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The full set of velocity derivatives, ∂ui/∂xj , is measured experimentally in a
Lagrangian way in quasi-homogeneous isotropic turbulence. This is achieved by
applying the three-dimensional particle tracking velocimetry (3D-PTV) technique to
an electromagnetically forced flow with Reλ � 50. Checks based on precise kinematic
relations show that the technique presented measures the velocity derivatives with
good accuracy. In a study on vorticity, characteristic properties of turbulent flows
known from direct numerical simulations are reproduced. These are the positive
skewness of the intermediate eigenvalue of the rate of strain tensor, sij , 〈Λ2〉 > 0,
the predominance of vortex stretching over vortex compression, 〈ωiωj sij 〉 > 0 and
the predominant alignment of vorticity, ω, with the intermediate principal axis of
strain, λ2. Results on the evolution in time of material lines, l , compared to vortex
lines, ω, are presented. They show that the nonlinear interaction of vorticity with the
surrounding flow assists viscosity in maintaining this predominant λ2-alignment of
vorticity. Lagrangian measurements of enstrophy budget terms suggest that there is
no pointwise balancing of production and viscous reduction of enstrophy and that
the role played by viscosity is of great importance.

1. Introduction
In this paper we report on a first attempt to experimentally measure in a Lagrangian

way the full set of velocity derivatives, ∂ui/∂xj , with special emphasis on the dynamics
of vorticity, ω = curl u. Despite the fact that the Lagrangian description of fluid flows
is physically more natural than the Eulerian one, most turbulence research is still based
on Eulerian approaches. This is mainly due to technical difficulties in both laboratory
and numerical approaches. With the exception of the work of Tsinober, Kit & Dracos
(1992) and Kholmyansky, Tsinober & Yorish (2001) the full set of velocity derivatives,
∂ui/∂xj , was up to now accessible only through numerical simulations.

Lagrangian information can be extracted from Eulerian direct numerical simula-
tions (DNS) of the Navier–Stokes equations (NSE) at moderate Reynolds numbers
and was reviewed recently by Yeung (2002). These studies were made in simple
geometries and emphasized the Lagrangian velocity correlations and accelerations.
The work of Girimaji & Pope (1990) is of particular relevance to ours. They performed
an extensive numerical study of the behaviour of material elements (lines, surfaces,
volumes) in NSE isotropic turbulence, which along with conventional analysis includes
the growth rates of material lines and surfaces, deformation of volume elements and
alignments with extensive use of the deformation matrix and the Cauchy–Green
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tensor. Huang (1996) also addressed similar issues, but in addition made important
comparisons between the properties of material lines and those of vorticity such as
stretching rates and alignments. Similarly, a comparison between vorticity and passive
vectors with the same diffusivity as the fluid viscosity was made by Tsinober &
Galanti (2001, 2003) and Ohkitani (2002). Two closely related papers deal with the
geometry and evolution of Lagrangian tetrahedrons in quasi-isotropic turbulence:
Chertkov, Pumir & Shraiman (1999) and Pumir, Shraiman & Chertkor (2000).

The idea of experimentally tracking neutral tracer particles that approximate the
Lagrangian fluid motion was introduced by Snyder & Lumley (1971). Sato &
Yamamoto (1987) performed similar experiments in water tunnel grid turbulence.
A stereoscopic three-dimensional particle tracking velocimetry (3D-PTV) system was
introduced by Chang & Taterson (1983), and was further developed by Racca &
Dewey (1988), Maas (1992), Mass, Grün & Papantoniou (1993) and Malik, Dracos &
Papantoniou (1993). 3D-PTV was used by Virant & Dracos (1997) in the boundary
layer of a free-surface flow, whereas Mann, Ott & Andersen (1999) and Ott &
Mann (2000) used a similar system in an oscillating grid turbulence flow. Voth,
Satyanarayan & Bodenschutz (1998) and La Porta et al. (2001) used silicon strip
detectors as optical imaging elements. Most of the above experimental work was
concentrated on obtaining the Lagrangian velocity correlations and later accelerations,
and studying relative diffusion.

An important recent development was made in the work by Voth, Haller & Gollub
(2002). This is the only work in which, along with the velocity field, the field of
velocity derivatives and the Cauchy–Green tensor were obtained in a particle tracking
experiment. This was achieved by following about 800 fluorescent latex particles of
120 µm in diameter with a sampling rate of 10 Hz, measuring their velocities from the
particle trajectories and using polynomial fitting and interpolation of the velocities
onto a grid to obtain the velocity as a function of space and time. This is in principle
the same procedure as used in our experiments, Lüthi (2002). The main difference –
which from a technical point is essential – is that the experiment by Voth et al. (2002)
was a two-dimensional one, whereas ours is three-dimensional.

Despite the fact that the importance of velocity derivatives was recognized several
decades ago by Taylor (1937, 1938) and Kolmogorov (1941a, b) certain issues regarding
vortex stretching and enstrophy, ω2, dynamics are still not fully understood. Taylor
was the first to stress the importance of the positive net enstrophy production,
〈ωiωj sij 〉 > 0 in three-dimensional turbulent flows, whereas Kolmogorov emphasized
the role of dissipation, 2νsij sij or 2νs2, and thereby of strain, sij = 1

2
(∂ui/∂xj +∂uj/∂xi).

Since vorticity is a functional of strain and vice versa the evolution of the fields of
enstrophy and strain,

1

2

Dω2

Dt
= ωiωj sij + νωi∇2ωi (1)

and

1

2

Ds2

Dt
= −sij sjkski − 1

4
ωiωj sij − sij

∂2p

∂xi∂xj

+ νsij ∇2sij , (2)

are strongly connected to each other (e.g. Tsinober 2001). The dynamics of velocity
derivatives are driven by self-amplification and include two non-locally interconnected
weakly correlated processes of enstrophy and strain production (Galanti & Tsinober
2000; Tsinober 2000). The non-locality is discussed in e.g. Novikov (1967), Constantin
(1994), Ohkitani & Kishsiba (1995) and Tsinober (2001). The production terms,
ωiωj sij and sij sjkski , for vorticity and strain are reported to be orders of magnitude
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higher than their corresponding terms associated with forcing, Tsinober (2001). There
are indications that the process of self-amplification has a universal character for a
wide range of different flow types. Manifestations are e.g. maps of the second and third
invariants of ∂ui/∂xj , R and Q, with their characteristic ‘tear-drop’ feature (Chacin,
Cantwell & Kline 1996; Ooi et al. 1999) or characteristic alignments between vorticity
and the eigenframe of the rate of strain tensor sij (Ashurst et al. 1987; Constantin
1994; Tsinober et al. 1992; Tsinober, Shtilman & Vaisburd 1997; Kholmyansky et al.
2001; Lüthi et al. 2001, Lüthi 2002).

Trying to explain the positiveness of the strain production term 〈−sij sjkski〉 of
expression (2) is equivalent to explaining the positiveness of 〈Λ2〉 > 0, where Λi

are the three eigenvalues of sij , with Λ1 >Λ2 >Λ3, and – in incompressible flows –
Λ1 + Λ2 + Λ3 = 0. With −sij sjkski = −Λ1Λ2Λ3 it is clear that the only situation that
produces strain is when Λ2 > 0. This is what Betchov (1956) calls a jet collision
situation. He argues that with the strain produced, vorticity is stretched along λ1

and λ2 and hence enstrophy is essentially produced through Λ3. Vortex stretching,
ωiωj sij , is driven by both vorticity and strain and hence 〈Λ2〉 > 0 is a prerequisite –
but no explanation – for positive mean enstrophy production and therefore driving
enstrophy dynamics. Enstrophy dynamics as described by expression (1) is governed
by the positiveness of 〈ωiωj sij 〉 (e.g. Taylor 1938; Tennekes & Lumley 1972) and the
role played by the viscous term νωi∇2ωi . So far, no theoretical arguments in favour of
the positiveness of 〈ωiωj sij 〉 have been given. There is evidence that 〈ωiωj sij 〉 would
grow without bounds if it were not for viscosity, see Brachet et al. (1992). This evidence
is based on DNS of the Euler equations. In high-enstrophy regions of viscous flows
the mean generation due to predominant vortex stretching is approximately balanced
by viscous destruction (Tsinober 2000). It was also shown for a Gaussian field, with
〈ωiωj sij 〉 identically zero at time t = 0, that within a very short time interval the mean
enstrophy production will become positive, (D/Dt)〈ωiωj sij 〉 > 0, see Proudman &
Reid (1954).

One of the common views is that the prevalence of vortex stretching is due to
the predominance of stretching of material lines (Taylor 1938). This view is widely
accepted, e.g. in Hunt (1973); however, it is at best only partially true, since there exist
several essential qualitative differences between the two processes. From comparison
of the equations for vorticity

Dωi

Dt
= ωj

∂ui

∂xj

+ ν∇2ωi (3)

and

Dli

Dt
= lj

∂ui

∂xj

(4)

for material line elements, l , it is clear that the evolution of vorticity is nonlinear
whereas material lines evolve in a purely kinematic manner. In addition vortex lines
are influenced by viscous effects which allow reconnection phenomena (Kida &
Takaoka 1994; Fernandez, Zabusky & Gryanik 1995) and which are responsible for
balancing the enstrophy production of the term ωiωj sij . A detailed list of differences
between material lines and vortex lines is given in Tsinober (2001). Among the key
differences between vortex and material lines is their different predominant alignment
with respect to the eigenframe of strain λ2 and λ1 respectively (Dresselhaus & Tabor
1991; Huang 1996; Lüthi et al. 2001, Lüthi 2002).
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One important consequence of the predominant ω–λ2 alignment is that growth
of enstrophy production is moderated and bounded through dynamic interaction
with strain and through viscous processes, whereas material line energy experiences
unbounded growth. It is the aim of this paper to focus on the mechanisms that
are involved in controlling the evolution of ωiωj sij . We will obtain a picture of
a field of vorticity that has self-regulating growth, equilibrium and reduction of
enstrophy, through dynamical interaction with strain and through viscosity. The
essential prerequisite for such a study is the 3D-PTV technique presented which
allows active and passive vectors l and ω to be measured in a Lagrangian way, as
well as enstrophy budget terms like 1

2
(Dω2/Dt) and ωiωj sij , along particle trajectories.

