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APPROXIMATING TREES AS COLOURED LINEAR ORDERS AND
COMPLETE AXIOMATISATIONS OF SOME CLASSES OF TREES

RUAAN KELLERMAN AND VALENTIN GORANKO

Abstract. We study the first-order theories of some natural and important classes of coloured trees,
including the four classes of trees whose paths have the order type respectively of the natural numbers, the
integers, the rationals, and the reals. We develop a technique for approximating a tree as a suitably coloured
linear order. We then present the first-order theories of certain classes of coloured linear orders and use
them, along with the approximating technique, to establish complete axiomatisations of the four classes of
trees mentioned above.

§1. Introduction.

1.1. Background and motivation. The logic-based study of linear orders was
comprehensively presented in the early 1980s in the still very relevant classic
book [16], and there have been several important further developments since then,
mentioned below. In particular, the first-order (FO) theories of various naturally
arising classes of linear orders are now well-known, for example, the FO theories
of each ordinal α for α < �� (see [16]), as well as the FO theory of the rational
numbers (implicit in [16]). Furthermore, in [1, 2] Doets studies several natural
classes of coloured linear orders (i.e., linear orders enriched with unary predicates)
and obtains complete axiomatisations for the first-order theories of: the class of
coloured scattered linear orders; the class of coloured expansions of the natural
numbers, from which the case of the integers follows easily; the class of coloured
finite linear orders; the class of coloured complete linear orders; the class of coloured
well-orders; and the class of coloured expansions of the order of the real numbers.
Also closely related are the papers [13, 14], which investigate coloured finite linear
orders and coloured ordinals respectively.

The study and axiomatisation of the first-order theories of naturally arising classes
of trees is substantially more complicated, however, even when the first-order theory
of the corresponding class of linear orders is known. A more systematic attempt was
made in [8] to explore the general problem of transferring the first-order theory of a
class of linear orders to the class of trees whose paths are all contained in that class
of linear orders. That work left many open questions and indicated some inherent
difficulties. They are mainly due to the following facts:
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1036 RUAAN KELLERMAN AND VALENTIN GORANKO

(i) Since paths (maximal linearly ordered chains) are special sets of nodes in a
given tree, the first-order language for trees cannot, in general, impose first-
order properties on all paths of the tree, but only on the first-order definable
ones. A pathP in a treeT := (T ;<) is called singular when it contains a node u
such that the set {x ∈ T : u � x} is a linear order withinT. All singular paths
are parametrically definable. However, trees may also contain emerging paths,
which are paths that are not singular. In such non-definable emerging paths,
behaviour in the terminal part of the path cannot generally be controlled
within the expressive means of first-order logic.

(ii) The branching structure of a tree cannot be captured by the properties of its
paths.

Consequently, there are very few known complete axiomatisations of first-order
theories of classes of trees, in essence comprising the following classes: the class of
finitely branching trees (implicit in [18]), the class of (ordinary or coloured) well-
founded trees (see [2]), and the class of finite trees (see [15]). Also, [7] contains
some general results on axiomatising subclasses of the class of finitely branching
trees relative to the respective classes of trees with no restriction on their branching.
Further, the first-order theories of the class of trees, all of whose paths contain
greatest elements (leaves), and the class of trees whose paths are all isomorphic to
some given ordinal α with α < �� , are investigated in [11], but without deriving
complete axiomatisations of these first-order theories. Lastly, even though not
directly related to the present paper, we should mention the very important works
by Gurevich and Shelah [9, 10] on decidability of first-order theories of coloured
trees with additional quantification over branches.

1.2. Goal and main contributions of the present work. The goal of the present paper
is to study and axiomatise in first-order logic the classes of trees naturally arising
from some important linear orders. More precisely, we obtain axiomatisations of
the first-order theories of these classes of trees, rather than axiomatisations of those
classes themselves. This amounts to the following: given a class of trees K, we seek
a recursive (i.e., decidable) set of first-order sentences Σ such that Σ ⊆ Th(K) and
Σ |= Th(K). In turn, Σ |= Th(K) if and only if for each natural number n and each
model T of Σ, there exists a treeS in K such that T andS satisfy the same sentences
of quantifier rank at most n.

Now for any order type α, a tree whose paths are all isomorphic to α is called an
α-tree. This paper addresses and solves the problems of axiomatising the first-order
theories of the classes of (coloured) �-trees, �-trees, �-trees, and �-trees, where �,
� , �, and � are the order types of the sets of natural numbers, integers, rational
numbers, and real numbers, respectively. While the case of �-trees is easy and the
case of�-trees was essentially known from [2], the cases of �-trees and �-trees turned
out to be quite non-trivial. The complete axiomatisations of their first-order theories
are obtained here by using a new construction for approximating a given tree by a
suitably coloured linear order and then using the axiomatisations of the first-order
theories of the classes of coloured expansions of � and � respectively.

1.3. Structure of the paper. First, after briefly covering some basic definitions and
notation in Section 2: Preliminaries, we present in Section 3: First-order theories of
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coloured linear orders the axiomatisations of several important classes of coloured
linear orders. All these axiomatisations are either already known in the literature
or are easily derived from such known axiomatisations. However we include them
here as they are necessary for the subsequent main results on trees, for the sake
of completeness of the presentation and for uniformity of the underlying axioms
that are used. As is to be expected, the analysis of these various classes of coloured
linear orders tends to be substantially more complex than for the corresponding
classes of monochromatic linear orders. We note in passing that, apart from their
use in axiomatising the first-order theories of classes of trees, coloured linear orders
are also useful, inter alia, as models of (possibly infinite) words over an alphabet.
Then, in Section 4: From trees to coloured linear orders and back we introduce the
construction used for approximating a tree as a coloured linear order, which we
use in Section 5: First-order theories of coloured trees to axiomatise the first-order
theories of the classes of coloured �-trees and coloured �-trees. In addition, easier
axiomatisations of the first-order theories of the classes of coloured �-trees and
coloured �-trees are also given. In all of these cases, the axiomatisations of the first-
order theories of the classes of trees make essential use of the axiomatisations of
the first-order theories of their corresponding classes of coloured linear orders. We
end with a summary and some suggestions for future work in Section 6: Concluding
remarks.

§2. Preliminaries.

2.1. Notation and logical preliminaries. We will be working with first-order (FO)
languages with signatures that contain a binary relation < (possibly, in addition to
constants and unary relations). Expressions such as x > y, x � y, and x �< y, when
used in first-order formulas, are to be interpreted in the usual way, as abbreviations
for the formulas y < x, x < y ∨ x = y, and ¬ (x < y) respectively; similarly for
other variations of the relation <.

Equality will always be assumed to be included in the language. The FO signature
that consists only of equality plus the relation symbol < will be denoted by L0, and
the signature that extends L0 with unary relation symbols c1, c2, ... , ck (regarded as
colours) will be denoted byLk . For k � 0,L′

k will denote the signatureLk expanded
with a single constant symbol, i.e., the signature of structures of the form (A;<, a)
when k = 0 or (A;<, a, c1, ... , ck) when k > 0.

Consider an arbitrary fixed first-order language L. The quantifier rank of a
formula ϕ is defined as expected and will be denoted by qr (ϕ). We denote by
FOn the set of first-order formulas (of the given signature L) of quantifier rank at
most n and for any L-structures A and B, by A ≡n B we mean equivalence of A
and B with respect to all sentences in FOn, whereas A ≡ B means, as usual, their
elementary equivalence.

The domain of a structure Awill be denoted by |A|. The cardinality of a set X will
also be denoted by |X |. From the context, it will always be clear which one of the
two meanings applies.

Given an L-structure A with domain A, the parametrically definable subsets of A
are those sets of the form {x ∈ A : (A; ā) |= ϕ (x, ā)}, where ϕ (x, ȳ) is a first-order
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formula with ȳ possibly empty, and ā is a tuple of elements from A of the same arity
as ȳ.

Given formulas ϕ and � = � (x, ȳ) that have no variables in common, the
relativisation of ϕ to �, obtained from ϕ by replacing each subformula of the
form ∃u (	 (u, w̄)) with ∃u (� (u, ȳ) ∧ 	 (u, w̄)), and each subformula of the form
∀u (	 (u, w̄)) with the formula ∀u (� (u, ȳ) → 	 (u, w̄)), will be denoted byϕ� . For a
detailed account of relativisations, see, e.g., [16, p. 259]. If � = � (x, y) is the formula
y � x, with y here playing the role of a parameter, then ϕ� will be written simply
as ϕ�y . The formulas ϕ>y , ϕ�y , and ϕ<y are interpreted similarly. If � (x, y, z) is
the formula y � x ∧ x < z, with y and z now treated as parameters, then ϕ� will be
written as ϕ[y,z), and similarly for the other bounded intervals. Given a structure A
with domain A, a (possibly empty) tuple of elements ā ∈ Ak , and a formula � (x, ȳ)
with ȳ being a (possibly empty) k-tuple of variables, (A; ā)� will denote the set
{v ∈ A : (A; ā) |= � (v, ā)}.

For any natural number m, the linear order ({0, 1, ... , m – 1} ;<), ordered in the
usual way, will be denoted by m.

We briefly recall the definitions and main result about characteristic first-order
formulas (using the notation of [1, Section 1.6]) that will be needed.

Given a structureAwith domain A, natural numbers k and n, a k-tuple of elements
ā = (a0, a1, ... , ak–1) from Ak , and a k-tuple of variables x̄ = (x0, x1, ... , xk–1)
(where ā and x̄ are empty when k = 0), the n-characteristic formula of the structure
A over the tuple ā is denoted by [[(A; ā)]]n (x̄) and is defined as follows:

• [[(A; ā)]]0(x̄) :=
∧{
ϕ (x̄) : ϕ is an atomic or negated atomic formula with

A |= ϕ (ā)
}
;

• [[(A; ā)]]m+1(x̄) :=
∧
ak∈A(∃xk([[(A; āak)]]m(x̄xk))) ∧ ∀xk(

∨
ak∈A[[(A; āak)]]m

(x̄xk)).

For languages with finite relational signatures it is well known (see, e.g., [5,
Theorem 3.4 of Chapter 12]) that, for all natural numbers n and k there are, up
to logical equivalence, only finitely many n-characteristic formulas over the class of
all structures for that signature and all k-tuples in those structures. If ā is the empty
tuple then [[(A; ā)]]n(x̄) is written as [[A]]n and is called the n-characteristic sentence
of A. Here are some important facts about characteristic formulas:

1. The formula [[(A; ā)]]n(x̄) has quantifier rank n.
2. A |= [[(A; ā)]]n(ā).
3. If B is a structure in the signature of A and b̄ is a k-tuple of elements from the

domain ofB then the following three statements are equivalent for any natural
number n.
(a) (A; ā) ≡n (B; b̄).
(b) B |= [[(A; ā)]]n(b̄).
(c) [[(A; ā)]]n(x̄) ≡ [[(B; b̄)]]n(x̄), where ≡ denotes logical equivalence of

formulas.

Given a finite relational FO signature L, the set


n (L) := {[[A]]n : A is any L-structure}/≡
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that consists of all equivalence classes of logically equivalent n-characteristic L-
sentences will be called the n-spectrum of L, and its cardinality will be denoted by
f (L, n) := |
n (L)|. For each finite relational signature L, natural number n, and
integer i with 1 � i � f (L, n), we fix a sentence �L,n,i such that

�L,n,1, �L,n,2, ... , �L,n,f(L,n)

is an enumeration of all n-characteristic L-sentences, up to logical equivalence.
Given a structure A, a subset A′ of A that has the property that, for each a ∈ A,

there exists b ∈ A′ such that (A; a) ≡n (A; b), will be called an n-support of A. It
follows from the properties of characteristic formulas that if A has a finite relational
signature then it has a finite n-support, for each n.

