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EXACT PAIRS FOR THE IDEAL OF THE K-TRIVIAL SEQUENCES
IN THE TURING DEGREES

GEORGE BARMPALIAS AND ROD G. DOWNEY

Abstract. TheK-trivial sets form an ideal in the Turing degrees, which is generated by its computably
enumerable (c.e.) members and has an exact pair below the degree of the halting problem. The question
of whether it has an exact pair in the c.e. degrees was first raised in [22, Question 4.2] and later in
[25, Problem 5.5.8].
We give a negative answer to this question. In fact, we show the following stronger statement in the

c.e. degrees. There exists a K-trivial degree d such that for all degrees a, b which are not K-trivial and
a > d, b > d there exists a degree v which is not K-trivial and a > v, b > v. This work sheds light to the
question of the definability of the K-trivial degrees in the c.e. degrees.

§1. Introduction. The algebraic study of the Turing degrees has been a topic
of considerable research in computability theory, ever since the establishment of
degree theory as a research area in [14]. In this study, the ideals of this uppersemi-
lattice are of particular interest. These are downward closed sets of degrees that also
closed under the join operator. The recent study of algorithmic information theory
by people in computability theory has brought forward a wealth of interactions
between the two areas, including the discovery of a new ideal in the Turing degrees:
the degrees of sequences with trivial initial segment complexity, the so-called
K-trivial sequences. Since this discovery in [11, 24], the study of the K-trivial
sequences and degrees has been established as a major area of research in the
interface between computability theory and algorithmic information theory.
Issues of definability have been of special interest in the study of ideals in the
Turing degrees. Such issues were already present in [14], where the notion of exact
pairs of ideals was introduced. Two degrees a, b form an exact pair of an ideal C in
the Turing degrees if they are both upper bounds for the degrees in C and any degree
below both a and b is in C. By [14,30] every ideal in the Turing degrees has an exact
pair. By [24] everyK-trivial degree is bounded by a computably enumerable (c.e. for
short)K-trivial degree. Hence for the purpose of finding exact pairs for this ideal it
suffices to consider its restriction to the c.e. degrees. This turns out to be a Σ03 ideal,
in the sense that the index set of its members is Σ03. Moreover, by [7] it has a c.e.
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upper bound that is strictly below the degree 0′ of the halting problem.1 By [27],
such ideals have an exact pair strictly below 0′. However, it is well known that such
an ideal may or may not have an exact pair in the c.e. degrees (this follows from the
existence of branching and nonbranching degrees that was established in [17, 32]).
Hence whether or not such an ideal has an exact pair in the c.e. degrees depends on
the specific properties of it. The following question has come into focus.

Problem (Question 4.2 in [22] and Problem 5.5.8 in [25]). Is there an exact pair
for the ideal of the K-trivial sequences in the c.e. degrees?

The purpose of this paper is to give a negative answer to this question. In fact, our
main result can be seen as a very strong negative answer to this question.

Theorem 1.1. There exists a K-trivial c.e. degree d with the following property.
For each pair of c.e. degrees a, b which are not K-trivial, there exists a c.e. degree v
which is notK-trivial and v < a ∪ d, v < b ∪ d.
Here a ∪ d denotes the join (i.e., supremum) of the degrees a, d.
This theorem provides new and interesting information about the K-trivial

sequences and their computational power.Moreover, as we elaborate in Section 2, it
rests upon deeper information-theoretic properties that are specific to the K-trivial
sequences, rather than some general property that this ideal happened to have. In
contrast, the existence of a low bound of this ideal (another question from [22])
was obtained in [16] by observing that it satisfied a certain domination property,
and proving that all ideals which share this property have a low bound.
We may obtain a negative answer to our problem from Theorem 1.1 by using

some known properties of the K-trivial sequences.

Corollary 1.2. The ideal of the K-trivial sequences does not have an exact pair
of c.e. degrees.

Proof. By [23] there is no low c.e. upper bound for theK-trivial degrees. By [24]
every K-trivial degree is low. Therefore, if two c.e. degrees are an exact pair for the
K-trivial degrees, then both of them are not K-trivial. The corollary now follows
directly from Theorem 1.1. �
Note that the proof of Corollary 1.2 rests on the following weak (and nonuniform)
version of Theorem 1.1: “given a pair a, b of c.e. degrees which are not K-trivial,
there exists aK-trivial c.e. degree d and c.e. degree vwhich is notK-trivial such that
(d ≤ a ∧ d ≤ b)→ (v ≤ a ∧ v ≤ b)”.
The following fact is a direct consequence of the splitting theorem from

[2, Section 5] and [31, Chapter 2]. It shows that by replacing v < a ∪ d, v < b ∪ d
with v ≤ a ∪ d, v ≤ b ∪ d in Theorem 1.1 we obtain an equivalent statement.
Proposition 1.3. If c is a c.e. degree which is not K-trivial then there exist c.e.

degrees a < c and b < c which are notK-trivial and c = a ∪ b.
Since there exists a Δ02 exact pair for the K-trivial degrees, the phenomenon

described in Theorem 1.1 is specific to c.e. sets. The following observation contrasts
Proposition 1.3 and confirms this intuition from a different angle.

1By [16] it also has a low upper bound b, which means that the halting problem relativized to b has
degree 0′; however the latter bound cannot be c.e.
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Proposition 1.4. There exists a degree x < 0′ which is not K-trivial and for
every K-trivial degree d, the only c.e. degrees that are computable from x ∪ d are also
computable from d.

