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SUMMARY
Cooperative robots are usually required in flexible
manufacturing systems or complex working environments.
In particular, when an object under processing is too big or
too heavy, a single robot may not be enough to handle it.
Two or more manipulators are to be used in such a case.
This paper presents the study of the dynamic equations for
two industrial robots holding a rigid object. To this end,
holonomic constraints are combined with the manipulators
and object equations of motion to obtain the dynamic model
of the whole system, which can be used for simulation
purposes. Experimental results are presented to validate the
theoretical results.

KEYWORDS: Modeling Cooperative robots; Simulation;
Experimental results.

I. INTRODUCTION
By cooperative robots we mean a group of manipulators
holding a rigid object. Many benefits can be obtained by
using them in industrial manufacturing. A typical example
is in a flexible assembly, where the robots join two parts
into a product. Cooperative manipulators can also be used
in material handling, e.g. transporting objects beyond the
load carrying capacity of a single robot. Furthermore, their
employment allows to improve the quality of tasks in the
manufacturer industry that require of great precision. On
the other hand, cooperative robots are indispensable for
skillful grasping and dexterous manipulation of objects. The
dynamic analysis and control of such a system requires
more sophisticated techniques compared with a single
robot working scatteredly. Since the theory employed for
cooperative robots is independent of their size, one can think
of them as mechanical hands. The study of mechanical
hands is important not only because these can be used
as prosthetic devices for humans, but also because they
increase considerably the manipulation capacity of a robot
when substituting the usual gripper. However, the literature
about experimental results on the modeling and simulation of
systems of multiple manipulators holding a common object
is rather sparse.
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A dynamic analysis for a system of multiple manipulators
is presented in Orin and Oh,1 where the formalism of
Newton–Euler for open chain mechanisms is extended for
closed chain systems. Another approach widely used is
the Euler–Lagrange method.2 The equations of motion for
each manipulator arm are developed in the Cartesian space
and the impact of the closed chain is investigated when
the held object is in contact with a rigid environment, for
example the ground. Another general approach to obtain the
dynamic model of a system of multiple robots is based on
the estimation of the grasping matrix.3–7 Here, the grasping
matrix is used to couple the manipulators dynamics with that
of the object, while this is modeled by the Newton–Euler
formulation. The dynamic analysis for cooperative robots
with flexible joints holding a rigid object is presented in
Jankowski et al.8

In this paper, the dynamic model of two cooperative
industrial manipulators holding a rigid body is presented,
including force modeling. The interaction is described by
the robot kinematics and the object equations of motion.
Holonomic constraints are used to couple the kinematics
and dynamics of the whole system. Also, it is explained
how simulations can be carried out for Differential Algebraic
Equations (DAE).

The paper is organized as follows. In Section II, the
experimental test bed is presented. Section III gives the
cooperative robots dynamic model, while Section IV shows
simulation and experimental results. Conclusions are drawn
in Section V.

II. EXPERIMENTAL SYSTEM
The system under study is made up of two industrial robots
and it is at the Laboratory for Robotics of the National
University of Mexico (Fig. 1). They are the A465 and A255
of CRS Robotics. Even though the first one has six degrees of
freedom and the second one five, only the first three joints of
each manipulator are used in this case, while the rest of them
are mechanically braked. Each joint is actuated by a direct
current motor with optical encoders. Both manipulators
have a crash protection device in the end effector and a
force sensor installed on it; an aluminum finger is mounted
on the sensor. The object is constituted by a melamine
plastic box with dimensions 0.15 m × 0.15 m × 0.311 m
and weight 0.400 kg. The experiments are performed in
a Pentium IV to 1.4 GHz personal computer with two
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616 Cooperative robots

Fig. 1. Robots A465 and A255 of CRS Robotics.

PCI-FlexMotion-6C boards of National Instruments. The
sampling time is of 9 ms. Controllers are programmed in
the LabWindows/CVI software of National Instruments.

A schematic diagram of the robots holding an object is
depicted in Fig. 2. The system variables are the generalized
coordinates, velocities, and accelerations, as well as the
contact forces exerted by the end effector on the common
rigid object, and the generalized input forces (i.e. torques)
acting on the joints.