The reader is referred to [3] for background on Ehrenfeucht–Fraı̈ssé games; the
players Di and Sy of [3] will be called respectively Spoiler and Duplicator here and
the n-round game on structures A and B will be denoted by EFn(A,B).

2.2. Linear orders. A k-coloured linear order, or simply a coloured linear order, is
a structure of the type A = (A;<, c1, c2, ... , ck) where k is a positive integer, (A;<)
is a linear order, and each ci is a unary predicate in A, called a colour. (Thus, an
element in A may have more than one colour, or none whatsoever.) The class of all
k-coloured linear orders will be denoted by Lk . Putting c̄ = (c1, c2, ... , ck), A can
also be written simply as A = (A;<, c̄). The k-tuple of colours c̄ will sometimes
be written as c̄k , to emphasise that there are k colours. Given a subset B of A, we
define c̄�B := (c1�B, c2�B, ... , ck�B) and AB := (B ;<�B, c̄�B). To keep the notation
simple,AB may sometimes also be written simply asAB = (B ;<, c̄), tacitly assuming
that < and c̄ are restricted in the obvious way. If a ∈ A then A�a will mean AB

where B = {x ∈ A : a � x}, and similarly for A>a , A�a , and A<a . A linear order
(A;<) that is not enriched with any colours will be called monochromatic. For
technical convenience, monochromatic linear orders may also be thought of as
0-coloured and for which the tuple of colours c̄ is empty. Given a coloured linear
orderA = (A;<, c̄), the monochromatic reduct (A;<) will be denoted byA–. Unless
otherwise specified, the domains of structures A, B, Ci , etc. will be denoted by
A, B, and Ci , respectively. To avoid ambiguity, when several structures are under
consideration, their order relations will be denoted by<A,<B, and<Ci , respectively.
In the interest of readability,<A,<B, and<Ci may sometimes all be denoted simply
by <, with the understanding that the relation < is then to be understood as <A,
<B, or <Ci , depending on the structure being worked in.

Given two coloured linear orders A = (A;<A, c̄) and B =
(
B ;<B, d̄

)
, the

sum A+B of A and B is defined to be the coloured linear order A+B :=
(A � B ;<, ē), where A � B := (A× {0}) ∪ (B × {1}), the relation < is the
union of the three sets {((x, 0) , (y, 0)) : x <A y}, {((x, 1) , (y, 1)) : x <B y}, and
{((x, 0) , (y, 1)) : x ∈ A and y ∈ B}, and ē = c̄d̄′ where d̄′ is the tuple that is
obtained from d̄ by removing all colours that are already in c̄, and for any colour ei
in ē and any u ∈ A � B ,A+B |= ei (u) if and only if either u has the form u = (a, 0)
and A |= ei (a), or u has the form u = (b, 1) and B |= ei (b). To keep the notation
simple, the elements (a, 0) and (b, 1) may sometimes be identified simply with the
elements a ∈ A and b ∈ B respectively. The following Feferman–Vaught style result
(see [6]) is easily proved by a straightforward application of Ehrenfeucht–Fraı̈ssé
games.
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Lemma 2.1. Let A1, A2,B1, andB2 be coloured linear orders, where A1 andB1 have
the same set of colours c̄, and A2 and B2 have the same set of colours d̄. If A1 ≡n B1

and A2 ≡n B2 then A1 + A2 ≡n B1 +B2.

2.3. Trees. A forest is a structure of type T = (T ;<) in which the relation < is
irreflexive, transitive, and left-linear (for each a ∈ T , the set {x : x < a} is linear).
A tree is a forest which is left-connected: for any a, b ∈ T there exists c ∈ T such
that c � a and c � b. A subset of a forest T that is maximal with respect to being
connected is called a (connected ) component of T. The elements of T are called
nodes. The least node of T, if it exists, is called the root of T, and a node is called
a leaf when it is maximal with respect to <. For a maximal linearly ordered subset
A ⊆ T , the linear order A = (A;<�A) is called a path in T. For a left-closed subset B
of a path A, i.e., such that for each b ∈ B , if c < b then c ∈ B , too, the linear order
B = (B ;<�B) is called a stem (of A) in T. For ease of notation, the path A and the
stem B will often be identified with their domains A and B. The set of all paths in
T will be denoted by H (T). A set I ⊆ T is called an interval when, for a, b, c ∈ T
with a < b < c, if a, c ∈ I then b ∈ I , too.

As with linear orders, unary predicates regarded as colours may be added to the
tree to obtain a coloured tree (T; c̄).

Given a (possibly monochromatic) tree T = (T ;<, c̄) and a subset C ⊆ T , the
structure TC := (C ;<�C , c̄�C ) is defined as with linear orders. In particular, for a
node a ∈ T , the trees T�a , T>a , T�a , and T<a are defined as the trees TC with
C taken to be the set T�a := {x ∈ T : a � x}, T>a := {x ∈ T : a < x}, T�a :=
{x ∈ T : x � a}, and T<a := {x ∈ T : x < a} respectively. The tree T�a will be
called the principal subtree generated by a and the stem T<a will be called the
principal stem generated by a.

Now, for T = (T ;<T, c̄) a tree and F =
(
F ;<F, d̄

)
a forest (where either of T

and F may be monochromatic), and a stem B in T, we denote by T+B F :=(
T � F ;<T+BF, ē

)
the tree with domain

|T+B F| := T � F = (T × {0}) ∪ (F × {1}) ,

with order relation

<T+BF :=
{(

(x, 0) , (y, 0)
)

: x <T y
}
∪

{(
(x, 1) , (y, 1)

)
: x <F y

}
∪

{(
(x, 0) , (y, 1)

)
: x ∈ B and y ∈ F

}
,

and with colours ē = c̄d̄′, where d̄′ is the tuple that is obtained from d̄ by removing
all colours that are already in c̄, and where, for any colour ei in ē and any u ∈ T � F ,
T+B F |= ei (u) if and only if either u has the form u = (a, 0) and T |= ei (a), or u
has the form u = (b, 1) and F |= ei (b). In other words, T+B F is the tree obtained
from T by adding the forest F to the end of the stem B; a depiction of this tree is
given in Figure 1. As with sums of linear orders, for nodes a ∈ T and b ∈ F , the
nodes (a, 0) and (b, 1) in the tree T+B F will often be written simply as a and b
rather than as (a, 0) and (b, 1), to keep the notation simpler, provided that there is
no danger of confusion.

The following composition result generalises Lemma 2.1 and can also be proved
by a straightforward Ehrenfeucht–Fraı̈ssé game.
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B

(a, 0)

(b, 1)

Figure 1. A depiction of the tree T+B F.

Lemma 2.2. Let T and S be (possibly monochromatic) trees with the same set
of colours c̄, A and B be stems in T and S respectively, and F and G be (possibly
monochromatic) forests with the same set of colours d̄. Let ā := (a1, a2, ... , ak) ∈ F k
and b̄ := (b1, b2, ... , bk) ∈ Gk (the tuples ā and b̄ may be empty) and for each i,
let a′i := (ai , 1) ∈ |T+A F| and b′i := (bi , 1) ∈ |S+B G| and let ā′ :=

(
a′1, a

′
2, ... , a

′
k

)
and b̄′ :=

(
b′1, b

′
2, ... , b

′
k

)
(the tuples ā′ and b̄′ will be empty when ā and b̄ are). If

(T;A) ≡n (S;B) and (F; ā) ≡n (G; b̄) then (T+A F; ā′) ≡n (S+B G; b̄′).

Given a class of (monochromatic) linear orders C, a tree S for which H (S) ⊆ C
will be called a tree over C, or simply a C-tree, and the class of all k-coloured C-
trees will be denoted by Tk (C) (with k = 0 in the case of monochromatic trees). If
C = {α} consists of just one linear order then Tk (C) will also be denoted by Tk (α)
and the trees in Tk (α) will be called α-trees.

§3. First-order theories of coloured linear orders.

3.1. A catalogue of properties and axioms. A (possibly coloured) tree T, in
particular, a linear order, is called:

• forward discrete, if for any two elements a and b, such that a < b, there exists
an immediate successor c of a such that a < c � b. In the case of linear orders,
forward discreteness is equivalent to stating that each non-greatest element has
an immediate successor.

• backward discrete, when each element except for the least element, if there is
one, has an immediate predecessor.

• discrete, when it is both forward discrete and backward discrete.
• definably forward well-founded, if every parametrically first-order definable non-

empty set of elements contains a maximal element.1

1Note that, in the case of linear orders, maximal elements and greatest elements coincide, but for
proper trees they need not.
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• definably backward well-founded, if every parametrically first-order definable
non-empty set of elements contains a minimal (which will also be a least)
element.

• definably bounded forward well-founded, if every parametrically first-order
definable non-empty set of elements X that is bounded above (i.e., for which
there exists b such that x � b for each x ∈ X ) contains a maximal element.

• definably bounded backward well-founded, if every parametrically first-order
definable non-empty set of elements X that is bounded below (i.e., there exists
a such that a � x for each x ∈ X ) contains a minimal element.

We define the following sentences in the first-order language Lk :

1. LO expresses that the structure is a linear order, as the conjunction of the
sentences expressing irreflexivity, transitivity, and totality:

LO := ∀x (x �< x) ∧ ∀x∀y∀z
(

(x < y ∧ y < z) → x < z
)

∧ ∀x∀y (x < y ∨ y < x ∨ x = y) .

2. Tree expresses that the structure is a tree, as the conjunction of sentences that
express irreflexivity, transitivity, left-linearity, and left-connectedness:

Tree := ∀x (x �< x) ∧ ∀x∀y∀z
(

(x < y ∧ y < z) → x < z
)

∧ ∀x∀y∀z
(

(y < x ∧ z < x) → (y < z ∨ z < y ∨ y = z)
)

∧ ∀x∀y∃z (z � x ∧ z � y) .

3. Le is a sentence that expresses the existence of a <-least element:

Le := ∃x∀y (x � y) .

4. Gr is a sentence that expresses the existence of a <-maximal element:

Gr := ∃x
(
¬∃y (x < y)

)
.

5. FD is a sentence that expresses the property of forward discreteness:

FD := ∀x∀y(x < y → ∃z(x < z � y ∧ ¬∃u(x < u < z))).

6. BD is a sentence that expresses the property of backward discreteness:2

BD := ∀x(∃y(y < x) → ∃y(y < x ∧ ¬∃z(y < z < x))).

7. De is a sentence that expresses the property of density:

De := ∀x∀y (x < y → ∃z (x < z < y)) .

8. FWFk is a scheme of (infinitely many) sentences that expresses the property of
definable forward well-foundedness and consists of all sentences of the form

FWFk(ϕ) := ∀z̄(∃x(ϕ(x, z̄)) → ∃x(ϕ(x, z̄) ∧ ¬∃y(ϕ(y, z̄) ∧ x < y))),

where z̄ = (z1, z2, ... , zn) is any (possibly empty) tuple of variables andϕ (x, z̄)
is any formula in the language Lk .