The paper is organized as follows: In § 2 the experimental setup and the technique of
obtaining the velocity gradient tensor Uij = ∂ui/∂xj by means of 3D-PTV is outlined
and verified. In § 3 we demonstrate that with 3D-PTV measurements most relevant
results regarding the fine-scale structure of isotropic turbulence, known from DNS
studies (e.g. Siggia 1981; Ashurst et al. 1987; Girimaji & Pope 1990; Vincent &
Meneguzzi 1994; Huang 1996; Tsinober 2001; Tsinober & Galanti 2001, 2003)
and hot-wire experiments (Tsinober et al. 1992; Kholmyansky et al. 2001) can be
reproduced. In § 4 we move on from Eulerian to essentially Lagrangian results.
Through the study of special material lines we identify how ω can stabilize its λ2-
alignment and we investigate the point-wise relation between the enstrophy terms
1
2
(Dω2/Dt) and ωiωj sij and its implications for the viscous term νωi∇2ωi . In § 5 the

results are summarized and some conclusions are drawn.

2. Experimental setup and measurement
2.1. Flow

The flow domain is a rectangular box, 120 × 120 × 140 mm3, with the flow forced
electromagnetically by Lorentz forces, f L, from two opposite walls,

f L = j × B, (5)

where j is the current density and B the magnetic field. To reach a high electrical
conductivity and hence current density j , a saturated copper sulphate (CuSO4)
solution is used as fluid. The fluid has a conductivity of 16.7 mS cm−1, a density, ρ, of
1050 kg m−3, and a dynamic viscosity, ν, of 1.2 × 10−6 m2 s−1. For the magnetic field at
each wall a 2 × 2 array of cylindrical rare-earth strong permanent magnets are used.
They have a diameter of 42 mm, an axial length of 20 mm, and a strength, B, of over
1T. The interaction of the wall-normal current density field, j = 70 A m−2, with the
magnetic field leads to volumetric forcing which is tangential, with respect to the axis
of the magnets, and is strongest in a torus-like region above the magnets reaching up
to 5 mm into the flow. The forcing produces a non-oscillating swirling motion in the
proximity of each magnet. The magnets are arranged in such a way that the resulting
swirls are analogous to a ‘milling’ flow in the laminar situation. Within a few seconds
these swirls cause a three-dimensional time-dependent flow region with a front that
quickly propagates towards the centre resulting in a turbulent velocity field with zero
mean flow and fluctuations, ui , of O(0.01 m s−1), occupying the entire volume of the
tank. This type of non-oscillating forcing has the advantage that it is confined to large
scales and that it introduces no time scales which might be remembered throughout
the flow’s history. Also, it introduces no mechanical vibrations. Simple systems of
such a kind have been successfully used since the 1970s by the group of A. Obukhov
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Figure 1. Experimental setup. The flow is produced with electromagnetic forcing. The
observation volume is illuminated with a continuous argon-ion laser and recorded with four
CCD cameras.

(e.g. Obukhov 1983; Cardoso et al. 1996; Honji, Ohkura & Ikehata 1997) with simple
quasi-two-dimensional flows and by Yule (1975) who has used electromagnetic forcing
of low Reynolds number flow in a pipe.

The flow is seeded with neutrally buoyant 40 µm polystyrene particles. In each time
step ∼ 800 particles are detected and can be allocated a position in space. With an
observation volume of 20×15×15 mm3 this corresponds roughly to a particle seeding
density of ∼180 particles cm−3. The effective seeding density of particles that can be
followed long enough in time so that they will enter into the interpolation scheme
is of course lower, as will be outlined further below. For illumination a continuous
20 W argon ion laser is used. The laser beam is widened by two cylindrical lenses to
a laser sheet of 20 mm thickness. The flow is recorded with four CCD progressive
scan monochrome cameras with 8 bit pixel−1 and 640 × 480 pixels resolution. In our
experiment a target with 36 points distributed in a volume of 18 × 15 × 7 mm3 is used
for camera calibration. Following the procedures extensively described in Maas et al.
(1993), Virant (1996) and Stüer (1999) the estimated position accuracy for the target
points is ∼3 µm leading to an estimated position accuracy of the fluid tracer particles
of ∼10 µm for the x and y components and ∼40 µm for z. This reflects that because
of the way the four cameras are set up, determination of a particle’s z position is
the most difficult. Changing camera position and angles in favour of equal particle
position accuracy for all three components would in turn reduce the volume where
all four fields of view with corresponding depth of field overlap. The particle position
accuracy is somewhat lower than target point accuracy due to combined effects of
particle size, illumination and motion. The synchronized images are stored on two
PCs with 4 GB RAM memory each at a frame rate of 60 Hz. The system records at
72 MB s−1 over 100 s which corresponds to a total of 6000 frames. The setup of the
experiment is shown in figure 1.
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2.2. Three-dimensional particle tracking velocimetry

The three-dimensional particle tracking velocimetry (3D-PTV) technique is a flexible
non-intrusive image-analysis-based flow measurement technique. It measures particle
trajectories from which – if the particles are neutrally buoyant and small enough to
perfectly follow the flow – particle velocities and Lagrangian accelerations can be
obtained directly.

3D-PTV can be divided into two major parts: determination of particle positions in
spatial coordinates and tracking of individual particles through consecutive images.
While in previous implementations these two steps had been completely separated
Willneff (2003) combined the two steps and developed a new spatiotemporal matching
method which improves tracking efficiency of particles by 10–30%. Until then, the
probability of position and tracking ambiguities could only be reduced by using
low particle seeding densities with the negative effect of drastically reducing spatial
resolution, which in turn made determination of velocity derivatives impossible.
Willneff’s new idea was to exploit the redundant information in image and object
space more effectively. Predictions of particle motion, based on particle tracking
in image and object space, are used to resolve ambiguous particle image positions
and correspondences. In other words, ‘temporal’ information at time, t , is used to
resolve ‘spatial’ uncertainties regarding the existence and positions of particles in the
next time step t + �t . The seemingly modest improvement of 10–30% in tracking
efficiency is very significant in the context of further processing and analysis. Very
often trajectories are lost due to small gaps over one or two frames where trajectory
paths cross in image planes leading to unsolved ambiguities. The spatiotemporal
matching method is found to be particularly efficient in closing these gaps which has
as a consequence that the number of long trajectories is more than doubled. Particle
trajectories which are longer than the relevant Kolmogorov scales, η, and τη, are the
key prerequisite for a Lagrangian flow analysis and, as we will show below, they
also significantly enhance the accuracy of the applied processing to obtain velocity
derivatives.

To track particles, i.e. to find corresponding particles in image and object space
of consecutive time steps, three criteria are used for effective assignment. First, a
three-dimensional search volume is defined by minimum and maximum velocities in
all three coordinate directions. Second, the Lagrangian acceleration of a particle is
limited, defining a conic search area. Third, in the case of ambiguities the particle
leading to the smallest Lagrangian acceleration is chosen. Similarities in brightness,
width, height and sum of grey values of the pixel of a particle image in two consecutive
time steps proved to be not as valuable as expected. From the 800 detected particles
per frame for which a position in space can be determined, typically 470 particles can
be followed long enough, which is equivalent to a tracking efficiency of ∼60% and
a seeding density for linked particles of ∼105 particles cm−3. ‘Long enough’ means
that particle positions along trajectories can be fitted to a moving cubic polynomial,
which acts as a low-pass filter. With the fitting procedure, filtered positions, x̂, filtered
velocities, û, and filtered accelerations, â, are assigned to each particle. The low-
pass filtering and its characteristics are described in Appendix A. As a qualitative
illustration of the result of the tracking procedure figure 2 shows recorded trajectories
from the beginning of an experiment that can be tracked over 0.3 s or longer.

2.3. Velocity derivatives

From the technical point of view this section is the most important one, since it
describes how the full set of spatial and temporal velocity derivatives, ∂ui/∂xj and
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Figure 2. Selected particle trajectories as obtained from 3D-PTV.

∂ui/∂t , are obtained for every point x along particle trajectories from information on
velocities, û, in the proximity of x. The procedure involves two steps: a local linear
interpolation of the velocity field and a weighted polynomial fit to the derivatives
along particle trajectories, making use of the auto-correlations of the Lagrangian
derivatives. The weighting in the last step is crucial, since it allows contributions to
the fit to such trajectory to be confined to data where a local quality estimation, based
on divergence, suggests that the interpolated derivatives are sufficiently accurate.

