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SUMMARY
In this paper, based on the Youla-Kucera (Y-K) parameterization, the control of a flexible beam
acting as a flexible robotic manipulator is investigated. The method of Youla parameterization is
the simple solution and proper method for describing the collection of all controllers that stabilize
the closed-loop system. This collection comprises function of the Youla parameter which can be
any proper transfer function that is stable. The main challenge in this approach is to obtain a
Youla parameter with infinite dimension. This parameter is approximated by a subspace with finite
dimensions, which makes the problem tractable. It is required to be generated from a finite number
of bases within that space and the considered system can be approximated by an expansion of the
orthonormal bases such as FIR, Laguerre, Kautz and generalized bases. To calculate the coefficients
for each basis, it is necessary to define the problem in the form of an optimization problem that
is solved by optimization techniques. The Linear Quadratic Regulator (LQR) optimization tool is
employed in order to optimize the controller gains. The main aim in controller design is to merge
the closed-loop system and the second order system with the desirable time response characteristic.
The results of the Youla stabilizing controller for a planar flexible manipulator with lumped tip mass
indicate that the proposed method is very efficient and robust for the time-continuous instances.

KEYWORDS: Flexible manipulator; Youla-Kucera parameterization; Orthonormal bases;
Optimization problem; Linear quadratic regulator.

1. Introduction
The Youla parameterization is probably the most well-known controller one which parameterizes all
stabilizing controllers of a system over an infinite dimensional space.1 The problem of designing a
stabilizing controller for a linear time invariant (LTI) plant can be cast into an optimization problem
using a closed-loop approach. A design approach for linear continuous time controllers and a strategy
to identify plants in closed loop based on Y-K parameterization are presented in this paper. A survey of
the literature related to dynamic analyses and control of flexible robotic manipulators is carried out in
the succeeding one.2 An effort is made to critically examine the methods used in these analyses, their
advantages and shortcomings and possible extension of these methods to be applied to a general class
of problems. The review of the recent literature shows that almost all cases applied linearized models
of the link flexibility which reduced the complexity of the model based controller. The experiment
to control the end-effector of a flexible manipulator by measuring the tip position is initiated by
Cannon and Schmitz,3 and used as a basis for applying torque to the joint of the beam. However, they
considered solely a linearized model and also the arm can sweep only in the XY plane so that it is not
affected by the gravity. Since then many new control strategies are developed to control the flexible
link vibration. A robust control scheme for the single-link manipulator is used in ref. [4]. The optimal
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control scheme is applied in the presented works in refs. [5, 6 and 7]. In the next one,8 the singular
perturbation technique is used and developed sliding mode control to attenuate the vibration in ref.
[9]. The sensor-based feedback controls are carried out in ref. [10]. Some papers as,11,12 and13 bear
combined feedback linearization with input shaping technique to control the vibration of a single-link
flexible manipulator. An infinite dimensional distributed base controller for the regulation of the
angular displacement of a one-link flexible robot arm is studied by several researchers.14,15 In refs.
[16, 17] a description regarding PD controller and piezoelectric actuators to control the vibration of
the single-link flexible manipulator is presented. The nonlinear feedback, PID state feed-forward and
Lyapunov-based stabilization procedure is used to control a flexible industrial manipulator.18 Paper19

presents an adaptive impedance control strategy for flexible manipulators by using an end-effector
trajectory control approach. A parameterization of a class of stabilizing vibrational controllers for
single-input single-output (SISO) systems is presented in ref. [20], and uses this parameterization to
design a controller that satisfies unit step response specifications for the original system. In paper21 a
stability and performance preserving controller order reduction method for LTI continuous-time SISO
systems is developed. In this method, the error between the complementary sensitivity functions of the
nominal closed-loop system and closed-loop system using the reduced-order controller is converted
to a frequency-weighted error between the Youla parameters of the full-order and reduced-order
controllers and then the H∞ norm of this error, subject to a set of linear matrix inequality constraints,
is minimized. The paper22 offers a specific synthesis technique for designing H∞ controllers with an
observer structure on which the Youla parameterization and a heuristic choice of the poles of the Youla
parameter can be based. A hybrid frequency domain neurocontrol algorithm is discussed in ref. [23].
Neural network techniques are used to adjust the Youla parameter in an appropriately parameterized
control system. The resulting neurocontroller is stable, robust, and reconfigurable. The learning
algorithm is capable of choosing the order of the Youla parameter. In ref. [24], a parameterized output
feedback dynamic sliding mode controller is proposed and the internal stability, boundary input
boundary output (BIBO) stability, and external disturbance rejection problem of a generalized plant
is studied. The proposed controller is described by a solution of Bezout equation and is parameterized
by a Youla’s free parameter on RH∞. It is shown that the sliding mode is achieved in finite time by
the mentioned controller, and thereafter, the ideal sliding mode controller stabilizes the generalized
plant in the sense that internal stability is assured. An adaptive LQ controller design procedure is
presented in ref. [25]. The design method is based on the idea of Y-K parameterization of the controller
and the plant model. The algorithm is applied to a Continuous Stirred Tank Reactor (CSTR). The
advantage of this method resides in the fact that in the case of CSTR only one parameter needs to
be identified in order to update the controller. Adaptive feed forward broadband vibration (or noise)
compensation is currently used when an image of the disturbance is available. The 26th paper deals
with a new Y-K parameterization of the compensator.26 The central compensator assures the stability
of the system and its performances are enhanced in real time by the adaptation of the Q-parameters. A
method for estimation of parameters or uncertainties in closed-loop systems is described in ref. [27].
The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera)
parameterization of all systems stabilized by a given controller. The dual YJBK transfer function
is a measure for the variation in the system seen through the feedback controller. In ref. [28] an
adaptive algorithm based on the dual Y-K parameterization is introduced enabling simple closed-loop
identification and adaptation of a class of symmetric MIMO systems. The methodology exploits the
algebraic approach to control system design. Necessary conditions for usage of the developed method
are discussed and the related results are presented for the case of coupled drives control. The 29th

is concerned with a convex optimization approach for optimal synthesis in systems in which the
overall control scheme is required to have certain structure.29 These classes can be associated with
several practical applications in integrated flight propulsion systems, platoons of vehicles, networked
control, production lines, chemical processes, etc. The common thread in all of these classes is that
by taking an input-output point of view, all stabilizing controllers can be characterized in terms
of convex constraints concerning the Y–K parameter. The design of a motion control system for a
powered reciprocating gait orthosis is considered in ref. [30]. Models for the orthosis are obtained
using least squares identification. The control system design is based on pole-placement techniques
and a restricted Youla parameterization of the controller. A straightforward basis for continuous time
purposes is introduced in ref. [31]. The present paper assumes an extension to our earlier work.32 The
main contribution of this work aims at developing an efficient control approach for a single flexible
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Fig. 1. The feedback system (P,K).

link robot together with tip mass free from linearization in formulation of the dynamics equations.
To deal with the infinite dimensional set of Y-K parameters for time continuous applications, a finite
dimensional basis is introduced in this paper. The current paper treats Youla-Kucera parameterization,
design of the stabilize controller, and detector for the plant in section 2, and then finite dimensional
parameterization including orthonormal bases and transfer from time-discrete into time-continuous in
section 3, stabilizing controller implementation in section 4, and design of Youla stabilizing controller
for a flexible arm with lumped tip mass and simulation results are presented in section 5. Finally, the
relevant conclusions are considered.