2The reason for the different forms of FD and BD is that trees are left-linear but not right-linear.
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9. BWFk is an infinite scheme that expresses the property of definable backward
well-foundedness and consists of all sentences of the form

BWFk(ϕ) := ∀z̄(∃x(ϕ(x, z̄)) → ∃x(ϕ(x, z̄) ∧ ¬∃y(ϕ(y, z̄) ∧ y < x)))

for any formula ϕ (x, z̄) in the language Lk .
10. BFWFk is an infinite scheme that expresses the property of definable bounded

forward well-foundedness and consists of all sentences of the form

BFWFk(ϕ) := ∀z̄((∃x(ϕ(x, z̄)) ∧ ∃y∀x(ϕ(x, z̄) → x � y))

→ ∃x(ϕ(x, z̄) ∧ ¬∃y(ϕ(y, z̄) ∧ x < y)))

for any formula ϕ (x, z̄) in the language Lk .
11. BBWFk is an infinite scheme that expresses the property of definable bounded

backward well-foundedness and consists of all sentences of the form

BBWFk(ϕ) := ∀z̄((∃x(ϕ(x, z̄)) ∧ ∃y∀x(ϕ(x, z̄) → y � x))

→ ∃x(ϕ(x, z̄) ∧ ¬∃y(ϕ(y, z̄) ∧ y < x)))

for any formula ϕ (x, z̄) in the language Lk .

The following facts about the first-order theory of � will be needed later.

Fact 3.1. The first-order theory of � can be axiomatised by the theory

{LO, Le,¬Gr,BD,FD}

(see, e.g., [16, p. 254]). Moreover, the class of models of this first-order theory
consists precisely of all linear orders of the form � + � · α where α is any linear
order (see, e.g., [16, Corollary 13.12 and Proposition 13.25]).

3.2. The first-order theory of coloured finite linear orders. We define the following
first-order theory:

CFLOk := {LO, Le,FD} ∪ FWFk.

The models of CFLOk will be called coloured quasi-finite linear orders.

Lemma 3.2. Let A = (A;<, c̄) be a coloured quasi-finite linear order. Then:

1. A has a greatest element.
2. A is backward discrete, hence (due to FD) also discrete.
3. A is definably backward well-founded.
4. For each element a ∈ A, the structures A<a , A�a , A>a , and A�a are coloured

quasi-finite linear orders too.

Proof. (1) The set A is itself definable, hence, by FWFk , A contains a greatest
element.

(2) Given a non-least element a ∈ A, the set A<a is definable in (A; a), hence, by
FWFk , A<a contains a greatest element b, which must be the immediate predecessor
of a.

(3) Suppose that ϕ (x, z̄) is a formula such that ϕ (x, ā) defines a non-empty
set B in (A; ā). If B contains the least element of A then the proof is completed.
Suppose otherwise. Then the setB< := {x ∈ A : x < y for all y ∈ B} is non-empty.
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Let	 (x, z̄) := ∀y (ϕ (y, z̄) → x < y). Then	 (x, ā) defines B< in (A; ā), hence, by
FWFk , B< contains a greatest element b. Since b < y for all y ∈ B and B �= ∅, then
b is not the greatest element of A, hence, by FD, b has an immediate successor b′

which will be the least element of B, as required.
(4) Straightforward. �
More generally, observe that the following implications hold in any linear order:

FWFk =⇒ BFWFk =⇒ BD and BWFk =⇒ BBWFk =⇒ FD.

Proposition 3.3. If A = (A;<, c̄) is a coloured quasi-finite linear order then A is
either finite or A– has the form � + � · α + �� for some linear order α.

Proof. Straightforward. �
Proposition 3.4 below and its proof are similar to [2, Theorem 3.2] except that

there, restricted definable induction instead of forward well-foundedness is used to
approximate finiteness. Proposition 3.4 and its proof are also similar to the “vertical
collapsing” construction used in [15] to obtain finite tree paths from infinite ones.
The construction there, like Proposition 3.4, also approximates finiteness using
definable forward well-foundedness. Here, however, we also give an upper bound
for the size of the coloured finite linear order produced by the construction, that is n-
equivalent to the given coloured quasi-finite linear order. Recall, from the discussion
of characteristic sentences in Section 2.1, that f (Lk, n) is the number of non-
equivalent characteristic sentences of quantifier rank n in the language Lk of linear
orders expanded with k colours, and that f (Lk, n) is necessarily finite.

Proposition 3.4. For every coloured quasi-finite linear order A = (A;<, c̄k) with
k colours and for each natural number n there exists a k-coloured finite linear order An
such that A ≡n An. Moreover, taking

S := {[[A�u]]n : u ∈ A}/≡
to be the set of equivalence classes of all the n-characteristic sentences of the orders
A
�u for u ∈ A, the cardinality of An is given by |An| = |S| � f (Lk, n).

Proof. Let A be a coloured quasi-finite linear order and letm = |S|. We start by
defining three sequences of coloured linear orders:B1,B2, ... ,Bm–1, C1,C2, ... ,Cm–1,
and D1,D2, ... ,Dm–1, where Bi = Ci +Di and where Ci and Di are substructures3

of A for each i, as described below. Informally, each Ci will consist of the first i
elements x in A that are maximal with respect to satisfying their n-characteristic
formula [[A�x ]]n (x), and Di then consists of the elements in A that are greater than
all of the elements in Ci . Formally, Bi , Ci , and Di will have the following properties
for each i:

(i) Bi ≡n A;
(ii) for each u ∈ Bi , B�u

i ≡n A�u ;
(iii)Ci is a coloured finite linear order with domain Ci , such that |Ci | = i ;
(iv)Di is a coloured quasi-finite linear order of the form A>u for some u ∈ A;

3Elements (x, 0) and (y, 1) in Bi + Ci will be identified with the elements x ∈ Bi and y ∈ Ci
respectively, so that the elements of Bi and Ci may be treated as elements of A too.
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(v) for u ∈ Ci and v ∈ Bi with u �= v, B�u
i �≡n B�v

i .

The exact construction of Ci andDi will now be described. Let a be the least element
of A. We define the formula

The set Aϕ0 is non-empty because A |= ϕ0 (a), and it is definable. Hence, by the
forward well-foundedness of A, Aϕ0 contains a greatest element a0. Since a, a0 ∈ Aϕ0

then A�a ≡n A�a0 hence

A = A�a ≡n A�a0 ∼= A[a0,a0] + A>a0 .

Let C1 := A[a0,a0], D1 := A>a0 , and B1 := C1 +D1. Observe that properties (i)–(v)
are all satisfied by B1, C1, and D1; property (iv) follows using part 4 of Lemma 3.2;
property (v) follows using property (ii) along with the fact a0 is the greatest element
in Aϕ0 ; the other properties are straightforward.

GivenBi , Ci , andDi for some i with 1 � i < m – 1, that satisfy properties (i)–(v),
the coloured linear orders Bi+1, Ci+1, and Di+1 are obtained as follows. Since Di is
a coloured quasi-finite linear order, it contains a least element, say di . Define the
formula

ϕi (x) := ([[Di ]]n)
�x
.

Again, the set Dϕii is non-empty (because Di |= ϕi (di)) and definable, hence, by
the definable forward well-foundedness of Di , D

ϕi
i contains a greatest element ei .

Then

Di = D�di
i ≡n D�ei

i
∼= D[ei ,ei ]

i +D>eii . (1)

Now take Ci+1 := Ci +D[ei ,ei ]
i , Di+1 := D>eii , and Bi+1 := Ci+1 +Di+1, and again

observe that properties (i)–(v) are all satisfied by Bi+1, Ci+1, and Di+1: for property
(i),

Bi+1 = Ci+1 +Di+1 = (Ci +D[ei ,ei ]
i ) +D>eii

∼= Ci + (D[ei ,ei ]
i +D>eii ) ≡n Ci +Di = Bi ≡n A

with the first instance of ≡n following from (1) and Lemma 2.1; properties (ii) and
(iii) are straightforward; property (iv) again follows using part 4 of Lemma 3.2 using
the fact that Di is a coloured quasi-finite linear order; property (v) follows using
property (ii) for Bi+1, along with how Ci+1 and Di+1 were constructed.

Finally, since |S| = m there are at most m pairwise non-equivalent n-characteristic
sentences that are satisfied by the structures B�u

m–1 for u ∈ Bm–1. Using property (v),
the m – 1 structures of the type B�u

m–1, where u ranges over Cm–1, must all have
pairwise non-equivalent n-characteristic sentences. Hence all structures of the type
D

�u
m–1, where u ∈ Dm–1, must have equivalent n-characteristic sentences. In particular,

the n-characteristic sentences of each of these structures D�u
m–1 must be equivalent

to the n-characteristic sentence of D�b
m–1, where b is the greatest element of Dm–1. It

follows that |Dm–1| = 1 and so |Bm–1| = m, i.e., An := Bm–1 may be taken to be a
coloured finite linear order such that A ≡n An, as required. �

Lemma 3.5. If A and B are k-coloured quasi-finite linear orders then A+B is a
k-coloured quasi-finite linear order, too.
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Proof. Let n be any natural number. By Proposition 3.4 there exist k-coloured
finite linear orders A′ and B′ such that A′ ≡n A and B′ ≡n B. By Lemma 2.1,
A+B ≡n A′ +B′. Since A′ +B′ is a k-coloured finite linear order then A′ +B′ |=
CFLOk and so A+B satisfies all sentences of quantifier rank at most n in CFLOk .
Since n is arbitrary, it follows thatA+B |= CFLOk , henceA+B is itself a k-coloured
quasi-finite linear order, as required. �

3.3. The first-order theories of coloured well-orders and expansions of �. We now
define the following theories, which will be shown further to axiomatise the first-
order theories of the classes of all coloured well-orders, of all coloured expansions
of �, and of all coloured expansions of �� (the reverse order of �), respectively:

CWOk := {LO} ∪ BWFk,

C�k := {LO,¬Gr,BD} ∪ BWFk,

C��k := {LO,¬Le,FD} ∪ FWFk.

Fact 3.6 ([2, Corollary 4.4]). For every model A of CWOk and each n ∈ N, there
exists a k-coloured well-order Bn such that A ≡n Bn.

Corollary 3.7 below is similar to [2, Theorem 3.1] but uses backward well-
foundedness instead of definable induction for approximating the structure of
coloured �.

Corollary 3.7. For every modelA ofC�k and eachn ∈ N, there exists a k-coloured
linear order Bn such that (Bn)

– ∼= � and A ≡n Bn.
Proof. It suffices to prove the result for n � 3. By Fact 3.6, there exists a k-

coloured well-orderBn such thatA ≡n Bn. Since the quantifier ranks of the sentences
¬Gr and BD are at most 3, Bn |= {¬Gr,BD} and, since Bn is a well-order, Bn |=
{Le,FD}. By Fact 3.1, (Bn)

– is a model of the first-order theory of � and also a
well-order, from which it follows that (Bn)

– ∼= �. �
Using a similar argument, it follows that the theory C��k axiomatises the first-

order theory of the class of coloured expansions of �∗:

Corollary 3.8. For every modelA ofC��k and eachn ∈ N, there exists a k-coloured
linear order Bn such that (Bn)

– ∼= �∗ and A ≡n Bn.

3.4. The first-order theory of coloured expansions of �. We now define the theory

C�k := {LO,¬Le,¬Gr} ∪ BBWFk ∪ BFWFk.

Proposition 3.9. For every model A of C�k and each n ∈ N, there is a k-coloured
linear order Bn, with (Bn)

– ∼= � , such that A ≡n Bn.
Proof. Let A |= C�k and observe that A |= {BD,FD}. Pick any element a ∈ A

and let b be its immediate predecessor. Then A�a satisfies the theory C�k and A�b

satisfies the theory C��k , hence, by Corollaries 3.7 and 3.8, there exists a k-coloured
linear order C such that C– ∼= � and A�a ≡n C, and there exists a k-coloured linear
orderD such thatD– ∼= �∗ andA�b ≡n D. ThenBn = D+ C is the desired coloured
linear order, since A ≡n Bn follows from Lemma 2.1. �
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3.5. The first-order theory of coloured ordinals. Letα be a monochromatic ordinal
such that � < α < �� . It is known (see [16, Section 13.2]) that the FO theory of α
is finitely axiomatised, i.e., there exists a first-order sentence Φ (α) in the language
L0 such that, for any monochromatic linear order A,

A |= Φ (α) ⇐⇒ A ≡ α,
and α is the only ordinal that is a model of Φ (α). The formulation of Φ (α) is
somewhat involved and for details we refer the reader to [16, Section 13.2]. We now
define the theory

Cαk := {Φ (α)} ∪ BWFk.