2.3.1. Linear interpolation

From low-pass filtered velocities, ûi , spatial and temporal velocity derivatives are
interpolated for every particle trajectory point. The details of the low-pass filtering
are outlined in Appendix A. Assuming that to a good approximation the velocity
field in the proximity of position x0 is linear, for ûi (x0), i = 1, 2, 3, the linear ansatz

ûi(x0) = ci,0 + ci,1x1 + ci,2x2 + ci,3x3, (6)

with

ci,1 =
∂ui

∂x1

, ci,2 =
∂ui

∂x2

, ci,3 =
∂ui

∂x3

is made. In principal, information from four points, n= 4, is sufficient to solve
expression (6) for ci . Since the sensitivity of ci,j to errors of ûi is high, an over-
determined linear system,

Aci = vi , (7)

with information from n points, n> 4, is desirable. Given that all n points are close
enough for the linear ansatz to remain valid, the confidence interval for ci,j improves
with ∼ (n)−1/2. Expression (7) is solved for ci with the least-square method as

ci = (AT vi)(A
T A)−1, (8)

where A is the position matrix and vi is the velocity vector.
The spatial separation over which to a good approximation the velocity field

may be linearized is not known a priori. It will be limited, however, to separations
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particle frame−1 particle cm−3 %

Detected, x 800 180 100
Low-pass filtered, û, â 470 105 59
Fully processed, ∂u/∂x, ∂u/∂t 190 42 23

Table 1. Effect of the procedure on particle seeding density.

for which viscous effects are dominant, and thus where velocity fields are much
more likely to be covered by a low-order ansatz. An upper bound for the viscous
subrange separations, sν , is estimated indirectly and found to be sν < 4 mm. The
derivation of sν is described in Appendix B. sν < 4 mm results in a typical number of
interpolation points of n� 20. This is equivalent to an effective seeding density for
linked particles that actually enter the procedure for determining velocity derivatives
of ∼20(4/3 × π × 0.43)−1∼75 particles cm−3.

Temporal velocity derivatives are obtained analogously with the ansatz

ûi(x0) = ci,0 + ci,1x1 + ci,2x2 + ci,3x3 + ci,4t. (9)

Here information from points with r < 4 mm from times t and t ± 2�t , �t = 1/60 s,
are used.

2.3.2. Weighted fit along particle trajectories

It is clear that in a situation with large second velocity derivatives the spatial
validity of the linear expression (6) is smaller than that of the estimate obtained.
This will ultimately result in a poor approximation for ∂ui/∂xj and ∂ui/∂t and needs
to be corrected for. Using the fact that ∂ui/∂xj and ∂ui/∂t are – to some extent –
auto-correlated along their trajectory paths, again a procedure that effectively acts as
a low-pass filter is applied. Polynomials of type

∂ui

∂xj

(t),
∂ui

∂t
(t) =

n∑
k=0

ck tk (10)

and of adequate order, n, are fitted to each velocity derivative signal, ∂ui/∂(·), along
the entire trajectory of length, 	, where the contribution of every particle trajectory
point is weighted according to the local quality of the linear interpolation. As a
measure for the local interpolation quality a relative divergence, δ, is defined as

δ =
‖∂u1/∂x1 + ∂u2/∂x2 + ∂u3/∂x3‖

‖∂u1/∂x1‖ + ‖∂u2/∂x2‖ + ‖∂u3/∂x3‖ . (11)

Using δ from expression (11) for weighting, the incompressibility of water which has
not yet been used enters the procedure and assists in recovering velocity derivative
signals. The details of the fitting are outlined in Appendix C. As will be shown in
the next section on verification, in particular the use of weighted contributions to
the polynomial fit yields a significant improvement of the velocity derivative signals
obtained.

At the end of the full procedure we have p ∼ 1 × 106 data points stemming from
6000 frames that belong to a trajectory of length 	 > 15 and for which the full set of
velocity derivatives can be derived with a quality of δ < 0.1. Table 1 gives an overview
of how many of the initially detected particles survive which steps of the described
procedure.
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√
u2

i

√
(∂ui/∂xi)2 λi =

√
u2

i

(∂ui/∂xi)2

i = 1 6.5 mm s−1 1.05 s−1 6.19 mm
i = 2 5.5 mm s−1 0.90 s−1 6.11 mm
i = 3 6.4 mm s−1 1.01 s−1 6.33mm

15ν(∂u1/∂x1)2 15ν(∂u2/∂x2)2 15ν(∂u3/∂x3)2 2νsij sij

ε (mm2 s−3) 20 15 19 16
η (mm) 0.54 0.58 0.55 0.57
τη (s) 0.25 0.28 0.25 0.27

Table 2. Characteristic properties of the flow.

2.3.3. Characteristic properties and scales

In table 2 the characteristic properties and scales for the flow are given. η is defined
as

η =

(
υ3

ε

)1/4

, (12)

and its corresponding time scale, τη, as

τη =

(
υ

ε

)1/2

.

The Taylor Reynolds number is obtained as

Reλ =

√
u2λ

ν
∼ 50 (13)

with √
u2 =

√
u2

i + u2
2 + u2

3 ∼ 10 (mm s−1). (14)

The 6000 frames recorded are equivalent to 380 Kolmogorov time scales τη, τη = 0.26 s,
with a temporal resolution of 15 frames per τη. The trajectories recorded cover a
volume of 36 × 27 × 27 η3 (η =0.55 mm). A close inspection of the data shows that
most trajectories begin and end close to the boundary of the observation domain and
that only a small percentage of particle trajectories is lost during their residence in
the domain. This results in a slight bias towards shorter trajectories, since they have
a shorter residence time in the mean.

2.4. Verification

The final quality of the velocity derivatives is assessed by looking at the behaviour
of the two quantities 〈δ〉 and 〈ω2〉/〈s2〉 as functions of particle trajectory lengths,
	, and with checks based on precise local kinematic relations. By doing this, both
the quality of the data itself and the beneficial influences of the post-processing
procedures described above is demonstrated. From the kinematic checks the accuracy
of the terms ∂ui/∂xj is obtained which later will be used to approximate accuracies
for higher-order terms, such as 1

2
(Dω2/Dt), and ωiωj sij . At the end of this section we

demonstrate that not only is the accuracy of the filtered data adequate, but that also
the filtered data are still representative of the entire flow, e.g. that the filtered data
are not biased towards low-intensity flow events.
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Figure 3. (a) Relative divergence 〈δ〉 plotted over trajectory length 	. (b) Ratio of mean
enstrophy, ω2, over mean strain, s2, plotted over 	.

2.4.1. Checks

We begin with two checks that reveal the influence of the measured trajectory
length, 	, on the quality of the interpolation procedure for ∂ui/∂xj . We first show the
mean relative divergence, 〈δ〉, as defined in expression (11), plotted as a function of
	 in figure 3(a). The use of the weighted fitting procedure results in a 〈δ〉 that after
a delay of 	 � 0.5τη starts to decay towards 0.1, whereas 〈δ〉 derived from ∂ui/∂xj

without weighted fitting remains at a high level of over 0.3. This demonstrates the
effectiveness of the procedure and that its full impact is only reached for trajectories
with 	 > τη. The delay, which is equivalent to 8 frames (τη =0.26 s, table 2), can be
explained by considering that in our experiment on average 40% of the interpolated
points are of high quality, i.e. δ < 0.1. A fit of third order to derive four constants
requires a minimum of n= 4 × (40%)−1 = 10 or even more points to result in a ‘good’
fit, i.e. a fit with low overall δ.

Further, we show in figure 3(b) the quantity 〈ω2〉/〈s2〉 plotted as a function of the
trajectory length 	. In homogeneous turbulence the relation

〈ω2〉 = 2〈s2〉

is valid (Tennekes & Lumley 1972) and therefore should also be recovered with
our measurements. However in figure 3(b) only the fully processed data that are
conditioned on δ < 0.1 converge to the theoretically correct ratio of 〈ω2〉/〈s2〉 =2.
Unconditioned data obtained from the weighted fitting procedure 〈ω2〉/〈s2〉 reach a
stable but slightly too high value only for 	 > 3. It appears that this is caused by too
low estimates for strain values which reach their proper magnitude only after being
fully processed, contrary to enstrophy which in turn is overestimated without the full
processing.

In the ‘divergence check’ due to incompressibility of water ideally the trace of
∂ui/∂xj should be zero, i.e.

−∂ui

∂xi

=
∂uj

∂xj

+
∂uk

∂xk

. (15)

Joint PDFs of −∂ui/∂xi versus ∂uj/∂xj + ∂uk/∂xk (with no summation over i, j , k

applied) are shown in figure 4 for two cases: the fully processed data and data ‘as
obtained’ from linear interpolation only. Ideally all data should fall onto the diagonal.
However, taking into account that the measured and filtered ∂ui/∂xj are comprised
of (∂ui/∂xj )exact plus some error, ε∂ui/∂xj

, the joint PDFs can be expected to have
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Figure 4. Joint PDFs of −∂ui/∂xi versus ∂uj/∂xj + ∂uk/∂xk (here no summation over i, j , k
is applied) for two cases, as obtained from linear interpolation: (a) with and (b) without the
weighted fitting procedure.

elliptical contour shapes with aspect ratios of 1/n. Assuming that 1/n is reflecting
the relative error of ∂ui/∂xj we approximate ε∂ui/∂xj

as

ε∂ui/∂xj
=

rms(∂ui/∂xj )√
2n

. (16)

Figures 4(a) and 4(b) show for the fully processed case and derivatives obtained from
linear interpolation elliptical contours with aspect ratios of 1/5 and 1/2.6 respectively.
With a measured rms(∂ui/∂xj ) ∼ 1 s−1 (table 2) this implies that the error relative to
its r.m.s. is reduced from

ε∂ui/∂xj
=

1 s−1

√
2 × 2.6

= 0.27 s−1 = 27% (17)

by almost a factor 2 to

ε∂ui/∂xj
=

1 s−1

√
2 × 5

= 0.14 s−1 = 14% (18)

by applying the weighted fitting procedure to the data obtained from linear
interpolation. The fact that joint PDF contours are similar from column to column
and that they are all centred around the origin shows that the flow – on the level of
spatial velocity derivatives – is isotropic. Taking a closer look at the behaviour of the
velocity component ∂u3/∂x3 we note that all contour shapes which already have a
relatively low aspect ratio are ‘stretched’ along the axis where ∂u3/∂x3 is involved. Due
to camera angles this component is more difficult to measure. Comparing figure 4(b)
to figure 4(a) shows how inaccurate ∂u3/∂x3 signals stemming from inaccurate x3

positions are corrected by the weighted polynomial fitting procedure, without damping
the overall magnitude of the components of ∂ui/∂xi . This is a first indication that
the weighted polynomials enhance the quality of the measured and interpolated
components of ∂ui/∂xj .
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Figure 5. The expression Dui/Dt = ∂ui/∂t + uj∂ui/∂xj is checked for each component with
joint PDFs of al,i + ac,i versus ai for the two cases (a) with and (b) without the weighted
fitting procedure.

