106.42 Another proof of Rolle's Theorem

There are many different proofs of Rolle's Theorem. Here we will propose another one, which uses simple properties of continuous functions.

Theorem 1: ([1], Rolle) Let f be a real valued function defined on a closed interval $[a, b] \subset \mathbb{R}$. Assume that f has a derivative at each point of the open interval (a, b) and that f is continuous at both endpoints a and b. If f(a) = f(b), then there is at least one point c in (a, b) such that the derivative of f at c is 0, that is f'(c) = 0.

The main strategy of our proof is: We will construct a nested sequence of closed and bounded intervals $[a, b] \supset [a_1, b_1] \supset [a_2, b_2] \supset ...$ such that $f(a_n) = f(b_n)$ for n = 1, 2, 3, ... and $\bigcap_{n=1}^{\infty} [a_n, b_n]$ contains precisely one point c (say), which is in (a, b). Then we will show that f'(c) = 0.

Proof: Let us denote the interval [a, b] by the indexed interval $[a_0, b_0]$. Set

$$g(x) = f\left(\frac{b_0 - a_0}{2} + x\right) - f(x), \qquad x \in \left[a_0, \frac{a_0 + b_0}{2}\right].$$

Then $g(a_0) = -g(\frac{1}{2}(a_0 + b_0))$; and hence by the Intermediate Value Theorem (see [1]), there exists $x_0 \in [a_0, \frac{1}{2}(a_0 + b_0)]$ such that $g(x_0) = 0$, that is $f(\frac{1}{2}(b_0 - a_0) + x_0) = f(x_0)$. If $x_0 \in (a_0, \frac{1}{2}(b_0 + a_0))$, then we denote the interval $[x_0, \frac{1}{2}(b_0 - a_0) + x_0]$ by the indexed interval $[a_1, b_1]$. If $x_0 = a_0$ or $x_0 = \frac{1}{2}(b_0 + a_0)$, then observe that $f(a_0) = f(\frac{1}{2}(b_0 + a_0)) = f(b_0)$; and in this case, we apply the same process for the function f on $[a_0, \frac{1}{2}(a_0 + b_0)]$ as we did for $[a_0, b_0]$. For, if, we consider the interval $[a_0, \frac{1}{2}(a_0 + b_0)]$ or $[\frac{1}{2}(a_0 + b_0), b_0]$ as $[a_1, b_1]$ and apply the same process on $[a_1, b_1]$, we obtain another interval $[a_2, b_2]$ such that $f(a_2) = f(b_2)$ and $b_2 - a_2 = \frac{1}{4}(b_0 - a_0)$. Now, if we continue this process we get a sequence of closed and bounded intervals $[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$ such that $b_n - a_n = \frac{1}{2n}(b_0 - a_0)$ for n = 0, 1, 2, ... Now, by the Cantor Intersection Theorem (see [1]), $\bigcap_{n=0}^{\infty} [a_n, b_n]$ is closed and bounded and contains exactly one point c (say) as $\lim (b_n - a_n) = 0$. But there is a $n \rightarrow \infty$ possibility that $c \notin (a_0, b_0)$, in other words $c = a_0$ or $c = b_0$. To avoid this possibility we apply the same process for f on $[a_0, \frac{1}{2}(a_0 + b_0)]$ as we did for $[a_0, b_0]$ and we get an interval $[y, z] \subset [a_0, \frac{1}{2}(a_0 + b_0)]$ such that f(y) = f(z) and $z - y = \frac{1}{4}(b_0 - a_0)$. Now, if $y > a_0$, then we denote [y, z] by $[a_1, b_1]$ and if $y = a_0$, we denote the interval $[z, \frac{1}{2}(a_0 + b_0)]$ by $[a_1, b_1]$. Hence, we obtain an interval $[a_1, b_1] \subset (a_0, b_0)$ on which we have $f(a_1) = f(b_1) \text{ and } 0 < b_1 - a_1 \leq \frac{1}{2}(b_0 - a_0).$

