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SUMMARY
A conservatism-reduced design of a gain scheduled output
feedback H� controller for an n-joint rigid robotic manip-
ulator, which integrates the varying-parameter rate without
their feedback, is proposed. The robotic system is reduced
to a 1inear parameter varying (LPV) form, which depends
on the varying-parameter. By using a parameter-dependent
Lyapunov function, the design of a controller, which
satisfies the closed-loop H� performance, is reduced to a
solution of the parameterized linear matrix inequalities
(LMIs) of parameter matrices. With a use of the concept of
“multi-convexity”, the solution of the infinite LMIs in the
varying-parameter and its rate space is reduced to a solution
of the finite LMIs for the vertex set. The proposed controller
eliminates the feedback of the varying-parameter rate and
fixes its upper boundary so that the conservatism of the
controller design is reduced. Experimental results verify the
effectiveness of the proposed design.

KEYWORDS: Robotic manipulator; Gain scheduled output
feedback; H� control; Reducing conservatism; Linear matrix
inequality (LMI).

1. INTRODUCTION
A robotic system is a highly coupled, time-varying
nonlinear system, where its dynamics characteristics change
along with its geometrical characteristics and inertia. At the
same time, there are dynamic uncertainty and external
disturbance in a robotic motion. In order to guarantee that
the robotic manipulator have good dynamic performance in
the whole motion range, there are two objectives in the
controller design, namely, (1) the disturbance attenuation
and the robust stability, (2) the real-time adjustment of the
controller dynamics along with thet robotic geometrical
characteristics and inertia. The two objectives can be
achieved by using the H� synthesis technique1 and the gain
scheduled technique, respectively.2 One approach integrat-
ing the above objectives is to linearize the robotic dynamics
at different motion regions to obtain a piecewise linear
system.3–5 By using a robust control method local con-

trollers are designed and then a global controller via
interpretation is obtained. However, the system stability and
performance in the whole varying-parameter range are not
theoretically guaranteed. Another approach is the gain
scheduled H� control for a LPV system developed during
the recent years. Though this approach is currently rarely
used in robotic control, the LPV theory has a potential in
designing a robotic gain scheduled H� controller, since the
robotic dynamics can be reduced to be a LPV form with the
joint position functions as the varying parameter. A gain
scheduled H� controller with a large-scale stability and
disturbance-rejection performance for an inverted pendulum
is presented with the use of the LPV method in reference
[6]. However, this controller has strong conservatism, since
the varying-parameter rate are not considered in the
controller design and there is thus no restriction for the
varying-parameter rate so that they can be infinity, which is
impractical. Also, it is difficult to realize it since it seeks a
unique Lyapunov function in the whole varying-parameter
range to guarantee a system H� performance for all possible
trajectories.

Starting from the concept of reducing the conservatism of
the controller design, a new approach to designing a robotic
gain scheduled output feedback H� controller without a
varying-parameter rate feedback is proposed in this article
based on the parameter-dependent Lyapunov function with
a combination of a varying-parameter rate. With an
introduction of the concept of “multi-convexity”, the
controller design is reduced to a solution of finite LMIs, so
that the controller design has the facility of a solution of a
convex optimization. Though the varying-parameter rate is
considered in the design, it is eliminated in the gain
scheduled controller and, therefore, no varying-parameter
rate feedback signal is needed.

2. THE LPV FORM OF A ROBOTIC SYSTEM
The dynamics equation of an n-joint rigid robotic manip-
ulator is

M(q)q̈+C(q, q̇)q̇+g(q)=� (l)

where q�R� is the joint position vector, M(q)�Rn� n is the
inertia matrix, C(q, q̇)q̇�R� is the centrifugal and Couliaulis
term, g(q)�R� is the gravity term and ��R� is the control
torque.
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Suppose x1 =q, x2 = q̇ and X=(x1 x2)
T. (1) can be

expressed in a state space as

Ẋ=F(X)+G(X)� (2)

where F(X)=� [0n� n In� n]X
�M�1(X)(C(X)+g(X))�

and G(X)=� 0n� 1

M�1(X)�.