To describe the kinematic relationships between the robots
and the object, a stationary coordinate frame C0 attached to
the ground serves as reference frame, as shown in Fig. 2.
An object coordinate frame C2 is attached at the center of
mass of the rigid object. The origin of the coordinate frame
C1 is located at the center of the end effector of robot A465. In

Fig. 2. Schematic diagram of robots holding an object.

the same way, the origin of the coordinate frame C3 is located
at the center of the end effector of robot A255. The coordinate
frame C0 has been considered to be the inertial frame of the
whole system. 0p2 is the position vector of the object center
of mass expressed in the coordinate system C0. 0p1 and 0p3
are vectors that describe the position of the contact points
between the end effectors of robots A465, A255 and the
object, respectively, expressed in the coordinate system C0.

III. THE COOPERATIVE ROBOTS
DYNAMIC MODEL
Consider the cooperative system with two robot arms shown
in Fig. 1, each of them with ni = 3 degrees of freedom
and mi = 1 constraints arising from the contact with the
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held object. Then, the total number of degrees of freedom is
given by n = ∑2

i=1 ni with a total number of m = ∑2
i=1 mi

constraints.

III.1. Dynamic model with constraint motion
The dynamic model for each individual manipulator, i =
1, 2, is obtained by the Lagrange’s formulation as9

H i(qi)q̈i + C i(qi , q̇i)q̇i + Di q̇i + gi(qi)

= τ i + JT
ϕi

(qi)λi , (1)

where qi ∈ R
ni is the vector of generalized joint coordinates,

H i(qi) ∈ R
ni×ni is the symmetric positive definite inertia

matrix, C i(qi , q̇i)q̇i ∈ R
ni is the vector of Coriolis and

centrifugal torques, gi(qi) ∈ R
ni is the vector of gravitational

torques, Di ∈ R
ni×ni is the positive semidefinite diagonal

matrix accounting for joint viscous friction coefficients, τ i ∈
R

ni is the vector of generalized torques acting at the joints,
and λi ∈ R

mi is the vector of Lagrange multipliers (physically
represents the force applied at the contact point). JT

ϕi
(qi)λi

represents the interaction of the rigid object with the two
manipulators. Jϕi

(qi) = ∇ϕi(qi) ∈ R
mi×ni is assumed to be

full rank in this paper. ∇ϕi(qi) denotes the gradient of the
object surface vector ϕi ∈ R

mi , which maps a vector onto the
normal plane at the tangent plane that arises at the contact
point described by

ϕi(qi) = 0. (2)

Equation (2) is a geometrical constraint expressed in an
analytical equation in which only position is involved and
that does not depend explicitly of time t . Constraints of this
forms are known as holonomic constraints (they are also
classified as sclero–holonomic).

Note that equation (2) means that homogeneous constraints
are being considered.9 The complete system is subjected to
2 holonomic constraints given by

ϕ(q) = 0, (3)

where ϕ(q) = ϕ(q1, q2) ∈ R
m. This means that the object

being manipulated and the environment are modeled by the
constraint (3). If the holonomic constraints are correctly
calculated, then the object will remain hold. To have a
better insight about the meaning of the constraint, consider
rewriting the velocity vector q̇i as

q̇i = q̇i + ( J+
ϕi

Jϕi
q̇i − J+

ϕi
Jϕi

q̇i)

= (Ini×ni
− J+

ϕi
Jϕi

)q̇i + J+
ϕi

Jϕi
q̇i

�= Qi(qi)q̇i + J+
ϕi

(qi) ṗi , (4)

where J+
ϕi

= JT
ϕi

( Jϕi
JT

ϕi
)−1 ∈ R

ni×mi stands for the Pen-
rose’s pseudoinverse and Qi ∈ R

ni×ni satisfies rank( Qi) =
ni − mi . These two matrices are orthogonal, i.e. Qi J+

ϕi
= O

(and Qi JT
ϕi

= O). Thus, the velocity vector q̇i has been split
in two orthogonal subspaces. Let us analyze ṗi

�= Jϕi
q̇i ∈

R
mi , which is the so called constrained velocity. In view of

constraint (3), it holds

l∑
i=1

ṗi = 0 and
l∑

i=1

pi =
l∑

i=1

∫ t

0
Jϕi

q̇i dt = 0, (5)

where l is the number of robots (l = 2). Since homogeneous
constraints are being considered, it also holds from (2) that

ṗi = 0 and pi = 0, (6)

for i = 1, 2. pi is called the constrained position. As shown
in Liu et al.,10 if we consider homogeneous holonomic
constraints we can write the constrained position, constrained
velocity and constrained acceleration as

ϕi(qi) = 0 (7)

ϕ̇i(qi) = Jϕi
(qi)q̇i = 0 (8)

ϕ̈i(qi) = Jϕi
(qi)q̈i + J̇ϕ(qi)q̇i = 0, (9)

respectively. Recall that in our case ni = 3, n = 6, mi = 1,
and m = 2, i = 1, 2.