Proof. Adegree that is 1-generic relative to everyK-trivial degree has the desired
properties, but is not necessarily below 0′. Moreover, no 1-generic set has degree 0′.
Hence it suffices to show that there exists a degree that is 1-generic relative to
everyK-trivial degree and computable from the halting problem. This follows from
the fact (see [16]) that there exists a function that is computable from the halting
problem and dominates all partial computable functions relative to any K-trivial
set. �
The proof of Theorem 1.1 rests on a few facts about K-trivial sequences and
initial segment Kolmogorov complexity. We present these, along with their use in
the proof, in Section 2. Some background on Kolmogorov complexity andK-trivial
sequences that is directly relevant to our result is given in Section 2.1. For back-
ground material on computability theory we refer to [26]. The main property of
Kolmogorov complexity that is used in the proof of Theorem 1.1 is discussed in
Section 2.3. It is a result from [3] which roughly says that any two c.e. sets of non-
trivial initial segment complexity must have common lengths in their characteristic
sequences where their complexity rises simultaneously. Our proof is essentially a
derivation of Theorem 1.1 from this result. This route reduces the complexity of the
main construction and results in a transparent presentation.
Two more tools from Kolmogorov complexity are used in order to reduce the
calculations further and avoid the dynamic construction of machines in the main
construction. The first is the use of Solovay functions to expressK-triviality, which
is based on [4, 6]. The second one is the standard computable invariance property
that is intrinsic to most notions in Kolmogorov complexity. Both of these tools
are discussed in Section 2.2. Section 2.5 provides the exact form of the result from
[3] that will be used in the main argument, which is given in Section 3. These few
preparatory steps (including the formulation of a sufficient set of requirements in
Section 3.1) reduce the main argument to the simple construction and verification
of Sections 3.3 and 3.4.

§2. Preliminary facts. In this section we provide a number of notions and results
that are needed for the proof of Theorem 1.1. Some of these facts are known, while
others are original.

2.1. Background on Kolmogorov complexity and K-trivial sequences. A standard
measure of the complexity of a finite string was introduced by Kolmogorov in [13]
(an equivalent approach was due to Solomonoff [28]). The basic idea behind this
approach is that simple strings have short descriptions relative to their length
while complex or random strings are hard to describe concisely. Kolmogorov
(and Solomonoff) formalized this idea using the theory of computation. In this
context, Turing machines play the role of our idealized computing devices, and
we assume that there are Turing machines capable of simulating any mechanical
process which proceeds in a precisely defined and algorithmic manner. Programs
can be identified with binary strings.
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A string � is said to be a description of a string � with respect to a Turing
machine M if this machine halts when given program � and outputs �. Then the
Kolmogorov complexity of � with respect toM (denoted by KM (�)) is the length
of its shortest description with respect to M . It can be shown that there exists
an optimal machine V , that is, a machine which gives optimal complexity for all
strings, up to a certain constant number of bits. This means that for each Turing
machine M there exists a constant c such that KV (�) < KM (�) + c for all finite
strings �. Hence the choice of the underlying optimal machine does not change
the complexity distribution significantly and the theory of Kolmogorov complexity
can be developed without loss of generality, based on a fixed underlying optimal
machine U .
When we come to consider the initial segment complexity of infinite strings, it

becomes important to considermachineswhose domain satisfies a certain condition;
the machineM is called prefix-free if it has prefix-free domain (which means that
no program for which the machine halts and gives output is an initial segment
of another). Prefix-free complexity was introduced by Levin [18] and Chaitin [8].
Similarly to the case of ordinary Turing machines, there exists an optimal prefix-
free machine U so that for each prefix-free machineM the complexity of any string
with respect to U is up to a constant number of bits larger than the complexity
of it with respect to M . We let K denote the prefix-free complexity with respect
to a fixed optimal prefix-free machine. Order the binary strings first by length and
then lexicographically. This standard ordering of the strings induces a computable
bijections between N and the binary strings. Under this bijection we may identify
numbers and strings. In this sense we may talk about the complexity K(n) of a
number n as being the complexity of the string that is represented by n.
The original motivation behind Kolmogorov complexity was a mathematical

definition of random infinite sequences. Kolmogorov’s idea was that these should
be infinite sequences with very complex initial segments. Based on this intuition,
Levin [18] and Chaitin [8] gave a robust definition of randomness for infinite binary
sequences, which coincided with Martin-Löf randomness (already defined in [21]).
They called X random if ∃c∀n,K(X �n) ≥ n − c. In other words, X is random if
its initial segments cannot be “compressed” (i.e., be described more concisely) by
more than a constant number of bits.
In this paper we are concerned with the other end of the spectrum: sequences

with trivial initial segment complexity. These are sequences whose initial segments
are very highly compressible, in the sense that they have very short descriptions.

Definition 2.1 (K-trivial sequences). An infinite binary sequence X is called
K-trivial if ∃c∀n, K(X �n) ≤ K(n) + c.
Here K(n) denotes the complexity of the number n. It follows from the basic
properties of Kolmogorov complexity that K(n) and K(0n) are equal up to an
additive constant. Hence the first n bits of a K-trivial sequence have the same
complexity as the sequence 0n. By identifying subsets of N with their characteristic
sequence we can also talk about K-trivial sets of numbers. Chaitin drew some
attention to K-trivial sets by noticing that they are computable from the halting
problem and by asking whether they are all computable. Solovay [29] produced
the first example of a noncomputable K-trivial set. The work in [11] signaled a
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renewed interest on this notion and initiated a deeper study of K-triviality which
revealed surprising connections between initial segment complexity and classical
computability. For example, Hirschfeldt and Nies showed in [24] that K-triviality
is downward closed under Turing computation. Moreover, the K-trivial sets form
an ideal in the Turing degrees, which is generated by its c.e. members (in the sense
that every K-trivial set is computable by a c.e. K-trivial set).

