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Consider first-passage percolation on the square lattice. Welsh, who together with

Hammersley introduced the subject in 1963, has formulated a problem about mean first-

passage times, which, although seemingly simple, has not been proved in any non-trivial

case. In this paper we give a general proof of Welsh’s problem.

1. Introduction

First-passage percolation was introduced by Hammersley and Welsh [2] in 1963. For a

survey of the area, see Smythe and Wierman [3].

Associate to the links, e, of the square lattice, S, non-negative, i.i.d. random variables,

t¯ t(e), with distribution G.

A path π in S (from n
!

to n
l
) is an alternating sequence of nodes and links

(n
!
, e

"
, n

"
,… , e

l
, n

l
),

such that e
i
is a link between n

i−"
and n

i
, i¯ 1,… , l. The path is self-avoiding if no node

appears more than once in the path.

The passage time for the path π is defined as

T(π)¯3
e`π

t(e).

For x, y `:#, define the first-passage time between x and y as

T(x, y)¯ inf ²T(π) : π is a path from x to y´.

Remark 1. T(x, y)¯ inf ²T(π) : π is a self-avoiding path from x to y´.

Lemma 1.1. For all x1 y `:#, E(T(x, y))!¢ iff E (min (t
"
,… , t

%
))!¢, where t

"
,… , t

%
are

i.i.d. with distribution G.

Proof. See [3]. *
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Let G `' if E (min (t
"
,… , t

%
))!¢, when t

"
,… , t

%
are i.i.d. with distribution G. Denote the

origin of :# by O.

Very little is known about the mean first-passage times, although there are several

conjectures about them, most of them very natural. The difficulty of the area is indicated

by the fact that one such conjecture about cylinder first-passage times, which was generally

believed to be true, was proved wrong: see [1].

In this paper, we will solve a problem, formulated by Welsh, related to another

conjecture.

2. Welsh’s problem

Welsh [4] formulated the following natural conjecture.

Conjecture 2.1. E(T(O, (n, 0)))%E(T(O, (n, y))) for all y.

As Conjecture 2.1 has not been proved, Welsh [4] posed the following simpler problem,

with T
!
¯T(O, (1, 0)) and T

"
¯T(O, (1, 1)).

Welsh’s Problem. Pro�e that E(T
!
)%E(T

"
).

The inequality trivially holds when G has support on an interval (a, b), where b! 2a, as

then T
!
! b! 2a!T

"
, but the problem has not been solved in any non-trivial case.

Theorem 2.1. E(T
!
)%E(T

"
) for all G `'.

Proof. With notation as in Figure 1, we want to prove that

E(T(A,B))%E(T(A,C)).

Note that

T(O, (1, 0))¯d T(A,B)¯d T(C,D) (¯d T(A,D)¯d T(B,C))

and

T(O, (1, 1))¯d T(A,C)¯d T(B,D).

Let π
AC

be an arbitrary path from A to C, and π
BD

be an arbitrary path from B to D. These

must contain at least one common node, P. (To get a unique node, let P denote the one

closest to A on π
AC

.)

Introduce the following notation. If two paths have a common endpoint, they can be

joined to form a new path. This operation is denoted by G, e.g. π
AC

¯π
AP

Gπ
PC

, with

T(π
AC

)¯T(π
AP

)­T(π
PC

). Given a path π
PQ

from P to Q, by πa
PQ

we refer to the path π
PQ

in reverse order, i.e. from Q to P. Obviously, T(π
PQ

)¯T(πa
PQ

).

Partition

π
AC

¯π
AP

Gπ
PC

and

π
BD

¯π
BP

Gπ
PD
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D C

A B

P

Figure 1

and create the new paths

πh
AB

¯π
AP

Gπ
PB

¯π
AP

Gπa
BP

and

πh
CD

¯π
CP

Gπ
PD

¯π
CP

Gπa
DP

.

Then,

T(πh
AB

)¯T(π
AP

)­T(π
PB

)

and

T(πh
CD

)¯T(π
CP

)­T(π
PD

),

so that

T(πh
AB

)­T(πh
CD

)¯T(π
AP

)­T(π
PB

)­T(π
CP

)­T(π
PD

)

¯T(π
AC

)­T(π
BD

).

Now,

T(A,B)­T(C,D)¯ infT(π
AB

)­infT(π
CD

)

%T(πh
AB

)­T(πh
CD

)

¯T(π
AC

)­T(π
BD

).

Since π
AC

and π
BD

are arbitrary, we have proved

T(A,B)­T(C,D)%T(A,C)­T(B,D), (2.1)

which implies

2[E(T
!
)% 2[E(T

"
). (2±2)

*

Remark 2. Note that (2±1) holds without any assumptions on the t-variables ! For (2±1) to

imply (2±2), we only need conditions that guarantee

T(A,B)¯d T(C,D) and T(A,C)¯d T(B,D).

We may, for instance, have different distributions on t(e) for horizontal and vertical edges,

and the t-variables do not have to be independent.
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For all non-trivial distributions the inequality of Theorem 2.1 is strict.

Theorem 2.2. For all G `' : E(T
!
)!E(T

"
) iff G(0)! 1.

Proof. (i) If G(0)¯ 1, then P(T
!
¯T

"
¯ 0)¯ 1, so that E(T

!
)¯E(T

"
)¯ 0.

(ii) Suppose G(0)! 1. We know from (2±1) that T(A,B)­T(C,D)%T(A,C)­T(B,D).

The theorem follows if we can show that there is a positive probability that the inequality

is strict.

Let e
"
, e

#
,… , e

"#
be the edges from the points A, B, C, and D as in Figure 2, and let

t
i
¯ t(e

i
), i¯ 1,… , 12.

A

D C

B

e10

e4

e5

e9

e3

e6

e12 e1 e7

e11 e2 e8

Figure 2

Then, P(T(A,B)­T(C,D)!T(A,C)­T(B,D))&P(t
i
! t

j
, i¯1, 2 and j¯3,…,12)"0

unless G is a one-point distribution, i.e. P(t¯ a)¯ 1 for some a, in which case a" 0,

as G(0)! 1, and T
"
¯ 2a" a¯T

!
. *

Note that we have not proven Conjecture 2.1 for n¯ 1 as the argument above cannot

be used for y" 1. The argument also fails for n" 1, because if we, for example, try to

prove that E(T(O, (2, 0))%E(T(O, (2, 2)) by letting A¯O, B¯ (2, 0), C¯ (2, 2), and

D¯ (0, 2), then π
AC

and π
BD

do not necessarily have a common node P.

For the same reason, the argument fails in three dimensions.

However, if G is an exponential distribution, we can use the lack of memory property

of the distribution to arrive at a different proof of Theorem 2.1 in this case. We have used

the same technique to show that, in fact, Conjecture 2.1 holds for n¯ 1 in the exponential

case.
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