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The potential for anticipated destruction of a counter-rotating vortex pair using the
linear optimal perturbation of the Crow instability is assessed. Direct numerical
simulation is used to study the development of the Crow instability and the
subsequent evolution of the flow up to 30 characteristic times at a circulation-based
Reynolds number of 1000. The conventional development of the instability leads
to multiple contortions of the vortices including the linear growth of sinusoidal
deformation, vortex linking and the formation of vortex rings. A new evolution stage
is identified, succeeding this well-established sequence: the vortex rings undergo
periodic oscillation. Two complete periods are simulated during which the vortical
system is hardly altered, thereby demonstrating the extraordinary resilience of the
vortices. The possibility of preventing these dynamics using the linear optimal
perturbation of the Crow instability, the adjoint mode, is analysed. By appropriately
setting the forcing amplitude, the lifetime of the vortices until their loss of coherence
is reduced to approximately 13 characteristic times, which is less than half that of
the natural Crow behaviour observed with infinitesimal forcing. The dynamics of the
flow induced by the linear optimal perturbation that enable this result are connected
to processes already known to efficiently alter vortical flows, in particular transient
growth and four-vortex dynamics.
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1. Introduction
The increasing demand for air transport across the world has led to saturation in

many major airports. Take-off and landing rhythms are limited by a safety interval
imposed to avoid the danger of encountering an aircraft wake. Taking the form of a
counter-rotating vortex pair, this powerful wake generates a rotating force that could
tip a following aircraft. This danger is also encountered at cruising level and represents
a major concern for air traffic control. The understanding and control of these coherent
structures is therefore of paramount importance and has been the aim of many studies
for several decades.

The optimal perturbation is the perturbation that generates maximum growth of
perturbation energy over a certain period of time and therefore constitutes the ideal
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Crow instability: nonlinear response to the linear optimal perturbation 653

perturbation for disrupting a flow. Many optimal perturbation studies have been carried
out on various flow configurations. In the case of an isolated vortex, Antkowiak &
Brancher (2004) and more recently Pradeep & Hussain (2006) determined the linear
optimal perturbations for azimuthal wavenumbers m= 1 and m= 1 . . . 4, respectively.
In particular the m= 1 mode with wavenumber ka= 1.4 leads to significant transient
growth in this otherwise linearly stable flow. Farrell (1988) established that the linear
optimal perturbation of a particular flow corresponds to the adjoint of the most
unstable mode of the flow. Brion, Sipp & Jacquin (2007) applied this principle to a
counter-rotating vortex pair. The dominant instability of this configuration is the Crow
instability (Crow 1970) which induces symmetrical sinusoidal displacement of the
vortex cores. The linear optimal perturbation corresponding to the Crow instability
established by Brion et al. (2007) takes the form of vorticity sheets concentrated
close to the plane separating the two vortices and produces considerable transient
growth before reaching the classic linear Crow instability behaviour.

It has been shown by many that when an isolated vortex is subjected to external
perturbation, secondary helical structures form, wrapping around the core in a manner
that is very similar to that of the linear optimal. Melander & Hussain (1993),
Miyazaki & Hunt (2000) and Marshall & Beninati (2005) studied the reaction of a
vortex to fine-scale turbulence using direct numerical simulation (DNS), and Fontane,
Brancher & Fabre (2008) continuously stimulated a vortex using stochastic forcing.
In all of these studies the emergence of the linear optimal was observed. Whatever
the form of the perturbation, the modes corresponding to the linear optimal are
preferentially excited through the interaction with the vortex. Although the initial
perturbation development is linear, once secondary structures are formed it is possible
they will interact and the subsequent evolution will be nonlinear. It is therefore
legitimate to pose the question, what happens to linear optimal perturbations when
the nonlinearities become non-negligible. Another question of importance is that of
the effect of a finite initial amplitude of the optimal perturbation and how it would
influence the evolution of the flow. Such questions cannot be answered in a linear
framework and become important when the practicality of the approach is questioned.
It should be noted that the feasibility of the linear optimal perturbation of the Crow
instability occurring or being generated in a real vortex system is not addressed in
this study which remains at the theoretical level, but this should be approached at a
later stage.

The method used in this paper, initialising a nonlinear DNS with the linear optimal
mode, has been applied in previous works. Hussain, Pradeep & Stout (2011) studied
the nonlinear evolution of the linear optimal mode of an isolated vortex and observed
that moderate initial perturbation amplitudes at a high enough Reynolds number could
trigger core transition. Shaeffer & Le Dizès (2010) studied the nonlinear evolution
of the elliptic instability on a single strained vortex and a pair of counter-rotating
vortices. Schmid & Henningson (2001) showed that the linear optimal perturbation
with finite initial amplitudes can generate laminar–turbulent transition in normal-mode
stable shear flows.

The aim of this paper is to study the nonlinear response to the linear optimal
perturbation of a counter-rotating vortex pair determined by Brion et al. (2007)
using DNS. The paper is organised in the following manner. The methods used to
carry out the DNS and to obtain the linear perturbation mode are outlined (§ 2). A
preliminary study of the long-term behaviour of the Crow instability with infinitesimal
initial amplitude is carried out to provide a reference for the following analysis (§ 3).
The nonlinear response to the linear optimal perturbation introduced with growing
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654 H. G. Johnson, V. Brion and L. Jacquin

initial amplitudes is then studied and compared with the reference case (§ 4). Finally
the physical mechanisms involved in the accelerated decay of the vortex pair are
described (§ 5).