2.2. Solovay functions and computable invariance. Building on work from [29],
the following characterisation of K-trivial sets was given in [4]. There exists a
computable function g : N → N such that

X is K-trivial ⇐⇒ ∃c∀n (K(X �n) ≤ g(n) + c) (2.1)

for all sets X and also
∑
n 2

−g(n) is a random real. Here by a random real we mean
a real number in (0, 1) whose binary expansion is a random sequence. Later it was
demonstrated in [6] that the functions g of (2.1) are exactly the computable tight
upper bounds of the Kolmogorov function K(n), in the sense for some constant c
we have K(n) ≤ g(n) + c for all n and g(t) ≤ K(t) + c for infinitely many t.
These functions were called Solovay functions. By [4,12] a computable function g is
a Solovay function if and only if

∑
n 2

−g(n) is a random real.
Note that (2.1) replaces a noncomputable component in the definition of
K-triviality (namely K(n)) with a computable function. In certain situations this
allows for a simplification of the calculations involved in arguments about the
K-trivial sets. This is the case with the proof of Theorem 1.1.
Before we fix a Solovay function for use in the proof of Theorem 1.1, let us
discuss a few basic facts about Solovay functions.We startwith a certain computable
invariance, which appears in [25, Exercise 5.2.9].
Lemma 2.2. Letmi be a computable increasing sequence. Then a set X isK-trivial
if and only if K(X �mi ) ≤ K(mi) + c for some constant c and all i .
The following observation is a direct consequence of the fact that

∑
t 2

−f(t) is
noncomputable when f is a Solovay function.
Lemma 2.3 (Accumulation of weight in Solovay functions). If (mi) is a com-
putable increasing sequence and f is a Solovay function then for every k there exist
infinitely many n such that

∑
t>mn
2−f(t) > 1

n−k−1 .

In the following sections, we fix a computable function g as in (2.1) and use (2.1) as
a characterisation ofK-triviality. A c.e. real is a real that is the limit of a computable
nondecreasing sequence of rationals. Define

Ω =
∑
i

2−g(i) and Ωn =
∑
i<n

2−g(i). (2.2)

The letter Ω is often used to denote the halting probability of a universal
prefix-free machine. Since these numbers coincide with the random c.e. reals
(e.g. see [10, Section 9.2] or the original references [9,15]) we may use it in order to
denote

∑
n 2

−g(n). Without loss of generality wemay assume that Ω < 1/4. All facts
that we are going to prove in the following about Ω hold independently of the choice
of the Solovay function g. Moreover, let

Ω∗ =
∑
i

2−K(i) and Ω∗
s =

∑
i<s

2−K(i)[s].
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A set X is called low for Ω if Ω is random relative to X . Here are some facts about
this class of sets that we are going to use in this article (for more information on
this topic we refer to [25, Section 8.1]). The low for Ω sets form a proper superclass
of theK-trivial sets. Inside the Δ02 sets, the low for Ω sets coincide with theK-trivial
sets.
In this and the previous background section we focused on aspects ofK-triviality

that are directly relevant to the proof of Theorem 1.1. For a more thorough pre-
sentation of the research area algorithmic randomness and complexity-theoretic
weakness we refer to the monographs [10,25], while [19] is a standard reference for
the more general theory of Kolmogorov complexity.

2.3. Common complexity in pairs of c.e. sets of nontrivial complexity. Much of the
excitement about the K-trivial sequences comes from the fact that they provide an
ideal platform for the study of the interaction between the information that can be
coded into an infinite binary sequence and the complexity of its initial segments. The
latter has been a primary focus of research in the interface between computability
theory andKolmogorov complexity.The fact that there are noncomputableK-trivial
sequences showed that one can code nontrivial information into a sequence without
increasing the complexity of its initial segments. A limitation to this phenomenon
was revealed in [11] where it was shown that K-trivial sequences cannot compute
the halting problem (in other words, they are not Turing complete). In contrast,
there are Turing complete sequences of arbitrarily low nontrivial prefix-free initial
segment complexity. More precisely, in [3] it was shown that for every c.e. set A
which is notK-trivial, there exists a Turing complete c.e. set V of lower complexity,
that is, such that ∃c∀n, K(V �n) ≤ K(A �n) + c. This was also generalized for the
case of any finite collection Ai , i < k of c.e. sets which are not K-trivial, producing
a Turing complete c.e. set V such that ∃c∀n∀i < k, K(V �n) ≤ K(Ai �n) + c.
A consequence this fact (see [3, Corollary 1.7]) is that given an infinite computable
set I ,

if A,B are c.e. sets which are not K-trivial, then for each c there exists
n ∈ I such that min{K(A �n), K(B �n)} > K(n) + c. (2.3)

This fact is the crux of the proof of Theorem 1.1. It says that any pair of c.e.
sets of nontrivial initial segment prefix-free complexity exhibit common lengths of
nontrivial prefix-free complexity. It is just one of a series of results which indicate
that any two c.e. sets of nontrivial initial segment complexity have some kind of
common complexity, or even information. In view of the existence of minimal
pairs in the c.e. Turing degrees (a classic result from [17]), such information is not
common in terms of Turing reducibility but in terms of weaker measures of relative
complexity. See [3, Theorem 1.2] and [1, Theorem 1.3].
Instead of a direct proof, we have chosen to derive Theorem 1.1 as a consequence

of (2.3). This route reduces the bulk of the proof to the rather simple construction
and verification of Section 3. We note that even the proof of (2.3) from [3] is not
direct (strictly speaking) in the sense that it rests on the nontrivial result from [11]
that Turing complete sets are not K-trivial.