For the system (2), a varying-parameter � (t)=[�1(t), . . . ,
�1(t)]

T�T�R�(�(t) is written as � for simplicity in the
following text) is selected with its vertex set being
V:={	=(	1, . . . , 	l)

T :	i�{	i, 	i},	i, 	i�R} and the ver-
tex set of the changing range of the varying-parameter rate
�̇ being 
:={v=(v1, . . . ,vl)

T:v1�{vi,vi},vi,vi�R}. Assume
that there is an equilibrium family set parameterized by the
varying-parameter �, i.e. there is a continuous function
Xe(�):Rl→Rn and �e(�):Rl→Rn such that for all �, which has
a vertex set V we have

0=F(Xe(�))+G(Xe(�))�e(�) (3)

where the varying-parameter � could be a function of
system states, inputs, outputs or external signals. For a
specified object, the selection of the varying-parameter � is
not unique. The selection principle is that the selected � is
able to reflect the dynamic characteristics of the original
system. For every � at the equilibrium family (3), (2) can be
reduced, after a Jacobian linearization, to

ẋ(t)=A(�)x(t)+B(�)u(t) (4)

where x(t)=X(t)�Xe(�), A(�)=
�

�X
(F(X)+G(X)� )�Xe(�),�e(�)

and B(�)=G(Xe(�)).
(4) is the LPV form of the robotic system. Since there are

model errors, such as the high-frequency unmodeled part in
robotic modeling and the dynamic uncertainty and external
disturbance in robotic motion such as joint coupling,
friction, and sensor and executor noise, an equivalent
disturbance w1(t) for the model errors, dynamic uncertainty
and external disturbance are added in (4). Suppose that the
manipulator joint positions are taken as the system output
vector y(t), and w2(t) is the position measurement noise. The
performance index z(t) expresses the disturbance-rejection
performance for disturbances w1(t) and w2(t). Thus (4) is
expanded into the following LPV form

ẋ(t)=A(�)x(t)+B1(�)w1(t)+B2(�)u(t)

z(t)=C1(�)x(t)+u(t) (5)

y(t)=C2(�)x(t)+w2(t)

where B1(�)=�0n� n

In� n
�, B2(�)=B(�) and C1(�) is the perform-

ance weighting matrix and C2(�)=[In� n 0n� n]. In this

article, A(�) and B2(�) are the affine functions of the varying

parameter �, i.e. [A(�) B2(�)]=[A0 B20]+�l

i=1

�i[Ai B2i].

Design the following full-order gain scheduled output
feedback controller K(�) for system (5):

K(� (t)):�ẋK(t)=AK (�)xK(t)+BK (�)y (t)

u(t)=CK (�)xK (t)
(6)

Define xcl(t)=[x(t) xK (t)]T, w(t)=[w1(t) w2(t)]
T. Due to (5)

and (6), the closed-loop system can be expressed as

�ẋcl(t)=Acl(�)xcl(t)+Bcl(�)w(t)

z(t)=Ccl(�)xcl(t)
(7)

where

Acl(�)=� A(�)
BK(�C2(�)

B2(�)CK(�)
AK(�) �,Bcl(�)=�B1(�)

0
0

BK(�)�,

Ccl(�)=[C1(�) CK (�)].

For the closed-loop system (7), define its H� performance.

Definition 1: For a given �>0, if the closed-loop perform-

ance index z(t) satisfies � �

0
zT(t)z(t)dt<� 2� �

0
wT(t)w(t)dt for

any disturbance w(t), the closed-loop system is claimed to
possess a H� performance �.

The design of a gain scheduled feedback controller K(�)
by integrating the bounded varying-parameter rate is to be
presented so that for any � in the varying-parameter set, the
closed-loop system (7) has a H� performance �.

3. THE CONSERVATISM-REDUCED GAIN
SCHEDULED H� CONTROLLER SYNTHESIS

3.1. Controller synthesis
The sufficient condition for the H� performance � of the
closed-loop system for any � is presented first.