The next check involves all quantities that were measured: Lagrangian accelerations,
ai = Dui/Dt , local accelerations, al,i = ∂ui/∂t , and convective accelerations, ac,i =
uj∂ui/∂xj . Since each of these quantities is derived in a different manner they make
an excellent, though hard to pass, overall check of the applied procedures, i.e.

Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj

. (19)

In figure 5 expression (19) is checked for each component with joint PDFs of ai

versus al,i + ac,i for data with relative divergence δ < 0.1. The emerging picture is
similar to the one obtained from the divergence check: the use of the weighted
polynomial fitting procedure strongly enhances the accuracy of velocity derivatives.
The aspect ratios of the contour shapes are lower than those of figure 4, reflecting
the higher standard of this kind of check. The effect of the x3-component inaccuracy
is much more pronounced in figure 5 than in figure 4. Through the use of weighted
polynomial fits it can only be corrected up to a certain degree. The PDFs of figure 5(b)
show a slight misalignment of the contours relative to the diagonal for i =1 and i = 2
and a large misalignment for i = 3. It is likely that this is caused by a systematic
overestimation of the magnitudes of al and ac compared to a. The derivation of al

and ac involve a much more complicated procedure than the Lagrangian acceleration
a, which is obtained in a relatively straightforward manner.

Assuming that the errors of al,i and ac,i are of equal order of magnitude and that
the error for ai is small compared to its local and convective components,

O
(
εal,i

)
≈ O

(
εac,i

)
>O

(
εai

)
, (20)

the above result allows one to verify the following approach that theoretically
approximates errors (also for higher-order quantities). Formally the error εac,i

can be
defined as

εac,i
= (uj + εu)

(
∂ui

∂xj

+ ε∂ui/∂xj

)
− ac,i . (21)
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Figure 6. The expression Dli/Dt = lj ∂ui/∂xj is checked for each component with joint PDFs
of Dli/Dt versus lj ∂ui/∂xj for the two cases (a) with and (b) without the weighted fitting
procedure.

With a particle position inaccuracy ε of 0.01 mm for the x and y components and
0.04 mm for the z component respectively, the velocity error εu is approximately

εu ≈ 0.01..0.04

�t
(21/4)−1/2 ≈ 0.5 mm s−1, (22)

when we assume that a 21 point fit to a cubic polynomial with four constants
reduces the error by (21/4)−1/2. Summing (21) over j , with εu ≈ 0.5 mm s−1 and
O(uj ) ≈ 6 mm s−1, O(∂ui/∂xj ) ≈ 1 s−1 from table 2, and ε∂ui/∂xj

≈ 0.14 s−1 from (18),
expression (21) yields

εac,i
= 3

[
O(uj )ε∂ui/∂xj

+ εu O

(
∂ui

∂xj

)]
= 4 mms−2. (23)

To compare this result with the measurements we use the aspect ratios 1/n of the
contours of figure 5 in analogy with expression (16). εac,i

can be defined as

εac,i
=

rms(ac,i)√
2n

. (24)

With rms(ac,i) = 14 mms−2 and n= 3.5 we find εac,i
= 2.8 mm s−2 – which is equivalent

to a relative error of 20%. Thus, the error actually measured is found to not only
agree well with the theoretically derived error (expression (23)), but further, it is only
70% of its value. This suggests that the restriction to data points where divergence is
low and δ < 0.1 yields decrease of error by a factor 0.7.

The next check is on material lines. In figure 6 joint PDFs of dli/dt and lj ∂ui/∂xj

are plotted for each component. This check is of special importance since it shows
whether or not the flow is adequately resolved by the proposed 3D-PTV method.
It directly tests whether expression (4) is met. Here dli/dt and lj are material lines
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100 B. Lüthi, A. Tsinober and W. Kinzelbach

between two measured tracer particles that initially are separated by no more than
3.5mm. If one finds that the joint PDFs of dli/dt and lj ∂ui/∂xj roughly fall onto
a diagonal then two things are verified. First, it implies that 3.5mm separations are
still close to the linear or viscous subrange separation. This is important because the
interpolations are performed with points from within a sphere of r = 4 mm. Second,
if the measured ∂ui/∂xj is capable of predicting the evolution of such l, then this
proves that the spatial resolution of the flow is adequate. From figure 6 – which again
demonstrates the beneficial impact on accuracy of the full procedure – we read off
aspect ratios for the elliptical contours of 1/4. This results in a measured accuracy
for lc,i = lj ∂ui/∂xj relative to its r.m.s. of

εlc,i =
rms(lc,i)

n
=

3.5 mm s−1

4
= 0.9 mm s−1 = 25%. (25)

This is identical to the theoretical estimate

εlc,i = (lj + εl)

(
∂ui

∂xj

+ ε∂ui/∂xj

)
− lc,i , (26)

for which we also find

εlc,i = 0.7 × 3
[
O(lj ) ε∂ui/∂xj

]
= 0.9 mm s−1 = 25%, (27)

with the factor 0.7 taking into account data restriction to δ < 0.1, O(lj ) ≈ 3 mm and
εl 	 1.

Assuming that velocity gradients in turbulence are bounded, an initially infinitesimal
material element remains infinitesimal for a finitely long time and during this period
the velocity gradients can be considered uniform over the material element. This
provides a useful alternative way to study the evolution of infinitesimal elements
by means of a one-point description of the velocity gradients by following a single
particle along its trajectory. Referring to Monin & Yaglom (1997), an infinitesimal
material line element which is initially l(0), is given at any later time, t , by

l(t) = B(t) · l(0), (28)

where B evolves according to the equation

d

dt
B = h(t) · B(t), h(t) =

(
∂ui

∂xj

)
t

, (29)

with the initial condition B(0) = I and I the identity matrix. As a validation that the
integration in time of B, for which a third-order Runge–Kutta scheme is used, is
correct we show in figure 7(a) the mean logarithmic eigenvalues, 〈wi〉, of the Cauchy–
Green Tensor W = BBT . An ellipsoid with initial axis ratios of 1 : 1 : 1 will deform into
an ellipsoid with axis ratios of

√
w1 :

√
w2 :

√
w3. Due to incompressibility the volume,

V , is conserved and with V = 1 we have

ln(w1) + ln(w2) + ln(w3) = 0. (30)

From figure 7(a) which is in full agreement with results of Girimaji & Pope (1990) we
see that expression (30) is met for all times. Further, we note that fluid volumes are
not only stretched along the principal axis but also along the intermediate axis of W.

A stronger check of the feature that ∂ui/∂xj is accurate if integrated along particle
trajectories can be made by looking at the conservation of divergence of the material
field l , determined by the matrix B which in turn is defined by the matrix ∂ui/∂xj .
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Figure 7. (a) The evolution in time of the mean eigenvalues, 〈wi〉, of the Gauchy–Green
tensor, W, is shown. (b) PDFs of three different sets of div l which had initial values of −1, 0
and 1. Only after a few τη the peaks are shifted slightly towards their random distribution,
which is centred around zero.

The expression

Dl
Dt

= (l · ∇)u (31)

can be written as
∂ l
∂t

= rot(u × l) − u div l. (32)

Taking the div of this equation, we find that for any material field, l

D(div l)
Dt

= 0, (33)

which means that div l is a pointwise Lagrangian invariant. This is important since no
diffusivity is involved here. Three initial sets of div l = −1, 0, 1 were created randomly
and then the evolution of their initial values was monitored along their trajectories,
as shown in figure 7(b). Up to a time of 6 τη the initial values of div l are conserved
within 20% of the initial separation of the three sets.

The above checks thus show that spatial velocity derivatives can be obtained
at reasonable accuracy by applying the procedures presented here to the 3D-PTV
measurements. The use of weighted polynomials which are fitted along particle
trajectories using, preferably, information form points with low relative divergence
always results in improved accuracy for temporal and spatial velocity derivatives.
Relative divergence, δ < 0.1, used as a criterion to select data for a statistical set has
been shown to work satisfactorily.

2.4.2. Representativeness

It is desirable to demonstrate that there is no bias in the ‘surviving’ data set. The
question to be asked is: do the derived velocity derivatives represent only a subset of
the flow that is comprised of weak events, e.g. does the method work well for slow and
low-accelerated flow regions with a low level of dissipation only? In figure 8 we show
that this is not the case. For trajectory points where relative divergence, δ, is below
0.1 the PDFs of kinetic energy, u2 and a2 perfectly match those for the entire data set
(figure 8a, b). Also the second-order longitudinal and transversal structure functions
〈δv2

‖(r)〉, 〈δv2
⊥(r)〉 as well as 〈�u(r) · �a(r)〉, which are all associated more directly

with velocity derivatives, again show no significant systematic differences between the
sets with δ < 0.1 and the entire set (figure 8c, d). Even the differences that can actually
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Figure 8. PDFs of data restricted to δ < 0.1 and the entire set for (a) kinetic energy, uiui ,
(b) energy of Lagrangian acceleration, aiai , (c) longitudinal and transversal second-order
structure function, (d) the structure function, �u · �a.

be seen in figure (8d) at r > 10 mm of O(2 mm2 s−3) are small if compared to the
large values the scalar product �u(r) · �a(r), r > 10 mm, can take with rms for �u
and �a of O(10 mm s−1) and O(10 mm s−2). The velocity difference is

δv(r) ≡ u(x + r) − u(x) (34)

with δv‖ the component of δv that is parallel to r , and δv⊥ the component perpen-
dicular to r . 〈·〉 here denotes averaging over all r with ‖r‖ = r . Similarly, for 〈�u(r) ·
�a(r)〉 we have

�u(r) · �a(r) ≡ [u(x + r) − u(x)] · [a(x + r) − a(x)] (35)

and 〈·〉 again denotes averaging over all r with ‖r‖ = r .