2. Governing equations
The flow is governed by the incompressible Navier–Stokes equations:

∇ · u= 0 (2.1)

∂tu+ (u · ∇)u=−∇p+ ν∇2u. (2.2)

Decomposing the velocity and pressure of the flow into components corresponding
to the base flow and to a small perturbation, u = U + εu′, p = P + εp′ with ε � 1
and linearising the equations around the base flow yields the linearised Navier–Stokes
equations given here at first order of ε:

∇ · u′ = 0 (2.3)

∂tu′ + (u′ · ∇)U + (U · ∇)u′ =−∇p′ + ν∇2u′. (2.4)

The base flow of the simulation is composed of a pair of counter-rotating Lamb–
Oseen vortices, with initial azimuthal velocity Uθ defined as

Uθ(r)= Γ

2πr
(1− e−r2/a2

), (2.5)

with Γ the circulation of the vortex.
All results are rendered non-dimensional by the initial distance separating the

vortices b and the drift velocity of the vortex pair through mutual induction
Udrift = Γ/2πb. The characteristic evolution time of the dipole is the time it takes to
descend a distance equal to b through mutual induction, τ = b/Udrift = 2πb2/Γ . The
resulting Reynolds number is Re=Γ/2πν with ν the kinematic viscosity of the fluid.
In this case, the Reynolds number is taken to be Re = 1000 and the initial aspect
ratio of the vortex pair is a/b= 0.18. In order to avoid the transient phase due to the
adaptation of the Lamb–Oseen vortex pair to the Navier–Stokes equations, the base
flow is time-stepped forward by several reference times (t ≈ 8) before embarking on
the perturbation analysis. The details of this method are described by Sipp (1999).
During the linear simulations to obtain the linear optimal perturbation the base flow
is ‘frozen’. This is valid as long as the viscous timescale is large compared with
the timescale of the perturbation dynamics. The timescale of the viscous diffusion
of a vortex being tν = 2πa2/ν, the ratio of these two timescales tν/τ = (a/b)2Re
is indeed large.

As the wavelength of the most unstable Crow mode is around λz = 7b, the
simulations are carried out on a mesh of extent [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ×
[−Lz/2, Lz/2] with Lx = 9.6b, Ly = 10.8b, Lz = 7b in order to calculate one
complete wavelength of the instability. Cartesian coordinates (x, y, z) are used
throughout the study. The largest divisions in each direction are 1xmax/b ≈ 0.025,
1ymax/b ≈ 0.03, 1zmax/b ≈ 0.02. The DNS is carried out using the incompressible
Navier–Stokes solver Nek5000 (Fischer, Lottes & Kerkemeier 2008), which is based
on a spectral elements method. The computational domain is split into N3

e uniformly
distributed elements with Ne = 70, containing NGLL = 8 Gauss–Lobatto–Legendre
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(GLL) points in each direction. The largest mesh interval is given by 1dmax =
πLd/2(NGLL − 1)Ne with d ∈ x, y, z.

Although the flow studied in this paper is initially laminar, the nature of the
resulting dynamics is unknown and potentially turbulent. Therefore, it is judicious to
create a mesh that can handle a turbulent flow calculation were it to materialise.
The mesh must be fine enough to capture the Kolmogorov dissipation scale
λKolm = Re−3/4b ≈ 6 × 10−3 and the shear layer scale at the leading hyperbolic
point δ = (2πb2ν/31/2Γ )1/2 ≈ 2.5 × 10−2 determined here for a point vortex model.
The contribution of eddies of scale l6 5λKolm is negligible (Pope 2000), and therefore
the current mesh, designed on this threshold, is sufficient. As confirmation a test
was carried out using half the number of elements for the same domain size, which
gave close to identical results, with less than 3 % difference between the values of
the circulation at t = 10. Similarly the adequacy of the domain size was validated
using a mesh twice as large, keeping the same number of elements and GLL points.
Boundary conditions in the axial direction (z) are periodic. In order to compensate for
the descent of the vortex pair through mutual induction a vertical velocity is imposed
in the domain. Therefore, the boundary conditions on the negative and positive
y-borders are inflow and outflow, respectively. Finally in the spanwise direction
symmetrical conditions are imposed.

Farrell (1988) demonstrated that the linear optimal perturbation of a flow is the
adjoint of the most unstable mode of the flow. The adjoint of the most unstable
Crow mode is determined by solving the adjoint linearised Navier–Stokes equations.
The adjoint Ã of an operator A is defined as (x, Ay) = (Ãx, y) + b.c. with x and
y vectors, (·, ·) the scalar product and b.c. meaning boundary conditions. Applying
this definition to the operator corresponding to the linearised Navier–Stokes equations
gives the adjoint equations:

∇ · ũ′ = 0 (2.6)

∂tũ′ + (ũ′ · ∇)U − (U · ∇)ũ′ =−∇p̃′ + ν∇2ũ′. (2.7)