2.4. Construction of prefix-free machines. A (rather simple) direct construction
of a prefix-free machine will be used in Section 2.5. There are certain notions and
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tools associated with such constructions, which are standard in the arguments
employed in algorithmic randomness and also relate to the main argument of
Section 3. We briefly discuss them. The weight of a prefix-free set S of strings,
denoted wgt(S), is defined to be the sum

∑
�∈S 2

−|�|. The weight of a prefix-free
machine M is defined to be the weight of its domain and is denoted wgt(M ).
Prefix-free machines are most often built in terms of request sets. A request set L
is a set of pairs 〈�, �〉 where � is a string and � is a positive integer. A “request”
〈�, �〉 represents the intention of describing � with a string of length � . We define
the weight of the request 〈�, �〉 to be 2−� . We say that L is a bounded request set if
the sum of the weights of the requests in L is less than 1. This sum is the weight of
the request set L and is denoted by wgt(L).
The Kraft-Chaitin theorem (see e.g. [10, Section 2.6]) says that for every bounded
request set L which is c.e., there exists a prefix-free machine M with the property
that for each 〈�, �〉 ∈ L there exists a string � of length � such that M (�) = �.
Hence the dynamic construction of a prefix-free machine can be reduced to a mere
description of a corresponding c.e. bounded request set.
A function is called right-c.e. if it has a computable nonincreasing approximation.
Recall that a c.e. real is a real that is the limit of a computable nondecreasing sequence
of rationals. Note that c.e. sets are c.e. reals but the converse does not hold. The
Kraft-Chaitin theorem also implies that the definition of a prefix-free machine N
may be reduced (as far as the function n �→ KN (n) is concerned) to a definition
of a right-c.e. function h such that

∑
n 2

−h(n) < 1. Indeed, given such a function
h we may define KN = h. Then the Kraft-Chaitin theorem guarantees that such a
machine N exists. This useful method of defining prefix-free machines (when we
are only concerned with the corresponding complexity function) will be used in
several proofs in this paper, starting with a proof in the following section. The prefix
relation amongst finite or infinite strings is denoted by ≺.
2.5. Modulus functions of c.e. sets andK-triviality. Let us fix a computable bijec-
tion (m, n) �→ 〈m, n〉 betweenN×N andN.We use the following notion of “modulus
of convergence” which is associated with the enumeration of a set or the monotone
approximation to a real.

Definition 2.4 (Modulus functions of c.e. sets). Let A be a c.e. set (or real) with
a computable enumeration (A[s]). The modulus function n �→ a(n) ofAmaps each
n to 〈n, s〉 where s is the least stage such that A[s] �n≺ A and s > n.
Note that the modulus function of a c.e. set A always refers to a particular com-
putable enumeration (A[s]) of it. In this paper all c.e. sets will be given via a certain
computable enumeration of them. Hence we may talk about the modulus function
of a given c.e. set (suppressing the corresponding computable enumeration) without
causing confusion. This also means that the modulus function of a c.e. sets comes
automatically with a computable monotone approximation. Moreover, according
to Definition 2.4, the image a(n) of the modulus function of a c.e. set encodes n.
This property will be used in the proof of Lemma 2.9.
Modulus functions and K-triviality are related, as we show in this section. We
start with a result which says that functions that are computed fromK-trivial sets do
not speed up the canonical computable approximation to Ω. Without extra effort,
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we prove this for the larger class of low for Ω sets. This result is not needed for the
proof of Theorem 3 but it gives a pleasing characterization of the c.e. K-trivial sets
which we present in Corollary 2.8.

Lemma 2.5 (Low forΩ functions are slow growing). IfA is low forΩ andf ≤T A
then there exists a constant c such that Ω−Ωn < 2c · (Ω−Ωf(n)) for all n.
Proof. Without loss of generality we may assume that f is increasing. Indeed,

otherwise we may consider f′(n) = maxi≤n f(n) + 1 and since Ω − Ωf(n) >
Ω−Ωf′(n) the lemma about f′ implies the lemma about f.
Define a Martin-Löf test (Vn) relative to A as follows. At stage s + 1, do the

following for each n < s . If Ωf(s) ∈ Vn[s] do nothing. Otherwise let tn[s] be the last
stage since we put something into Vn (and tn[s] = 0 if such a stage does not exist)
and put the interval (Ωf(s),Ωf(s) + 2−n · (Ωs −Ωtn[s])) into Vn.
Clearly �(Vn) ≤ 2−n · Ω. Moreover, (Vn) is uniformly c.e. in A. Hence (Vn)

is a Martin-Löf test relative to A. Since A is low for Ω, there exists n such that
Ω �∈ Vn. Let (si) be an increasing enumeration of the stages where an enumer-
ation occurred in Vn and note that there are infinitely many such stages. Then
Ωf(si+1) −Ωf(si ) > 2−n · (Ωsi −Ωsi−1 ) for all i > 0. Hence for each i > 0 we have
Ω−Ωsi−1 < 2n · (Ω−Ωf(si )). Hence for each i > 0 and each t ∈ [si−1, si) we have

Ω−Ωt ≤ Ω−Ωsi−1 < 2n · (Ω−Ωf(si )) ≤ 2n · (Ω−Ωf(t)).
Hence for each t we have Ω−Ωt ≤ 2n · (Ω−Ωf(t)) as required. �
We do not know if the converse of Lemma 2.5 holds, thereby giving a charac-
terization of the low for Ω sets. The interested reader may consult two other
characterizations of this class that were obtained in [20] and [5], respectively. We
are able to prove that this equivalence holds inside the class of Δ02 sets. We present
this result later in this section, in the form of Corollary 2.8.
The following notion of movable markers is implicit in many recursion-theoretic

constructions. We isolate it since it can be used in order to elegantly describe the
enumeration of a c.e. sets and prove Proposition 2.10, which is the ultimate goal of
this section.