2. Youla-Kucera Parameterization
This paper considers the robust stabilization of a plant model P by the use of a possibly feedback
controller K in the scheme of Fig. 1. With the assumption that transfer function of the system P is
not stable, its Coprime factors can be determined such that;33

P = NM−1, (N, M) ∈ RH∞ (1)

Where N and M are rational stable transfer functions. The transfer functions N and M are called
Coprime factorization of P over RH∞ if and only if the two rational stable transfer functions X and
Y exist such that Bezout equality is satisfied:

NX + MY = I N, M, X, Y ∈ RH∞ (2)

Theorem (1): Assume that P (s) = C(sI − A)−1B + D and the pair (A, C) is detectable and the pair
(A, B) is controllable. Thus, the real matrix F with dimension 1 × n can be obtained such that the
matrix A − BF becomes stable. The matrices N(s), M(s) are given as follows;33

M(s) =
[

A − BF B

−F 1

]
, N(s) =

[
A − BF B

C − DF D

]
(3)

To determine the transfer functions X and Y , a detector must be designed so that the matrix
(A − HC) becomes stable and with the use of the matrix H(n×1), these can be written as

X(s) =
[

A − HC H

F 0

]
, Y (s) =

[
A − HC B − HD

F 1

]
(4)

Theorem (2): all controllers that make the closed-loop internally stable are given by ref. [34]:{
X + MQ

Y − NQ
, Q ∈ RH∞

}
(5)

It is important to note that when the transfer function P is stable, the above theorem turns to:{
Q

1 − PQ
, Q ∈ RH∞

}
(6)

https://doi.org/10.1017/S0263574714001337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001337


On the control of a single flexible arm robot 153

The parameter Q in the above equations is known as Youla parameter.

2.1. Design of the stabilizable controller for the plant
The ultimate objective of the control process is to design Youla stabilize controller. However, in this
section, the aim is to express the optimum conditions to determine the gain matrix F so that the
matrix A − BF becomes stable. For this purpose, the poles placement approach is used. To stabilize
the matrix A − BF , it is necessary that all eigenvalues of the system are located in the left-hand side
of the imaginary axis. With respect to the objective of the control process, which is to obtain the
optimum design of Youla controller, it is necessary to calculate the gain matrix F for certain reasons.
Recall that the gain matrix F is used to determine the transfer functions M and N. This can provide a
proper tool to determine the gain matrix F. Since the eigenvalues of A − BF are poles of the transfer
functions M and N and the zeros of N and M are also zeros and poles of the transfer function P, then
the gain matrix F can be designed so that the rank of the transfer functions N and M can be reduced to
eliminate zero and pole condition. For generating such condition, it is necessary that the eigenvalues
of A − BF are taken equal to zeros of N and M that are located in the left-hand side of imaginary
axis.

2.2. Design of detector for the plant
To calculate the transfer functions X and Y, the problem of designing detector to find the gain matrix
H must be solved such that the matrix A − HC becomes stable. The state equation of this detector is
given by:

˙̂x = Âx̂ + B̂u + Hy (7)

Where u and y are input and output of the system, respectively. Matrices H, B̂, Â must be chosen
such that the detector error, i.e. difference between the actual state variables and the estimated one
become minimum,

e = x − x̂

ė = ẋ − ˙̂x = (Ax + Bu) − (
Âx̂ + B̂u + Hy

) = Ax + Bu − Â (x − e) − B̂u − HCx (8)

and therefore,

ė = Âe + (A − Â − HC)x + (B − B̂)u (9)

Now, in order e approaches zero, the coefficients of x and u in the above relations should be zero.
Thus,

Â = A − HC, B̂ = B (10)

To determine the matrix Â, the gain matrix H should be designed so that the eigenvalues of
the matrix Â become stable. Since the eigenvalues of the matrix Â are determined by solving the
equation |λIn − Â| = 0 and the open-loop system poles are also obtained from solving the equation
|sIn − A| = 0, where | · · · | represents determinate of the matrix, then the characteristic polynomial
equation for the closed-loop system (c.l.c.p) is given by:

c.l.c.p
∣∣λIn − Â

∣∣ = 0

⇒ |λIn − A + HC| = 0
(11)

|λIn − A| ∣∣In + (λIn − A)−1 HC
∣∣ = 0

a (λ)
∣∣In + (λIn − A)−1 HC

∣∣ = 0

Where a(λ) represents the characteristic equation for the open-loop system with the eigenvalue
λ. Considering the matrix n × n of φ(λ) = (λIn − A)−1 and using relation |In + φ(λ)HC| =
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|Im + Cφ(λ)H |, one can obtain

c.l.c.p a (λ) |Im + Cφ (λ) H | = 0 (12)

Thus, the gain matrix H should be selected so as |Im + Cφ(λ)H | = 0 is valid for any eigenvalues
λi i = 1, 2, · · · , n. This is equivalent to choosing the gain matrix H so that the matrix Im + Cφ(λ)H
becomes singular. In order the matrix Im + Cφ(λ)H to become singular, the values of one of the rows
of the matrix Cφ(λ)H should be equal to the same values with negative sign of the corresponding
row of the identity matrix Im as follows:

rowk (Cφ (λi) H ) = −rowk (Im) (13)

Where rowk () shows the kth row of the matrix. Note that by equating one row of the matrix
Cφ(λi)H and Im with one row of the matrix Im + Cφ(λi)H becomes zero; therefore, the determinant
of the matrix Im + Cφ(λ)H equates with zero. Hence, in order that |Im + Cφ(λi)H | = 0 equates
with zero for n eigenvalues it is require that

rowk (Cφ (λi) H ) = −rowk (Im) or
d

dλ

(
rowk

(
Cφ (λ)

∣∣
λ=λi

H
)) = 0T (14)

Where 0T is the row matrix of 1 × m dimension with zero elements. The equation
d
dλ

(rowk(Cφ(λ)|λ=λi
H )) = 0T is used to determine the repeated eigenvalues and for the unrepeated

eigenvalues, the left-hand side of the above equation is used. With the above relation and the definition
of a nonsingular matrix n × n, it can be considered:

Gc =

⎡
⎢⎣ rowj (Cφ (λ1))

...
rowk (Cφ (λn))

⎤
⎥⎦ (15)

and by considering the matrix Jc with the dimension n × 1 where its rows are equal to rows of the
matrices Im or 0T , we have:

GcH = −Jc, H = −G−1
c Jc (16)

Following the above process to calculate the gain matrix H , it is necessary to determine the
eigenvalues of the matrix A − HC with certain considerations. For this reason, the problem of
reduced order of stabilize controller of Youla is considered as the criterion for choosing the poles
of detector. Since the stabilize controllers are determined from {X+MQ

Y−NQ
, Q ∈ RH∞}, the order of

controller depends on the transfer functions X and Y . Thus to reduce the order of the stabilize
controller of Youla, the poles of transfer functions X and Y (which are the eigenvalues of A − HC)
can be taken equal to the poles of the transfer functions N and M .