Proposition 3.10. For every model A of Cαk and each n ∈ N there is a k-coloured
linear order Bn such that (Bn)

– ∼= α and A ≡n Bn.
Proof. Let A |= Cαk and let n � qr (Φ (α)). Since A |= Φ (α) then A |= LO. By

Fact 3.6, there exists a k-coloured well-order Bn such that A ≡n Bn, and since
Bn |= Φ (α) then (Bn)

– ≡ α. Since Bn is a well-order and α is the only ordinal that
is a model of Φ (α), it follows that (Bn)

– ∼= α, as required. �

3.6. The first-order theory of coloured expansions of �. We now define the theory

C�k := {LO,¬Le,¬Gr,De} .
Proposition 3.11. For every model A of C�k , there is a k-coloured linear order B,

with B– ∼= �, such that A ≡ B.

Proof. By the Löwenheim–Skolem Theorem, there exists a countable structure
B such that B ≡ A. Since B |= C�k , B is a countable k-coloured dense linear order
without endpoints, hence B– ∼= �. �

3.7. The first-order theory of coloured expansions of �. An axiomatisation of the
first-order theory of the class of coloured expansions of � is obtained in [2]. For the
sake of completeness of this paper we will briefly describe that axiomatisation here,
as it will be needed in Section 5 to axiomatise the first-order theory of the class of
�-trees.

A coloured linear order is called definably bounded complete when each of its
non-empty definable subsets that is bounded above has a least upper bound. For
any formula ϕ (x, z̄) (where the tuple z̄ may be empty) we define the formula

ubϕ(u, z̄) := ∀x (ϕ (x, z̄) → x � u) ,

which expresses that u is an upper bound of the set that is defined by ϕ (x, z̄). The
property of definable bounded completeness can now be expressed by the set COMk
that consists of all sentences of the form

COMk (ϕ) := ∀z̄((∃x(ϕ(x, z̄)) ∧ ∃u(ubϕ(u, z̄)))

→ ∃u(ubϕ(u, z̄) ∧ ∀v(ubϕ(v, z̄) → u � v)))

for any formula ϕ (x, z̄) in the language Lk .
Given a linear order A and a partition P of A of which all members are intervals,

we define the binary relation <P on P by specifying, for X,Y ∈ P, that X <P Y
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iff x <A y for some x ∈ X and y ∈ Y . The linear order P := (P;<P) is called a
condensation of A. Given a transitive binary relation R on A, we define the relation
∼R on A by specifying, for u, v ∈ A, that u ∼R v if and only if any of the following
conditions hold:

(i) u = v,
(ii) u <A v and sRt for all s, t ∈ A such that u �A s <A t �A v, or

(iii) v <A u and sRt for all s, t ∈ A such that v �A s <A t �A u.

It is straightforward to see that for any transitive binary relation R, the relation ∼R
is an equivalence relation, hence the set Q = A/∼R is a partition of A into intervals,
and so the structure Q = (Q;<Q) is a condensation of A. The relation R is said to
induce the condensation Q. If the relation R is definable then Q is called a definable
condensation. For any formulaϕ (x, y, z̄) (with the tuple z̄ possibly empty) we define
the formulas

binϕ(z̄) := ∀x∀y∀v((ϕ(x, y, z̄) ∧ ϕ(y, v, z̄)) → ϕ(x, v, z̄)),

partϕ(u, v, z̄) := u < v ∧ ∀s∀t(u � s < t � v → ϕ(s, t, z̄)),

eqϕ(u, v, z̄) := u = v ∨ partϕ(u, v, z̄) ∨ partϕ(v, u, z̄),

denseϕ(z̄) := ∀u∀v
( (
u < v ∧ ¬eqϕ(u, v, z̄)

)
→ ∃w(u < w < v ∧ ¬eqϕ(u,w, z̄) ∧ ¬eqϕ(w, v, z̄))), and

singletonϕ(z̄) := ∀u∀v((u < v ∧ ¬eqϕ(u, v, z̄)) → ∃w(u < w < v

∧ ¬eqϕ(u,w, z̄) ∧ ¬eqϕ(w, v, z̄) ∧ ∀t(eqϕ(w, t, z̄) → t = w))).

The formula binϕ(z̄) expresses that ϕ (x, y, z̄) defines a transitive binary relation
R, the formula partϕ(u, v, z̄) expresses property (ii) in the above definition of
the relation ∼R, eqϕ(u, v, z̄) expresses that u ∼R v, denseϕ(z̄) expresses that the
condensation that is induced by R is densely ordered, and singletonϕ(z̄) expresses
that the condensation that is induced by R contains a set of singletons that is dense
in the condensation.

Following the terminology of [2], a linear order A is called definably- I when
each of its densely ordered definable condensations contains a set of singletons
that is dense in the condensation. The property of a k-coloured linear order being
definably-I approximates the countable chain condition of R, and can be expressed
by the set Ik that consists of all sentences of the form

Ik(ϕ) := ∀z̄
((
binϕ(z̄) ∧ denseϕ(z̄)

)
→ singletonϕ(z̄)

)
for any formula ϕ (x, y, z̄) in the language Lk and with the tuple z̄ possibly empty.

Finally, the first-order theory of the class of k-coloured expansions of � is
axiomatised by the theory

C�k := {LO,¬Le,¬Gr,De} ∪ COMk ∪ Ik,

as is seen from the following fact, the proof of which can be found in [2]:

Fact 3.12 [2]. For every modelA ofC�k and each n ∈ N, there exists a k-coloured
linear order Bn such that (Bn)

– ∼= � and A ≡n Bn.
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§4. From trees to coloured linear orders and back.

4.1. Trees as coloured linear orders. A tree T is called branching complete when
for any two distinct paths A and B in T, each of the sets A \ B and B \ A has an
infimum in T. Branching completeness is equivalent to the following property: for
any antichain {a, b} ⊆ T , the set

Tab := {x ∈ T�a : x � y for each y ∈ T�a ∩ T�b} (2)

has a least element. Recall the formula ubϕ(u, z̄) that was defined in Section 3.7 and
which expresses the fact that u is an upper bound of the set that is defined by ϕ(x, z̄).
Lettingϕ (x, z1, z2) := x � z1 ∧ x � z2, the property of branching completeness can
therefore be expressed by the sentence

bc := ∀z1∀z2(¬(z1 < z2 ∨ z2 < z1 ∨ z1 = z2)

→ ∃u(u � z1 ∧ ubϕ(u, z1, z2) ∧ ∀v((v � z1 ∧ ubϕ(v, z1, z2)) → u � v))).

A sufficient condition for branching completeness is that every path in the tree is a
complete linear order. Thus, in particular, every �-tree is branching complete.

Remark 4.1. There are other notions of completeness of trees known from the
literature, such as Dedekind–MacNeille completeness and others, cf.4 [4, 12, 17].
The notion of branching completeness introduced here is mostly ad hoc, as it is
sufficient for our purposes, but it is also of some independent interest. As shown
in [12], branching completeness is generally weaker than Dedekind–MacNeille
completeness of trees.

For T any tree, A any stem in T (A will usually be a path), and s ∈ A, we define
the following sets (to be explained shortly):

Fl (s) :=

⎧⎪⎨
⎪⎩

∅ when s has an immediate predecessor,(⋂
t<s

T>t

)
\T�s otherwise,

and Fu(s\A) := T>s\
( ⋃
t∈A∩T>s

T�t
)
,

and, provided that these sets are non-empty, define the structuresFl (s) := TFl (s) and
Fu(s\A) := TFu(s\A). In general, either or both of the sets Fl (s) and Fu(s\A) may
be empty, in which case the corresponding structure is left undefined. The structures
Fl (s) and Fu(s\A), if defined, are forests and will be called the lower side-forest of s,
and the upper side-forest of s with respect to A, respectively. Finally, the side-forest
of s with respect to A is the forest F (s\A) := (TF (s\A); s) where

F (s\A) := {s} ∪ Fl (s) ∪ Fu(s\A).

The forests Fl (s) and Fu(s\A) are depicted in Figure 2.
Intuitively, the upper side-forest of s with respect to A consists of those nodes that

sit above s but do not sit above any nodes on A ∩ T>s , and the lower side-forest of

4We thank the reviewer for the first two references.
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l s
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Figure 2. The side-forests Fl (s) and Fu(s\A).

s consists of those nodes that sit above T<s but are incomparable with s, unless s
has an immediate predecessor, in which case its lower side-forest is left empty so as
not to coincide with the upper side-forest of that predecessor. Observe that if A is a
stem with a greatest node b then Fu(b\A) = T>b .

The property of branching completeness ensures that if A is either a path inT, or a
stem with a greatest node, then the set {F (s\A)}s∈A forms a partition of T. Indeed,
each side-forest F (s\A) is non-empty since s ∈ F (s\A), and different side-forests
F (s\A) and F (t\A) are disjoint by the way that side-forests are defined. To see that
{F (s\A)}s∈A covers T, pick any node u ∈ T , and consider the following cases.

Case 1: u ∈ A. Then u ∈ F (u\A).
Case 2: u �∈ A.

Case 2.1: u � x for each x ∈ A. Then A must be a stem with a greatest node
b, in which case u ∈ F (b\A).
Case 2.2: There exists v ∈ A such that {u, v} is an antichain. By the branching
completeness of T, the set Tvu has a least element w ∈ A.

Case 2.2.1: w < u. Then u ∈ Fu(w\A).
Case 2.2.2: w �< u. Then u ∈ Fl (w).

This shows that
⋃
s∈A F (s\A) = T .

Given s, t ∈ A such that t > s , the setsFl (s), Fu(s\A), and F (s\A) can be defined
in (T; s, t) (the expansion of T obtained by adding the constants s and t) by the
formulas

lsf (x, s) :=
(
∃u

(
u < s ∧ ¬∃v (u < v < s)

)
→ ¬ (x = x)

)
∧

(
∀u

(
u < s → ∃v (u < v < s)

)
→

(
∀w (w < s → w < x) ∧ ¬ (s � x)

))
,
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usf (x, s, t) := s < x ∧ ¬∃u (s < u � t ∧ u � x) , and

sf (x, s, t) := (x = s) ∨ lsf (x, s) ∨ usf (x, s, t) .

(The first conjunct in lsf (x, s) covers the case where s has an immediate predecessor,
and the second conjunct covers the case where s has no immediate predecessor.)

Now suppose that the treeThask ≥ 0 colours, sayT = (T ;<, c̄) where c̄ = c̄k (or,
simply T = (T ;<) if k = 0). Recall that L′

k denotes the signature Lk of k-coloured
trees, expanded with a single constant symbol, and f

(
L′
k, n

)
denotes the number

of non-equivalent n-characteristic sentences of k-coloured trees that have an added
constant symbol. Let p = f

(
L′
k, n

)
and define an additional set of colours, called

extended colours, by ē := ēp = (e1, e2, ... , ep). Recall the definition of the sentence
�L,n,i from the discussion on characteristic formulas in Section 2.1. Now, consider
the coloured linear order

AT [ē] :=
(
T
A; ē

)
= (A;<, c̄, ē) (or, just (A;<, ē) when T is monochromatic)

and where the extended colours are defined by specifying, for each s ∈ A and each i
such that 1 � i � p,

AT [ē] |= ei (s) if and only if F (s\A) |= �L′
k
,n,i ,

i.e., the extended colour of s corresponds to the n-characteristic sentence that is
satisfied in F (s\A)).