Definition 2.6 (Movable markers). A function (n, s) �→ mn[s] is a system of
movable markers if it is nondecreasing in n, s and if mn[s] �= mn[s + 1] then
mn[s + 1] > s .

According to the above definition, a movable marker need not be convergent. Recall
that g is the Solovay function that we fixed in Section 2.2.

Lemma 2.7 (Complexity of movable markers). Let mn[s] be a computable sys-
tem of movable markers such that Ω − Ωn < 2c · (Ω − Ωmn ) for some constant c
and all n, where mn = lims mn[s]. Then there exists d such that K(mn) ≤ K(n) + d
for all n. The same holds if “for all n” is replaced by “for all n ∈ I ” where I is an
infinite computable set.
Proof. For simplicity we give the argument for I = N. The more general case

is a simple translation of the proof below. Let g be the Solovay function from
(2.2). Since Ω is c.e. and random, by the hypothesis, there is some constant c such
that Ω∗ − Ω∗

n < 2
c · (Ω − Ωmn ) for all n. Then for all n the limit of mn is finite.

It suffices to define a prefix-free machineN such thatKN (mn) ≤ K(n)+ c for all n.
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Let ks be the largest number such that KN (mn)[s] ≤ K(n)[s] + c for all n < ks .
Then ks is defined for all s and by the properties of the following construction,
ks ≤ s for all s . The following construction defines N , along with a partition (Is )
of the set of stages which will be used in order to count the weight of N in the
verification. Let I0 = ∅.
At each stage s + 1 we first check if mi [s] �= mi [s + 1] for some i < ks . If not,
then we enumerate an N -description of mks [s] of length K(ks)[s + 1] + c and for
each i < ks such that K(i)[s + 1] < K(i)[s] enumerate an N -description of mi [s]
of length K(i)[s + 1]; we say that these enumerations are primary. In this case we
also define Is+1 = ∅. Otherwise we search for a stage p > s + 1 such that

Ω∗
mr [p] −Ω∗

r < 2
c · (Ωp −Ωmr [p]), (2.4)

where r is the least such thatmr moved during the stages in (s, p] (note that r < ks).
By the hypothesis, such a stage p exists. For each i ∈ (s, p) let Ii = ∅. Define
Ip = [mr [p], p]. Note that by Definition 2.6 we have mr [p] ≥ s + 1, so mr [p] is
greater than all numbers in the intervals Ii for i < p. By (2.4) we have∑

r≤i<ks
2−K(i)[s+1] < 2c ·

∑
i∈Ip
2−g(i). (2.5)

For each i ∈ [r, ks ) enumerate anN -description ofmi of lengthK(i)[s +1]+ c. We
say that this enumeration of N -descriptions is secondary. Go to stage p + 1.
By the construction, the intervals Ii are pairwise disjoint. Moreover, the weight of
the N -descriptions that correspond to primary enumerations amount to weight at
most theweight of the universalmachine, because (ks) is nondecreasing on the stages
where primary enumerations occur. At each stagep where a secondary enumeration
of N -descriptions takes place, by (2.5) the weight of these descriptions is bounded
by
∑
i∈Ip 2

−g(i). Hence the total weight of the N -descriptions that correspond to
secondary enumerations is bounded by∑

p

∑
i∈Ip
2−g(i) = Ω.

Hence the total weight of N is bounded by 1. So N is a prefix-free machine. By the
construction, ks → ∞ as s → ∞ and (through the secondary enumerations) we
also haveKN (mn) ≤ K(n) + c for all n. �
The following characterization is not needed for the proof of Theorem 1.1 but it
is worth mentioning. It says that a c.e. set (or real) is K-trivial if and only if the
monotone approximations to Ω that it can provide are no better than those that can
be provided by a computable function.

Corollary 2.8 (Characterisation ofK-trivial c.e. reals). Given a c.e. set (or real )
A the following are equivalent:
(a) A is K-trivial;
(b) for all functions f ≤T A we have ∃c∀n Ω−Ωn < 2c · (Ω−Ωf(n));
(c) ∃c∀n Ω−Ωn < 2c · (Ω−Ωa(n)).
where (a(n)) is the modulus of its computable enumeration (or monotone approxima-
tion, in the case of c.e. reals). Moreover, if I ⊆ N is computable and infinite, then the
above equivalence holds with ‘∀n’ replaced by ‘∀n ∈ I ’.
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Proof. The implication (a)⇒(b) follows from Lemma 2.5 and the fact that
K-trivial sets are low for Ω. The implication (b)⇒(c) is trivial. For the remain-
ing implication (c)⇒(a), assume that there exists a constant c such that
Ω−Ωn < 2c · (Ω−Ωa(n)) for all n ∈ I . Let mn be a computable increasing enu-
meration of I . Note that (a(mn)[s]) is a computable system of movable markers
according to Definition 2.6. Hence by Lemma 2.7 there exists a constant c0 such
thatK(a(mn)) ≤ K(mn) + c0 for all n. On the other hand there exists a constant c1
such thatK(A �n) ≤ K(a(n)) + c1 for each n. Hence K(A �mn ) ≤ K(mn) + c0 + c1
for all n, which means that A is K-trivial by Lemma 2.2. �
The following observation is the last step that we need in order to derive the main

result of this section which is Proposition 2.10; it connects the complexity of certain
system of movable markers with the initial segment complexities of a pair of c.e.
sets.