III.2. Dynamic model of the rigid object
The motion of the two robot arms is dynamically coupled
by the generalized contact forces interacting through the
common rigid object. To describe this interaction, it is
necessary to know the object dynamics. According to the
free body diagram of Fig. 3, Newton’s equation of motion
are

mo ẍo − mo go = f 1 − f 2, (10)

where mo ∈ R
3×3 is the diagonal mass matrix of the object,

ẍo ∈ R
3 is the vector describing the translational acceleration

of the center of mass of the rigid object, f 1 ∈ R
3 and f 2 ∈ R

3

are the forces exerted by the robots, and go ∈ R
3 is a gravity

vector. All vectors are expressed with reference to the inertial
coordinate frame C0. The contact forces vector are given by

f i = niλi, (11)

where ni ∈ R
3 represents the direction of the force (normal

to the constraint) and λi ∈ R given in (1).

III.3. Assumptions to obtain the dynamic model
The following assumptions are made to obtain the dynamic
model for the cooperative system:

a) The end effectors (fingers) of the two robot arms are rigid.
b) The object is undeformable, and its absolute and relative

position are known.
c) The kinematics of each robot is known.
d) Each manipulator is non–redundant and they do not reach

any singularity.
e) The two robot arms system satisfy constraints (2) and (6)

all time.

III.4. Dynamic coupling
The position, velocity and acceleration of the object center
of mass with reference to the inertial coordinated frame are
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Fig. 3. Force free body diagram.

given in Cartesian coordinates by:

xo = hi(qi) (12)

ẋo = Joi(qi)q̇i (13)

ẍo = Joi
(qi)q̈i + J̇o(qi)q̇i , (14)

respectively, with i = 1, 2. hi(qi) ∈ R
3 is the forward

kinematics of the center of mass of the object expressed in the
coordinate system C0, and Joi ∈ R

3×3 is the corresponding
Jacobian matrix of hi(qi). Substituting (14) into (10) yields

mo Joi
(qi)q̈i + mo J̇oi

(qi)q̇i − mo go = f 1 − f 2. (15)

Now, consider writing (1) as6

H i(qi)q̈i + C i(qi , q̇i)q̇i + Di q̇i + gi(qi)

= τ i + JT
ai

(qi) f i . (16)

Note that

JT
ϕi

(qi) = JT
ai

(qi)ni , (17)

in view of (11). J ai
(qi) is the manipulator analytical

Jacobian. On the other hand, from (15) one gets

f 1 = mo Joi
(qi)q̈i + mo J̇oi

(qi)q̇i − mo go + f 2. (18)

Then, for i = 1 in (16) one gets

H1(q1)q̈1 + C1(q1, q̇1)q̇1 + D1q̇1 + g1(q1)

= τ 1 + JT
a1

(q1)
(
mo Jo1 (q1)q̈1 + mo J̇o1 (q1)q̇1

− mo go + f 2

)
= τ 1 + JT

a1
(q1)mo Jo1 (q1)q̈1 + JT

a1
(q1)mo J̇o1 (q1)q̇1

− JT
a1

(q1)mo go + JT
a1

(q1) f 2, (19)

or

τ 1 + JT
a1

(q1) f 2

= (
H1(q1) − JT

a1
(q1)mo Jo1 (q1)

)
q̈1 + (

C1(q1, q̇1) + D1

− JT
a1

(q1)mo J̇o1 (q1)
)
q̇1 + g1(q1) + JT

a1
(q1)mo go.