3. Finite Dimensional Parameterization
The method of Youla parameterization is the simple solution and proper method for describing the
collection of all controllers that stabilize the closed-system cycle of the shown block diagram. This
collection is function of the parameter Q that can be any proper transfer function and is stable
with dimension of m × l. Here, m equals to the number of inputs and l equals to the number of
system outputs. This method of solution is very suitable because instead of finding the matrix of
the transfer function K(s), it is only required to determine the parameter Q(s). Hence to find the
Youla parameter, it is needed to design a control problem for certain purposes. Note that the stable
and proper condition (subspace of RH∞) of Youla parameter is the only constraint for choosing
Q(s). Hence, if in the general case that the transfer function matrix of Q(s) is calculated using the
aforementioned conditions; in fact, the designed controller stabilize the closed-loop system. In order
that Q(s) becomes subspace of RH∞, it is required to be generated from a finite number of bases
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from that space. Thus by choosing some bases for the space RH∞, it is only sufficient to determine
coefficients of these bases for Q.

3.1. Orthonormal bases
This section describes the method for calculating orthonormal bases in time discrete linear systems.
From the stand point that the considered system can be approximated by expansion of orthonormal
bases, it is assumed that one of the system major poles is located in ζ0 such that |ζ0| < 1 and one of
the bases can be taken as ref. [35]:

B0 (z) = Azd

z − ζ0
d = 0, 1 (17)

By choosing d, the considered base leads to proper or strictly proper base. To determine A, the
condition in which the base is unit should be taken into account such as:

〈B0 (z) , B0 (z)〉 = A2

2πj

∮
dz

(z − ζ0)
(
1 − ζ ∗

0 z
) = A2

1 − |ζ0|2
d = 0 (18)

In order that the norm B0 becomes unity, the coefficient A =
√

1 − |ζ0|2 is adopted. Therefore for
the first base, we have:

B0 (z) =
√

1 − |ζ0|2
z − ζ0

d = 0 (19)

Now, the second pole of the main system is assumed to be located in the point ζ1 with the condition
|ζ1| < 1. For the second base of the collection of orthonormal bases, we have:

B1 (z) = A′ (1 − ζ ∗
0 z
)

(z − ζ0) (z − ζ1)
d = 0, 1 (20)

Perhaps at the first glance, the chosen base seems unusual; however, by evaluating the orthogonal
condition of inner product, it can be recognized that for equating 〈B0, B1〉 = 0, it is essential that
B∗

1 (the complex conjugate of B1(z)) holds zeros equal to the number of poles of B0(z). Hence by
equating zero of B∗

1 and pole of B0(z), it is concluded that the function B∗
1 (z) B0(z) is analytic in

D (There are no singular points in this space). According to Cushy integral theorem, the solution is
〈B0, B1〉 = 0.

〈B0 (z) , B1 (z)〉 =
√

1 − |ζ0|2
2πj

∮
T

A′ (z − ζ0) dz

(z − ζ0)
(
1 − ζ ∗

0 z
) (

1 − ζ ∗
1 z
) = 0 (21)

Again, to determine the coefficient A′, we must use the condition of unity of the used base such
that:

〈B1 (z) , B1 (z)〉 = A′2

2πj

∮
T

(ζ0 − z)
(
ζ ∗

0 z − 1
)
dz

(z − ζ0) (z − ζ1)
(
1 − ζ ∗

0 z
) (

1 − ζ ∗
1 z
) = A′2

1 − |ζ1|2
(22)

In order that norm of B1(z) becomes unity, it is required that:

A′ =
√

1 − |ζ1|2 (23)
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Therefore, by choosing the main system poles in [ζ0 ζ1 ζ2 · · · ζn] and following the above-discussed
process, the collection of orthonormal bases can be determined by:

Bn (z) =
√

1 − |ζn|2
z − ζn

n−1∏
k=0

1 − ζ ∗
k z

z − ζk

(24)

The above bases are called the generalized orthogonal bases and are the most general shape of
these bases.
� If the above bases of poles are located at ζi = 0 i = 1, 2, · · · , n then the collection of orthogonal

unit bases FIR are obtained in general form as:

Bi (z) =
(

1

z

)i

i = 0, 1, 2, · · · , n (25)

� If all poles of the generalized orthonormal bases are located at ζi = ζ i = 1, 2, · · · , n (where all of
these are real), then the collection of Laguerre orthonormal bases are obtained as:

Bi (z) =
√

1 − |ζ |2
z − ζ

(
1 − ζz

z − ζ

)i

|ζ | < 1 i = 0, 1, 2, · · · , n (26)

� If two complex conjugate poles are used for the generalized orthonormal bases, then the Kautz
orthogonal unit bases are obtained:

Bi (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(1 − α2)(1 − γ 2)

z2 − α (γ + 1) z + γ

(
γ z2 − α (γ + 1) z + 1

z2 − α (γ + 1) z + γ

) i−1
2

for i = 2k − 1√
(1 − γ 2)(z − α)

z2 − α (γ + 1) z + γ

(
γ z2 − α (γ + 1) z + 1

z2 − α (γ + 1) z + γ

) i
2

for i = 2k

k = 1, 2, · · · , n (27)

The above relations are valid for |α| < 1, |γ | < 1.

3.2. Transfer from time-discrete into time-continuous spaces
In order to approximate a predefined transfer function in time-discrete space into a time-continuous
space, the Tustin transformation can be used.

3.2.1. Tustin transformation. The Tustin transformation is a mapping from z plane (plane of complex
digits) into s plane such that the time-discrete system is transferred into the time-continuous system.
This is the mapping or transformation that transfers the transfer function Ha(s) defined in the
continuous LTI systems into transferred function in time-discrete space systems Hd (z). In overall,
this is the mapping that transfers the locations over imaginary axis in s plane, i.e. {s|Re(s) = 0,jω},
on a unit circle in z plane, i.e. |z| = 1. Therefore, the following transformation can be used to transfer
from the time-discrete systems space into the time-continuous systems space:

s ← 2

T

z − 1

z + 1
(28)

Thus, based on the defined bases in the time-discrete systems space as the bases for the parameter
Youla, it is appropriate to use the Tustin transformation to define the orthogonal bases in time-
continuous systems space. For this purpose and by using the following transformation, it can be
written as (Table I):

z = s + a

s − a
⇔ s = a

z + 1

z − 1
(29)
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Table I. The orthonormal bases in the time-discrete and time-continuous spaces.