The initial velocity field for each DNS simulation described in this paper is
expressed as uε(0) = U + ε‖U‖u′0 with u′0 the normalised perturbation velocity field
(the adjoint Crow mode is taken here). Once started the simulation yields the flow
field uε(t). In contrast to the linear simulations throughout which the base flow was
frozen, the nonlinear simulation implicates an evolving base flow. In the linear stage
of the evolution the perturbation u′(t) can be retrieved by the following approximation
uε(t) ' uε=0(t) + ε‖U‖u′(t). An unperturbed flow (ε = 0) is thus required in order
to follow the evolution of the perturbation u′(t) and the perturbation kinetic energy
E′(t)= ‖u′(t)‖2 can then be computed as

E′(t)= ε−2‖U‖−2‖uε(t)− uε=0(t)‖2. (2.8)

3. Reference case: response to infinitesimal forcing of the linear optimal
perturbation
The reference case for the nonlinear dynamics of the Crow instability is established

for an infinitesimal initial perturbation amplitude to get as close to the linear limit as
possible (ε→ 0). This case can be assimilated to the far-field wake of an aircraft in
very calm and homogeneous atmospheric conditions. The linear optimal perturbation
is superimposed on the base flow with an initial amplitude ε= 10−3. It is important to
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(c) ( f )

FIGURE 1. Isovorticity contours at 20 % of the initial maximum of vorticity ω =
0.2|ωmax(t = 0)| showing the initial development of the Crow instability and the linking
of the vortices: (a) t= 0; (b) t= 7; (c) t= 8; (d) t= 9; (e) t= 10; ( f ) t= 11.

note that at such a small initial amplitude, the overall dynamics will be the same as
if the flow was initialised with the most unstable Crow mode. The use of the linear
optimal perturbation here has only one objective: accelerating the development of the
instability to limit simulation time costs.

The dynamics of the vortex pair is concurrent with that described by Crow (1970).
Isovorticity contours illustrate the dynamics in figure 1. As the simulations are
carried out over one wavelength of the Crow instability, only one wavelength is
shown. The vortices undergo a gradual symmetrical sinusoidal deformation with the
cores remaining in a plane of angle approximately equal to 45◦ with respect to the
spanwise direction (x). Eventually at time t= 9 the closest parts of the vortices meet
and are pressed together. The descent of the dipole and the continued deformation
of the vortices creates a distinctive head–tail dipole shape in the connection z-planes.
Vorticity cancellation between the opposite signed vortices becomes very strong in
these areas, and the linking phenomenon is observed. This well-known event is
described in more detail in the following paragraph. Once linking is complete, the
vortices form a chain of vortex rings connected by thin vorticity threads. Due to the
original symmetrical deformation of the vortices, the sides of the rings remain curved
upwards, as can be observed at t= 11.

Over recent years a great deal of attention has been paid to vortex linking because
of its supposed involvement in turbulence cascade and turbulent noise generation.
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FIGURE 2. Evolutions of the circulation γz in the connection plane (z = Lz/2) and the
circulation γx in the dividing plane (x= 0). Evidence of the transfer of axial vorticity to
spanwise vorticity throughout the linking process.

In spite of a great number of analytical, numerical and experimental studies, some
aspects of this complicated process are still unclear. Saffman (1990) developed a
model describing the linking of two counter-rotating vortices and Moriconi (2000)
extended the model into high Reynolds numbers. Detailed descriptions of the physical
mechanisms at play are given by many authors (Melander & Hussain 1989; Marshall,
Brancher & Giovannini 2001; Hussain & Duraisamy 2011). To summarise quickly,
when the vortices touch, viscous diffusion causes the touching parts to cancel each
other out. The remaining strands on the outer sides of the vortex cores then reconnect
to form bridges joining the two vortices. These bridges become strong and move
away from each other through self-induction, leaving behind the remnants of the
original vortices in threads. The linking of the vortex pair into vortex rings can be
observed particularly well when studying the evolution of the axial circulation γz in
the connection z-plane (z=±Lz/2) and the spanwise circulation γx in the symmetry
plane (x = 0), as can be seen in figure 2. These circulations are defined by the
following expressions:

γz =
∫ Lx/2

0

∫ Ly/2

−Ly/2
ωz(x, y, Lz/2) dx dy (3.1)

γx =
∫ Ly/2

−Ly/2

∫ Lz/2

0
ωx(0, y, z) dy dz, (3.2)

with ωx and ωz the x- and z-components of the vorticity vector, respectively. Vorticity
cancellation between the colliding counter-rotating vortices leads to a dramatic drop
of the axial circulation γz from t= 8 to t= 10. At this point the threads linking the
vortex rings are still present and so the decrease of the axial circulation slows before
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finally reaching almost zero at around t= 13.5. From this point the axial circulation
is nil, demonstrating that once the vortex rings are formed and the threads have
disappeared, no axial vorticity exists in the (z= Lz/2)-plane. The spanwise circulation
γx is negligible initially but from t = 8 increases rapidly, eventually attaining 98 %
of the initial value of γz. The evolution of these quantities demonstrates the transfer
of vorticity from the axial direction to the spanwise direction. Of the numerous
ways to characterise this phenomenon, one of the most striking is the connection
time trc. This corresponds to the duration between the vortex cores touching and the
bridges separating. From pure observation of the connection progress, it is virtually
impossible to determine a definitive connection time value. However Melander &
Hussain (1989) and Leweke & Williamson (2011) noted that it is possible to deduce
a value by inspecting the evolution of the circulation in the connection plane. Using
the same method, illustrated in figure 2, the linking time in this case is found to
be equal to trc = 1.5 ± 0.2 compared with trc = 0.7 ± 0.1 for Melander & Hussain
(1989) at Re= Γ/ν = 1000 and trc = 0.9± 0.2 for Leweke & Williamson (2011) for
Re = Γ/ν = 2340. The error estimation of this type of method is around 15–20 %.
The disparity between the connection time found here and those established in other
papers is most certainly due to the difference in Reynolds number and the difference
in axial perturbation wavelength. Although the aspect ratios used are very similar
(a/b = 0.18 for Leweke and Williamson and a/b = 0.22 for Melander and Hussain)
the axial wavelengths chosen for the deformation of the vortex pair are quite different:
λz/b = 5.13 for Leweke and Williamson and λz/b = 3.85 for Melander and Hussain
(as opposed to λz/b= 7 in the present study).