3. Eulerian results
The novelty of the results presented is that they comprise the first successful non-

intrusive turbulent flow measurements of the full set of spatial and temporal velocity
derivatives, not only for a fixed point in space but also along fluid particle trajectories.
In a first step, selected Eulerian results on geometrical statistics of vorticity and on
strain demonstrate the capability of 3D-PTV to recover most of the relevant results on
the turbulent fine-scale structure which have been obtained until now from DNS and
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Figure 9. (a) PDFs of ωiωj sij and − 4
3
sij sjkski conditioned on high strain or high enstrophy.

(b) PDFs of the eigenvalues, Λ1,2,3, of the rate of strain tensor sij . (c) PDFs of cos(ω,W)

conditioned on ω2. (d) PDFs of cos(ω, λi) conditioned on weak and strong s2.

hot-wire experiments only (Betchov 1956; Tsinober et al. 1992; Kholmyansky et al.
2001). This sets the stage for the following section, § 4, on Lagrangian results. The
selection reproduces features of turbulence most of which are not observed in a
Gaussian flow field, i.e. are specific to genuine fluid turbulence (Shtilman, Spector &
Tsinober 1993). They obtained a number of rigorous results on random Gaussian
solenoidal velocity fields. Some of these results directly concern properties of vorticity
and strain.

In particular, it was shown that the PDFs of enstrophy production ωiωj sij and
production of strain −sij sjkski are strictly symmetric for a random Gaussian velocity
field. In that way the production terms comprise the most basic difference to a
turbulent velocity field. In figure 9(a) the PDFs of ωiωj sij and − 4

3
sij sjkski show how

both enstrophy and strain production are positively skewed for a turbulent flow. In
addition we note that if ωiωj sij is conditioned on high ω2 or − 4

3
sij sjkski is conditioned

on high s2 the PDFs – while remaining positively skewed – become flatter, favouring
higher probabilities of strong production or destruction events and that the peaks of
the most probable events themselves are shifted towards the positive regime.

In figure 9(b) the PDFs of the eigenvalues Λ1,2,3 of the rate of strain tensor, sij , are
given. The main feature is the positively skewed PDF of Λ2 which is a fundamental
property of turbulence (Tsinober et al. 1997). Again in a Gaussian velocity field this
feature is non-existent and 〈Λ2〉 = 0. It is essentially responsible for ‘everything’ since
without it, turbulence would not be able to produce strain and therefore no enstrophy.
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〈ω2Λ1 cos2(ω, λ1)〉 〈ω2Λ2 cos2(ω, λ2)〉 〈ω2Λ3 cos2(ω, λ3)〉
1.79 s−3 0.50 s−3 −1.29 s−3

〈ω2Λ2
1 cos2(ω, λ1)〉 〈ω2Λ2

2 cos2(ω, λ2)〉 〈ω2Λ2
3 cos2(ω, λ3)〉

0.50 s−4 0.11 s−4 0.39 s−4

Table 3. Contributions of terms associated with Λi to mean enstrophy production, 〈ωiωj sij 〉,
and to the magnitude of the vortex stretching vector, W 2.

The strain production term, −sij sjkski , of expression (2) is equivalent to −Λ1Λ2Λ3.
〈−Λ1Λ2Λ3〉 would be identically zero for a symmetrically distributed Λ2 as e.g.
for a Gaussian velocity field. The magnitude of 〈Λ2〉 ≈ 0.2 s−1 remains relatively
small compared to 〈Λ1〉 ≈ 1 s−1 and 〈Λ3〉 ≈ −1.2 s−1. The ratio of 〈Λ1〉 : 〈Λ2〉 : 〈Λ3〉 is
consistent with findings from numerical simulations reported in e.g. Girimaji & Pope
(1990), Dresselhaus & Tabor (1994), Huang (1996) and Tsinober (2001) and hot-wire
experiments (Kholmyansky et al. 2001).

A strong manifestation of the positiveness of mean enstrophy production is shown
through the PDFs of cos(ω, W) in figure 9(c). The physical interpretation of the
geometrical invariant cos(ω, W) is straightforward. It is positive when the projection
of the vortex stretching vector, W, on ω points in the same direction as vorticity
and thus vortex stretching occurs. If cos(ω, W) is zero it will only attempt to tilt the
direction of ω and if it is negative then vorticity is compressed. It could be argued that
the positively skewed cosine alone does not prove the positiveness of 〈ωiωj sij 〉 since
the magnitude of ω could be anti-correlated with cos(ω, W) resulting in a net vortex
compression. However, conditioning cos(ω, W) on ω2 reveals that the contrary is the
case: stronger ω2 events are correlated with stronger positive skewness of cos(ω, W).
The PDF of cos(ω, W) for a Gaussian velocity field is a symmetric curve centred
around zero (Shtilman et al. 1993).

One of the best known manifestations of turbulence having a dynamically relevant
structure even in low-intensity regions is the orientation of ω relative to the eigenframe
of the rate of strain tensor sij , cos(ω, λi). Figure 9(d) shows the PDFs of cos(ω, λi)
conditioned on weak and strong strain. The main feature is the predominant alignment
of ω with the intermediate eigenvector λ2 of the rate of strain tensor, a feature
recognized by Siggia (1981), first reported by Ashurst et al. (1987) and confirmed in
Tsinober et al. (1992) and references therein. The preferential alignments increase with
higher strain and even for weak events the preferential alignments persist, suggesting
that turbulence also has structure in less intense regimes. Again, in a random field
the PDFs of cos(ω, λi) are precisely flat.

The combined effect of the alignment between ω and λi and the behaviour of Λi

leads to unusual contributions to the mean magnitude of the vortex stretching vector,
W 2, and the mean enstrophy production 〈ωiωj sij 〉 from the three terms associated
with each Λi , W 2 = ω2Λ2

i cos2(ω, λi) and ωiωj sij = ω2Λi cos2(ω, λi), which are given
in table 3. Since the magnitude of Λ2 is much smaller than the magnitude of Λ1,
and Λ2 takes both positive and negative values (figure 9b), the largest contribution
to 〈ωiωj sij 〉 is associated with the first term, Λ1, despite the preferential alignment
between ω and λ2, as is explained by Kholmyansky et al. (2001). Similarly the largest
contribution to vortex stretching 〈W2〉 comes also from the term associated with Λ1.
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4. Lagrangian results
4.1. Material lines

Infinitesimal material lines, l , are studied following the work of Batchelor (1952),
Monin & Yaglom (1997) and Girimaji & Pope (1990). Study of the evolution of
material elements is important in a variety of contexts, e.g. because they are directly
related to the diffusive characteristics of turbulence and evolution of passive vectors
in random flows (kinematic dynamos). Here however, our interest in the study of
material lines is motivated by their relevance in the context of vortex stretching or
enstrophy growth control. The commonly held view that vortex stretching is due to
material line stretching has been proved too simple since it is known that (i) material
line stretching is stronger than vortex stretching and (ii) material lines have a strong
tendency to align with the most positive principal axis of strain while vorticity tends
to align with the intermediate principal axis (Girimaji & Pope 1990; Dresselhaus &
Tabor 1994; Huang 1996). A detailed list of differences between material lines
and vortex lines is given in Tsinober (2001) and important additions are found
in Tsinober & Galanti (2003). After demonstrating that we find the same results with
the experiment presented here, and thus proving the capability of 3D-PTV to follow
material lines for some τη, we focus our attention on special material elements, l0,
which at some time τ0 are perfectly aligned with vorticity (l0 = ω0). This contributes
to the understanding of why vorticity tends to align with the intermediate principal
axis and thus experiences a significantly moderated growth rate. Is this only due to
viscosity? To what degree is it due to the nonlinear interaction of vorticity with its
surrounding flow?

The mean rates at which material lines are being stretched, 〈li lj sij / l2〉, have been
studied since 1949 (Batchelor & Townsend 1949; Batchelor 1952; Girimaji & Pope
1990; Dresselhaus & Tabor 1994; Huang 1996). From these studies it is known that
〈li lj sij / l2〉 is larger than the intermediate principal rate, Λ2, but smaller than the most
positive one, Λ1. It is also known that the mean stretching rates of material lines
are larger than the mean stretching rates of vorticity, 〈ωiωj sij /ω

2〉. These results are
reproduced with our 3D-PTV measurements and summarized in figure 10(a).

From the assumption of persistent straining it follows directly that l should align
with the most positive principal axis of strain (Batchelor 1952). Figures 10(b–d) show
the evolution in time of the PDFs of cos(l, λ1), cos(l, λ2) and cos(l, λ3). A clear but
non-perfect alignment of l with λ1 can be observed after a transition time of 2τη, the
PDFs for cos(l, λ2) reveal a flat distribution for all times, and the PDFs for cos(l, λ3)
show that l is predominantly oriented perpendicular to λ3. Two papers deal mainly
with the issue of persistency of straining of material lines. Girimaji & Pope (1990)
attribute the smaller than expected stretching rates and cos(l, λ1) to the effects of
vorticity and ‘non-persistent straining’. They conclude that the misaligning effects are
due to the rotation of the principal strain axes. Dresselhaus & Tabor (1994) point out
that it is obvious that vorticity and strain rotation are dynamically dependent and
derive expressions that identify the role played by the competing effects of vorticity
and strain-basis rotation. However, they arrive at the conjecture that vortex line
stretching should be greater than material line stretching, which is confirmed neither
by DNS (Huang 1996) nor by our experiment.