Z-Plane (time-discrete space) S-Plane (time-continuous space)

FIR Basis Bi(z) =
(

1

z

)i

i = 0, 1, 2, · · · , n Bi(s) =
(

s − a

s + a

)i
a > 0

i = 0, 1, 2, · · · , n
Laguerre Basis Bi(z) =

√
1 − |a|2
z − a

(
1 − az

z − a

)i

|a| < 1 i = 0, 1, 2, · · · , n Bi (s) =
√

2a

s + a

(
s − a

s + a

)i
a > 0

i = 0, 1, 2, · · · , n

Kautz Basis
Bi (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
(1 − α2)(1 − γ 2)

z2 − α (γ + 1) z + γ

(
γ z2 − α (γ + 1) z + 1

z2 − α (γ + 1) z + γ

)i−1

for i = 2k − 1√
(1 − γ 2) (z − α)

z2 − α (γ + 1) z + γ

(
γ z2 − α (γ + 1) z + 1

z2 − α (γ + 1) z + γ

)i−1

for i = 2k

k = 1, 2, · · · , n, |α| < 1, |γ | < 1

Bi (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2a s

s2 + as + b

(
s2 − as + b

s2 + as + b

)i−1

for i = 2k − 1
√

2ab

s2 + as + b

(
s2 − as + b

s2 + as + b

)i−1

for i = 2k

k = 1, 2, · · · , n

Generalized Basis Bi (z) =
√

1 − |ai |2
z − ai

i−1∏
k=0

1 − a∗
k z

z − ak

Bi (s) =
√

2Re (ai)

s + ai

i−1∏
k=0

s − a∗
k

s + ak
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Fig. 2. The sustained stability over the two planes of s, z using the Tustin transformation.

The Tustin transformation sustain stability and orthogonal feature in the two time-discrete and
time-continuous spaces by mapping all points inside the unit circle in the z plane {z||z| < 1} into the
corresponding collection of points on the left-hand side of the imaginary axis in s plane {s|Re(s) < 0}.
Thus, the Tustin transformation is an isomorphism transformation as shown in Fig. 2.

3.2.2. Performance characteristic of the system in time domain.

� Characteristics of time response of the system

One of the objectives in this section is to keep a closed-loop system closer to a second order system
with appropriate time response. Considering the overshoot parameters, the rise time, the settling time,
and the steady-state error as characteristics for the system time response, it is required to assess the
conditions that lead to appropriate values for each parameter.
� Overshoot

In order that the closed-loop system obtains a certain overshoot for a step input, it is necessary
that the maximum value of response for the closed-loop system due to the step input does not exceed
from the expected value. By defining the upper limit of response (bu(t)) to reach a certain overshoot,
it is important that the norm of the difference between the time response of desirable upper limit and
the output response of the system for the step input is always greater than zero; i.e.:∥∥bu (t) − L−1 {T (s) R (s)} (t)

∥∥
∞ ≥ 0 ⇒ ∥∥bu (t) − L−1 {(N (X + MQ)) R (s)} (t)

∥∥
∞ ≥ 0

(30)

� The rise time, the settling time, and the steady-state error

In order to obtain a desirable time response for a closed-loop system, in addition to control the
system overshoot, other parameters of time response such as the rise time, the settling time, and the
steady-state error must also be improved. Therefore, to control simultaneously these characteristics,
the lower limit of the time response bl(t) is used such that by merging the output of the closed-loop
system to the lower limit of time response, the aforementioned characteristics will approach some
desirable quantities. Controlling the aforementioned characteristics will evidently result in choosing
the lower limits. Thus, the lower limit of time response should be realized by considering the rise time,
the settling time, and the steady-state time. Examining the effects of each parameter, it is clear that
the lower limit of the time response will impose restriction on the time response of the closed-loop
system such that the system in a time period of Tr seconds (equals to the desirable time rise) will
converge from 0.1 of the steady response to 0.9 of that. In addition to this limit, the closed-loop
system reaches 0.98 of the steady response after Ts seconds (equals to the desirable settling time).
Moreover, to obtain a desirable steady-state error for the closed-loop system, the lower limit reaches
to the steady response of the unit step input. The allowed region for the optimization problem is
assigned with the region between the upper and lower limits such that the lower limit represents the
time response characteristics including the rise time, the settling time, and the steady-state error and
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Table II. The performance characteristics of the system in two domains of frequency and time.

The objective
function

Time domain

The
characteristic
of time
response of
the system
(overshoot)

∥∥bu (t) − L −1 {T (s) R (s)} (t)
∥∥

∞ ≥ 0 ⇒ ∥∥bu (t) − L −1 {(N (X + MQ)) R (s)} (t)
∥∥

∞ ≥ 0

The
characteristic
of time
response of
the system
(rise time,
settling time,
and steady
state error)

∥∥L −1 {T (s) R (s)} (t) − bl (t)
∥∥

∞ ≥ 0 ⇒ ∥∥L −1 {(N (X + MQ)) R (s)} (t) − bl (t)
∥∥

∞ ≥ 0

the upper limit represents the boundary for the overshoot. Thus, to include the rise time characteristic,
the settling time, and the steady-state error for the system, the following relation is considered as the
constraint for the optimization problem:

∥∥L−1 {T (s) R (s)} (t) − bl (t)
∥∥

∞ ≥ 0 ⇒ ∥∥L −1 {(N (X + MQ)) R (s)} (t) − bl (t)
∥∥

∞ ≥ 0 (31)

The above conditions are summarized for frequency and time domains in Table II.

4. Stabilizing Controller Implementation
The aim of the control process, for a system with negative unit feedback, is to design the Youla
stabilizing controller to achieve the sought objectives. The main aim in this design is to minimize the
norm of output response difference of the closed-loop system using the Youla stabilizing controller
and obtain the second order output from system when exerting a step input. In other words, the
aim is to merge the closed-loop system to the second order system with the desirable time response
characteristic. For this purpose, the chosen Youla parameter Q (s) plays an important role in this
design. To solve the controlled problem and to design ultimately the Youla stabilizing controller,
the optimization processes should take into account the specification of the following two control
subjects:

� Adopting the Youla parameter bases (selecting the location of poles of the bases)
� Calculating coefficients for each basis

4.1. Adopting the Youla parameter
By defining the general problem of designing the Youla stabilizing controller, in the form of the
optimization problem of linear programming type, it turns to adopting the Youla parameter. For
selecting this parameter, linear combination of the bases are used to satisfy the condition Q (s) ∈
RH∞. Therefore, by examining published literature,35–37 it can be concluded that a suitable way
for choosing this parameter is to use the collection of orthonormal bases expressed in the previous
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sections as follow:

qi (s) =
(

s − a

s + a

)i

a > 0 i = 0, 1, 2, · · · , n FIR Basis

qi (s) =
√

2a

s + a

(
s − a

s + a

)i

a > 0 i = 0, 1, 2, · · · , n Laguerre Basis

qi(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2a s

s2 + as + b

(
s2 − as + b

s2 + as + b

)i−1

for i = 2k − 1

k = 1, 2, · · · , n Kautz Basis√
2ab

s2 + as + b

(
s2 − as + b

s2 + as + b

)i−1

for i = 2k

qi (s) =
√

2Re (ai)

s + ai

i−1∏
k=0

s − a∗
k

s + ak

i = 1, 2, · · · , n Generalized Basis

(32)

4.1.1. Adopting the location of poles for the orthonormal bases. Consider that the aim of the control
process by choosing the Youla parameter is to minimize the following objective function:

‖y (t) − yd (t)‖∞ (33)

Therefore, it can be said that for minimizing the above function, y(t) (actual output of the closed-
loop system) must approach to yd (t) (desired output of the second order system) and since the desired
state occurs according to the second order system’s response to the step input, it is necessary that
the closed-loop system behaves similar to the second order system. Note that the system greater than
second order behaves similar to the second order system when additional poles of the system are far
away from the real parts of the dominant poles of the second order system. Thus, the first rule for
adopting the poles of the Youla parameter is that these poles must be located far away from the real
parts of the dominant poles yd (t). Moreover, the Youla parameter bases can be chosen such that the
order of closed-loop system is also reduced. For this reason, considering the transformation function
of the closed-loop system T (s) = N(s)[X(s) + M(s)Q(s)], the poles of Youla parameter should be
equal to the poles of the stabilizing transfer function N(s)X(s). Therefore, for selecting the optimum
poles of the Youla parameter bases as appear on the poles of the transfer function N(s)X(s) (which
must be stable because N(s), X(s) ∈ RH∞) which are adequately away from the real part of the
dominant poles, yd (t)should be selected.

