was subdivided by the change in the ICC, it
was apparent that variance changes had comparatively little
effect upon coverage. However, the relative performances of
the two methods was much more dependent upon factors
such as the bootstrap’s bias in the second moments and the
correlation combinations. Lastly, a larger control ICC tended
on average to reduce the coverage of the bootstrap confidence
intervals (11).

DISCUSSION

Summary of Findings

The conclusions were generally consistent with predictions
based on a priori knowledge of the theoretical strengths and
limitations of the methods. The single bootstrap performed
badly on average, but it showed a marked improvement for
a larger number of clusters per treatment arm. Furthermore,
its performance was not strongly affected by the correla-
tions between costs and effects or by changes in the ICC.
The performance of the double bootstrap was somewhat dis-
appointing. Although on average it more closely matched
the nominal rates for coverage and rejection rates than the
single bootstrap, its results demonstrated a high degree of
variation. In particular, the two correlations between costs
and effects had a greater impact than for the single boot-
strap. Either the second level of resampling or, more proba-

bly, the rescaling method inherent in this method of analysis
did not deal adequately with the nonstandard distribution of
the ICER. A larger number of clusters per treatment arm
did little to improve the performance of the double boot-
strap, and there was some evidence to suggest that larger
numbers of clusters per treatment arm would cause the sin-
gle bootstrap to perform better than the double bootstrap on
average.

Comparisons with the Literature

This work has drawn together the two distinct areas of “analy-
sis of individually randomized economic data” and “analysis
of clustered data”. Comparing the simulation results for the
bootstrap with those from the individually randomized lit-
erature suggests that the good confidence interval coverage
of the bootstrap observed in several studies has not been
replicated here (1;2;6;16). This finding is largely explained
by the downward bias in the second moments introduced by
simple bootstrapping of clustered data. However, attempts to
improve the bootstrap’s ability to take account of individ-
ual level factors by way of a second level of bootstrapping
caused problems in analyzing cost-effectiveness data. The
multilevel modeling software package MLWin version 1.10
includes bootstrap procedures (5). However, these involve
parametric bootstrap procedures rather than nonparametric
ones as utilized here, and they have yet to be evaluated in
terms of their ability to take adequate account of correlations
between costs and effects.

This work constitutes early stages in the further research
that has been advocated to identify appropriate approaches
to the analysis of economic outcomes from CRTs (4). The
ICCs used in the present simulations were comparable to
those estimated for costs in this previous study, but highly
variable ICCs for costs at different levels and the magnitude
of patient costs relative to total costs have both been empha-
sized as important issues (4). Whether any of the scenarios
investigated here are relevant to future trials will depend,

INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 21:3, 2005 407

https://doi.org/10.1017/S0266462305050531 Published online by Cambridge University Press

https://doi.org/10.1017/S0266462305050531


Flynn and Peters

in part, upon the issue of which cost component is most
important.

Limitations of the Work Presented

Conceptualizing economic data from a CRT was difficult,
given the almost total lack of empirical data on cost ICCs,
the validity of distributional assumptions, and values for cor-
relations between costs and effects. As a result, there were too
many permutations of parameter values to be run in the time
available and some simplifications of the models had to be
made. Perhaps the most fundamental limitation of the models
was that of a constant cluster size. Nonconstant cluster size
is more realistic, but the bootstrap methods of Davison and
Hinkley (7) were not intended to handle nonconstant cluster
size and the more complex bootstrap methods of Rao and
Wu (17) would be required.

Another limitation concerns the handling of effects,
which were conceptualized as being a natural clinical unit
such as blood pressure. The framework of analysis was then
defined to be a cost-effectiveness analysis. By thus restrict-
ing the effect data, appeals to the central limit theorem were
possible, thus reducing the generalizability of the results by
ruling out alternative distributional assumptions that might
be more reasonable if the outcome data were, for example,
quality-adjusted life years.

The ICC (and the change in the ICC due to treatment)
was constrained to be the same for both costs and effects.
Further work on simulations using less-restrictive assump-
tions could be valuable, but again there is a lack of empirical
data to inform the conceptualization and construction of such
simulations.

Finally, a larger number of clusters per treatment arm,
perhaps twenty-four, might have caused the single bootstrap
to outperform the double bootstrap consistently. Unfortu-
nately, given the complexity of the model and a large amount
of time that the cost-effectiveness simulations took, such a
large trial size was not feasible.

POLICY IMPLICATIONS

Despite these limitations, the results from the simulations
present a coherent picture of the relative strengths of the two
methods of analysis. Simple bootstrap methods such as those
of Davison and Hinkley do not perform well when the number
of clusters is small. The bias in the second moments is usually
fairly large when the number of clusters per treatment arm
takes values common to many CRTs.

This work should prompt researchers to consider the
economic aspects of future CRTs so that such trials are not
subject to poor design and analysis. Given the possibly exten-
sive data requirements that will result from future economic
evaluations and the difficulties encountered with the use of
the bootstrap, this work may have provided a strong motiva-
tion for rethinking how costs and effects may be combined
throughout clinical trials. For individually randomized trials,

there has been work undertaken to combine costs and effects
in a framework that rejects ratio statistics and moves back to
a unidimensional outcome that can be analyzed using tradi-
tional methods that are utilized for clinical outcomes (the net
benefit approach; 15). Such an approach may permit a sim-
pler conceptualization of outcomes in CRTs. Furthermore, by
considering issues such as the value and costs to society of
obtaining information on treatments’ effectiveness, the net
benefit approach is consistent with the philosophy behind
work on the design of CRTs (14). At the very least, it has the
potential to promote a more unified approach to the design
and analysis of economic data from such studies.
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