The linear order AT [ē] can be viewed as the k-coloured stem A of T that is further
enriched with p additional colours, the role of which is to capture, for each s ∈ A,
the n-equivalence class of the side-forest F (s\A) when viewed within T. This will
allow us to approximate a tree as a coloured linear order, and thereby adapt results
on coloured linear orders to trees.

The next theorem relates the first-order equivalence of two trees to the first-order
equivalence of their corresponding coloured linear orders.

Theorem 4.2. Let k ≥ 0 and T1 and T2 be k-coloured branching complete trees.
Let A and B either both be paths, or both be stems with greatest elements in T1 and T2

respectively. Let n ∈ N and ē = ēf(L′k ,n)
. For any m ∈ N:

1. If (T1;A) ≡m+n+1 (T2;B) then AT1 [ē] ≡m BT2 [ē].
2. If AT1 [ē] ≡n BT2 [ē] then (T1;A) ≡n (T2;B).

Proof. The result will be proved assuming that A and B are paths; the proof for
the case where they are instead stems with greatest elements, is identical.

(1) We will reason by contraposition. Suppose that Spoiler has a winning
strategy Σ in the game EFm

(
AT1 [ē] ,BT2 [ē]

)
. Then Spoiler can win the game

EFm+n+1((T1;A) , (T2;B)) as follows. For the first m rounds of the game, Spoiler
plays only on the paths A and B (so, Duplicator will have no choice but to also
play on these paths) by choosing nodes according to the strategy Σ in the parallel
game EFm

(
AT1 [ē] ,BT2 [ē]

)
. If, after m rounds, the resulting nodes a1, a2, ... , am ∈ A

and b1, b2, ... , bm ∈ B (where ai and bi are the nodes chosen by the players in the
i-th round) do not form a local isomorphism between the trees (T1;A) and (T2;B)
then Spoiler wins the game EFm+n+1((T1;A) , (T2;B)). Now, suppose the nodes do
form a local isomorphism between (T1;A) and (T2;B). Then there must exist nodes
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aq ∈ A and bq ∈ B such that aq and bq have different extended colours in AT1 [ē] and
BT2 [ē]. Spoiler can then win the game EFm+n+1((T1;A) , (T2;B)) in the next n + 1
rounds as follows.

First observe that, in rounds m + 1 to m + n of EFm+n+1((T1;A) , (T2;B)),
whenever Spoiler chooses a nodeai fromF (aq\A) in round i of the game, Duplicator
has to choose her response from F (bq\B), and vice versa. To see this, suppose that
ai ∈ F (aq\A) but that bi �∈ F (bq\B). Then ai �= aq for if ai = aq then bi would
have to be the node bq thus giving bi ∈ F (bq\B), a contradiction. It follows that
ai �∈ A, hence bi cannot lie onB. So, there are two cases to consider: either aq < ai or
ai is incomparable with aq . If aq < ai then it must be the case that bq < bi too, from
which, since bi �∈ F (bq\B), there exists b ∈ B such that bq < b < bi . If Spoiler then
chooses the node b ∈ T2 in round i + 1 of the game, he will have won, since there
is no node a ∈ A for Duplicator to choose in round i + 1 that satisfies aq < a < ai .
The case where ai is incomparable with aq similarly leads to a win for Spoiler.
Now since aq and bq have different extended colours in AT1 [ē] and BT2 [ē] then
F (aq\A) �≡n F (bq\B). By using a winning strategy for EFn(F (aq\A) ,F (bq\B)),
Spoiler can create a configuration of nodes in rounds m + 1 through to n of the
game EFm+n+1((T1;A) , (T2;B)) that Duplicator cannot match.

(2) Suppose that Duplicator has a winning strategy in the n-round game
EFn

(
AT1 [ē] ,BT2 [ē]

)
. By decomposing the tree (T1;A) into the path A along with

all the side-forests F (s\A), and similarly for the tree (T2;B), Duplicator can win
the game EFn((T1;A) , (T2;B)) by combining her winning strategy for the game
EFn

(
AT1 [ē] ,BT2 [ē]

)
with her local strategies for the games EFn(F (s\A) ,F (t\B))

for nodes s from AT1 [ē] and t from BT2 [ē] that have the same extended colours in
AT1 [ē] and BT2 [ē] respectively. �

Let k, n ∈ N and p = f
(
L′
k, n

)
. Given a formula ϕ (x̄) (where ϕ may be a

sentence) in the languageLk+p with colours c̄k and ēp, and a variable z that does not
occur inϕ, letϕnz (x̄) denote the formula that is obtained fromϕ<z (the relativisation
of ϕ to the formula � (u, z) := u < z where z is treated as a parameter) by replacing,
for each i, for 1 � i � p, every atomic formula of the form ei (y) that occurs in
ϕ<z with the formula �sf(u,y,z)

L′
k
,n,i

(i.e., �L′
k
,n,i relativised to sf (u, y, z) where y and z are

treated as parameters).
In other words, the formula ϕnz is the same as the relativised formula ϕ<z , except

that instead of stating that a node y has colour ei , ϕnz states that the side-forest of
y with respect to the stem T<z satisfies the characteristic sentence �L′

k
,n,i . If ϕ does

not contain any atomic formulas of the form ei (y) then ϕnz is simply the formula
ϕ<z .

The following result, which relates the truth of a first-order formula in a tree to
the truth of that formula in the coloured linear order approximating that tree, now
follows immediately from the definition of ϕnz .

Corollary 4.3. Let k ≥ 0 and T be a k-coloured tree with colours c̄k , n ∈ N,
p = f

(
L′
k, n

)
, and ē = ēp, and let ϕ (x̄) be a formula in the language Lk+p with

colours c̄k and ēp. For each a ∈ T and tuple b̄ of nodes in T<a of the same arity as x̄,

(T; a, b̄) |= ϕna (b̄) if and only if ((T<a)T[ē]; b̄) |= ϕ(b̄).
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In particular, if ϕ is a sentence then for each a ∈ T , (T; a) |= ϕna if and only if
(T<a)T [ē] |= ϕ.

4.2. Towards axiomatising the first-order theory of �-trees. We will now use
Theorem 4.2 and Corollary 4.3 to show how the first-order theories of certain
classes of coloured C-trees can be axiomatised. The method used in this section
will have the set C = {�} in mind, but can also be used on the sets C = {��} and
C = {�, ��}.

Say that a class of monochromatic linear orders C has the fusion closure property
when the following condition holds:

For any two linear orders A,B ∈ C and for any a ∈ A and b ∈ B ,
A
<a +B�b is isomorphic to a linear order in C.

Consider any class C of monochromatic linear orders with the following
properties:

(C1) C does not contain the singleton linear order;
(C2) C has the fusion closure property;
(C3) all linear orders in C are discrete; and
(C4) every C-tree is branching complete.

The property (C1) is needed to eliminate degenerate cases, (C2) is needed to ensure
that paths belong to C when constructing models of the axiomatisation that will be
given below, (C3) is to ensure that all components in the lower and upper side-forests
of any C-tree have roots, and (C4) is needed to ensure that the set of side-forests
along any path form a partition of the tree.

Now let k be any natural number and let S = Tk(C) be the class of k-coloured
C-trees. Suppose that the following are known:

(i) an axiomatisation Σk↑ of the first-order theory of the class of k-coloured trees

{
T
�a : T ∈ S, a ∈ T

}
;

(ii) for each natural number n, an axiomatisation Σk,n↓ of the first-order theory of
the class of

(
k + f

(
L′
k, n

))
-coloured linear orders

{(T<a)
T [ē] : T ∈ S, a ∈ T}.

Let

(Σk↑)′ := {∀x
(

�x

)
: 
 ∈ Σk↑} and

(Σk↓)′ := {∀z(∃y(y < z) → 
nz ) : n ∈ N, 
 ∈ Σk,n↓ }.

In essence, the theory (Σk↑)′ expresses for a k-coloured tree T that each principal
subtree of T satisfies Σk↑, while, using Corollary 4.3, the theory (Σk↓)′ expresses of
T that, for each natural number n and each principal stem A in T, the linear order
AT [ē] satisfies Σk,n↓ .
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Then, the first-order theory of S can be axiomatised by the theory5

Ax (S) := {Tree, bc} ∪ (Σk↑)′ ∪ (Σk↓)′

as is shown in the next result.

Theorem 4.4. Let C a class of linear orders that satisfies (C1)–(C4), and let S =
Tk(C) be the class of k-coloured C-trees, for some k ∈ N. For each k-coloured model T
of Ax (S) and each n ∈ N, there exists a k-coloured tree Sn ∈ S such that T ≡n Sn.

Proof. Let T = (T ;<, c̄) be a k-coloured model of Ax (S). Fix n ∈ N; without
loss of generality, we can assume that n � qr (bc). Now, let p = f

(
L′
k, n

)
and

ē = ēp. Since T |= Tree then T is a tree. Pick any node a ∈ T other than the root
of T (if there is a root) and let A = T<a . Observe that T is discrete (the property
of discreteness is encoded in both of the theories (Σk↑)′ and (Σk↓)′), hence A has a
greatest node, say b.

Since T |= (Σk↓)′ then (T; a) |= {
na : 
 ∈ Σk,n↓ }, hence, by Corollary 4.3, AT [ē] |=
Σk,n↓ . Therefore, there exists a (k + p)-coloured linear order B = (B ;<B, c̄, ē) such
that B ≡n AT [ē] and for which the reduct B′ = (B ;<B, c̄) is a coloured principal
stem in some tree from S.

Since T is discrete, there are no lower side-forests in T. Now, for each t ∈ A,
let {Ft,i}i∈It be the set of components in the upper side-forest Fu(t\A) of t with
respect to A in the tree T. Since T is discrete, each component Ft,i has a root, say
rt,i . Then, since T�rt,i |= Σk↑, there exists a k-coloured tree Gt,i such that Gt,i ≡n Ft,i
and for which Gt,i is a principal subtree of some tree from S. It follows that, for
each node t ∈ A there exists a forestGt such that Fu(t\A) ≡n Gt and for which each
component of Gt is a principal subtree of some tree from S.

For each s ∈ B , let t (s) ∈ A be a node such that s and t (s) have the same colour
from amongst the colours in ē in the linear orders B and AT [ē] respectively. (Such
t (s) exists since B ≡n AT [ē]). Define Sn to be the k-coloured tree that is obtained
from B′ by adding, to each element s ∈ B , the forest Gt(s) as an upper side-forest
of s with respect to B. It follows that for each s ∈ B , s has the same colour from
amongst the colours in ē in both the linear orders BSn [ē] and B, hence BSn [ē] ∼= B.
Since also B ≡n AT [ē] then BSn [ē] ≡n AT [ē].

Next, we note that both Sn and T are branching complete. That Sn is branching
complete follows from the fact that every component in each of the upper side-forests
Fu(s\B) (∼= Gt(s)) in Sn, being a principal subtree of a tree from S, is branching
complete. T is branching complete since it is a model of the sentence bc. Now since
BSn [ē] ≡n AT [ē] then, by Theorem 4.2, Sn ≡n T.