4.2. Calculating the coefficients for each base
For designing the Youla stabilizing controller, it is necessary to define the problem in the form of an
optimization problem to be solved by optimization techniques. Thus, by considering the described
objective in the controlled process, the problem can be designed in this way. The objective function
of the optimization problem can be defined by minimizing the norm of the difference of the output of
the closed-loop system with Youla stabilizing controller and the output response of the second order
system. The desired characteristic of the time response of the system can be defined by constraint
in the optimization problem. The real response of the system is the actual output of the system to
the input step while the desired response generates conditions in which the system output to the step
input is given as shown in Fig. 3 such that the output overshoot (%OS) is less than %20 and the peak
time (Tp) is also 14 seconds. By employing the aforementioned conditions, the desired response can
be recognized as the response of the second order system, with the below transfer function, to the
step input as:

yd (s)

R(s)
= ω2

n

s2 + 2ζωns + ω2
n

%OS = e
−
(
ζπ
/√

1−ζ 2
)
× 100
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Fig. 3. The desired output response to step input.

TP = π

ωn

√
1 − ζ 2

(34)

To ensure that the desired response is sufficiently stable and its dominant poles are sufficiently
located on the left-hand side of the imaginary axis, the term (s + γ ) is also added in denominator of
the transfer function of the desired output where γ is varied from 5 to 6 times larger than the poles of
the second order system. Hence, the desired output of the transfer function to step input is expressed
by:

yd (s)

R(s)
= ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

= 0.06357(
s2 + 0.2299s + 0.06357

)
(s + 1)

(35)

By introducing the objective function as:

Min ‖y (t) − yd (t)‖∞

Min

∥∥∥∥∥L−1 {T (s) R (s)} (t) −L−1

{[
ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

]
R(s)

}
(t)

∥∥∥∥∥
∞

(36)

Where T (s) represents the transfer function of the closed-loop system and is equal to N(X + MQ).
To determine Q, the problem is transformed into the optimization domain such that the problem
variables to be determined using the optimized techniques.

Min

∥∥∥∥∥L−1 {N(X + MQ)R (s)} (t) − L −1

{[
ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

]
R(s)

}
(t)

∥∥∥∥∥
∞

(37)

By simplifying the term inside‖ . . . ‖, it can be written as:

Min

∥∥∥∥∥L−1

{[
NX − ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

]
R(s)

}
(t) +L−1 {NMQR(s)} (t)

∥∥∥∥∥
∞

(38)
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Fig. 4. Block diagram for the flexible arm with lumped mass at tip.

By equating Q(s) = ∑n
r=1 βrqr where qr and βr are bases and coefficients of each base respectively,

it holds:

Min

∥∥∥∥∥L−1

{[
NX − ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

]
R(s)

}
(t) + L −1

{
NM

n∑
r=1

βrqrR(s)

}
(t)

∥∥∥∥∥
∞
(39)

The first term in the above equation is the response of system inside [. . .] to step input and is
the specific column vector; however, the second term is the system response NM

∑n
r=1 βrqr to step

input and is a matrix with n column (considering n bases for the Youla parameter) where each column
corresponds to a unit base in RH∞ space. Hence, the expression (39) can be written as:

Min ‖b − Ax‖∞ (40)

Where x is the column vector of unknowns and in fact the coefficients of the bases in RH∞ space
and:

b = L−1

{[
NX − ω2

n(
s2 + 2ζωns + ω2

n

)
(s + γ )

]
R(s)

}
(41)

A = −L−1 {NMβR(s)} (t)
n∑

r=1

βrqr = β1×nxn×1

In conclusion, the design of the stabilizing controller of the closed-loop system is changed to the
optimization problem of the above form, aimed at finding the problem variables and the coefficients
of the Youla parameter.

5. Design of Youla Stabilizing Controller for a Flexible Arm With Lumped Tip Mass
Extracting the state-space equations for the flexible arm is the required condition to arrive in designing
the controller and to introduce fully the control method; the Youla controller shown in Fig. 4 can
be designed for the flexible arm with the lumped tip mass in single-input single-output (SISO)
state.

Taking motor armature voltage as the input control and ignoring applied torque to hub as the
system disturbance (unwanted input) and considering the fact that the system output is in the form of
angular variation of the arm, the state-space equations of the flexible arm in single-input single-output
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state is given by ref. [38]:

d

dt

⎧⎨
⎩

i

Z1

Z2

⎫⎬
⎭ =

[
Am11 Am12

1
2

(
Am21 − (

0|M−1K
))

1
2 (Am22)

]
︸ ︷︷ ︸

A
(2n+3)××(2n+3)

⎧⎨
⎩

i

Z1

Z2

⎫⎬
⎭+

[
Bm11

1
2 (Bm21)

]
︸ ︷︷ ︸

B
(2n+3)×1

V

Y = θ

Y = [
0 1 0 0 . . . 0 0 0 . . . 0 0

]︸ ︷︷ ︸
C 1×(2n+3)

⎧⎨
⎩

i

Z1

Z2

⎫⎬
⎭ (42)

Where

Am11 =
[ − R

L
[0]1×(n+1)

[0](n+1)×1 [0](n+1)×(n+1)

]
(n+2)×(n+2)

and Am12 =
[

− NKm
L

[0]1×n

[I ](n+1)×(n+1)

]
(n+2)×(n+1)

Am21 =

⎡
⎢⎢⎢⎢⎣

NKm
Je

0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

(n+1)×(n+2)

and Am22 =

⎡
⎢⎢⎢⎣

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎦

(n+1)×(n+1)

Bm11 =

⎡
⎢⎢⎢⎢⎣

1
L

0
...
0

⎤
⎥⎥⎥⎥⎦

(n+2)×1

and Bm21 = [0](n+1)×1

K = EI

h4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 . . . 0 0 0 0
0 6 −4 1 0 0 . . . 0 0 0 0
0 −4 6 −4 1 0 . . . 0 0 0 0
0 1 −4 6 −4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . −4 6 −4 1
0 0 0 0 0 0 . . . 1 −4 5 −2
0 0 0 0 0 0 . . . 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(IH + Ib + It ) ρx1 ρx2 ρx3 ρx4 ρx5 . . . ρxn−3 ρxn−2 ρxn−1 ρxn + Mt (r + l)
ρx1 ρ 0 0 0 0 . . . 0 0 0 0
ρx2 0 ρ 0 0 0 . . . 0 0 0 0
ρx3 0 0 ρ 0 0 . . . 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
ρxn−2 0 0 0 0 0 . . . 0 ρ 0 0

ρxn−1 + Jt

h2 0 0 0 0 0 . . . 0 0 ρ + Jt

h2 − Jt

h3

ρxn + Mt (r+l)
h

+ Jt

h2 0 0 0 0 0 . . . 0 0 − Jt

h3 ρ + Mt
h

+ Jt

h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

Z1 = [θ, y1, y2, . . . , yn]T and Z2 = Ż1

As it is clear from demonstration of the state space, the dimension of matrices D, C, B, A are
1 × 1, 1 × (2n + 3), (2n + 3) × 1, (2n + 3) × (2n + 3), respectively. The oncoming figures and
tables are based on the available parameters in Tables III and IV.