Theorem 1: For the closed-loop system (7), if there exists a
continuous symmetric positive-definite matrix function P(�)
satisfying

AT
cl(�)P(�)+P(�)Acl(�)+

d
dt

P(�)+��2CT
cl(�)Ccl(�)

+P(�)Bcl(�)BT
cl(�)P(�)<0 (8)

for ��T, then the closed-loop system possesses a H�

performance �.
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Proof: Define a parameter-dependent Lyapunov function
V(xcl,�)=xT

cl P(�)xcl. Based on the selected parameter-
dependent Lyapunov function V(xcl, �), suppose

H=V̇+y�2zTz�wTw (9)

Let =���2I
0

0
� I�, (9) is reduced to

H=V̇+� z
w�T

� z
w�

=ẋT
clP(�)xcl +xT

clP(�)ẋcl +xT
clṖ(�)xcl

+�Ccl(�)xcl

w �T

�Ccl(�)xcl

w �
=�xcl

w�T��Ṗ(�)+AT
cl(�)P(�)+P(�)Acl(�)
BT

cl(�)P(�)
P(�)Bcl(�)

0 �
+�Ccl(�)

0
0
I�T

�Ccl(�)
0

0
I�	�xcl

w�
If �Ṗ(�)+AT

cl(�)P(�)+P(�)Acl(�)
BT

cl(�)P(�)
P(�)Bcl(�)

0 �
+�Ccl(�)

0
0
I�T

�Ccl(�)
0

0
I�<0

i.e., �Ṗ(�)+AT
cl(�)P(�)+P(�)Acl(�)
BT

cl(�)P(�)
P(�)Bcl(�)

� I �
+�CT

cl(�)
0 ���2[Ccl(�) 0]<0 (10)

From the Schur Complement (See the Appendix), (10) is
equivalent to

Ṗ(�)+AT
cl(�)P(�)+P(�)Acl(�)
BT

cl(�)P(�)
Ccl(�)

P(�)Bcl(�)
� I
0

CT
cl(�)
0

�� 2I
<0 (11)

From the Schur Complement again, (11) is equivalent to (8).
Then H<0.

Since, (11) holds, Ṗ(�)+AT
cl(�)P(�)+P(�)Acl(�)<0.

Thus, V̇(x, �)=xT(Ṗ(�)+AT
cl(�)P(�)+P(�)Acl(�))x<0, i.e.

it is exponentially stable inside the closed-loop system.
When (8) holds, integrating both sides of (9) we have

V(�)�V(0)+��2 � �

0
zTzdt� � �

0
wTwdt<0.

Since V(�)=V(0)=0, the above equation, becomes

��2 � �

0
zTzdt� � �

0
wTwdt<0. Thus from Definition 1 we

know the closed-loop system has a H� performance �.
Based on Theorem 1, the detailed method for gain

scheduled controller synthesis is given below.

Theorem 2: For a given �>0, if there exist positive-definite
continuous differentiable parameter matrix functions X(�)
and Y(�), which satisfy the following for all ��T:

S(�)
0

��1BT
1(�)

0
� I
0

��1B1(�)
0

� I
<0 (12)

R(�)
BT

1(�)X(�)
��1C1(�)

X(�)B1(�)
� I
0

��1CT
1(�)

0
� I

<0 (13)

�X(�)
��1I

��1I
Y(�)�>0 (14)

where

S(�)=[A(�)�B2(�)C1(�)]Y(�)+Y(�)[A(�)�B2(�)C1(�)]T

�B2(�)BT
2(�)� Ẏ(�)

R(�)=X(�)A(�)+AT(�)X(�)�CT
2(�)C2(�)+Ẋ(�)

then for any reversible matrix function N(�), there exists the
following gain scheduled controller K(�):

F(�)=� [BT
2(�)Y�1(�)+C1(p)]

M(�)=[I�� 2Y(�)X(�)]N�T(�)