The subsequent evolution of the flow is analysed in the light of several quantities,
namely the length-averaged axial circulation Γz(t) and spanwise circulation Γx(t)
which indicate the strength of the vortices, the enstrophy ξ(t) and the total kinetic
energy E(t). These quantities are expressed as integrals over the computational
volume V:

Γz(t)= 1
Lz

∫
V
ωz(t) dV (3.3)

Γx(t)= 1
Lx

∫
V
ωx(t) dV (3.4)

ξ(t)= 1
2

∫
V
ω(t)2 dV (3.5)

E(t)= 1
2

∫
V

u(t)2 dV. (3.6)

Figure 3(a,b) shows the evolution of these quantities in time. The evolution of the
length-averaged circulations highlights the exchange of circulation between the axial
and spanwise directions at the linking stage, and then again at t= 15 and t= 24. After
linking, the maximum of length-averaged circulation max(Γx, Γz) remains at around
60 % of the initial value of Γz and is attained at t≈ 13 by Γx and t≈ 19 by Γz. This
demonstrates the existence of a periodic behaviour that will be analysed further in
the following paragraphs by observing the dynamics of the vortex rings. The nature
of the flow can be examined by considering the evolution of the enstrophy ξ . The
progression in time of the enstrophy is governed by

∂ξ

∂t
+ (u · ∇)ξ − ν∇2ξ = Sωωξ − ν∇ω : ∇ω, (3.7)
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FIGURE 3. (a) Evolution of length-averaged axial and spanwise circulations Γz and Γx
over time. (b) Total kinetic energy E and enstrophy ξ evolution over time. Note the kinetic
energy and enstrophy were integrated over the whole domain whereas the circulations were
integrated over half of the domain.

with Sωω = 2[(nω · ∇)u] · nω the component of strain in the vorticity direction and
nω = ω/‖ω‖. The left-hand side of the equation constitutes the advection–diffusion
term, the first term of the right-hand side is the production term and the last term
ensures viscous dissipation. Production of enstrophy occurs through stretching of
vorticity. During the first stage of the evolution of the vortices, before the connection,
the enstrophy decreases rapidly which can be expected in the case of a laminar flow.
At t = 10 the linking process entails massive vorticity stretching which generates a
large spike of enstrophy. The subsequent enstrophy peaks are due to the stretching
of smaller structures formed around the vortex ring. Finally the kinetic energy of
the flow decreases steadily over time as a consequence of viscous dissipation. This
behaviour can be expected from a laminar viscous flow.

At the end of the linking process t = 11, the vortex rings produced are circular
and the sides corresponding to the original straight vortices are curved upwards
as a result of the Crow instability (see figure 1). Self-induced vorticity due to the
curvature of the vortex draws these sides outwards (in the spanwise direction) until
the ring is flat. The resulting rings are then elliptic with the major axis aligned in
the spanwise direction. The dynamics of an elliptic vortex ring have been studied
analytically by Arms & Hama (1965). Using the Biot–Savart law and adopting
a localised-induction theory Arms & Hama (1965) established several principles
that regulate the dynamics of elliptic vortex rings. They concluded that elliptic
vortex rings experience periodic deformations, where the major and minor axes
periodically exchange their orientations. The period T of this behaviour depends on
the eccentricity e =√

1− l2/L2 of the original ellipse, where L is the length of the
semi-major axis and l the length of the semi-minor axis. The greater the eccentricity,
the more complex is the deformation. These results were validated numerically and
experimentally by Dhanak & Bernardinis (1981).

An estimation for the initial eccentricity in this case is e ≈ 0.97 with an axis
ratio l/L ≈ 0.26. The different stages of evolution of the vortex rings, illustrated in
figure 4 with vorticity norm isocontours, are very similar to those described by Arms
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FIGURE 4. Vorticity isocontours at 14 % of the initial vorticity norm maximum ω =
0.14|ωmax(t = 0)| for ε = 10−3, t = 13, 15, 16, 17, 19, 22, 23, 24, 26 (a,b) and 20 %
of the initial vorticity norm maximum ω= 0.2|ωmax(t= 0)| for ε = 10−2, t= 7, 9, 10, 11,
12, 13, 14, 15, 16.4 (c) and ε= 3× 10−2, t= 7, 8.2, 9, 10, 12 (d) evolution of the vortex
rings during the first period T . View from above (a) and the front (b) for each stage of
the ε = 10−3 case, view from above only for ε = 10−2 (c) and ε = 3× 10−2 (d).