Lemma 2.9. Let A,B be c.e. sets (or reals), let (a(n)), (b(n)) be their modulus
functions and let d (n) = min{a(n), b(n)}. If ∀n K(d (n)) ≤ K(n) + p for some
constant p then there exists c such that ∀n min{K(A �n), K(B �n)} < K(n) + c.
Moreover, if I is an infinite computable set then the this implication holds with ‘∀n’
replaced by ‘∀n ∈ I ’.
Proof. It suffices to show that there exist prefix-free machinesMa,Mb such that

min{KMa(A �n), KMb (B �n)} ≤ K(d (n)) for all n. ConsiderMa which, on input �
operates as follows. First it waits until U (�) ↓= 〈n, t〉 for some t, n (where U is the
optimal machine). Then it defines Ma(�) = At �n. Similarly, on input � machine
Mb waits until U (�) ↓= 〈n, t〉 for some t, n and then defines Mb(�) = Bt �n.
Clearly Ma,Mb are prefix free (as they have the same domain as U ). Moreover,
for each n let tn be such that dn = 〈n, tn〉. Since d (n) = a(n) or d (n) = b(n) for
each n, we have Atn �n= A �n or Btn �n= B �n for each n. Hence for each n we have
KMa (A �n) ≤ K(d (n)) or KMb(B �n) ≤ K(d (n)), which completes the proof. �
Proposition 2.10 (Tool for the main construction). Let A,B be c.e. sets

(or reals), let (a(n)), (b(n)) be their modulus functions and let d (n) =
min{a(n), b(n)}. If A,B are notK-trivial and I is an infinite computable set then for
each c there exists n ∈ I such that Ω−Ωd(n) < 2−c · (Ω−Ωn).
Proof. Note that (d (n)) is a computable system of movable markers. Hence the

proposition is a direct consequence of Lemma 2.7, Lemma 2.9 and (2.3). �
Note that the conclusion Ω−Ωd(n) < 2−c · (Ω−Ωn) can be written as∑

i>d(n)

2−g(i) < 2−c ·
∑
i>n

2−g(i)

by (2.2). Hence if (nt) is a computable increasing sequence of numbers then (under
the same assumptions about A,B) we have that for each c there exists t such that∑

i>d(nt)

2−g(i) < 2−c ·
∑
i>nt

2−g(i).

This is the form that we are going to use when we formulate the requirements for
the proof of Theorem 1.1 in Section 3.1.
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§3. Proof of Theorem 1.1. Wewish to construct a c.e. setD, whose Turing degree
dmeets the conditions of Theorem 1.1.We formulate a sufficient set of requirements
for D in Section 3.1 and give the specifics of the construction in Section 3.2. We
conclude with the formal construction in Section 3.3 and the verification of the
requirements in Section 3.4.

3.1. Requirements for the construction of D. Let U be the universal prefix-free
machine which underlies the prefix-free Kolmogorov complexity function, that is,
such that K = KU . We may assume that wgt(U ) < 2−4. Also let (Ae,Be) be
an effective list of all pairs of c.e. sets. Note that the sets Ae,Be are given via
specific computable enumerations that are provided by a fixed universal Turing
machine. The setsAe,Be correspond to guesses about representatives of the degrees
a, b of Theorem 1.1. For each pair (Ae,Be) let ae, be denote the corresponding
modulus functions.Moreover, let ae [s], be [s] denote their approximations at stage s .
In particular, ae(n)[s] is n if s ≤ n and the least stage t > n with t ≤ s such that
A[t] �n≺ A[s] otherwise; similarly for be(n)[s]. Let (i, j) �→ 〈i, j〉 be a standard
computable increasing (in both arguments) pairing function and define N[k] =
{〈k, n〉 | n ∈ N}.
We define a version of the parameter min{ae(n), be(n)} which can be treated

dynamically (at any stage of the construction) as a number that is eligible for
enumeration into the set D that will be constructed. Define de(n)[s] to be the least
number in N

[〈e,n〉] − D[s] which is larger than min{ae(n)[s], be(n)[s]}. Moreover,
let de(n) = lims de(n)[s]. The parameters ae(n)[s], be(n)[s], de(n)[s] can be seen as
movable markers on N. Moreover, a direct consequence of their definition is that
they always move monotonically, that is, ae(n)[s] ≤ ae(n)[s + 1] and similarly for
be(n)[s], de(n)[s].
We will define a K-trivial c.e. set D and a sequence of c.e. sets (Ve) such that the
following conditions are met.

Re : Ve ≤T Ae ⊕D ∧ Ve ≤T Be ⊕D.
We will also ensure the following condition on Ve .

Pe : If Ae,Be are not K-trivial then Ve is not K-trivial.

These conditions on D, (Ve) are sufficient for the proof of Theorem 1.1. Let g be a
fixed Solovay function, that is, a function satisfying (2.1), for the duration of this
proof. Without loss of generality we may assume that

∑
i 2

−g(i) < 2−4. We may
split each condition Pe into more elementary conditions P∗

ekt . Let (k, i) �→ nk(i) be
a computable function such that nk(i) < nk(i + 1) and nk(i) ∈ N

[k]. In Section 3.2
we will define a specific such function, but at this point we may express P∗

ekt in terms
of any fixed such choice. We may write nkt to denote nk(t) in the interest of space.

P∗
ekt :

( ∑
i>de (nkt)

2−g(i) < 2−e−k ·
∑
i>nkt

2−g(i)
)
⇒ ∃i K(Ve �i) > g(i) + k.