L(�)=�X�1(�)CT
2(�)

CK (�)=� 2F(�)Y(�)M�T(�)

BK (�)=N�1(�)X(�)L(�)

AK (P)=�N�1(�){� 2X(�)[A(�)+L(�)C2(�)

+B2(�)F(�)]Y(�)+AT(�)+[CT
1(�)C1(�)

+CT
1(�)F(�)]Y(�)+X(�)B1(�)BT

1(�)

+� 2Ẋ(�)Y(�)+Ṅ(�)M(�)}M�T(�) (15)

K(�)=�AK(�)
CK(�)

BK(�)
0 �

so that for all ��T, the closed-loop system has a H�

performance �.

Proof: Define M(�)=[I�� 2Y(�)X(�)]N�T(�). (16)
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Due to the Schur Complement, (14) is equivalent to:
X(�)���2Y(�)>0

i.e. Y�1(�)�� 2X(�)<0 (17)

The above equation also denotes that
[I�� 2X(�)Y(�)]Y�1(�) is reversible and therefore M(�) is
reversible.

Define P(�)=� X(�)
NT(�)

N(�)
�� 2NT(�)Y(�)M�T(�)�

and P�1(�)=�� 2Y(�)
MT(�)

M(�)
�N�1(�)X(�)M(�)�

H(�)=AT
cl(�)P(�)+P(�)Acl(�)+Ṗ(�)+��2CT

cl(�)Ccl(�)

+P(�)Bcl(�)BT
cl(�)P(�) (18)

From Theorem 1, in order to let the closed-loop system (7)
possess a H� performance �, we only need to have P(�)>0
and H(�)<0 for all ��T.

Since P(�)P�1(�)=I, we have N(�)MT(�)=I�� 2X(�)Y(�).

Since X(�)+N(�)[� 2NT(�)Y(�)M�T(�)]�1NT(�)
=X(�)+��2N(�)MT(�)Y�1(�)

=X(�)+��2[I�� 2X(�)Y(�)]Y�1(�)

=��2Y�1(�)>0 (19)

and

�� 2NT(�)Y(�)M�T(�)=�� 2NT(�)Y(�)[I

�� 2X(�)Y(�)]�1N(�)

=�� 2NT(�)[Y�1(�)�� 2X(�)]�1N(�)

due to (17), we have �� 2NT(�)Y(�)M�T(�)>0. (20)

Therefore due to the Schur Complement, (19) and (20) are
equivalent to P(�)>0.

In order to prove H(�)<0,

define P1(�)=�� 2Y(�)
MT(�)

I
0� and P2(�)=P(�)P1(�)

=�I
0

X(�)
NT(�)�.

Suppose H(�)=PT
1(�)H(�)P1(�). (21)

Since P1(�) is reversible, we have H(�)<0 if and only if
H(�)<0.

Substituting (18) into (21), we have

H(�)=PT
1(�)AT

cl(�)P2(�)+PT
2(�)Acl(�)P1(�)

+PT
1(�)Ṗ(�)P1(�)+��2PT

1(�)CT
cl(�)Ccl(�)P1(�)

+PT
2(�)Bcl(�)BT

cl(�)P2(�) (22)

Define H(�)=�H11(�)

HT
12(�)

H12(�)

HT
22(�)�

Substituting P1(�), P2(�), Acl(�), Bcl(�) and Ccl(�) into (22),
we obtain

H11(�)=� 2[A(�)�B2(�)C1(�)]Y(�)+� 2Y(�)[A(�)

�B2(�)C1(�)]T �� 2B2(�)BT
2(�)+B1(�)BT

1(�)

�� 2Ẏ(�)

By multiplying both sides by ��2, the above equation
becomes

� 2H11(�)=[A(�)�B2(�)C1(�)]Y(�)+Y(�)[A(�)

�B2(�)C1(�)]T �B2(�)BT
2(�) (23)

+��2B1(�)BT
1(�)� Ẏ(�)