(20)

By defining

HT1 (q1)
�= H1(q1) − JT

a1
(q1)mo Jo1 (q1) (21)

CT1 (q1, q̇1)
�= C1(q1, q̇1) + D1 − JT

a1
(q1)mo J̇o1 (q1) (22)

gT1
(q1)

�= g1(q1) + JT
a1

(q1)mo go, (23)

one finally gets

HT1 (q1)q̈1 + CT1 (q1, q̇1)q̇1 + gT1
(q1)

= τ 1 + JT
a1

(q1) f 2. (24)

In the same fashion, we make the analysis for the robot A255,
to get

HT2 (q2)q̈2 + CT2 (q2, q̇2)q̇2 + gT2
(q2)

= τ 2 + JT
a2

(q2) f 1, (25)

with

HT2 (q2)
�= H2(q2) + JT

a2
(q2)mo Jo2 (q2) (26)

CT2 (q2, q̇2)
�= C2(q2, q̇2) + D2 + JT

a2
(q2)mo J̇o2 (q2) (27)

gT2
(q2)

�= g2(q2) − JT
a2

(q2)mo go. (28)

The dynamic models in (24)–(25) describe the motion of
the entire closed chain, where each individual manipulator
represents a subsystem coupled to the other one through
kinematic and dynamic constraints.
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III.5. Force modeling for cooperative robots
A robot manipulator in free motion does not have geometric
constraints; therefore, the dynamic model is described by
Ordinary Differential Equations (ODE). When working with
constrained motion, there appear holonomic constraints; for
this reason, the dynamic model is described by Differential
Algebraic Equations (DAE). To simulate contact forces,
DAE’s must be solved. First of all, from the dynamic model
for cooperative robots (1), we obtain

q̈i = H i
−1(qi)

(
τ i + JT

ϕi
(qi)λi − C i(qi , q̇i)q̇i

− Di q̇i − gi(qi)
)
. (29)

However, (7)–(9) must hold as well. Substituting the right
hand side of (29) into (9) yields

ϕ̈i(qi) = Jϕi
(qi)

[
H−1

i (qi)
(
τ i + JT

ϕi
(qi)λi − C i(qi , q̇i)q̇i

− Di q̇i − gi(qi)
)] + J̇ϕi

(qi)q̇i

= Jϕi
(qi)H−1

i (qi) JT
ϕi

(qi)λi + J̇ϕi
(qi)q̇i

+ Jϕi
(qi)H−1

i (qi)(τ i − C i(qi , q̇i)q̇i

− Di q̇i − gi(qi))

= 0. (30)

From the previous equation we obtain

λi = (
Jϕi

(qi)H−1
i (q) JT

ϕi
(qi)

)−1
[ϕ̈i(qi) − J̇ϕi

(qi)q̇i

− Jϕi
(qi)H−1

i (qi)(τ i −C i(qi , q̇i)q̇i − Di q̇i − gi(qi))].

(31)

The system described by (2), (6), (11), (24)–(25) and
(31) could now be simulated as second order differential
equations. However, the inclusion of the constraints in
the form (31) does not guarantee the convergence of the
contact velocity and position constraints to zero. This is
because ϕ̈i(qi) = 0 represents a double integrator. Thus, any
small difference of ϕi(qi) or ϕ̇i(qi) from zero in (7)–(9)
will diverge. This problem has been successfully addressed
by the constraint stabilization method in the solution of
DAE’s.11 According to this approach, the constraints are
asymptotically stabilized by using

ϕ̈i(qi) + 2αiϕ̇i(qi) + βiϕi(qi) = 0, (32)

instead of ϕ̈i(qi) = 0. αi and βi are chosen appropriately to
ensure the fast convergence of both the constraint position
ϕi(qi) and velocity constraint ϕ̇i(qi) to zero (in case of
offset). Equations (2), (6), (11), (24)–(25) and (31)–(32) fully
describe the motion of the system to be simulated.

IV. SIMULATION AND EXPERIMENTAL RESULTS
In this section, some simulation results are presented. To
test the accuracy of the modeling approach, experimental
results are carried out as well. To protect the manipulators
of the cooperative system again possible damages, the
position/force control approach given in Gudiño–Lau et al.12

has been used for validation purposes. For the object
equation of motion given in (10), it is mo = mobj I ,
mobj = 0.400 kg, and gT

o = {gx gy gz} = {0 0 −9.81 m/s2}.
The object dimensions are 0.15 m × 0.15 m × 0.311 m.
In (32) one has αi = 10 and βi = 100. The robots models
are given in Appendix A.