Finally, to see that Sn is a C-tree, observe that each path in Sn can be written
as a sum (B–)�s + D for some node s ∈ B and where D is a path in the forest
Fu(s\B) ∼= Gs(t) inSn. SinceB– is a principal stem in a C-tree and the linear orders in
C are discrete, it follows that (B–)�s ∼= (C1)<c1 for some linear order C1 ∈ C of which
B

– is an initial suborder and some c1 ∈ C1. Further, since each component of Gs(t)
is a principal subtree of some tree from S, it follows that D ∼= (C2)�c2 for some linear

5In fact, only the property of left-connectedness is needed from the axiom Tree; the properties of
irreflexivity, transitivity, and left-linearity are all encoded in the axioms from (Σk↑)′ and (Σk↓)′.
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order C2 ∈ C of which D is a terminal suborder and some c2 ∈ C2. Hence, by the
fusion closure property of C, we obtain that (B–)�s + D ∼= (C1)<c1 + (C2)�c2 ∈ C,
as required. �

4.3. Applications of the results so far. Theorem 4.4 can be used to axiomatise the
first-order theories of classes of trees of the type S = Tk(C), where the requirements
on C are firstly that it must satisfy the properties (C1)–(C4), and secondly, that the
axiomatisations (Σk↑)′ and (Σk↓)′ are known. There are three classes C that fulfill these
requirements, namely the sets {�}, {��}, and {�, ��}.

Theorem 4.4 will hence be used in Section 5.2 to axiomatise the first-order theory
of the class of k-coloured �-trees. The two simpler axiomatisations (Σk↑)′ and (Σk↓)′

that are needed for that purpose are those of the first-order theories of the class of
k-coloured �-trees (to be given in Section 5.1) and of the class of

(
k + f

(
L′
k, n

))
-

coloured expansions of the linear order �� (given in Section 3.3).
In the case of the sets C = {��} and C = {�, ��}, an axiomatisation of the first-

order theory of the class of
(
k + f

(
L′
k, n

))
-coloured expansions of�� is also needed

for (Σk↓)′. For (Σk↑)′, one uses in the case C = {��} an axiomatisation of the first-
order theory of the class of k-coloured trees of which all paths are finite (which can
be deduced from [15]), and in the case C = {�, ��} one uses an axiomatisation of
the first-order theory of the class of k-coloured well-founded trees of which all paths
have height at most � (a trivial exercise). Axiomatisations for the cases C = {��}
and C = {�, ��} will not be presented here however.

§5. First-order theories of coloured trees.

5.1. The first-order theory of coloured�-trees. The following result will be needed
to axiomatise the first-order theory of the class of k-coloured �-trees.

Proposition 5.1 ([2, Theorem 5.1]). For every k-coloured model T of {Tree} ∪
BWFk and each n ∈ N there exists a well-founded tree Sn such that Sn ≡n T.

It now follows that the theory

T�k := {Tree, Le,¬Gr,BD,FD} ∪ BWFk

axiomatises the class of k-coloured �-trees:

Corollary 5.2. Let T be any k-coloured model of T�k , for some k ∈ N. Then, for
each n ∈ N there exists a k-coloured �-tree Sn such that Sn ≡n T.

Proof. Without loss of generality we can assume that n is at least as large as
the quantifier ranks of all the sentences Tree, Le, ¬Gr, BD, and FD. Since T |=
{Tree} ∪ BWFk then, by Proposition 5.1, there exists a well-founded tree Sn such
that Sn ≡n T. The axioms Le, ¬Gr, BD, and FD ensure that each path in Sn will
have the properties of having a least element but no greatest element and of being
discrete. Then, each path in Sn will be isomorphic to �, as required. �

5.2. The first-order theory of coloured �-trees. Using Theorem 4.4, we will now
show that the theory

T�k := {Tree,¬Le,¬Gr,BD,FD} ∪ BBWFk ∪ BFWFk

axiomatises the first-order theory of the class of k-coloured �-trees.
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Theorem 5.3. Let T be a k-coloured model of T�k , for some k ∈ N. Then, for each
n ∈ N there exists a k-coloured �-tree Sn such that Sn ≡n T.

Proof. LetT be a k-coloured model ofT�k . The result will be proved by showing
that T |= Ax (Tk (�)) and employing Theorem 4.4. It is straightforward to check that
the class {�} satisfies properties (C1)–(C4). Observe that the class of principal
subtrees of trees in Tk (�) coincides with the class of k-coloured �-trees, hence
we take Σk↑ := T�k . For n ∈ N and p = f

(
L′
k, n

)
, each linear order of the form

(S<a)S [ēp], where S ∈ Tk (�) and a ∈ S, is a (k + p)-coloured expansion of ��,
from which it follows that we can take Σk,n↓ := C��k+p (but, see Remark 5.4 after this
proof). We define (Σk↑)′ and (Σk↓)′ as in Section 4.2.

By assumption, T is a model of Tree. T is a model of bc since the property of
branching completeness follows from the property of definable bounded backward
well-foundedness. Therefore, to show that T |= Ax (Tk (�)), it remains to show that
T |= (Σk↑)′ and T |= (Σk↓)′.

T |= (Σk↑)′: Let a ∈ T . We first show that T�a |= T�k . It is straightforward to

check that T�a |= {Tree, Le,¬Gr,BD,FD}. To see that T�a |= BWFk , let b̄ be a
tuple of nodes in T�a and suppose that the formula ϕ(x, b̄) defines a non-empty
set B in the tree (T�a ; b̄). Then, ϕ�a(x, b̄) defines B in the tree (T; a, b̄) and B is
bounded below by the node a. Hence, since T is a model of BBWFk , B must contain
a least element. It follows thatT�a |= BWFk , hence alsoT�a |= T�k . Then (T; a) |=
{
�a : 
 ∈ T�k}, and since a was arbitrary and Σk↑ = T�k , we get T |= (Σk↑)′.
T |= (Σk↓)′: Again, let a ∈ T and letA = (T<a ;<T), n ∈ N, andp = f

(
L′
k, n

)
. We

first show that AT[ēp] |= C��k+p. Clearly, AT[ēp] |= {LO,¬Le,FD}. As for AT[ēp] |=
FWFk , let b̄ this time be a tuple of nodes in T<a and suppose that the formula
ϕ(x, b̄) defines a non-empty set B in the tree (AT[ēp]; b̄). By Corollary 4.3, ϕna (x, b̄)
defines B in (T; a, b̄) and B is bounded above by a, hence, using the fact that T is
a model of BFWFk , B must contain a greatest element. It follows that AT[ēp] |=
FWFk , hence also AT[ēp] |= C��k+p. Now, by Corollary 4.3, we have that (T; a) |=
{
na : 
 ∈ C��k+p}. Since a and n were arbitrary and Σk,n↓ = C��k+p, it follows that
T |= (Σk↓)′. �

Remark 5.4. In the above proof, for n ∈ N and p = f
(
L′
k, n

)
, the class of linear

orders of the form (S<a)S [ēp], where S ∈ Tk (�) and a ∈ S, does not, strictly
speaking, coincide with the class of (k + p)-coloured expansions of ��, because
there are extended colours from ēp that aren’t realised in any linear orders in the
first class (not all characteristic sentences �L′

k
,n,i are realised in side-forests), while

every colour in ēp is realised in some (k + p)-coloured expansion of ��. We can
nonetheless take Σk,n↓ to be the theory C��k+p since, for each model A of C��k+p,
every (k + p)-coloured expansion of �� that is m-equivalent to A realises exactly
the same colours as A.

5.3. The first-order theory of coloured �-trees. We now define the theory

T� := {Tree,¬Le,¬Gr,De} .
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The first-order theory of the class of k-coloured �-trees is axiomatised by T�, as
seen from the next theorem.

Theorem 5.5. For each k-coloured model T of T�, there exists a k-coloured �-tree
S such that S ≡ T.

Proof. Given a k-coloured model T of T�, by the Downward Löwenheim–
Skolem Theorem there exists a countable k-coloured treeS such thatS ≡ T. Hence
each path A in the tree S will be a countable dense linear order without endpoints,
so A ∼= �, as required. �

5.4. The first-order theory of coloured �-trees. Here we will present an axiomati-
sation of the first-order theory of the class of k-coloured �-trees. We will make use
of Fact 3.12, along with the method of partitioning into side-forests from Section
4, to prove that our axiomatisation is complete. In essence, the axiomatisation will
express the fact that the linear orders AT [ē] obtained from a coloured �-tree by
partitioning it into side-forests are themselves coloured expansions of �. The proof
of completeness of the axiomatisation that we give here follows a similar idea as in
the proof of completeness of the axiomatisation of the class of well-founded trees,
given in [2], but with several essential differences.

Recall the definition of the formula ϕnz that was given before Corollary 4.3. By
applying it to each 
 ∈ C�k+f(L′k ,n)

, for any k ∈ N we define

(C�k)
′ := {∀z (
nz ) : n ∈ N, 
 ∈ C�k+f(L′k ,n)

}.

We will show (Theorem 5.9) that the first-order theory of the class of k-coloured
�-trees is axiomatised by the set of sentences

T�k := {Tree,¬Gr, bc} ∪ (C�k)
′
.

First, note that every k-coloured �-tree, being branching complete, is a model of
T�k . Next, a few technical lemmas and propositions are needed.

Lemma 5.6. Let T be a k-coloured model of T�k . Then, for each a ∈ T , each
component in T>a is a model of T�k , too.

Proof. LetF be a component inT>a . It is immediate thatF satisfies the sentences
Tree, ¬Gr, and bc. To see that F satisfies (C�k)

′, let n ∈ N, p = f
(
L′
k, n

)
, and

b ∈ F . It then suffices to show that (F; b) |=
{

nb : 
 ∈ C�k+p

}
. Clearly (F; b) |=

(LO)nb . It follows from the fact that T |= (C�k)
′ that T is dense, hence (F; b) |={

(¬Le)nb , (¬Gr)
n
b , (De)nb

}
.

Since T |= (C�k)
′ then in particular (T; b) |=

{

nb : 
 ∈ COMk+p

}
and (T; b) |={


nb : 
 ∈ Ik+p
}
. Hence, by Corollary 4.3, we obtain

(
T<b

)T
[ēp] |= COMk+p and(

T<b
)T

[ēp] |= Ik+p.
To show that (F; b) |=

{

nb : 
 ∈ COMk+p

}
it suffices, again by Corollary 4.3, to

show that
(
F <b

)F
[ēp] |= COMk+p. Let d̄ be a tuple of nodes in F <b and let ϕ(x, d̄ )

define the non-empty setB ⊆ F<b in the linear order (F <b)F[ēp]. Suppose that B has
an upper bound u ∈ F <b . By properties of relativised formulas, ϕ>a(x, d̄ ) defines B
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in ((T<b)T[ēp]; a). Since (T<b)T[ēp] |= COMk+p, we obtain that B has a least upper
bound in T<b , hence also in F <b , as required.

Lastly, it will be shown that (F; b) |=
{

nb : 
 ∈ Ik+p

}
by showing, instead, that

(F<b)F[ēp] |= Ik+p. To this end, let d̄ be a tuple of nodes in F <b and let ϕ(x, y, d̄ )
define in the linear order ((F <b)F[ēp]; d̄ ) a transitive binary relation on F <b that
induces a densely ordered condensation P = (P;<P) of F <b . Let

	(x, y, a, d̄ ) := (x � a ∧ x = y) ∨ (a < x ∧ a < y ∧ ϕ>a(x, y, d̄ )).