Due to Schur Complement, (12) is equivalent to

[A(�)�B2(�)C1(�)]Y(�)+Y(�)[A(�)�B2(�)C1(�)]T

�B2(�)BT
2(�)+��2B1(�)BT

1(�)� Ẏ(�)<0 (24)

Substituting (24) into (23), we obtain ��2H11(�)<0 (25)
Similarly, we can derive

H22(�)=X(�)A(�)+AT(�)X(�)�CT
2(�)C2(�)

+X(�)B1(�)BT
1(�)X(�)+��2CT

1(�)C1(�)+Ẋ(�) (26)

Due to Schur Complement, (13) is equivalent to

X(�)A(�)+AT(�)X(�)�CT
2(�)C2(�)+X(�)B1(�)BT

1(�)X(�)

+��2CT
1(�)C1(�)+Ẋ(�)<0 (27)

Substituting (27) into (26), we obtain H22(�)<0. (28)

From (22), we have

H12(�)=� 2X(�)[A(�)+L(�)C2(�)+B2(�)F(�)]Y(�)

+N(�)AK (�)MT(�)+AT(�)

+[CT
1(�)C1(�)+CT

1(�)F(�)]+X(�)B1(�)BT
1(�)

+� 2Ẋ(�)Y(�)+Ṅ(�)MT(�)

When AK (�) takes (15), H12(�)=0. Therefore, with a
combination of (25) and (28), H(�)<0, i.e., H(�)<0. Thus,
for all ��T, the closed-loop system has a H� performance
�.

Remark 1: If x(�) and Y(�) are restricted to be constant
matrices in the varying parameter set T, Theorem 2 is
reduced to be the LPV synthesis problem in references [6]
and [7]. In other words, [6] and [7] are actually a special
case of this article.

3.2. Elimination of the varying-parameter rate feedback in
the controller
It is seen from (15), the gain scheduled controller needs the
feedback signals of the varying-parameter rate, which are
practically impossible to obtain. In this paper, the depend-
ence of the controller on the varying-parameter rate is
eliminated by an appropriate selection of N(�).
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Corollary 1: In Theorem 2, if N(�) satisfies

�N(�)
��i

=�� 2 �X(�)
��i

Y(�)[I�� 2X(�)Y(�)]�1N(�)

(i=1, . . . , l ) (29)

then in the gain scheduled controller K(�), after AK (�) is
reconstructed as

AK (�)=�N�1(�){� 2X(�)[A(�)+L(�)C2(�)

+B2(�)F(�)]Y(�)+AT(�)+[CT
1(�)C1(�)

+CT
1(�)F(�)]Y(�)+X(�)B1(�)BT

1(�)}M�1(�) (30)

the controller still can guarantee that, for all ��T, the
closed-loop system possesses a H� performance �.

Proof: In the proof of Theorem 2, suppose AK(�) takes (30).
Then

H12(�)=� 2Ẋ(�)Y(�)+Ṅ(�)MT(�)

Due to (16), M�T(�)=[I�� 2X(�)Y(�)]�1N(�).
Substituting the above equation into (29), we have

�N(�)
��i

=�� 2 �X(�)
��i

Y(�)M�1(�) (i=1, . . . ,l).

Then 
�N(�)

��1

�̇1 + . . . +
�N(�)

��l

�̇l

=��2��X(�)
��1

�̇1 + . . . +
�X(�)

��l

�̇l�Y(�)M�T(�)

i.e., Ṅ(�)MT(�)=�� 2Ẋ(�)Y(�).
Therefore H12(�)=0 and then H(�)<0, i.e. H(�)<0. Thus,

for all ��T, the closed-loop system has a H� performance
�.