In the context of growth control of enstrophy we now look at material elements,
l0, which at some time τ0 are perfectly aligned with vorticity (l0 =ω0). Tsinober &
Galanti (2001, 2003) and Ohkitani (2002) report that passive vectors align with λ2

when a diffusive term for material elements l is added to the transport equation (4)
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Figure 10. (a) Mean stretching rates of material lines, 〈li lj sij / l2〉, mean stretching rates of vor-
tex lines, 〈ωiωj sij /ω

2〉, and means of the intermediate (�—) and most positive (∗—) principal
strain rate, 〈Λ2〉 and 〈Λ1〉 plotted over time. (b−d) PDFs of cos(l, λ1,2,3) for randomly selected
l for different times.

as

Dli/Dt = lj ∂ui/∂xj + ν∇2li . (36)

From this, the conclusion could be drawn that only the viscous term is responsible
for any vector, vorticity or material line, aligning with λ2. However, from figure 11 we
learn that the matter is more complicated.

In figure 11(a) the evolution of the PDFs of cos(l, Wl) for material elements with
l0 = ω0 is shown. Over a time interval of τη = 0–6 only a slight reduction of the
material line compression and a slight increase of the material line stretching events
can be observed while the skewness essentially remains low. Figure 11(b) shows the
evolution in time of the PDFs of cos(l, λ2), with l0 =ω0. Again, the evolution is not
quite as expected since we observe that at relatively late times, τη =6, a significant
alignment of l with λ2 still persists. Contrary to the experience that events associated
with material lines require a transition time of no more than τη =2, as is the case
for random l until they reach their stable stretching rate and until they reach their
stable alignment with λ1, we note that line elements with l0 = ω0 are much more
reluctant to act as we would expect them to. It is a clear indication that the nonlinear
interaction of vorticity with strain influences the vicinity of the fluid that surrounds
vortex lines – and hence also special material lines – in a way that λ2 alignments can
persist. Two explanations are possible. Either the interaction is directly stabilizing λ2

alignments for passive vectors also, or the interaction is simply stabilizing ω alignment
of l , which will also result in persistent λ2 alignment. In figure 11(c) 〈cos(l, λ2)〉 with
l0 = ω0 is conditioned on weak and strong strain and weak and strong enstrophy
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Figure 11. (a) cos(l,W l) with l0 = ω0, for τη = 0–6. (b) Evolution in time of the PDFs of
cos(l, λ2) with l0 = ω0, for τη = 0–6. (c) Mean cos(l, λ2) for l0 = ω0 and (d) mean cos(l,ω)
plotted over time for τη = 0–6 conditioned on low and high strain and enstrophy.

and plotted over time. 〈cos(l, λ2)〉 is found to be higher for elements conditioned
on strong enstrophy than for elements conditioned on strong strain. This suggests
that the interaction is driven more by enstrophy than by strain. In figure 11(d) the
evolution of 〈cos(l, ω)〉 is conditioned on the strength of strain and enstrophy events.
We observe that here the magnitude of vorticity solely determines how much nonlinear
interaction occurs in order to keep l aligned with ω. After a sharp initial decay in the
first τη we observe a constant value of 〈cos(l, ω)〉 ∼ 0.8 for strong enstrophy which is
significantly higher than the corresponding value for 〈cos(l, λ2)〉 ∼ 0.6.

The results in figure 11(d) suggest that, probably more than anything else, material
lines keep their λ2-orientation due to the fact that they are effectively hijacked by
vorticity. If we recall that the evolution of l is determined by the evolution of B,
then the above result on the persistently high 〈cos(l, ω)〉 implies that when tilting
of l with respect to ω is suppressed, then also the rotation of the tensor ∂ui/∂xj –
which defines l through B (expression (29)) – with respect to ω is suppressed! We
can thus speculate that the component of ∂ui/∂xj , the eigenframe of strain, λi , also
experiences a suppressed tilting with respect to ω. Strong enstrophy and its interaction
with the surrounding flow may therefore be capable of stabilizing an already existing
λ2 alignment. The vorticity–flow interaction effect, however, only assists the effect of
the viscous term υ∇2ωi . This term is responsible for the diffusive vectors following
the strain basis orientation to establish a λ2 alignment. This is consistent with the
fact that λ2 alignment is most pronounced in strong events where υ∇2ωi can also be
expected to be strong.

We find that whenever the field of velocity derivatives is intensive the fine-scale
structure of turbulence is such that it creates and maintains vorticity orientations that
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1
2
(Dω2/Dt) ωiωj sij νωi∇2ω 1

2
(Dl2/Dt) li lj sij

36% 32% 48% 13% 37%

Table 4. Relative errors of enstrophy and material line budget terms, based on their
r.m.s. values.

are preferentially λ2-aligned. The consequences are that preferentially when the field
of velocity derivatives would be ideal for strong production of vorticity, ω2-growth is
moderated through a strong λ2-alignment. Assisted by viscosity and the vorticity–flow
interaction, enstrophy exhibits a nonlinear saturation, resulting in contributions to
ωiωj sij that are associated with the weaker term ω2Λ2 cos2(ω, λ2) rather than with
ω2Λ1 cos2(ω, λ1). In other words vorticity, in order to control its growth, has not only
a self-amplification mechanism but it also has a self-moderating mechanism which is
associated with nonlinear saturation and action of viscosity.

4.2. Viscous change of enstrophy

For a flow with a statistically stationary level of enstrophy it is clear that mean
enstrophy production has to be balanced by its viscous destruction as (Taylor 1938)

〈ωiωj sij 〉 = −〈νωi∇2ωi〉. (37)

It has been reported by Tsinober (2001) that the overall enstrophy production and its
viscous destruction integrated over the entire domain are also approximately balanced
at any moment in time, i.e.

D

(
1

V

∫
ω2 dV

)
Dt

	 1

V

∫
ωiωj sij dV ∼ − ν

V

∫
ωi∇2ωi dV. (38)

From a DNS box turbulence simulation at Reλ = 75 it is further reported that in a
wide range of enstrophy events, up to ω2/〈ω2〉 =4, the mean production due to vortex
stretching is approximately balanced by mean viscous destruction not only over an
entire domain at any moment but also if conditioned on the magnitude of vorticity
(Tsinober 2001) as

〈ωiωj sij |ω2〉 ≈ −〈νωi∇2ωi |ω2〉. (39)

For high strain events, s2/〈s2〉 > 2, enstrophy production is reported to become
considerably larger than its viscous destruction as

〈ωiωj sij |s2〉  −〈νωi∇2ωi |s2〉. (40)

These findings raise the question of if and how that equilibrium is reflected in
the pointwise relations between the terms making up the enstrophy budget of
expression (1).

With our method we can directly measure ωiωj sij and 1
2
(Dω2/Dt) but the viscous

term, νωi∇2ωi , has to be taken as the difference of the two measured terms. The
good agreement between the theoretically predicted and measured error in the above
section for checks on divergence, acceleration and material line evolution justifies an
attempt also to estimate the accuracy for the higher-order terms of the enstrophy
budget. Following the same approach we arrive at the result that the r.m.s.-based
relative accuracy of these terms is 30–40 %. The results are summarized in table 4
and their derivation is outlined in Appendix A. A verification is possible via the
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Figure 12. (a) Joint PDF of 1
2
(Dl2/Dt) versus li lj sij normalized by 〈li lj sij 〉, with l comprised

by two measured particles, separated no more than 3.5 mm. (b) Normalized means of the three
enstrophy transport equation terms conditioned on strain and enstrophy.

corresponding terms for material line evolution. For 1
2
(Dl2/Dt) and li lj sij we have

both a theoretical prediction for the r.m.s.-based relative errors, 13% and 37%, and a
simple check – a joint PDF of 1

2
(Dl2/Dt) versus li lj sij . From the error prediction we

can expect such a joint PDF to have elliptical contour shapes with their main axis
parallel to the diagonal and with aspect ratios 1/n as

n = min
[(

ε 1
2 Dl2/Dt

)−1
,
(
εlls

)−1
]

= 2.7. (41)

From figure 12(a) an aspect ratio, 1/n, of 1/3 can be measured. The good agreement
of theoretical and measured values thus supports the above approach, and also for
the prediction of the errors ε 1

2 Dω2/Dt , εωωs , and ενω∇2ω of the enstrophy budget terms.

Further we see from figure 12(a) that despite the fact that the difference in accuracy
for 1

2
(Dl2/Dt) and li lj sij , being 13% and 37%, is considerable, this is not reflected

in large systematic errors such as strong off-diagonal contours. As an additional
verification we show in figure 12(b) that there is good qualitative agreement with the
DNS results mentioned above in the sense that the approximate balance of production
of enstrophy and its viscous destruction is recovered for intensities of enstrophy of up
to ω2/〈ω2〉 ≈ 4. Further, we also find higher vortex production in regions with strong
strain rather than strong enstrophy. Contrary to the DNS results we find that for
high strain events production and viscous destruction of enstrophy is also balanced.
This may be explained in part by the reduced observability of strong strain events,
leading to under-resolution of the field of velocity derivatives in our experiments. The
balance is reflected in the conditional means for 1

2
(Dω2/Dt) which are found to be

close to zero, i.e. the level of vorticity associated with regions of different strengths of
strain or enstrophy is more or less constant.

We now look at the joint PDF of ωiωj sij versus 1
2
(Dω2/Dt) shown in figure 13(a).