By attaining the initial conditions (stabilization and observability) for designing the stabilizing
Youla controller, the problem is transferred from state equations space (time domain) into the transfer
function space (frequency domain) so that we can use the governing equations for determining Youla
parameterization to design an stabilized controller.

For designing the Youla stabilizing controller with the transfer function K(s) = X+MQ

Y−NQ
, first the

transfer functions (N, M, X, Y ) ∈ RH∞ must be determined. For this purpose and by considering
the explained methodology, the matrices H, F must be found so that the matrices (A − BF ) and
(A − BF ) become stable based on the discussed optimization conditions. Since (A, B) are stabilizable
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Table III. Parameters of the DC motor.

Parameter Value Parameter Value

R(�) 1.2 J (Kg m2) 0.02
L(H ) 0.5 N 12
Jm(Kg m2) 8 × 10−4 Km(Nm/A) 0.5

Table IV. Key parameters of the flexible robot system.

Parameter Value Parameter Value

l(m) 1 Jt (Kg m2) 0.002
w(m) 0.01 Mt (Kg) 0.5
b(m) 0.02 r(m) 0.075
EI (Nm2) 2000 IH (Kg m2) 0.0174
ρ(kg/.m) 1 h(m) 0.02

and (A, C) are observable, the gain matrices H, F can be determined through the presented methods
in previous sections to stabilize four transfer functions (N, M, X, Y ). Following these methods and
considering the conditions in sections 2.1 and 2.2 for the gain matrices H, F , we have:

F =
[

2.0839 1.7321 − 7.2529 − 12.5792 − 17.9589 − 23.3937 − 42.6102
0.2859 0.1017 0.1777 0.2568 0.3379 0.5994

]T

(1×13)

H =
[−81.9148 8.5791 − 0.2571 − 0.0224 − 1.0755 1.61 − 2.8097

35.3003 − 2.2527 − 0.2322 − 9.8352 13.5730 − 24.0424

]T

(1×13)

(43)

By inspecting the eigenvalues of the matrices (A − BF ) and (A − HC), it is observed that all of the
eigenvalues are located on the left-hand side of the imaginary axis. Now with using the relations for
the matrices (N, M, X, Y ), it can be determined as:

N (s) = 44.38

s3+6.568 s2+279 s + 76.87

M (s) = s3+2.4 s2+266.3 s

s3+6.568 s2+279 s + 76.87
(44)

X (s) =

−54.9 s12+887.6 s11 − 7.986 × 108 s10+1.251 × 1010 s9 − 3.31 × 108 s8

+5.015 × 1016 s7 − 3.67 × 1021 s6+5.297 × 1022 s5 − 3.165 × 1026 s4+4.211 × 1027 s3

−1.091 × 1030 s2 − 5.486 × 1029 s + 1.714 × 1031

s13+10.98 s12+1.455 × 107 s11+1.585 × 108 s10+6.032 × 1013 s9+6.503 × 1014 s8

+6.69 × 1019 s7+7.082 × 1020 s6+5.807 × 1024 s5+5.951 × 1025 s4

+2.32 × 1028 s3+1.474 × 1029 s2+5.882 × 1030 s + 9.897 × 1030

(45)

Y (s) =

s13+15.15 s12+1.455 × 107s11+2.192 × 108 s10+6.032 × 1013 s9+9.017 × 1014 s8

+6.691 × 1019 s7+9.87 × 1020 s6+5.81 × 1024 s5+8.364 × 1025s4+2.346 × 1028 s3

−1.091 × 1030 s2 − 5.486 × 1029s + 1.714 × 1031

s13+10.98 s12+1.455 × 107 s11+1.585 × 108 s10+6.032 × 1013 s9+6.503 × 1014 s8

+6.69 × 1019 s7+7.082 × 1020 s6+5.807 × 1024 s5+5.951 × 1025 s4

+2.32 × 1028 s3+1.474 × 1029 s2+5.882 × 1030 s + 9.897 × 1030

As discussed earlier, the transfer functions M, Nand Y, Xare not unique solutions. Hence, any
multiplier of these transfer functions can also be a solution for the first subdivided problem. To
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Fig. 5. Assessing equality of Bezout Identity for k = 1 NX + MY = 1.

Fig. 6. Response to step input of the transfer function for k = 1.

examine correctness of the above transfer functions and their belonging to RH∞space, the response
of these to step input and the Bezout Identity can be assessed as shown in Figs. 5 and 6:

Acquiring the transfer functions (N, M, X, Y ) ∈ RH∞ and for designing the Youla stabilizing
controller, the Q parameter must be obtained. For this aim as described in previous sections, the
orthonormal bases can be used as bases for Q(s). To determine the Youla parameter, the problem is
expressed as the optimization problem in linear programming, i.e. refs. [39, 40]:

Minimize ‖b − Ax‖∞ = Min {Max {|r1| , |r2| , |r3| , · · · , |rm|}}
LP form of l∞ norm

Min t
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Fig. 7. The output of the closed-loop system to step input with the stabilizing Youla controller using orthonormal
bases.

s.to − t ≤ bi −
m∑

j=1

aij xj ≤ t i = 1, 2, · · · , n (46)

m∑
j=1

aij xj ≤ bu (t) − L −1 {N (s) X (s) R (s)} (t)
t∈[0,tf ]

m∑
j=1

aij xj ≤ L −1 {N (s) X (s) R (s)} (t)
t∈[0,tf ]

−bl (t)

The objective function in the problem of linear programming is to minimize infinity norm of the
vector b − Ax so that it result for every variable in the minimum of the objective function and the two
last terms in the constraint equations represent characteristics of the desired time response (overshoot,
rise time, settling time and the steady-state error) for the closed-loop system.

5.1. Results of design of Youla stabilizing controller based on orthonormal bases
The problem of designing controller has led to the problem of optimization with linear programming
and large number of constraints that must employ the interior point method to derive the following
solutions tabulated in Tables V to VIII for FIR, Laguerre, Kautz, and the orthonormal bases,
respectively. The output of the closed-loop system to step input with the stabilizing Youla controller
using these orthonormal bases are compared in Fig. 7.

6. Conclusion
In this paper, the Youla-Kucera parameterization method to control of planar manipulator with a
single flexible link was used. This method of solution is very suitable because instead of finding the
matrix of the transfer function, it is only required to determine the Youla parameter. To remedy with
the infinite dimensional set of Youla-Kucera parameters, a new procedure based on orthonormal bases
was presented here. In order to approximate transfer functions of orthonormal bases in time-discrete
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Table V. Results for the design of stabilizing Youla controller with orthonormal FIR bases.