Remark 2: For the case of scalar parameters, (29) is a first-
order linear homogenous differential equation, which is
easy to solve. For any given reversible initial condition N0,
assume that the reversible matrix T(�, �0) is the transmission
matrix of the differential equation. Then for any � in the
varying-parameter set, the solution of the differential
equation can be expressed as

N(�)=T(�, �0)N0

4. CONTROLLER CALCULATION
Theorem 2 shows that along with the changes of the varying
parameter � and its rate �̇, infinite numbers of LMIs need to
be solved in order to obtain the gain scheduled controller
K(�), which satisfies the requirements. This is impractical.
One approach is to divide the parameter space into grids.2

Suppose the grid set of parameter � is G and the grid set of
parameter �̇ is 
. Then the solutions of (12)–(14) are
reduced to be a problem of solving infinite LMIs at G� 
. If
the grids are close, this approach offers an approximate
solution. However, the computation load is big and X(�) and
Y(�) cannot be adjusted continuously along with the

varying-parameter �. In this article, X(�) and Y(�) are
assumed to have a same structure as the system, i.e.,

X(�)=X0 +�l

i=1

�i Xi and Y(�)=Y0 +�l

i=1

�i Yi

With the above structure, (12) and (13) become a quadratic
form of the varying parameter �. The concept of “multi
convexity” is used in this article to obtain its solution. The
following theorem gives the detailed method for controller
calculation

Theorem 3: For any given �>0, if there exist symmetric
matrices X0, . . , X l and Y0, . . . , Yl such that the following
LMIs are feasible,

S(	,v)
0

��1BT
1

0
� I
0

��1B1

0
� I

<0 �(	,v)�V� 
 (31)

R(	,v)
BT

1X(	)
��1C1

X(	)B1

� I
0

��1CT
1

0
� I

<0 �(	,v)�V� 
 (32)

�X(	)
��1I

��1I
Y(	)�>0 �	�V (33)

[Ai �B2iC1]Yi +Yi[Ai �B2iC1]
T �B2i B

T
2i ≥0 i=1, . . . , l (34)

Xi Ai +AT
i Xi ≥0 i=1, . . . , l (35)

where

S(	,v)=[A(	)�B2(	)C1]Y(	)+Y(	)[A(	)�B2(	)C1]
T

�B2(	)BT
2(	)�Y(v)+Y0

R(	,v)=X(	)A(	)+AT(	)X(	)�CT
2C2 +X(v)�X0

then the controller K(�) guarantees that the closed-loop
system has a H� performance � for the whole changing
range of � and �̇.

Proof: For (12), fix �̇ at its vertex and then Ẏ=Y(v)�Y0 can
be regarded as a constant term. Considering that B1(�) is a
constant matrix, we know from the Lemma for the multi-
convexity (See the Appendix) that as long as (31) and (34)
hold for all vertices 	�V, it is guaranteed that (12) holds at
any point in the space of the varying-parameter �, which has
a vertex set V. The above case holds for any vertex of the

space of the varying-parameter rate �̇. Since Ẏ(�)=�l

i=1

�̇iYi,
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i.e. Ẏ(�) and �̇ have an affine relationship, then due to the
convex feature, it can be further guaranteed that (12) holds
in the whole space of the varying-parameter rate �̇, which
has a vertex set 
. In conclusion, as long as (31) and (34)
hold in the vertex set (	,v)�V� 
 of the varying-parameter
� and its rate �̇, it can be guaranteed that (12) holds in the
whole range of the varying-parameter � and its rate �̇.

Similarly, it can be proved that we only need to have (32)
and (35) to hold in the vertex set (	,v)�V� 
 of the
varying-parameter � and its rate �̇ in order to have (13) to
hold in the whole range of the varying-parameter � and its
rate �̇. Also, we only need to have (33) to hold in the vertex
set 	�V of the varying-parameter � in order to have (14) to
hold in the whole range of the varying-parameter �.

The feasible solution of Theorem 3 can be obtained easily
from MatLab LMI Control Toolbox.8

5. EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed method,
experiments are done on a self-manufactured planar two
joint direct-drive manipulator. Its dynamics equation is
expressed as9

� a
b cos (�2 ��1)

b cos (�2 ��1)
c � · ��̈1

�̈2
�

+��b�̇ 2
2 sin (�2 ��1)

b�̇ 2
1 sin (�2 ��1)

=��1

�2
� (36)

where a=5.6794 kg · m2, b=1.4730 kg · 2,
c=1.7985 kg · m2.