& Hama (1965) and Dhanak & Bernardinis (1981), in particular the ‘figure-of-eight’
shape attained at the half-period T/2 (here at t = 19). The cores are very close in
the centre of the domain at this time, but they do not touch enough for linking to
occur and the deformation continues. Had the cores touched at this point, viscous
diffusion would certainly have lead to the annihilation of vorticity between the parts
of opposing sign and the vortices would have split once more into two smaller
vortex rings. It is conceivable that another Crow wavelength, generating a different
eccentricity, could lead to such a scenario. At time T the resulting ring is an ellipse
of similar size and shape to the original ellipse.

By observing the movement of the vortex ring, the deformation period is estimated
to be T = 13. Two complete periods are captured by the present simulation although
only one is shown in figure 3. Using the expression of Arms & Hama (1965)
derived by linearised analysis of a circular vortex ring and adapted to account for
the eccentricity of the elliptic ring, the theoretical period of oscillation is Tth = 10.4,
providing reasonable agreement with the simulated value. Such discrepancies between
theory and simulation were also observed by Arms & Hama (1965): typically a 6 %
difference for e= 0.94 and larger for increased eccentricity.

This behaviour of vortex rings issued from the linking of a vortex pair was observed
experimentally by Leweke & Williamson (2011). They observed the successive
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FIGURE 5. Perturbation energy growth rates for the linear evolution of the Crow instability
eigenmode (dashed line) and the linear optimal perturbation (solid line), as well as those
obtained for the evolution of the linear optimal perturbation initialised with ε = 10−3

(triangles), ε = 10−2 (squares) and ε = 3× 10−2 (circles).

deformations characteristic of elliptic vortex rings over less than a period, and in
some cases a second reconnection of the vortex rings into longer ellipses resembling
the initial straight vortices. The simulated results of this paper confirm the initial
development described by Leweke & Williamson (2011) (stages A to E in their
figure 14) but the second reconnection of the vortices is not retrieved.

These results indicate that when subjected to infinitesimal forcing, a pair of counter-
rotating vortices go through multiple evolutions without losing much coherence over
more than 25 characteristic times. Loss of coherence could not be reached in the
simulated time frame meaning that in calm atmospheric conditions aircraft wakes may
be present for durations longer than those required for vortex linking.

4. Nonlinear response to the linear optimal perturbation
In this section the nonlinear response to the linear optimal perturbation is analysed

by a parametric study based on the initial perturbation amplitude ε. Figure 5 shows
the perturbation energy growth G(t) over time for two example values of ε as well
as the infinitesimal case ε= 10−3 and the equivalent growths for the Crow eigenmode
and linear optimal perturbation as outlined by Brion et al. (2007). The perturbation
energy growth is defined as follows:

G(t)= E′(t)
E′(0)

, (4.1)

with E′ the perturbation kinetic energy defined at (2.8). First note that all the
perturbation energy growths initially follow the linear behaviour and then branch off,
signalling at that moment the beginning of nonlinear behaviour. The recording of
the perturbation energy growth is halted soon after the divergence from the linear
behaviour as from that time the definition of the perturbation kinetic energy (2.8) is
no longer valid. In the case of infinitesimal initial amplitude ε = 10−3 this occurs
at t ≈ 8 which coincides with the start of vortex linking, the first nonlinear event to
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FIGURE 6. (a) Kinetic energy spectrum with ε = 10−3 (solid line) and ε = 3 × 10−2

(dashed line) at t = 3; (b) spectrum width at t = 1 (light grey), t = 2 (grey) and t = 3
(black) for different initial amplitudes ε of the linear optimal perturbation.

occur. Increasing the initial amplitude simply shifts this scenario in time and generates
the vortex linking sooner. However, for ε = 3 × 10−2 the deviation from the linear
behaviour occurs before the exponential perturbation energy growth characteristic
of the Crow instability is even established. Therefore, a critical amplitude εc which
distinguishes two behaviours can be defined such that 10−2<εc< 3× 10−2. For ε < εc
the Crow instability is reached before nonlinear effects come into play, whereas for
ε > εc nonlinear dynamics start during the initial transient growth due to the linear
optimal perturbation.

An efficient way to measure the impact of nonlinear phenomena in an initially
purely harmonic flow is to look at its wavelength composition. In the case of an
infinitesimal perturbation, only the wavelength corresponding to the perturbation will
experience growth over time. This is demonstrated in figure 6(a) which gives the
volume-averaged energy spectrum of the ε= 10−3 and ε= 3× 10−2 cases at t= 3. For
ε = 10−3 the majority of the energy is concentrated at wavenumber kb= 0.9 (the first
peak in the spectrum) which corresponds to the wavelength of the initial perturbation
(and that of the computational domain). However, as soon as the perturbation reaches
sufficient amplitude, interactions of the perturbation with itself produce smaller
scales, thus widening the spectrum as can be seen for ε = 3× 10−2. Here the Crow
wavenumber kb= 0.9 is less amplified compared with the infinitesimal case. A gain
of around 100 is obtained for ε = 3× 10−2 as opposed to about 2700 for ε = 10−3 as
can also be seen in figure 5. Note that such important gains, which are much larger
than those permitted by the Crow amplification, are made possible by the use of the
adjoint mode as the initial perturbation.