Location of pole of the bases −0.4
Number of bases 5

Youla parameter Q (s) Q (s) =
2.875 s10+8.473 s9+13.32 s8+14.33 s7+10.79 s6+5.55 s5+
1.908 s4+0.4265 s3+0.05919 s2+0.004648s + 0.0001627

s10+4 s9+7.2 s8+7.68 s7+5.376 s6+2.58 s5+0.8602 s4

+0.1966 s3+0.02949 s2+0.002621 s + 0.0001049

Coefficient of bases of the Youla parameter
[

2.0806 − 0.2302 − 0.4035 0.8917 0.5361
]T

Number of iteration in the Interior Point method 19

Value of the objective function in the optimization problem ‖y (t) − yd (t)‖∞ 0.007171
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Table VI. Results for the design of stabilizing Youla controller with orthonormal Laguerre base s.

Location of pole of the bases −0.4
Number of bases 6

Youla parameter Q (s) Q (s) =
2.882 s15+14.15 s14+34.58 s13+55.95 s12+66.21 s11+59.52 s10+41.17 s9+21.98 s8+9.04 s7

+2.847 s6+0.6785 s5+0.1198 s4+0.01515 s3+0.001291 s2+6.61 × 10−5s + 1.528 × 10−6

s15+6 s14+16.8 s13+29.12 s12+34.94 s11+30.75 s10+20.5 s9+10.54 s8+4.217 s7+1.312 s6

+0.3149 s5+0.05725 s4+0.007634 s3+0.0007046 s2+4.027 × 10−5s + 1.074 × 10−6

Coefficient of bases of the Youla parameter
[

2.8816 − 0.7186 − 0.9323 − 1.3115 −0.4986 − 0.0532
]T

Number of iteration in the Interior Point method 17

Value of the objective function in the optimization problem 0.007171
‖y (t) − yd (t)‖∞
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Table VII. Results for the design of stabilizing Youla controller with orthonormal Kautz bases.

Location of pole of the bases
[−0.8 + 0.5i −0.8 − 0.5i

]
Number of bases 6

Youla parameter Q (s) Q (s) =

2.887 s30+66.18 s29+742.5 s28+5427 s27+2.906 × 104 s26+1.215 × 105 s25

+4.134 × 105 s24+1.175 × 106 s23+2.845 × 106s22+5.952 × 106 s21+1.087 × 107 s20

+1.748 × 107 s19+2.484 × 107 s18+3.136 × 107 s17+3.522 × 107 s16+3.522 × 107 s15

+3.137 × 107 s14+2.484 × 107 s13+1.745 × 107 s12+1.083 × 107 s11+5.906 × 106 s10

+2.813 × 106 s9+1.159 × 106 s8+4.085 × 105 s7+1.211 × 105 s6+2.955 × 104 s5

+5746 s2+848.3 s3+87.81 s2+5.485s + 0.1426
s30+24 s29+282.2 s28+2163 s27+1.214 × 104 s26+5.312 × 104 s25+1.885 × 105 s24

+5.566 × 105 s23+1.394 × 106 s22+3 × 106 s21+5.609 × 106 s20+9.177 × 106 s19

+1.322 × 107 s18+1.682 × 107 s17+1.897 × 107 s16+1.899 × 107 s15+1.688 × 107 s14

+1.332 × 107 s13+9.316 × 106 s12+5.758 × 106 s11+3.132 × 106 s10+1.491 × 106 s9

+6.165 × 105 s8+2.191 × 105 s7+6.603 × 104 s6+1.656 × 104 s5+3369 s4

+534.2 s3+62.02 s2+4.695s + 0.1741

Coefficient of bases of the Youla parameter
[

2.8872 − 1.8983 − 0.9615 0.2650 − 0.1293 − 0.1067
]T

Number of iteration in the Interior Point method 17
Value of the objective function in the optimization problem 0.099089

‖y (t) − yd (t)‖∞
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Table VIII. Results for the design of stabilizing Youla controller with orthonormal generalized bases.

Location of pole of the bases
[−0.2 −0.3 −0.4 −0.5 −0.6

]
Number of bases 6

Youla parameter Q (s) Q (s) =

2.888 s15+11.23 s14+22.56 s13+30.64 s12+30.31 s11+22.31 s10+12.31 s9

+5.121 s8+1.611 s7+0.3827 s6+0.06811 s5+0.008933 s4+0.0008379 s3

+5.322 × 10−5 s2+2.055 × 10−6s + 3.659 × 10−8

s15+5 s14+11.55 s13+16.35 s12+15.87s11+11.18 s10+5.91 s9+2.386 s8

+0.7421 s7+0.1778 s6+0.03254 s5+0.004469 s4+0.000446 s3

+3.052 × 10−5 s2+1.281 × 10−6 s + 2.488 × 10−8

Coefficient of bases of the Youla parameter
[

2.8880 − 0.5084 − 0.5565 − 1.2992 − 1.0417 − 0.2329
]T

Number of iteration in the Interior Point method 18
Value of the objective function in the optimization problem ‖y(t) − yd (t)‖∞ 0.005496
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space into a time-continuous space, the Tustin transformation was used. The aim of the control
process was to design the Youla stabilizing controller to achieve certain overshoot, rise time, settling
time, and steady-state error. Therefore, LOR method was employed in order to optimize controller
gains and the problem of designing a controller was replaced by an optimization problem. The
interior point method was used to solve the optimization problem. As shown for the case study, the
proposed method is very efficient for time-continuous problems. This method allows to fully utilizing
the original method developed by Boyd to be extended by taking into account some multi-criteria
constraints in time and frequency domains, simultaneously. The output of the closed-loop system
to step input with the stabilizing Youla controller using four orthonormal bases was presented and
showed that all of orthonormal bases have similar results.

Nomenclature

θ(t) = Reference angular motion l = Length of link
yi = Transverse vibration components of beam w = Width of link
Je = Effective inertia of load shaft of a DC motor EI = Stiffness of the link
N = Gear ratio of motor ρ = Specific mass per unit of length

of beam
V = Armature voltage IH = Moment of inertia of the hub
i = Armature current r = Radius of the hub
R = Resistance of armature circuit Mt = Tip mass
L = Inductance of armature circuit Jt = Moment of inertia of tip mass
Tm = Produced torque by a DC motor Jm = Inertia of rotor of a DC motor
J = Moment of inertia of load M = System mass matrix
b = Height of link K = System stiffness matrix

h = Step size

References
1. J. C. Doyle, B. A. Francis and A. Tannenbaum, Feedback Control Theory (McMillan, New York, 1992).
2. S. K. Dwivedy and P. Eberhard, “Dynamic analysis of flexible manipulators, a literature review,” Mech.

Mach. Theory 41(7), 749–777 (2006).
3. R. H. Cannon and E. Schmitz, “Initial experiments on end-point control of a flexible one-link robot,” J.

Robot. Res. 3(3), 62–75 (1984).
4. R. Caracciolo, D. Richiedei, A. Trevisani and V. Zanotto, “Robust mixed-norm position and vibration

control of flexible link mechanisms,” Mechatronics 15(7), 767–791 (2005).
5. J. D. Lee, “Application of optimal control theory to flexible robotic manipulators,” Robot. Comput. Integr.