We let P∗
ek denote the conjunction of all P

∗
ekt , t ∈ N. We verify that the satisfac-

tion of Pe may be reduced to the satisfaction of P∗
ek , k ∈ N. Fix e. Assume that

Ae,Be are not K-trivial and P∗
ekt are met for all k, t. Then by Proposition 2.10, for

each k there are infinitely many t such that the left-hand-side of the implication
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in P∗
ekt holds. Since each P

∗
ekt is met, it follows that for each k there are infinitely

many t such thatK(Ve �nkt ) > g(nkt)+k. Since g is a Solovay function, this means
that Ve is not K-trivial with constant k. Hence (∀k P∗

ek) implies Pe .
The requirement thatD is K-trivial can be expressed as

∃c∀n, K(D �n) ≤ g(n) + c. (3.1)

The cost associated with the enumeration of a number n in D at stage s + 1 of the
construction in view of (3.1) is given by

c(n, s) =
∑
n≤i≤s

2−g(i). (3.2)

The satisfaction of (3.1) will be achieved by ensuring that the total cost of the
enumerations into D is bounded, in other words∑
(n,s)∈ID

c(n, s) < 1 where ID =
{
(n, s) | n = min{x | x ∈ D[s + 1] −D[s ]}}. (3.3)

The fact that (3.3) implies (3.1) was established in [11] when g is replaced by
the Kolmogorov function K(n) (also see [10, Section 11.1] and [25, Section 5.3]
for elaborate presentations of this method). The same argument shows that this
implication holds when K(n) is replaced by any right-c.e function f such that∑
i 2

−f(i) < 1.
We close this section by providing a condition which implies Re and shows

explicitly the required Turing reductions. By the definition of ae [s] it follows that
ae(n) (the final position of a(n)[s]) is computable from Ae . Similarly, be(n) is
computable from Be . Hence Ae ⊕ D computes an upper bound of n �→ de(n)
(provided that N[〈e,n〉] ∩D is finite) and the same is true of Be ⊕ D. The following
condition expresses a weak coding of Ve into D.

R∗
e :

(
For all k, t, s and all n ∈ [nk(t − 1), nk(t)) ∩ N

[k]

n ∈ Ve[s + 1]− Ve[s]⇒ de(nk(t))[s] ∈ D[s + 1]−D[s]

)

Condition R∗
e implies condition Re . Indeed, suppose that R

∗
e holds. Then to deter-

mine if n ∈ Ve we can first find k such that n ∈ N
[k] and then find t such that

n ∈ [nk(t − 1), nk(t)). Assuming that N[〈e,nk(t)〉] ∩D is finite, de(nk(t))[s] reaches a
limit as s → ∞. Moreover, by the definition of de(nk(t))[s] it follows that it changes
value only when one of the following holds:

• the minimum of ae(nk(t))[s] and be(nk(t))[s] changes value;
• the current value of de(nk(t))[s] is enumerated into D.

If the first case above holds but not the second, and

min{ae(nk(t)), be(nk(t))}[s] changes but max{ae(nk(t)), be(nk(t))}[s] does not
then de(nk(t)) will move to the least number in N[e,nk(t)] − D[s]; this in a number
that can be computed at stage s . Since ae(nk(t)) is computable from Ae , it follows
that we can use Ae ⊕ D in order to compute a stage where the approximation to
D(de(nk(t))) has reached a limit. By R∗

e , at that stage the approximation to Ve(n)
has also reached a limit. So we have computed Ve(n). The same procedure can be
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performed via Be ⊕D-computations, by first computing be(nk(t)). Hence Ve(n) is
also computable from Be ⊕D.
We have established that a construction of D, (Ve) which meets conditions (3.3)
and R∗

e , Pek for e, k ∈ N (and any choice of a computable function (k, i) �→ nk(i)
which is increasing on i and such that nk(i) ∈ N

[k]) is sufficient for the proof of
Theorem 1.1. An underlying assumption is that for each e, n the set N[〈e,n〉] ∩D is
finite, so that de(n)[s] reaches a limit. The latter will be an immediate feature of the
construction.

3.2. Strategy and witnesses for conditions P∗
ek . Recall that P

∗
ek denotes the con-

junction of the conditions P∗
ekt of Section 3.1 (which depend on the choice of

(k, i) �→ nk(i)). The construction of Section 3.3 is driven by actions (enumerations
intoD,Ve) for the satisfaction ofP∗

ek . Here we define some parameters that are used
in these actions. For each k we define an increasing sequence (nk(i)) of numbers.
Recall the definitions of (i, j) �→ 〈i, j〉 and N[k] from Section 3.1. Define

J (〈k, x〉) =
{
〈k,m〉 | m > x + 1 ∧

∑
t>〈k,m〉

2−g(t) >
1

m − x − 1
}
.

The sets J (i) are uniformly c.e. and by Lemma 2.3 they are all infinite. Hence we
may choose a uniformly computable family of sets J ∗(i) such that J ∗(i) ⊆ J (i) for
each i . Define (nk(i)) recursively as follows.

nk(−1) = minN[k]
nk(i) = min J ∗

(
nk(i − 1)

)
.

Note that the function (k, i) �→ nk(i) is computable. Moreover, there exists some
number x such that∑

nk(t)<i<x
2−g(i) > 1/

∣∣(nk(t − 1), nk(t)) ∩ N
[k]
∣∣. (3.4)

From this point on, P∗
ekt refers to this choice of (k, i) �→ nk(i). We say that P∗

ek

requires attention at stage s + 1 if there is some t < s such that∑
de (nk(t))[s]<i≤s

2−g(i) < 2−e−k ·
∑

nk(t)<i≤s
2−g(i) (3.5)

and
∀i ≤ pek[s], K(Ve �i)[s] ≤ g(i) + k, (3.6)

where pek[s] is the maximum of the following two numbers:

(a) the largest stage ≤ s where P∗
ek required attention (or 0 if such a stage does

not exist);
(b) the least number x satisfying (3.4).