The impact of the initial amplitude ε is analysed with the width of the energy
spectrum 1k in the axial (z) direction, defined as

1k=

∫
kE(k) dk∫
E(k) dk

, (4.2)
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FIGURE 7. (a) Length-averaged axial circulation Γz(t), (b) enstrophy ξ(t) and (c) total
kinetic energy E(t) for ε = 10−2 (dashed lines), ε = 3 × 10−2 (full lines) and ε = 10−3

(dotted lines) for comparison.

with E(k) the total kinetic energy of the flow at the wavenumber k. Figure 6(b) shows
the resulting spectrum widths for varying ε for t = 1–3. Only a few values of ε
have been tested but they are sufficient to draw the conclusion that over a certain
limit the nonlinear behaviour induced by the linear optimal perturbation is drastically
different and leads to a rapid development of smaller-scale structures. The instant t=3
is particularly interesting because at that time (see figure 5) either exponential Crow
growth has been reached (ε < εc) or nonlinear behaviour has taken place (ε > εc).

Next, the effect of the initial amplitude on the length-averaged axial circulation,
the enstrophy and kinetic energy is evaluated. Figure 7 gives the evolutions of these
quantities through time for ε = 10−2 and ε = 3 × 10−2 as well as ε = 10−3 for
comparison.

The evolution of the length-averaged axial circulation Γz of the two simulations
(see figure 7a) shows that raising the initial perturbation amplitude accelerates the
displacement of the vortices and anticipates linking. For ε = 10−2 the same periodic
evolution of the circulation as in the infinitesimal case can be observed after the drop
due to connection. The vorticity isocontours of figure 4 confirm this behaviour. The
elliptic ring shape is attained at around t = 7 and the deformation of the ring is the
same as in the infinitesimal case. However there is a major difference at later times:
after the ‘figure-of-eight’ pattern the ring slowly separates into two smaller rings. This
case was also described by Dhanak & Bernardinis (1981) for rings of axis ratio l/L
under 0.2. The axis ratio of the elliptic ring at t = 7 in this case is l/L = 0.195.
The separation of the ring into two smaller rings occurs in a very similar manner
to the first connection of the vortices. Such a doubling of the dominant longitudinal
wavelength has been observed in previous works (Misaka et al. 2012, for example).
For ε = 3× 10−2 the periodic behaviour stops soon after the first exchange between
γz and γx. This occurs after the first growth of Γz at t = 3 in figure 7(a). Γz then
slowly drops to around zero at t≈ 9 and eventually becomes negative, implying that
the periodic ring state is halted and a completely different state is in progress. In fact,
analysis of figure 4 shows that once the first elliptic ring shape is reached (at t= 7)
the deformation of the ring is stopped and it slowly loses coherence and breaks up
under the effect of the many small-scale structures that have developed around the
ring over time.

Initially, the enstrophy in both simulations decreases. As before, considerable
growth (see mark P0 in figure 7b) occurs at times coinciding with the collision of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.176


664 H. G. Johnson, V. Brion and L. Jacquin

0
(a) (b) (c)

(d) (e) ( f )

FIGURE 8. Initial vorticity contour evolution for (a–c) ε= 10−3 at 0.2 % |ωmax(t= 0)| (§ 3)
and (d–f ) ε = 3× 10−2 at 10 % |ωmax(t= 0)|: (a,d) t= 0, (b,e) t= 0.4, (c, f ) t= 0.85.

the vortices, which involves massive vorticity stretching on the centreplane separating
the two cores. Subsequently for ε = 10−2 the enstrophy decreases much more slowly
and finally reaches the reference state ε = 10−3, meaning that no spectacular event
occurs. However for ε = 3 × 10−2 several peaks in enstrophy (P0–P3) occur after
linking. Moreover, the final mean level of enstrophy remains much higher. This can
be related to the persistence of small scales in the flow. The first peak (P1), at t≈ 3.8
corresponds to the stretching of vorticity in the later stages of the linking phase,
notably within the bridges and induced by the bridges on the remaining threads.
This strongly nonlinear amplification has been observed by Melander & Hussain
(1989), Marshall et al. (2001) and Hussain & Duraisamy (2011). Two other bumps
(P2 and P3) occur at t ≈ 6.7 and t ≈ 10 which were absent in the low ε cases and
which correspond to the encounter of opposite parts of the ring. Figure 7(c) gives
the evolution of the kinetic energy of the flow. Up to t≈ 2 both cases see the kinetic
energy decreasing at the same rate, which is about that of the linear perturbation
ε = 10−3. However, linking in the case ε = 3 × 10−2 promotes an increased decay
which is not observed in the case ε= 10−2. This increased dissipation stems from the
larger production of smaller scales.

5. Accelerated decay

The results presented in § 4 have demonstrated that for initial amplitudes greater
than εc, the evolution of the flow is significantly changed compared with the reference
evolution described in § 3. Most importantly the flow rapidly loses most of its
coherence. The underlying physical mechanisms are described in the following
paragraphs. Note that the formation of a pair of vortex rings from the initially single
elliptic ring observed in the case ε = 10−2 and the subsequent evolution which, from
our simulation results, remains strongly coherent, is not discussed in the present
study.