Manuf. 3(4), 327–355 (1990).
6. S. Pal, H. E. Stephanou and G. Cook, “Optimal control of a single-link flexible manipulator,” J. Intell.

Robot. Syst. 2(1), 187–199 (1989).
7. S. Xuemin, V. G. Gourishankar and R. Ming, “Near Optimum Control of Flexible Manipulators,” Canadian

Conference on Electrical and Computer Engineering (1993) pp. 1073–1076.
8. B. Siciliano and W. J. Book, “A singular perturbation approach to control of light weight flexible

manipulator,” J. Robot. Res. 7(4), 79–90 (1988).
9. Y. P. Chen and K. S. Yeung, “Regulation of a one link flexible robot arm using sliding mode technique,” J.

Control 49(6), 1965–1978 (1989).
10. P. T. Kotnik, S. Yurkovich and U. Ozguner, “Acceleration Feedback Control for Flexible Manipulator Arm,”

Proceedings of the IEEE International Conference on Robotics and Automation (1988) pp. 322–323.
11. H. Geniele, R. V. Patel and K. Khorasani, “End-point control of a flexible manipulator: theory and

experiments,” IEEE Trans. Control Syst. Technol. 5(6), 556–570 (1997).
12. K. P. Liu, W. You and Y. C. Li, “Combining a Feedback Linearization Approach with Input Shaping for

Flexible Manipulator Control,” Proceedings of the International Conference on Machine Learning and
Cybernetics, Changchun University of Technology, China (2003) pp. 561–565.

13. W. L. Xu, S. K. Tso and X. S. Wang, “Sensor-based deflection modeling and compensation control of
flexible robotic manipulator,” Mech. Mach. Theory 33(7), 909–924 (1998).

14. Z. Mohamed and M. O. Tokhi, “Command shaping techniques for vibration control of a flexible robot
manipulator,” Mechatronics 14(1), 69–90 (2004).

15. N. Jalili, “An infinite dimensional distributed base controller for regulation of flexible robot arms,” ASME
J. Dyn. Syst. Meas. Control 123(4), 712–719 (2001).

https://doi.org/10.1017/S0263574714001337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001337


172 On the control of a single flexible arm robot

16. D. Sun and J. K. Mills, “Combined PD Feedback and Distributed Piezoelectric-Polymer Vibration Control of
a Single-Link Flexible Manipulator,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (1998) pp. 667–672.

17. D. Sun, J. K. Mills, J. Shan and S. K. Tso, “A PZT actuator control of a single-link flexible manipulator
based on linear velocity feedback and actuator placement,” Mechatronics 14(4), 381–401 (2004).

18. S. H. Lin, S. Tosunoglu and D. Tesar, “Control of a six-degree-of-freedom flexible industrial manipulator,”
IEEE Control Syst. Mag. 11(3), 24–30 (1991).

19. Z. H. Jiang, “Impedance control of flexible robot arms with parametric uncertainties,” J. Intell. Robot. Syst.
42(2), 113–133 (2005).

20. P. T. Kabamba, S. M. Meerkov and E. K. Poh, “Youla parameterization in closed-loop vibrational control,”
IEEE Trans. Autom. Control 39(7), 1455–1459 (1994).

21. R. Amirifar and N. Sadati, “Stability and Performance Preserving Controller Order Reduction Via Youla
Parameterization and LMIS,” Proceedings of the IEEE International Conference on Electronics, Circuits
and Systems (2003) pp. 663–666.

22. M. J. Zandvliet, C. W. Scherer, C. W. J. Hol and M. M. J. Van De Wal, “Multi-Objective H∞ Control
Applied to a Wafer Stage Model,” Proceedings of the IEEE International Conference on Decision and
Control, Netherlands 796–802 (2004).

23. R. Saeks, J. Kaiser and C. Cox, “Neuro Control and the Youla Parameterization,” Proceedings of the 4th
International Conference on Systems, Man and Cybernetics (1993) pp. 115–118.

24. K. Nonaka, “Youla Parameterization of Output Feedback Sliding Mode Controller: Internal Stability and
Disturbance Rejection,” American Control Conference (1999) pp. 553–539.

25. J. Mikles, L. Cirka and M. Fikar, “Youla-Kucera parameterization self-tuning LQ control of a chemical
reactor,” Department of Information Engineering and Process Control, Bratislava, Slovakia, grants No.
1/8108/01 and 1/135/03 (2002).

26. D. Landau, T. B. Airimitoaie and M. Alma, “A Youla-Kucera parametrized adaptive Feedforward
compensator for active vibration control with mechanical coupling,” Automatica 48(9), 2152–2158 (2012).

27. H. Niemann and N. K. Poulsen, “Estimation of Model Uncertainties in Closed-Loop Systems,” American
Control Conference, Denmark (2008) pp. 5186–5191.

28. F. Gazdos and P. Dostal, “Adaptive control of a coupled drives apparatus using dual Youla-Kucera
parameterization,” Triennial World Congress, Prague, Czech Republic 16(1), 898–903 (2005).

29. X. Qi, M. V. Salapaka, P. G. Voulgaris and M. Khammash, “Structured optimal and robust control with
multiple criteria: aconvex solution,” IEEE Trans. Autom. Control 49(10), 1623–1640 (2004).

30. B. M. Nouri and A. Zaidan, “Computer control of a powered two degree freedom reciprocating gait orthosis,”
ISA Trans. 45(2), 249–258 (2006).

31. S. Hbaı̈eb, S. Font, P. Bendotti and C. M. Falinower, “Finite dimensional q-parameterization for continuous
time control design,” Proceedings of the 10th Mediterranean Conference on Control and Automation,
Lisbon, Portugal (2002).

32. H. Esfandiar and S. Daneshmand, “Closed loop control of the planar flexible manipulator via Youla-Kucera
parameterization,” J. Mech. Sci. Technol. 27(11), 3243–3252 (2013).

33. S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, New York (John
Wiley & Sons, 2005).

34. J. Doyle, B. Francis, and A. R. Tannenenbaum, Feedback Control Theory (Dover Publications, 2009).
35. B. Ninness and F. Gustafsson, “A unifying construction of orthonormal bases for system identification,”

IEEE Trans. Autom. Control 42(4), 515–521 (1997).
36. Z. Szabo, J. Bokor and F. Schipp, “Identification of rational approximation models in H infinity using

generalized orthonormal basis,” IEEE Trans. Autom. Control 44(1), 153–158 (1999).
37. E. Polak and S. E. Salcudean, “On the design of linear multivariable feedback system via constrained

nondifferentiable optimization in H/Sup infinity spaces,” IEEE Trans. Autom. Control 34(3), 268–276
(1989).

38. H. Esfandiar and S. Daneshmand, “Complete dynamic modeling and approximate state space equations of
the flexible link manipulator,” J. Mech. Sci. Technol. 26(9), 2845–2856 (2012).

39. J. H. Ferziger, Numerical Methods for Engineering Application 2nd ed. (John Wiley & Sons Publication,
1998).

40. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, UK, 2004).

https://doi.org/10.1017/S0263574714001337 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001337