The main feature is that there is no pointwise relation between production of
enstrophy and actual change of enstrophy, even though it appears that positive
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Figure 13. Joint PDF plot of vorticity production versus change of enstrophy, both axes
normalized with 〈ωiωj sij 〉: (a) as obtained from a PTV experiment and (b) as obtained from

2563 DNS. (c) Lagrangian auto correlation coefficients of two enstrophy budget terms.

enstrophy changes are mostly associated with positive enstrophy production events.
We also note that the term 1

2
(Dω2/Dt) takes significantly larger instantaneous values

than ωiωj sij . In view of the balancing reflected in expression (38) this is somewhat
counter-intuitive, as it appears that the interaction of strain and vorticity through
ωiωj sij is nowhere close even to being pointwise balanced by νωi∇2ωi , i.e. overall
balancing of ωiωj sij and νωi∇2ωi appears to be a non-local process. The experimental
results shown in figure 13(a) are similar to those obtained for a 2563 DNS simulation
of forced Navier–Stokes equations in a cubic box with periodic boundary conditions
at Reλ ≈ 100 (Galanti & Tsinober 2004) that are shown in 13(b). Also here, positive
enstrophy changes are mostly to be observed along with positive enstrophy production
events. Just as for the experimental results in figure 13(a) a positive value for ωiωj sij

is not strongly correlated with positive 1
2
(Dω2/Dt) events and for the DNS results

the term 1
2
(Dω2/Dt) also takes larger instantaneous values than the term ωiωj sij .

One important implication of the observed behaviour is that the only term left that
could be responsible for the strong 1

2
(Dω2/Dt) events is the viscous term, νωi∇2ωi .

How can it be that ωiωj sij and νωi∇2ωi integrated over a domain are reported
to be balanced at any moment, but that at the same time the two terms exhibit
such a different behaviour, resulting in large instantaneous values for 1

2
(Dω2/Dt)? A

possible explanation could be that the viscous term is associated with faster processes
compared to the much slower interaction of strain and vorticity, as we will see
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below. This would explain the pointwise imbalance. At the same time however, the
viscous term may fluctuate around a moving mean value of −ωiωj sij and thereby
neutralize the work of ωiωj sij towards a net enstrophy production. This will result
in a balanced enstrophy production – not pointwise, but in a Lagrangian sense, i.e.
averaged over a few time scales along a particle trajectory enstrophy change will be
only small. Support for this scenario is given in figure 13(c) where the Lagrangian
auto-correlation coefficients for two enstrophy budget terms are given. The enstrophy
production, ωiωj sij , loses its correlation only after ∼ 5τη whereas for 1

2
(Dω2/Dt)

decorrelation happens quickly in ∼ τη. An interesting question is why ωiωj sij is so
little disturbed by the relatively large fluctuations of ω2. Apparently the interaction
of vorticity and strain can buffer such fluctuations. If we recall that the magnitude
of ω2 defines just how strong the alignment of vorticity with λ2 is, then this buffering
effect becomes very plausible. A stronger λ2-alignment shifts the main contribution
to ωiωj sij from the strong term ω2Λ1 cos2(ω, λ1) to the weaker term ω2Λ2 cos2(ω, λ2)
and vice versa.

It would be incorrect to infer from the above results that νωi∇2ωi could be
dynamically more important than ωiωj sij , since it is ωiωj sij that is producing
enstrophy – not much affected by viscous fluctuations – from the constantly smoothed
ω field left by νωi∇2ωi . Taking the view that it is the main role of νωi∇2ωi to control the
overall level of enstrophy by smoothing the field of vorticity, then it seems that νωi∇2ωi

is ‘over-reacting’ considerably. However, taking into account the above results on the
role played by viscosity in λ2-alignments and reports of viscous effects that might
be related to vortex reconnection and collapse (Kida & Takaoka 1994; Fernandez
et al. 1995), and thus to fast enstrophy changes, it is not surprising that the behaviour
of 1

2
(Dω2/Dt), which presumably is mainly governed by νωi∇2ωi , is qualitatively

different from that of ωiωj sij . Viscosity in combination with vorticity is involved in
not just one but three areas: balancing overall enstrophy production, adjusting the
fine-scale structure of turbulence in order to predominantly align vorticity with the
intermediate principal strain axis λ2 and possibly continuously altering the topology
of turbulent flow by means of vortex reconnection. The large variations we observe
for enstrophy changes may then be viewed as the reflection of the sum of these
three processes. In any case, it seems clear that the role of the viscous term νωi∇2ωi

plays in enstrophy dynamics is of utmost importance. To gain further insight into
the viscous enstrophy mechanisms of production balancing, growth moderating and
topology modifications, Lagrangian measurements that can directly access the vector
∇2ω are needed.

5. Concluding remarks
For the first time it has been possible to experimentally measure in a Lagrangian

way the full set of velocity derivatives, ∂ui/∂xj , along particle trajectories in a turbulent
flow. From the results we obtain a picture of vorticity being actively involved in self-
regulating processes of production, moderating and reduction via dynamic interaction
with its surrounding flow and viscosity.

The critical steps that made it possible to go from three-dimensional particle
tracking velocimetry (3D-PTV) measurements of velocities and accelerations to
measurements of velocity derivatives are a new ‘spatiotemporal’ particle tracking
algorithm (Willneff 2003), a weighted linear interpolation to obtain velocity derivatives
and a weighted polynomial fitting procedure, the beneficial impact of which is
demonstrated. The final quality of the velocity derivatives is assessed with checks
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112 B. Lüthi, A. Tsinober and W. Kinzelbach

based on precise kinematic relations. They show that the technique presented measures
the velocity derivatives with good accuracy. The error margin for ∂ui/∂xj is ∼ 14%
and for higher-order terms such as enstrophy ωiωj sij it is still only ∼ 30%.

Selected Eulerian results on geometrical statistics for vorticity and for strain as well
as Lagrangian results on the temporal evolution of infinitesimal material elements
prove the capability of 3D-PTV to reproduce most of the relevant results on turbulent
fine-scale structure. Most of these features are not observed in a Gaussian flow field,
i.e. reflect genuine fluid turbulence. Unlike the non-intrusive measurements presented
previously such results were known only from DNS and hot-wire experiments (e.g.
Ashurst et al. 1987; Kholmyansky et al. 2001) for geometrical statistics and from
DNS studies (Girimaji & Pope 1990; Dresselhaus & Tabor 1991; Huang 1996) for
material elements.

From these results it follows that enstrophy dynamics include processes like self-
amplification, 〈ωiωj sij 〉 > 0, growth moderation since 〈ωiωj sij /ω

2〉 < 〈li lj sij / l2〉 and
cos(ω, λ2) ≈ 1 for high ω2 and s2, and viscous destruction that balances 〈ωiωj sij 〉 > 0.
In this paper we focus our attention on the fact that cos(ω, λ2) ≈ 1 is not solely driven
and maintained by viscosity but also to a significant degree by vorticity itself. From
Lagrangian measurements of special material elements, l , which at some moment are
identical to vorticity lines, we can confirm that viscosity is an important prerequisite
for λ2-alignment as was reported by Tsinober & Galanti (2001) and Ohkitani (2002),
since without it, λ1-alignment is developing, though only slowly. However, the results
suggest that there is yet another effect which assists viscosity in keeping vorticity
predominantly aligned with λ2. We identify an active self-moderating mechanism for
enstrophy. We conclude that the deformation tensor, B, experiences restricted rotation
with respect to vorticity especially for high-enstrophy events, since we find that l ,
which are defined through B, keep their initial alignment with ω up to 6τη. From this
we infer that the rotation of the tensor, ∂ui/∂xj , is also restricted. As a consequence,
the eigenframe, λi , of its symmetric part, sij , and in particular the orientation of the
eigenvector λ2 with respect to ω become much more stable. Thus the alignment of
strong vorticity with λ2 is much less dependent on the viscous term, νωi∇2ωi . The
overall consequence is that enstrophy – especially when it is high – through the
interaction of vorticity with its surrounding flow, exhibits a nonlinear saturation, with
contributions to ωiωj sij that are associated with the weaker term ω2Λ2 cos2(ω, λ2)
rather than with ω2Λ1 cos2(ω, λ1).

Investigating the balancing of ωiωj sij through νωi∇2ωi we looked at the pointwise
relation between two of the enstrophy budget terms. Contrary to the observation
that the overall enstrophy production and its viscous destruction integrated over the
entire domain are approximately balanced at any moment (Tsinober 2001), we found
large local 1

2
(Dω2/Dt) events that can only be driven by equally large νωi∇2ωi events,

since enstrophy production, ωiωj sij , is observed to be only weakly correlated with
1
2
(Dω2/Dt). The balancing of enstrophy production and its viscous destruction is thus

concluded to be a non-local process. The observed behaviour is explained in part
by the Lagrangian auto-correlations of the enstrophy budget terms. From different
correlation coefficients we infer that values of 1

2
(Dω2/Dt) and thus also of νωi∇2ωi

fluctuate relatively fast, presumably around a slower changing value of −ωiωj sij . This
results in a balancing in a Lagrangian sense, i.e. averaged over a few time scales
along a particle trajectory the level of enstrophy will be stable. The fact that ωiωj sij

keeps its correlation over a relatively long time is explained by the λ2-alignment with
vorticity that is strongly determined by the strength of enstrophy, thus λ2-alignment
is effectively buffering the strength of ωiωj sij .
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This completes the picture of vorticity that is actively involved in the control and
self-regulation of its evolution, through nonlinear interaction with the strain field and
through viscosity. Diffusivity plays an important role in these dynamics, a role that
is qualitatively more than just smoothing out the field of vorticity. With respect to
vorticity we see that diffusivity is involved in three areas. As reported in Tsinober &
Galanti (2001) and Ohkitani (2002) and as demonstrated above, viscosity has a
dominant role in λ2-alignments. Second, as summarized in Kida & Takaoka (1994),
Fernandez et al. (1995) and references therein, there are reports of viscous effects that
are related to vortex reconnection and collapse, and third, the term νωi∇2ωi maintains
a balance of the growth of vorticity through ωiωj sij in a non-local way. We arrive at
the conjecture that the large variations in 1

2
(Dω2/Dt) – and therefore also in νωi∇2ωi –

reflect the sum of these three involvements. The role the viscous term νωi∇2ωi plays
in enstrophy dynamics is thus of utmost importance. Lagrangian measurements that
can directly access the vector ∇2ω are needed and will help to elucidate viscous
mechanisms such as balancing overall enstrophy production, adjusting the fine-scale
structure of turbulence to predominantly align strong vorticity with λ2, and the
phenomenon of vortex reconnection which is responsible for continuously altering
the topology of turbulent flow.