By using the Jacobian linearization method, the robotic
dynamics equation (36) is linearized at the equilibrium point
Xe =(�1e �2e �̇1e �̇2e)

T =(�1e �2e 0 0)T and �e =(0 0)T:

ˆ̇�1
ˆ̇�2
ˆ̈�1
ˆ̈�2

=

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

�̂1

�̂2
ˆ̇�1
ˆ̇�2

+

0
0
c

ac�b2 cos2(�2e ��1e)
�b cos (�2e ��1e)

ac�b2 cos2(�2e ��1e)

0
0

�b cos(�2e ��1e)
ac�b2 cos2(�2e ��1e)

a
ac�b2 cos2(�2e ��1e)

��̂1

�̂2
�

(37)
where
�̂1 =�1 ��1e, �̂2 =�2 ��2e,

˙̂�1 = �̇1 ��̇1e = �̇1e,
˙̂�2 = �̇2 ��̇2e = �̇2e,

�̂1 =�1 ��1e =�1 and �̂2 =�2 ��2e =�2.
Since ac>>b2, the state space expression for (37) is

ẋ=Ax+Bu (38)

where A=

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

,

B=

0
0
1
a

�
b
ac

cos (�2e ��1e)

0
0

�
b
ac

cos (�2e ��1e)

1
c

,

x=(�̂1 �̂2
˙̂�1

˙̂�2)
T, u=(�̂1 �̂2)

T.

It is seen from (38), matrix B is a linear function of
cos (�2e ��1e), and �2e ��1e is the angle between joint 1 and
joint 2 in Figure 1, which decides the dynamic character-
istics of (38).10 Practically, the measured values of �1 and �2

can be used as the equilibrium point for the linearization of
the system (36). Thus, along with the changes of �1 and �2,
(38) can be regarded as a continuous LPV system with
respect to cos (�2 ��1). In this section different values of
cos (�2 ��1) at the different angles are used to design the
gain scheduled controller to improve the control perform-
ance. Define a varying parameter �=cos (�2 ��1) and
therefore �= �̇1 ��̇2) sin (�2 ��1). It is seen from Figure 1
that since �2 ��1�[��, 0], ��[�1,1]. Practically,
�̇1�[�v1, v1], �̇2�[�v2, v2], v1 =1 rad/s and v2 =1 rad/s,
and therefore �̇�[� (v1 +v2), (v1 +v2)]. Thus, the vertex set
of the changing range of the varying-parameter � and of the
varying-parameter rate �̇ is V:={	:	�{�1,1}} and

:={v:v�{� (v1 +v2), (v1 +v2)}}, respectively.

Equation (38) can be expanded to the form (5),where

A(�)=A, B1(�)=

0
0
1
0

0
0
0
1

and B2(�)=B.

C1(�) is taken as C1(�)=�1

0

0

1

1

0

0

1�

Fig. 1. A direct drive manipulator.

Advanced gain542

https://doi.org/10.1017/S0263574701004015 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574701004015


and

C2(�)=�1

0

0

1

0

0

0

0�. B2(�) can be written as

B2(�)=B20 +�B21,

where B20 =

0

0

1

a
0

0
0
0
1
c

, B21 =

0
0
0

�
b
ac

0
0

�
b
ac

0

.

In Theorem 3, X(�) and Y(�) are taken as X(�)=X0 +�X1 and
Y(�)=Y0 +�Y1, respectively. After obtaining their solutions,
the gain scheduled controller K(�) without a varying-
parameter rate feedback is obtained based on Section 3.
N(�) can be obtained based on Corollary 1 and Remark 2.
Let N0 =I4. In the below, four cases are discussed: (1) The
varying parameter rate is not considered. Let X1 =Y1 =0, i.e.,
�̇ is allowed to be an infinity; (2) Let X1 =0 only; (3) Let
Y1 =0 only; (4) Let X1 ≠0 and Y1 ≠0. The H�, performances
of the designed gain scheduled controllers for the four cases
are shown in Table I.