According to figure 5 the evolution over the first characteristic time is linear,
regardless of the perturbation amplitude. This is confirmed by comparing the
development of the vorticity contours of figure 8 in the linear (a) and nonlinear
(b) cases up to t ≈ 0.4. Note that the contour level is chosen to be much lower for
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FIGURE 9. An (x, y)-plane slice of the axial vorticity at z= 0 at times t= 0 (a), 0.85 (b),
1.5 (c), 1.9 (d) and 2.4 (e). Here + gives the position of the leading hyperbolic point.

the ε = 10−3 case so that the perturbation can be seen. The perturbation sheets are
amplified at the leading hyperbolic point and stretched horizontally beneath the cores,
leading to the beginning of the vortex displacement. Details of this process are given
by Brion et al. (2007). At t= 0.85 in the ε= 10−3 case (§ 3), the perturbation rapidly
disappears whereas for ε = 3 × 10−2 the initial perturbation energy is sufficient to
resist viscous dissipation and becomes further involved in the vortex pair dynamics.

By definition, the perturbation is modulated at the Crow wavelength and therefore
the vorticity sheets change sign every half-wavelength. The subsequent progression
can be split into two domains: one in which the perturbation vorticity is of the same
sign as the vortex in the corresponding half-domain (x > 0 or x < 0), and one in
which the signs are opposite. When stretched at the leading hyperbolic point, the
sheets become more compact and form vortex-like structures (see figure 8, t = 0.85)
below the primary vortices. From this point, the flow can be viewed locally as a
four-vortex type configuration, counter-rotating in z ∈ [−Lz/4; Lz/4] and co-rotating
in z ∈ [−Lz/2; −Lz/4[ ∪ ]Lz/4; Lz/2].

Figure 9 shows how axial vorticity evolves with time in a transverse (x, y)-plane at
z= 0, the centre of the counter-rotating section. The secondary vortices are advected
along the lower oval streamline and eventually tear away from the sheets. They are
then drawn closer to the original vortices by 3D self-induction due to their horseshoe
shape as shown in figure 10 at t=1.5. The proximity between each original vortex and
its opposite-signed secondary vortex encourages local dynamics on each side, that are
added to the interaction between the original vortices. Mutual-induction between the
newly formed dipoles pulls the original vortices upwards and outwards, exaggerating
the sinusoidal deformation of the vortex cores as can be seen at t = 1.5. When the
secondary vortices reach the top of the dipole, they are dragged into the downwash
between the cores, and recommence their advection around the vortices (t= 2.4). Let
Γ2 and b2 be the circulation and separation of the secondary vortices and Γ1 and b1

those of the primary vortices at z= 0. The ratio Γ2/Γ1 remains approximately constant
in time such that Γ2/Γ1 ≈ −0.3, and the distance ratio b2/b1 ≈ 1. This matches the
observation of Fabre, Jacquin & Loof (2002) for a counter-rotating vortex pair: the
system is periodic, the vortices orbit around the vorticity centroids.

As can be observed in figure 10, at t = 3.4 the vortex cores present visible short-
wave deformations. Those in the centre of the domain (z/λz ∈ [−0.2, 0.2]) result from
the induction caused by the nearby secondary structures. To evaluate the scale of these
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(a) (b) (c)

(d) (e) ( f )

x
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z

FIGURE 10. Vorticity isocontours at a value of 20 % |ωmax(t= 0)| at (a,d) t= 1.5, (b,e) t=
2.4 and (c, f ) t= 3.4 for ε = 3× 10−2.

deformations the axial evolution of the dispersion radius δa(z)= (a(z)− ā)/ā in this
central region has been evaluated on each (x, y)-plane S(z), with a(z) calculated by

a(z)=

∫
S(z)

rωz dx dy∫
S(z)
ωz dx dy

, (5.1)

with r = ((x − xc)
2 + (y − yc)

2)1/2 and xc and yc the coordinates of the vortex core
centre given by

xc(z)=

∫
S(z)

xωz dx dy∫
S(z)
ωz dx dy

(5.2)

yc(z)=

∫
S(z)

yωz dx dy∫
S(z)
ωz dx dy

(5.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.176


Crow instability: nonlinear response to the linear optimal perturbation 667
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FIGURE 11. Fourier transform of the dispersion radius variation δ̂a as a function of
non-dimensional axial wavenumber kā at t= 3.4.

ā is the average dispersion radius over the section studied:

ā=

∫ 0.2

−0.2
a(z) dz∫ 0.2

−0.2
dz

. (5.4)

External noise is filtered out by imposing a minimum vorticity of 10 % of the
maximum vorticity in each section S(z) in the calculations. Figure 11 gives the
Fourier transform δ̂a(k) of the variation of dispersion radius δa(z) as a function
of the non-dimensional wavenumber kā. Several spikes can be seen, in particular
for kā ≈ 1.3 which lies in the range of the optimal perturbation of an isolated
vortex (Antkowiak & Brancher 2004). This suggests that the accelerated decay is
additionally promoted by an optimal perturbation of the vortex cores.