The above requirement is also stressed by Tsinober & Galanti (2003). They found
that the λ2-alignment of passive vectors with a diffusive term can be observed only
for an NSE velocity field, but not for a Gaussian velocity field. In a Gaussian velocity
field these vectors align with λ1, as is observed for artificial (quasi-Gaussian) velocity
fields, material lines in NSE numerical experiments and experimentally. Thus, the
presence of diffusivity/viscosity is only a necessary but not sufficient ingredient to
explain λ2-alignment of passive vectors with a diffusive term and vorticity. Further
study is necessary, which to our view requires looking into Lagrangian aspects of the
problem as mentioned above.

Appendix A. Low-pass filtering of particle positions
Determining velocities, ui , and accelerations, ai , through central differences is only

first-order accurate and hence very sensitive to particle position errors, which in
our experiment are of O(10 µm). Therefore the entire position signal, xi(t), of each
trajectory is low-pass filtered with a cut-off frequency of 10 Hz and filtered velocity
and acceleration signals, ûi(t) and âi(t), are derived as first and second derivatives
from x̂i(t). The frequency of 10 Hz is chosen in order to be well above the maximal
position signal frequency of 5 Hz, which can be estimated from τη = 0.26 s, and well
below 30 Hz, which with a 60 Hz recording rate is the highest resolvable frequency.
The filter is implemented as a moving cubic spline of type

x̂i(t) = ci,o + ci,1t + ci,2t
2 + ci,3t

3. (A 1)

To obtain the desired cut-off frequency the constants ci,j from expression (A 1) are
fitted to 21 trajectory points from t − 10�t to t + 10�t for each component, x1, x2,
x3, around each time step t . The filtered velocities and accelerations are then defined
as the first and second derivatives of expression (A 1) as

ûi(t) = ci,1 + 2ci,2t + 3ci,3t
2 (A 2)

and

âi(t) = 2ci,2 + 6ci,3t. (A 3)
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Figure 14. The validity of the ansatz that the velocity field is linear in the proximity of x at
a distance r is estimated with expression (B 3).

Appendix B. Upper bound for viscous subrange
An upper bound for the viscous subrange separations, sν , is estimated indirectly

through the longitudinal second-order structure function〈
δv2

‖(r)
〉

= CK (εr)2/3, (B 1)

which is valid for inertial subrange separations. If expression (B 1) is rearranged for
ε as

g(r) =

(〈
δv2

‖(r)
〉

CK

)3/2

1

r
, (B 2)

g(r) reaches a plateau in the inertial range at gmax ∼ ε. An estimate of how far r is
still within the viscous subrange, or how far the linear ansatz is still valid, is then
given by

sν(r) =
gmax − g(r)

gmax

. (B 3)

The function sν(r) as obtained for our experiment is shown in figure 14. Up to
r ≈ 4 mm sν(r) is larger than 0.5 and it was therefore chosen to include all particles
that remain within a sphere of radius 4 mm to solve expression (7).

Appendix C. Weighted fit along particle trajectories
Polynomials of type

∂ui

∂xj

(t) ,
∂ui

∂t
(t) =

n∑
k=0

ck tk (C 1)

and of adequate order, n, are fitted to each velocity derivative signal, ∂ui/∂(·), along
the entire trajectory of length, 	, where the contribution of every particle trajectory
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point is weighted according to the local quality of the linear interpolation. n is chosen
high enough to properly resolve the relevant fluctuations but not too high, in order
obtain poorly conditioned matrices AT A. Those have to be inverted when solving the
overdetermined system of linear equations, Ac = d as

ci = (AT d)(AT A)−1, (C 2)

where A is a weighted time matrix

A =


(
1 t1

1 t2
1 ... tn

1

)
w1(

1 t1
2 t2

2 ... tn
2

)
w2

... ... ... ... ...(
1 t1

	 t2
	 ... tn

	

)
w	

 and d =



∂ui

∂(·) (t1)w1

∂ui

∂(·) (t2)w2

...

∂ui

∂(·) (t	)w	


.

It is found that a good choice for n is 3 when the trajectory length, 	, is up to 1.5τη,
n = 4 for 1.5τη � 	 � 2.5τη, n= 5 for 2.5τη � 	 � 3.5τη and so forth. As a measure for
the local interpolation quality we use relative divergence, δ, defined in expression (11).
The weights wi are obtained as

wi = 1 − (1 + exp(−10(δ(ti) − 0.25)))−1. (C 3)

With the sigmoidal function of expression (C 3) high-quality δ values close to zero
result in wi � 1, the still acceptable quality of δ � 0.2 results in wi � 0.6 and for relative
divergences higher than 0.3 the weights decay below 0.2.

Appendix D. Accuracies for higher-order terms
With a completely analogous approach as for the errors of ∂ui/∂xj , a, al , ac and

lj ∂ui/∂xj we can also estimate errors for the higher-order terms 1
2
(Dω2/Dt), ωiωj sij ,

νωi∇2ωi and their corresponding terms 1
2
(Dl2/Dt) and li lj sij . For the term ε 1

2 Dω2/Dt

we write

ε 1
2 Dω2/Dt = 0.7

[
1

2
εω2

1

�t

(
	

c

)−1/2
]

, (D 1)

where the factor (	/c)−1/2x accounts for the fact that ω2 is essentially fitted to a
polynomial with c = 4 constant along trajectories with length 	 and the factor 0.7
accounts for the effect of selecting only data with δ < 0.1. In our experiment we
typically have 	 ≈ 30. With

εω2 =
(
ω + ε∂u/∂x

)(
ω + ε∂u/∂x

)
− ω2

≈ 2O(ω)ε∂u/∂x, (D 2)

ε∂u/∂x ≈ 0.14 s−1, O(ω) = 3 s−1, and rms ( 1
2
Dω2/Dt) = 12 s−3 we find

ε 1
2 Dω2/Dt ≈ 0.7 × 1

2
× 2O(ω)ε∂u/∂x60 Hz

(
30

4

)−1/2

= 4.3 s−3 = 36% of r.m.s. (D 3)

For εωωs we have

εωωs = 0.7
[(

ω + ε∂u/∂x

)(
ω + ε∂u/∂x

)(
s + ε∂u/∂x

)
− ωiωj sij

]
. (D 4)
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With O(ω2) = 8 s−2, O(s2) = 4 s−2 and rms (ωiωj sij ) = 6 s−3 we find

εωωs ≈ O(ω2)ε∂u/∂x + 2O(ω)O(s)ε∂u/∂x

= 1.9 s−3 = 32 % of r.m.s. (D 5)

The error of the viscous term, νωi∇2ωi , which at present can be obtained only as the
difference of 1

2
(Dω2/Dt) and ωiωj sij is then estimated as

ενω∇2ω =
ε 1

2 Dω2/Dt + εωωs√
2

≈ 48% of r.m.s.

The errors for the related quantities 1
2
(Dl2/Dt) and li lj sij , εDl2/Dt and εlls are derived

in a completely analogous fashion and are

εDl2/Dt ≈ 0.7

[
1

2
2O(l)ε̂l60 Hz

(
30

4

)−1/2]
= 0.9 mm2 s−1 = 13% of r.m.s., (D 6)

with O(l) = 3.5 mm and εl = 0.02 mm;

εlls ≈ 0.7
[
O(l2)ε∂u/∂x + 2O(l)O(s)ε∂u/∂x

]
= 2.6 mm2 s−1 = 37% of r.m.s., (D 7)

with O(l2) = 12.25 mm2.
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Zürich, PhD Thesis.

Maas, H.-G., Grün, A. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional
flows, Part I. Photogrammetric determination of particle coordinates. Exps. Fluids 15, 133–146.

Malik, N. Dracos, T. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional
flows, Part II. Particle Tracking. Exps. Fluids 15, 279–294.

Mann, J., Ott, S. & Andersen, J. S. 1999 Experimental study of relative, turbulent diffusion.
RISOE-R-1036(EN), RISOE Natl Lab., Roskilde, Denmark.

Monin, A. S. & Yaglom, A. M. 1997 Statistical Fluid Mechanics, The Mechanics of Turbulence,
New English edition vol. 1, Chapters 2 and 3. CTR Monographs, NASA Ames – Stanford
University.

Novikov, E. A. 1967 Kinetic equations for a vortex field. Dokl. Akad. Nauk SSSR, 177(2), 299–301;
English translation Sov. Phys. Dokl. 12(11), 1006–1008 (1968).

Obukhov, A. M. 1983 Kolmogorov flow and laboratory simulation of it. Russian Math. Surveys
38(4), 113–126.

Ohkitani, K. 2002 Numerical study of comparison of vorticity and passive vectors in turbulence
and inviscid flows. Phys. Rev. E 65, 046304, 1–12.

Ohkitani, K. & Kishiba, S. 1995 Nonlocal nature of vortex stretching in an inviscid fluid. Phys.
Fluids 7, 411–421.

Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of
invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141–174.

Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in
three-dimensional turbulent flow. J. Fluid Mech. 422, 207–223.

Perry, A. E. & Fairlie, B. D. 1974 Critical points in flow patterns. Adv. Geophys. 18 B, 299–315.

Proudman, I. & Reid, W. H. 1954 On the decay of a normally distributed and homogeneous
turbulent velocity field. Phil. Trans. R. Soc. Lond. A 247, 163–189.

Pumir, A., Shraiman, B. I. & Chertkov, M. 2000 Geometry of Lagrangian dispersion in turbulence.
Phys. Rev. Lett. 85(25), 5324–5327.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003283
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