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106.42 Another proof of Rolle's Theorem

There are many different proofs of Rolle's Theorem. Here we will
propose another one, which uses simple properties of continuous functions.

Theorem 1: ([1], Rolle) Let  be a real valued function defined on a closed
interval . Assume that  has a derivative at each point of the
open interval  and that  is continuous at both endpoints  and . If

, then there is at least one point  in  such that the
derivative of  at  is 0, that is .

f
[a, b] ⊂ � f

(a, b) f a b
f (a) = f (b) c (a, b)

f c f ′ (c) = 0

The main strategy of our proof is: We will construct a nested sequence
of closed and bounded intervals  such

that  for  and  contains precisely

one point  (say), which is in . Then we will show that .

[a, b] ⊃ [a1, b1] ⊃ [a2, b2] ⊃  …
f (an) = f (bn) n = 1,  2,  3,  … ∩

∞

n = 1
[an, bn]

c (a, b) f ′ (c) = 0

Proof: Let us denote the interval  by the indexed interval . Set[a, b] [a0, b0]

g (x) = f (b0 − a0

2
+ x) − f (x) ,  x ∈ ⎡⎢⎣a0,

a0 + b0

2
⎤⎥⎦ .

Then ; and hence by the Intermediate Value
Theorem (see [1]), there exists  such that ,
that is . If , then we
denote the interval  by the indexed interval . If

 or , then observe that ;
and in this case, we apply the same process for the function  on

 as we did for . For, if, we consider the interval
 or  as  and apply the same process

on , we obtain another interval  such that  and
.   Now, if we continue this process we get a sequence of

closed and bounded intervals  such
that  for  . Now, by the Cantor

Intersection Theorem (see [1]),  is closed and bounded and

contains exactly one point  (say) as . But there is a

possibility that , in other words  or . To avoid
this possibility we apply the same process for  on  as we
did for  and we get an interval  such that

 and . Now, if , then we denote
 by  and if , we denote the interval  by

. Hence, we obtain an interval  on which we have
 and .

g (a0) = −g (1
2 (a0 + b0))

x0 ∈ [a0, 1
2 (a0 + b0)] g (x0) = 0

f (1
2 (b0 − a0) + x0) = f (x0) x0 ∈ (a0, 1

2 (b0 + a0))
[x0, 1

2 (b0 − a0) + x0] [a1, b1]
x0 = a0 x0 = 1

2 (b0 + a0) f (a0) = f (1
2 (b0 + a0)) = f (b0)

f
[a0, 1

2 (a0 + b0)] [ao, b0]
[a0, 1

2 (a0 + b0)] [ 1
2 (a0 + b0) , b0] [a1, b1]

[a1, b1] [a2, b2] f (a2) = f (b2)
b2 − a2 = 1

4 (b0 − a0)
[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃  …

bn − an = 1
2n (b0 − a0) n = 0,  1,  2,  …

∩
∞

n = 0
[an, bn]

c lim
n → ∞

(bn − an) = 0

c ∉ (a0, b0) c = a0 c = b0
f [a0, 1

2 (a0 + b0)]
[a0, b0] [y, z] ⊂ [a0, 1

2 (a0 + b0)]
f (y) = f (z) z − y = 1

4 (b0 − a0) y > a0
[y, z] [a1, b1] y = a0 [z, 1

2 (a0 + b0)]
[a1, b1] [a1, b1] ⊂ (a0, b0)
f (a1) = f (b1) 0 < b1 − a1 ≤ 1

2 (b0 − a0)
Now, applying the same process for the function  on  as above,

we get an interval  such that  and
. If we continue this process, we obtain a

countable collection of intervals  , where on

f [a1, b1]
[a2, b2] ⊂ (a1, b1) f (a2) = f (b2)

0 < b2 − a2 ≤ 1
4 (b0 − a0)

[a0, b0] , [a1, b1] , [a2, b2] , …
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the ( )th interval  we have . Also
 and  for  .

Now,  . Hence, by the Cantor Intersection

Theorem,  is closed and nonempty. Also, .

Hence,  consists of exactly one point and let us assume that the

point is . Also observe that . Since  is an increasing
sequence of points in  converging to  and  is a decreasing
sequence of points in  converging to , by the sequential criterion of

derivative we have  and .

Also,  for , hence the sequences  and

 are bounded. Hence,

n + 1 [an, bn] f (an) = f (bn)
[an +1, bn +1] ⊂ (an + bn) 0 < bn − an ≤ 1

2n (b0 − a0) n = 0,  1,  2, …
[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃  …

∩
∞

n = 0
[an, bn] lim

n → ∞
(bn − an) = 0

∩
∞

n = 0
[an, bn]

c c ∈ (a0, b0) {an}
[a0, c) c {bn}

(c, b0] c

lim
n → ∞

f (c) − f (an)
c − an

= f ′ (c) lim
n → ∞

f (bn) − f (c)
bn − c

= f ′ (c)

an < c < bn n = 0,  1,  2, … { c − an

bn − an
}

{ bn − c
bn − an

}
lim

n → ∞

c − an

bn − an
( f (c) − f (an)

c − an
− f ′ (c)) = 0

and  lim
n → ∞

bn − c
bn − an

( f (bn) − f (c)
b − c

− f ′ (c)) = 0.

Now, from the identity 

f (bn) − f (an)
bn − an

− f ′ (c) =
bn − c
bn − an

( f (bn) − f (c)
bn − c

− f ′ (c)) +
c − an

bn − an
( f (c) − f (an)

c − an
− f ′ (c))

we have

−f ′ (c) =
bn − c
bn − an

( f (bn) − f (c)
bn − c

− f ′ (c)) +
c − an

bn − an
( f (c) − f (an)

c − an
− f ′ (c))

as  for  . So, letting  we havef (bn) = f (an) n = 0,  1,  2, … n → ∞

f ′ (c) = − lim
n → ∞

bn − c
bn − an

( f (bn) − f (c)
bn − c

− f ′ (c)) − lim
n → ∞

c − an

bn − an
( f (c) − f (an)

c − an
− f ′ (c)) = 0.

Hence, there is a point  such that .c ∈ (a, b) f ′ (c) = 0
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