In this case we say that P∗
ek requires attention for t at stage s + 1.

The intuition for the main action of the construction is that if (3.5) holds, by
enumerating de(nk(t))[s] into D and changing the approximation to Ve �nk(t) the
cost of the opponent formaintaining (3.6) is a largemultiple of our cost formaintaining
(3.3). Our choice of the sequence (nk(i)) ensures that such attacks are sufficient in
order to drive the opponent out of the available descriptions that are needed for
maintaining (3.6). Moreover, recall that by the analysis of Section 3.1 (which was
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based on Proposition 2.10) property (3.5) has to hold for infinitely many t, ifAe,Be
are indeed not K-trivial.

3.3. Construction of the setsD,Ve . At stage s+1 check if there is some 〈e, k〉 < s
such that P∗

ek requires attention. If there is such a number, let 〈e, k〉 be the least one
and let t be the least number such that (3.5) and (3.6) hold. Enumerate de(nk(t))[s]
into D and enumerate the largest number of

N
[k] ∩ (nk(t − 1), nk(t))− Ve [s] (3.7)

into Ve .

3.4. Verification of the requirements. At every stage s + 1 where P∗
ek requires

attention for t and 〈e, k〉 < s , a change in Ve �nk(t) is caused by an enumeration of
a number of the set in (3.7) into Ve (provided that the set in (3.7) is nonempty).
There are ∣∣(nk(t − 1), nk(t)) ∩ N

[k]
∣∣

many such enumerations that can be performed. Because of (3.4) and (3.6), each
time that P∗

ek requires attention after such an enumeration, we can count an
additional weight of

1/
∣∣(nk(t − 1), nk(t)) ∩ N

[k]
∣∣

in the underlying universal prefix-free machine U . Since wgt(U ) < 2−2,

P∗
ek requires attention less than

∣∣(nk(t − 1), nk(t)) ∩ N
[k]
∣∣ times for t. (3.8)

Hence whenever P∗
ek requires attention in the construction, an enumeration into Ve

will occur. Moreover, (the current value of) de(nk(t))[s] will only be enumerated
into D finitely many times. Marker de(i) moves at stage s + 1 only if one of the
following events occur:

(a) A �i [s] �≺ A[s + 1] or B �i [s] �≺ B[s + 1];
(b) de(i)[s] ∈ De [s + 1]−De[s].

Clearly (a) can only occur at most finitely many times. Moreover, (b) only occurs if
i = nk(t) for some t such that P∗

ek requires attention for t at stage s + 1. By (3.8),
case (b) only occurs at most finitely many times. Consequently,

lims de(i)[s] exists for each e. (3.9)

In other words N[〈e,i〉] ∩ D is finite, which was an underlying assumption for the
requirements of Section 3.1.

Lemma 3.1. For each e, condition Re is met.

Proof. Fix e. The construction clearly meets condition R∗
e . By (3.9) and the

analysis in Section 3 it follows that Re is met. �
Lemma 3.2. For each e, condition Pe is met.

Proof. By the discussion of Section 3.1, it suffices to show that P∗
ekt is met for

each k, t. Fix k, t and assume that the left hand side of the implication in P∗
ekt holds.

Then according to the construction, (3.8) implies that ∃i K(Ve �i) > g(i) + k. �
Lemma 3.3. The set D is K-trivial.
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Proof. By the analysis in Section 3.1 it suffices to show (3.3). Let

ID(e, k) =
{(
de(nkt)[s], s

) ∈ ID | s, t > 0
}
.

Note that ID(e, k) contains the pairs in ID that correspond to actions for P∗
ek .

In particular, ID =
⋃
e,k ID(e, k) and it suffices to show that∑

(n,s)∈ID(e,k)
c(n, s) < 2−e−k−3 (3.10)

for each e, k. Fix e, k and let (xi , si) be a monotone enumeration of ID(e, k), in
the sense that si < si+1 for each i . Let us say that at stage si+1 the ith cycle
of P∗

ek is completed. Note that the sequence (xi , si) is possibly infinite. However,
upon the completion of the ith cycle of Pek we may count an additional set of
descriptions of the universal machineU (describing current values of Ve) of weight
at least 2e+k · c(xi , si). This is a consequence of (3.5) and (3.6). For the case that
(xi , si) is finite (so the last cycle is never completed) note that c(xi , si) < 2−e−k−4

for all i due to (3.5). Since wgt(U ) < 2−4 we obtain
∑
i c(xi , si) < 2

−e−k−3,
that is (3.10). �
According to the analysis of Section 3.1, this concludes the proof of Theorem 1.1.

§4. Conclusion. The class of K-trivial sequences and their Turing degrees is far
from trivial and, in fact, has very rich structure. There are several ways one can
reveal the complexities of this class. One of these is the study of the quotient
structure of the c.e. Turing degrees modulo the K-trivial degrees. Intuitively, this
structure gives information about the degrees of unsolvability of c.e. sets when K-
trivial information is available “for free”. The following is a direct consequence of
Theorem 1.1.

Corollary 4.1. The quotient upper semi-lattice of the c.e. Turing degrees modulo
the K-trivial degrees has no minimal pairs.
We do not know much more about this structure; for example, the following basic
question is open.

Is the quotient upper semi-lattice of the c.e. Turing degrees modulo
the K-trivial degrees dense?

Our result shows that a certain simple definition with parameters of the ideal of
the K-trivial degrees is not possible in the c.e. degrees. In particular, the K-trivial
degrees cannot be defined as the intersection of two lower cones in the c.e. Turing
degrees. The question of parameter definability of this ideal in the c.e. degrees
(briefly discussed in the end of [24]) remains open.
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