The formula 	(x, y, a, d̄ ) defines in
(
T<b

)T
[ēp] a transitive binary relation on

T<b that induces a densely ordered condensation Q = (Q;<Q) of T<b and P is
a tail of Q. Since

(
T<b

)T
[ēp] |= Ik+p then it follows that Q must contain a set S of

singletons that is dense in Q, hence S�P is a set of singletons in P that is dense in P,
as required. �

Given a k-coloured forest F := (F ;<, c̄), let Fr denote the (possibly empty) set of
roots of the components of F and let F ′ := F \Fr . Consider the following property:

Comp� (F): For each component G of FF
′
, FG is a model of T�k .

In other words, property Comp� (F) states that for each component X in F, if FX

has no root then SX is a model of T�k , while if FX has a root r then FY is a model
of T�k for each component Y in

(
F
X
)>r

.

Lemma 5.7. Let T := (T ;<T, c̄) be a k-coloured model of T�k . Then, for each
a ∈ T and n ∈ N there exists a k-coloured treeS := (S;<S, c̄) and a node b ∈ S such
that

(i) (T; a) ≡n (S; b),
(ii) (S<b)– ∼= �, and

(iii) Comp�
(
S
J
)

holds, where J := S\S�b .

Proof. Let A := T�a , n′ = n + 1, p = f
(
L′
k, n

′), and ē = (e1, e2, ... , ep). Let
F1,F2, ... ,Fq be all, up to n′-equivalence, side-forests of the form F (t\A) with
t ∈ A. Without loss of generality, we can assume that Fi |= �L′

k
,n′,i for each i. Each

Fi has the form Fi :=
(
Fi ;<Fi , c̄, di

)
where di ∈ A.

Since (T; a) |= {
n′a : 
 ∈ C�k+p} then by Corollary 4.3, (T<a)T [ē] |= C�k+p,
hence, by Fact 3.12, there exists a (k + p)-coloured linear order B1 such that

(T<a)T [ē] ≡n′ B1 andB–
1
∼= �. LetB2 :=

(
AT [ē]

){a}
be the restriction ofAT [ē] to the

set {a} and define the (k + p)-coloured linear order B := B1 +B2 = (B ;<B, c̄, ē).
By Lemma 2.1, B ≡n′ AT [ē].

For each x ∈ B , let  (x) denote the value of i for which B |= ei (x). We define

S :=
⋃
x∈B

(
F(x) × {x}

)
,

and we also define the binary relation <S on S by specifying, for all pairs
(u, x) , (v, y) ∈ S, that

(u, x) <S (v, y) ⇐⇒ [(x <B y and u = d(x)) or (x = y and u <F(x)
v)].
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Now, we defineS = (S;<S, c̄) by specifying that, for each s = (u, x) in S,S |= ci (s)
if and only if F(x) |= ci (u). Let D :=

{(
d(x), x

)
: x ∈ B

}
and D := (D;<S). S is

simply the tree that is obtained from B by replacing each x ∈ B with the side-forest
F(x), and D is the path in S that consists of all the di ’s in these side-forests.

We are going to apply Theorem 4.2. For that, we will need to know that T and
S are branching complete. T is branching complete since it satisfies bc. It follows
that every lower side-forest in T—in particular, each of the lower side-forests in
F1,F2, ... ,Fq—must contain a root. ForS, let r, w ∈ S be incomparable and let Srw
be defined as in (2) at the beginning of Section 4.1. We consider the following two
cases, each with three subcases, for the location of r and w:

Case 1: r and w belong to the same set F(x) × {x}. We consider three sub-cases:
1.1 If r and w belong to the same component from F(x) × {x} then Srw contains

a least element, by the fact that F(x) is branching complete.
1.2 If r and w belong to different components from F(x) × {x}, but with r lying

in the upper side-forest from F(x) × {x}, then (d(x), x) is the least element
of Srw .

1.3 If r and w belong to different components fromF(x) × {x}, but with r lying in
the lower side-forest from F(x) × {x}, then the root of that lower side-forest
that contains r is the least element of Srw .

Case 2: r belongs to the setF(x) × {x} and w belongs to a different setF(y) × {y}.
Then either x <B y or y <B x.

2.1 If x <B y and r lies in the upper side-forest from F(x) × {x} then (d(x), x)
is the least element of Srw .

2.2 If x <B y and r lies in the lower side-forest from F(x) × {x} then the root of
that lower side-forest that contains r is the least element of Srw .

2.3 If y <B x then (d(y), y) is the least element of Srw .

Hence, S is branching complete. Since DS [ē] ∼= B ≡n′ AT [ē] it follows, using
Theorem 4.2, that (T;A) ≡n′ (S;D). Letting b be the greatest element of D, it
then follows that (T; a) ≡n (S; b) and clearly (S<b)– ∼= B–

1
∼= �. That the property

Comp�
(
S
J
)

holds follows from the fact that, for each component F in SJ , the tree
S
F is either a copy of some lower side-forest of T (which will necessarily have a

root), or a copy of a component in some upper side-forest of T (which will not have
a root since T satisfies the density property that is encoded in (C�k)

′); the claim then
follows by Lemma 5.6. �

Lemma 5.8. Let T := (T ;<T, c̄) be a k-coloured model of the theory T�k , let
{a1, a2, ... , am} be an antichain in T, and let ā := (a1, a2, ... , am). Then, for each
n ∈ N there exists a k-coloured tree S := (S;<S, c̄) and a tuple of nodes b̄ :=
(b1, b2, ... , bm) ∈ Sm such that

(i) (T; ā) ≡n (S; b̄),
(ii) (S<bi )– ∼= � for each i, and

(iii) Comp�
(
S
J
)

holds, where J := S\
⋃m
i=1 S

�bi .

Proof. The result will be proved by induction on m. For m = 1, the result is
precisely Lemma 5.7. Now let m � 2 be an integer such that the claim holds for
each positive integer less than m and let C := {a1, a2, ... , am} be an antichain in T.
Consider the stemH :=

⋂m
i=1 T

<ai and letH ′ := {x ∈ T : x � y for each y ∈ H}.
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Now, let {Fi}i∈I be the set of all components in TH
′

and define the tree Fi := TFi

for each i ∈ I . Each component Fi must contain fewer than m (possibly none)
elements from C, for, ifC ⊆ Fi thenH ∩ Fi �= ∅—a contradiction. Assume, without
loss of generality, that the components Fi that contain nodes from C are precisely
F1, F2, ... , Fr . Let C ∩ Fi =

{
ai,1, ai,2 ... , ai,si

}
and āi :=

(
ai,1, ai,2 ... , ai,si

)
for 1 �

i � r. Two cases will be considered, depending on whether H contains a greatest
element or not.

Case 1: H contains a greatest element a. By Lemma 5.7, there exists a k-coloured
treeS0 =

(
S0;<S0 , c̄

)
and a node b ∈ S0 such that (T; a) ≡n (S0; b) and (S<b0 )– ∼= �

and Comp�(S
J0
0 ) holds for J0 := S0\S�b

0 .
By Lemma 5.6, each of the treesFi is a model ofT�k . By the induction hypothesis,

there exists, for each i with 1 � i � r, a k-coloured treeGi =
(
Gi ;<Gi , c̄

)
and a tuple

b̄i :=
(
bi,1, bi,2, ... , bi,si

)
of nodes in Gi such that

(i′) (Fi ; āi) ≡n (Gi ; b̄i),

(ii′) (G
<bi,j
i )– ∼= � for each j with 1 � j � si , and

(iii′) Comp�(G
Ji
i ) holds, where Ji := Gi\

⋃si
j=1G

�bi,j
i .

Now, we define the tree S as follows. Let G be the disjoint union of all the trees
(Gi ; b̄i) for 1 � i � r, along with all the trees Fi for i ∈ I \ {1, 2, ... , r}. Let S ′

0 :=

S0\ (S0)>b , S′
0 := S

S′0
0 be the restriction of S0 to S ′

0, B :=
(
S ′

0

)�b
, and S := S′

0 +B

G.
To see that (T; ā) ≡n (S; b̄), let T ′ := T\T>a , T′ := TT

′
, A := T�a , and

F := T>a . Since (T; a) ≡n (S0; b) then
(
T
′;A

)
≡n

(
S

′
0;B

)
, and it is clear that

(F; ā1ā2 ··· ār) ≡n (G; b̄1b̄2 ··· b̄r). By Lemma 2.2,
(
T
′ +A F; ā1ā2 ··· ār

)
≡n (S′

0 +B

G; b̄1b̄2 ··· b̄r), from which it follows that (T; ā) ≡n (S; b̄).
Next, we will show that (S<bi )– ∼= � for each i. Suppose that bi = bj,l ∈ Gj .

Since (S<b)– ∼= (S<b0 )– ∼= � and (S(b,bi ))– ∼= (G
<bj,l
j )– ∼= � (where S(b,bi ) denotes

the restriction of S to the interval (b, bi)), it follows that (S<bi )– ∼= (S<b)– + 1 +
(S(b,bi ))– ∼= �+ 1 + � ∼= �.

Finally, the claim that Comp�
(
S
J
)

holds for J = S\
⋃m
i=1 S

�bi follows by the
corresponding properties that hold in S0 and in each of the trees Gi , along with
using Lemma 5.6 when working in the trees Fi for i ∈ I \ {1, 2, ... , r}.

Case 2: H does not contain a greatest element. It follows by the branching
completeness of T that each Fi must contain a least element. Fix i0 ∈ I and let
a be the root of Fi0 and A := T<a . Let T ′ = T\

⋃
i∈I Fi and T′ = TT

′
. Observe

that, as A does not have a greatest element, AT [ē] = AT
′
[ē].

Let p := f
(
L′
k, n

)
and ē := ēp. Since (T; a) |= {
na : 
 ∈ C�n+p} then AT [ē] |=

C�n+p. Hence, by Fact 3.12, there exists an (n + p)-coloured linear order B =
(B ;<B, c̄, ē) such that B ≡n AT [ē] and B– ∼= �. As with the construction of the tree
S in the proof of Lemma 5.7, we can add side-forests to the elements of B to obtain a
k-coloured tree S0 :=

(
S0;<S0 , c̄

)
, and a path D in S0, such that DS0 [ē] ∼= B, from

which

AT
′
[ē] = AT [ē] ≡n B ∼= DS0 [ē] . (3)
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T
′ is branching complete, due to the fact that T satisfies bc, and it can be shown

that S0 is branching complete, similarly to how it was shown that the tree S in the
proof of Lemma 5.7 was branching complete. It then follows, using (3) and Theorem
4.2, that

(
T
′;A

)
≡n (S0;D).

Similarly to Case 1, for each i, where 1 � i � r, there exists a k-coloured tree Gi
and a tuple b̄i :=

(
bi,1, bi,2, ... , bi,si

)
of nodes inGi , such that properties (i′) and (iii′)

hold, in addition to property (ii′) replaced by:

(iv′) (G
<bi,j
i )– ∼= 1 + � for each j with 1 � j � si .

Now, we defineG as in Case 1 and letS := S0 +D G. By similar arguments to those
used in Case 1 and Lemma 5.7, it can again be seen that properties (i)–(iii) hold. �

Theorem 5.9. Let T be a k-coloured model of T�k . Then, for each n ∈ N there
exists a k-coloured �-tree S such that T ≡n S.

Proof. Without loss of generality, we can assume that n � 5. We define the k-
coloured trees T0,T1,T2, ... and sets H0, H1, H2, ... with each Hi ⊆ Ti , as follows.
First, take T0 := T and H0 = ∅. Now, given Ti and Hi , let T ′

i := Ti\Hi and T′i :=

T
T ′
i
i , and suppose that these have the following properties:

(a) Hi is a left-closed subset of Ti and each path in Hi := THii is isomorphic to
�+ 1;

(b) Ti is dense and branching complete;
(c) Comp�

(
T
′
i

)
holds.