Figure 12 gives the axial vorticity contours in the z= Lz/2-plane, the centre of the
co-rotating section, which corresponds with the foreground plane of figure 10. The
secondary vortices form a second counter-rotating dipole which moves downwards
under the combined effects of the velocity field imposed by the primary vortices and
of the self-advection between the perturbation vorticity. The separation distance ratio
is b2/b1� 1 and the behaviour is divergent which concurs with the aforementioned
study of Fabre et al. (2002) except that here the perturbation vorticity diffuses before
escaping the primary vortices. In return the secondary vortices induce a displacement
of the primary structures towards one another, especially at instigation. This results
in an increased 3D deformation of the vortices: the part of the vortices at z=±Lz/2
is drawn to the symmetry plane and downwards while, as mentioned earlier, the part
at z = 0 is pulled away from the symmetry plane and upwards. This, in addition
to the natural deformation of the vortices under the m = 1 Kelvin mode at the
Crow wavelength, provokes the accelerated linking of the vortices. At z = Lz/2 the
original cores are then pressed tightly together in a head–tail shape, ready for the
connection of the vortices into rings at t = 2.4. The evolution of the location of the
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FIGURE 12. An (x, y)-plane slice of the axial vorticity at z = Lz/2 at times t = 0 (a),
0.85 (b), 1.5 (c), 1.9 (d) and 2.4 (e). Here + gives the position of the leading hyperbolic
point.

leading hyperbolic point, shown in figures 9 and 12, also shows that the entire oval
surrounding the recirculating flow around the vortices is modified in this process.

In addition to this analysis of the axial vorticity in two sectional planes, the map
of vorticity contours in figure 10 demonstrates the appearance, in the long term, of
smaller-scale variations in the flow. They are the remnants of the initial perturbation
which were not present for lower values of ε. Observation of figures 10 and 4 shows
that this added noise deteriorates into smaller scales through tilting and stretching,
continuously forcing the primary vorticity, until the vortex ring finally breaks,
at t= 12.

6. Conclusion
This paper has reported on the long-term evolution of the Crow instability in

a homogeneous and turbulence-free environment. A pair of Gaussian vortices is
perturbed by the most amplified perturbation of the Crow instability, the adjoint
mode, introduced with various initial amplitudes. When subjected to an infinitesimal
initial perturbation, the vortices undergo a series of transformations: the linear Crow
stage, linking and the formation of vortex rings. The ensuing stage of evolution
is found to be a periodically evolving ring state. While such a phenomenon was
known to occur in elliptic vortex rings, it is the first time that its manifestation in
the evolution of wake vortices is demonstrated. This result was obtained by pursuing
the flow computation for an unusually long time. From an application point of view
this demonstrates that aircraft wake vortices may last a great deal longer than would
be expected. For instance Spalart (1998) determined that the typical lifespan of an
aicraft wake is around five or six characteristic times. Such data is acquired usually
from Lidar measurements of wake vortices conducted from the ground. The disparity
between that and the lifespan obtained in this present analysis may lie in the possible
inability of Lidar to measure vortex rings due to the complexity of such flows and
the constraints of Lidar measurement (namely volume integration and projection of
the flow velocity along the laser beam). The relatively low Reynolds number and
large initial aspect ratio of the vortices in the present study are thought not to reduce
the scope for application, as observation of actual aircraft wakes show practically
identical initial dynamics.

The adjoint mode of the Crow instability is evaluated as a solution to prevent the
periodic ring state. While the adjoint is the initial perturbation that triggers the largest
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Crow instability growth, its potential to disrupt the flow in the stages following the
linking of the vortices was unknown. Also, were it indeed possible, the cost required
to do this effectively needed to be identified. Varying the initial perturbation amplitude
from that used for the reference state described in § 3 to larger, yet still low values,
showed the existence of a threshold distinguishing two behaviours. This threshold
corresponds to a perturbation of about 3 % in relative amplitude compared with the
background flow. When subjected to a perturbation of amplitude higher than the
threshold, the development of the periodic ring state is stopped at the beginning of
the first period. The once coherent vortical structures transform into small incoherent
vortices that, if the simulation could have been pursued longer, would certainly
have initiated the turbulent cascade. The physics of this process were analysed in
detail, showing that the flow dynamics split into two regions per wavelength in
the longitudinal direction, depending on the interaction of vorticity sign between
the primary vorticity and the perturbation. Each zone could be likened locally to a
four-vortex-type configuration, that promotes local induction phenomena and increases
the initial deformation of the vortices, resulting in an accelerated linking. In addition,
it is suggested that the remnants of the adjoint mode perturbation, that wrap around
the vortices, trigger a single-vortex-type optimal perturbation in each individual vortex.
Overall these additional dynamics lead to a considerable reduction of the vortices’
lifespan, since they are seen to disintegrate after only 13 characteristic times.

Whilst evidently the dynamics of a vortex pair is particularly resilient to initial
forcing, the present analysis also shows that large structural variations can take place.
The varying parameter here was the initial perturbation amplitude ε. By increasing ε
from 10−3 to 10−2 the flow eventually evolved into a sequence of two vortex rings
per Crow wavelength, thus doubling the initial spatial periodicity of the wake. These
differences compare well with documented vortex ring dynamics. Such disparity in the
evolution of the flow raises new questions concerning the sensitivity of wake vortices
to external parameters and should act as strong motivation for further analysis.
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