Now, applying the same process for the function f on $[a_1, b_1]$ as above, we get an interval $[a_2, b_2] \subset (a_1, b_1)$ such that $f(a_2) = f(b_2)$ and $0 < b_2 - a_2 \leq \frac{1}{4}(b_0 - a_0)$. If we continue this process, we obtain a countable collection of intervals $[a_0, b_0]$, $[a_1, b_1]$, $[a_2, b_2]$, ..., where on

the (n + 1)th interval $[a_n, b_n]$ we have $f(a_n) = f(b_n)$. Also $[a_{n+1}, b_{n+1}] \subset (a_n + b_n)$ and $0 < b_n - a_n \leq \frac{1}{2^n}(b_0 - a_0)$ for n = 0, 1, 2, Now, $[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset ...$. Hence, by the Cantor Intersection Theorem, $\bigcap_{n=0}^{\infty} [a_n, b_n]$ is closed and nonempty. Also, $\lim_{n \to \infty} (b_n - a_n) = 0$. Hence, $\bigcap_{n=0}^{\infty} [a_n, b_n]$ consists of exactly one point and let us assume that the point is c. Also observe that $c \in (a_0, b_0)$. Since $\{a_n\}$ is an increasing sequence of points in $[a_0, c)$ converging to c and $\{b_n\}$ is a decreasing sequence of points in [a, c) converging to c and (o_n) is a decreasing sequence of points in $(c, b_0]$ converging to c, by the sequential criterion of derivative we have $\lim_{n \to \infty} \frac{f(c) - f(a_n)}{c - a_n} = f'(c)$ and $\lim_{n \to \infty} \frac{f(b_n) - f(c)}{b_n - c} = f'(c)$. Also, $a_n < c < b_n$ for n = 0, 1, 2, ..., hence the sequences $\left\{\frac{c - a_n}{b_n - a_n}\right\}$ and $\left\{\frac{b_n - c}{b_n - a_n}\right\}$ are bounded. Hence,

$$\lim_{n \to \infty} \frac{c - a_n}{b_n - a_n} \left(\frac{f(c) - f(a_n)}{c - a_n} - f'(c) \right) = 0$$

and
$$\lim_{n \to \infty} \frac{b_n - c}{b_n - a_n} \left(\frac{f(b_n) - f(c)}{b - c} - f'(c) \right) = 0.$$

Now, from the identity

$$\frac{f(b_n) - f(a_n)}{b_n - a_n} - f'(c) = \frac{b_n - c}{b_n - a_n} \left(\frac{f(b_n) - f(c)}{b_n - c} - f'(c) \right) + \frac{c - a_n}{b_n - a_n} \left(\frac{f(c) - f(a_n)}{c - a_n} - f'(c) \right)$$

we have

$$-f'(c) = \frac{b_n - c}{b_n - a_n} \left(\frac{f(b_n) - f(c)}{b_n - c} - f'(c) \right) + \frac{c - a_n}{b_n - a_n} \left(\frac{f(c) - f(a_n)}{c - a_n} - f'(c) \right)$$

as $f(b_n) = f(a_n)$ for $n = 0, 1, 2, \dots$. So, letting $n \to \infty$ we have

$$f'(c) = -\lim_{n \to \infty} \frac{b_n - c}{b_n - a_n} \left(\frac{f(b_n) - f(c)}{b_n - c} - f'(c) \right) - \lim_{n \to \infty} \frac{c - a_n}{b_n - a_n} \left(\frac{f(c) - f(a_n)}{c - a_n} - f'(c) \right) = 0.$$

Hence, there is a point $c \in (a, b)$ such that f'(c) = 0.

Acknowledgment

The author would like to thank the reviewer for the helpful comments and suggestions.

Reference

T. M. Apostol, Mathematical Analysis, Addison-Wesley (1974). 1. HIMADRI LAL DAS 10.1017/mag.2022.134 © The Authors, 2022 Published by Cambridge University Press on Midnapore-721101. behalf of The Mathematical Association West Bengal, India e-mails: himadri@iitkgp.ac.in; himadrilaldas2014@gmail.com

522