Note that property (a) is satisfied vacuously by H0, property (b) is satisfied by T0

(with the density property being encoded in the theory (C�k)
′ that is satisfied by

T), and property (c) is trivially satisfied by T′0. The construction of Ti+1 and Hi+1

is described below.
Let F be any component in T′i and put F := TFi . If i = 0 then F = T while if

i > 0 then F can be represented in one of the forms (i) and (ii) below as follows.
For each path X in Hi (which can be viewed as a stem in Ti), since X has a greatest
node and Ti is branching complete, the set of side-forests {F (x\X)}x∈X form a
partition of Ti . There must hence exist a path A in Hi and a node d ∈ A such that F
is contained in the side-forest of d with respect to A. In particular, (T<di )– ∼= � and
either F ⊆ Fu(d\A) or F ⊆ Fl (d ). Now, if F ⊆ Fu(d\A) then, using the fact that
Ti is dense, F has the following form:

(i) F has no root and F ⊆ T>di with (T�di )– ∼= �+ 1,

while, if F ⊆ Fl (d ) then, using the fact that Ti is branching complete and dense, F
has the following form:

(ii) F has a root r and F = T�r
i with

(
T
<r
i )

– ∼= �.
In the construction that follows, we hence take F = T when i = 0 and if i > 0

then we can restrict our attention to components that have the form of case (i),
because in case (ii) each component F ′ in T>ri will have the form of case (i) (but,
with r fulfilling the role of d) and the subsequent construction is then performed
using this F ′ rather than F.

Let {a1, a2, ... , ap} be an antichain in F such that
⋃p
i=1 F

�ai contains an n-
support for F (recall the definition of ‘n-support’ at the end of Section 2.1) and
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let ā := (a1, a2, ... , ap). By property (c) and Lemma 5.8, there exists a k-coloured
tree G and a tuple of nodes b̄ := (b1, b2, ... , bp) ∈ Gp such that: (F; ā) ≡n (G; b̄),

(G<bj )– ∼= � for each j, and Comp�
(
G
J
)

holds for J := G\
(⋃p

j=1G
�bj

)
. It then

follows that

(†): for each a ∈ F there exists b ∈
⋃p
i=1G

�bi such that (F; a) ≡n–1 (G; b).

The tree Ti+1 is now obtained from Ti by replacing F with G and by performing
a similar replacement for every other component of T′i , whileHi+1 is the union over

all these components G of the sets
⋃p
j=1 T

�bj
i+1 .

Note that since Hi+1 is obtained from Hi by adding only finitely many new paths
corresponding to each component F in T′i , none of the paths in Hi+1 are emerging
paths, and hence there is no possibility of producing ‘unwanted’ paths that are
isomorphic to � by diagonalisation.

Each path in Hi+1 will be of the form

(T�di )– + (S�bj )– ∼= (�+ 1) + (�+ 1) ∼= �+ 1

(or simply of the form (S�bj )– ∼= �+ 1 when i = 0) so property (a) holds forHi+1.
To see that property (b) holds forTi+1, first note that each of the treesG that was used
to replace the treeF in the above construction is itself dense and branching complete,
since F ≡n G and the properties of denseness and branching completeness can be
expressed by sentences of quantifier rank at most 5. We can now use an argument
similar to the one used in Lemma 5.6 to prove that the new tree that was constructed
there was branching complete. The claim that property (c) holds for T′i+1 follows
from the fact that each of the treesG that was used to replace the tree F in the above

construction satisfies Comp�
(
G
J
)

for J = G\
(⋃p

j=1G
�bj

)
.

Observe, moreover, that Ti+1 and Hi+1 also have the following properties:

(d) Hi+1 is an end-extension of Hi ,
(e) (Ti , t)t∈Hi ≡n (Ti+1, t)t∈Hi ,
(f) for each a ∈ T ′

i , there exists b ∈ Hi+1 such that

(Ti ; t, a)t∈Hi ≡n–1 (Ti+1; t, b)t∈Hi .

Property (e) follows from the fact that in the construction of Ti+1, Hi was left
intact and the components in T′i were all replaced by n-equivalent trees. Property
(f) follows from (†).

Finally, let S :=
⋃∞
i=0 Hi .

(It follows from property (d) that this union is defined.)
Note that even though every path in each Hi is singular, the (infinite) union S of

all these Hi ’s may contain emerging paths.
S is a �-tree since, clearly, the monochromatic reduct of each of its paths is

isomorphic to (�+ 1) · � ∼= �. To show that T ≡n S, we will describe a winning
strategy for Player II for the game EFn(T,S). Let t̄ := (t1, t2, ... , tm) ∈ Tm and
s̄ := (s1, s2, ... , sm) ∈ Sm represent the nodes that have been chosen by the two
players after m moves (with t̄ = ε = s̄ when m = 0), and such that the following
property holds:
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[�]i,t̄,s̄ : s̄ ∈ (Hi)
m and (T; t̄) ≡n–m (Ti ; s̄).

Observe that, by property (e), [�]i,t̄,s̄ holds trivially when m = 0, and if i < j and
[�]i,t̄,s̄ holds then [�]j,t̄,s̄ holds, too. We will consider two cases for the choice of
Spoiler in the (m + 1)-th round of the game:

• Suppose that Spoiler chooses the node tm+1 ∈ T . By [�]i,t̄,s̄ there exists um+1 ∈
Ti such that (T; t̄tm+1) ≡n–m–1 (Ti ; s̄u). If u ∈ Hi , then take sm+1 := u as
the response of Duplicator for round m + 1 of the game and observe that
[�]i,t̄tm+1,s̄sm+1

holds. Otherwise, by property (f) there exists v ∈ Hi+1 such that
(Ti ; s̄u) ≡n–1 (Ti+1; s̄v), hence also (T; t̄tm+1) ≡n–m–1 (Ti+1; s̄v). Now, take
sm+1 := v as the response of Duplicator for round m + 1 of the game and
observe that [�]i+1,t̄tm+1,s̄sm+1

holds.
• Suppose that Spoiler chooses sm+1 ∈ S, say with sm+1 ∈ Hj . If j � i then
sm+1 ∈ Hi . Hence, by [�]i,t̄,s̄ , there exists u ∈ T such that (T; t̄u) ≡n–m–1
(Ti ; s̄sm+1). Take tm+1 := u as the response of Duplicator and observe that
[�]i,t̄tm+1,s̄sm+1

holds. On the other hand, if i < j, then [�]j,t̄,s̄ holds, too.
Duplicator will again have a response tm+1 ∈ T such that [�]j,t̄tm+1,s̄sm+1

holds.

Clearly, the tuples (t1, t2, ... , tn) ∈ Tn and (s1, s2, ... , sn) ∈ Sn thus defined form a
local isomorphism between T and S, as required. �

§6. Concluding remarks. The study of classes of trees and their first-order theories
is still in an early stage, and still much less explored than the study of first-
order theories of classes of linear orders. In particular, the complete first-order
axiomatisations of several important classes of trees have so far been open. The
work presented in this paper was intended towards advancing that study and, in
particular, answering some of these open questions. Our main contributions can be
summarised as follows.

1. The main new technique developed here is a method for approximating any
given (possibly, coloured) tree as a coloured linear order, so that the first-order
theory of the resulting coloured linear order can be used to determine the
first-order theory of the given tree. Using this technique, we have obtained
a complete axiomatisation of the first-order theory of the class of coloured
�-trees.

2. Another major new result in this work is the complete axiomatisation of the
first-order theory of the class of coloured �-trees. Our completeness proof
of that axiomatisation mimics, modulo several essential complications, the
completeness proof of the axiomatisation of the class of well-founded trees
given in [2]. In fact, in the introduction of Section 5 of [2], Doets says that the
completeness proof that is presented there “can be considered as a paradigm
for a method applicable in a variety of situations, where the models considered
belong to certain types of partial orderings (trees being the simplest example)
and the Π1

1-property involved can be either well-foundedness, converse well-
foundedness, or, more generally, some kind of completeness.”

3. We have also obtained and presented a few easier cases of complete
axiomatisations of the first-order theories of other tree classes of natural
interest, including �-trees and �-trees. In addition, the paper summarised
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the axiomatisations of the first-order theories of important classes of linear
orders needed for axiomatising the first-order theories of the classes of trees
mentioned above, though most of the former axiomatisations were already
known from the literature.

Some directions for future work include the following.

• Use the methods developed here to axiomatise the first-order theories of other
classes of trees of natural interest, such as the coloured trees in which all paths
are complete linear orders.

• Generalise the method of [2] to a result of the kind of Theorem 4.4, presented
here. Moreover, the only class to which Theorem 4.4 was applied here was {�},
but it can also be applied to the classes {��} and {�, ��}.

• The methods developed here can possibly be modified to apply to other, more
general ordered structures, such as partially ordered sets and lattices.

Acknowledgments. We thank the referee for the careful reading and helpful
comments and suggestions on the paper.
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[14] ———, Ehrenfeucht–Fraı̈ssé games on ordinals. Annals of Pure and Applied Logic, vol. 169

(2018), no. 7, pp. 616–636.
[15] J. Rogers, R. Backofen, and K. Vijay-Shankar, A first-order axiomatization of the theory of

finite trees. Journal of Logic, Language and Information, vol. 4 (1995), pp. 5–39.
[16] J.G. Rosenstein, Linear Orderings, Academic Press, New York, 1982.
[17] M. Rubin, The Reconstruction of Trees from Their Automorphism Groups, Contemporary

Mathematics, vol. 151, American Mathematical Society, Providence, 1993.

https://doi.org/10.1017/jsl.2021.40 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.40


AXIOMATISATIONS OF CLASSES OF TREES 1065

[18] J. Schmerl, Onℵ0-categoricity and the theory of trees. Fundamenta Mathematicae, vol. 94 (1977),
pp. 121–128.

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
UNIVERSITY OF PRETORIA

PRETORIA, SOUTH AFRICA
E-mail: ruaan.kellerman@up.ac.za

DEPARTMENT OF PHILOSOPHY
STOCKHOLM UNIVERSITY

STOCKHOLM, SWEDEN
and

SCHOOL OF MATHEMATICS (VISITING PROFESSORSHIP)
UNIVERSITY OF THE WITWATERSRAND

JOHANNESBURG, SOUTH AFRICA
E-mail: valentin.goranko@philosophy.su.se

https://doi.org/10.1017/jsl.2021.40 Published online by Cambridge University Press

mailto:ruaan.kellerman@up.ac.za
mailto:valentin.goranko@philosophy.su.se
https://doi.org/10.1017/jsl.2021.40

	1 Introduction
	1.1 Background and motivation
	1.2 Goal and main contributions of the present work
	1.3 Structure of the paper

	2 Preliminaries
	2.1 Notation and logical preliminaries
	2.2 Linear orders
	2.3 Trees

	3 First-order theories of coloured linear orders
	3.1 A catalogue of properties and axioms
	3.2 The first-order theory of coloured finite linear orders
	3.3 The first-order theories of coloured well-orders and expansions of ω
	3.4 The first-order theory of coloured expansions of ζ
	3.5 The first-order theory of coloured ordinals
	3.6 The first-order theory of coloured expansions of η
	3.7 The first-order theory of coloured expansions of λ

	4 From trees to coloured linear orders and back
	4.1 Trees as coloured linear orders
	4.2 Towards axiomatising the first-order theory of ζ-trees
	4.3 Applications of the results so far

	5 First-order theories of coloured trees
	5.1 The first-order theory of coloured ω-trees
	5.2 The first-order theory of coloured ζ-trees
	5.3 The first-order theory of coloured η-trees
	5.4 The first-order theory of coloured λ-trees

	6 Concluding remarks