It can be seen from Table I that the proposed method (i.e.
Case 4) has the best H� performance, while Case 1 gives the
worst situation and therefore demonstrates a rather strong
conservatism. Also, it can be seen that Cases 2 and 3 are
better than Case 1. Figure 2 shows the step responses of the
robotic manipulator by using the above four controllers,
respectively. The experimental results verify Table I.

6. CONCLUSIONS
Considering the bounds of the varying-parameter rate, we
have a conservatism-reduced treatment for the existing LPV
theory; we apply the theory to robotic control so that robotic
control performance is improved. The robotic system is first
reduced to a LPV form affinely depending on the varying-
parameter. In order to overcome the drawback of allowing
the varying parameter rate to be infinitely large in the
existing LPV theory, the design of the gain scheduled output
feedback controller, which has a closed-loop H� perform-
ance, is reduced to the solution of the parameter LMIs of
X(�) and Y(�) by using a parameter-dependent Lyapunov
function. X(�) and Y(�) are taken as an affine form of a same
structure as that of the robotic LPV expression. The concept
of “multi convexity” is used to reduce the solution of the
infinite LMIs in the varying-parameter and its rate space to
a solution of the finite LMIs for the vertex set. The
computation then becomes feasible and the conservatism of
the controller design is reduced, as verified by the
experimental results. Though the varying-parameter rate is
considered in the design, it is eliminated in the gain
scheduled controller and therefore any feedback signal of
the varying-parameter rate is not needed; this is also one of
the features of this paper.
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APPENDIX 1

Schur Complement10

If a symmetric matrix F=FT�R(n+m)� (n+m) can be expressed

as F=� P
MT

M
Q�, where Q�Rm� m is non-singular, then F<0

if and only if Q<0 and P�MQ�1MT <0, where
P�MQ�1MT is regarded as the Schur complement of Q.

Lemma: For the following quadratic function with respect
to ��RL

f (�1, . . . ,�L )=�0 +�
i

�i�i +�
i< j

�ij�i�j +�
i

�i�
2
i

where � changes in the supercube with a vertex set of
V:={	=(	1, . . . , 	L )T :	1�{�i, �i}}. If f (	)<0�	�V and

�i =
1
2

�2f
�� 2

i

(�)≥0, i=1, . . . , L hold, then for any � in the

supercube with a vertex set of V, there is f (�)<0.

Proof: In order to guarantee that for any � in the parameter
space, there is f (	)<0, it is necessary to have f (	)<0 for
any vertex 	�V in the parameter � space.

Suppose for any i, �i ≥0 and f (� *) is the global maximum
at � *=(� *1, . . . , � *L )T. If � * is not the vertex of the
parameter space, there must exist certain i so that �i <� *i <�i.
Let �j =� *j, when j≠ i. Define the following quadratic
polynomial

g(�i):= f (� *1, . . . , � *i�1,�i,� *i+1, . . . , � *L )=p+q�i +�i�
2
i

Since �i ≥0, g(�i) is convex. In other words, the maximum
value in the range of [�i,�i] must be obtained at the ends,
i.e.

g(� *i)≤max(g(�i), g(�i)) (A1)

Also, (A1) is obtained based on the prior assumption of the
validity of the following expression

g(� *i)≥max(g(�i), g(�i) (A2)

Thus, in order to have (A1) and (A2) holding at the same
time, there must be g(� *i)=max(g(�i), g(�i)). This shows that
the maximum value of g(�i) is obtained at the end set.
Repeat the above steps for every i. It can be seen that f (�)
reaches its maximum at certain vertices in the � parameter
space. Therefore, under the premise of �i ≥0, if all the
vertices 	�V satisfying f (	)<0, it can be guaranteed that
for any � in the supercube with a vertex set of V, f (�)<0.
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