The palm frame of the whole system is at the base
of the robot A465, with its x–axis pointing towards the
other manipulator. The task consists in lifting the object
and pushing with a desired force, so that the constraints in
Cartesian coordinates are simply given by

ϕi = xi − bi = 0, (33)

for i = 1, 2 and bi a positive constant. The desired traject-
ories are given by

xd1 = 0.554[m] xd2 = 0.865[m] (34)

yd1,2 = 0.05 sin(ω(t − ti))[m] (35)

zd1,2 = (0.46 + 0.05 cos(ω(t − ti)))[m]. (36)

Note that the inverse kinematics of the manipulators has to
be employed to compute qdi

. These trajectories are valid
from an initial time ti = 10 s to a final time tf = 70 s. Before
ti and after tf the robots are in free motion. ω is a fifth
order polynomial designed to satisfy ω(ti) = ω(tf) = 0. The
derivatives of ω are also zero at ti and tf . By choosing (34)–
(36), the robots will make a circle in the y–z plane. The only
difference between the trajectories for robots A465 and A255
is the width of the object. Also, no force control is carried out
until the manipulators are in the initial position to hold the
object, at (0.554, 0, 0.510)[m] for the first manipulator and
(0.865, 0, 0.510)[m] for the second one. The desired pushing
forces are then given from t = ti = 10 s to t = tf = 70 s by

fdx1,2 = 7.5(t − ti)/5[N] ti ≤ t < 20 s
fdx1,2 = 15 + 5 sin(3π(t − 20)/40)[N] 20 ≤ t < 60 s
fdx1,2 = 15 − 7.5(t − 60)/5[N] 60 ≤ t < tf s

and fdy1,2 = fdz1,2 = 0[N]. Note that, for simplicity, the
desired forces are expressed in the base coordinate frame
of each robot.

The control scheme has been programmed in a PC
computer, whit sampling time 9 ms. The controller has also
been digitalized for the simulation. The experiment lasts 80 s.
The object is held at t = 10 s. Before, the robots are in free
motion and the force control term of the algorithm given
in Gudiño–Lau et al.12 is not used, while from t = 10 s to
t = 70 s it is switched on, i.e. the complete control–observer
force scheme is employed only during this period of time.
From t = 70 s to t = 80 s the robots go back to their initial
positions in free motion. From t = 10 s to t = 15 s they begin
pushing at their initial positions to hold the object, and from
t = 15 s to t = 20 s they lift it to the position where the circle
will be made. From t = 20 s to t = 60 s this is done while
the desired force is changed for a sinus signal, as can be seen
in Fig. 4. Note that our purpose is to show that simulation
results of the constrained system are acceptable by using
the approach described in Section III. For this reason, the
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Fig. 4. Force measurements. a) Fx1 . b) Fx2 . —– experimental and - - - simulation.
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Fig. 5. Joint Coordinates a) q11. b) q12. c) q13. d) q21. e) q22. f) q23. —– experimental. - - - simulation.
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Fig. 6. Cartesian Coordinates a) x1. b) y1. c) z1. d) x2. e) y2. f) z2. —– experimental - - - simulation.

desired forces (or positions) are not shown. Only the real
and simulated signals are presented. As can be seen, there
is a good match. Of course, simulation results are free of
noise. Note also that, since we have not proposed any special
method to simulate the moment when the object is held, i. e.,
when the robots change from free to constrained motion,
there is a peak at t = 10 s in the simulation. From t = 60 s to
t = 65 s the object is put down on the table and from t = 65 s
to t = 70 s, the robots diminish pushing. Fig. 5 shows the
simulation and experimental results of the joint coordinates,
while Fig. 6 shows the results in Cartesian coordinates. As
can be appreciated, the results are good in both cases.

V. CONCLUSIONS
In this paper, we developed the model for two cooperative
industrial robots holding a rigid object. The dynamic model
for the manipulators is obtained independently from each
other with the Lagrangian approach. Once the robots are
holding the object, their joint variables are kinematically
and dynamically coupled. These coupling equations are
combined with the dynamic model of the object to obtain
a mathematical description for the cooperative system.

Some experiments and simulations have been carried out
to test the theoretical results. The overall outcome of the
mathematical model compared with the real system can be
considered good, which validates the approach used.
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APPENDIX A
This section presents the A465 and A255 robot models as
well as the corresponding parameter values. The models
used for implementation and simulation purposes include
Coulomb friction term for both robots. The approach to
model them can be found in any standard book for robotics.13

Recall that only the first three degrees of freedom of each
manipulator are being considered. Additionally, since the
actuators are DC motors, their dynamics must be taken into
account. Thus, for each manipulator (in free motion), one has

H i(qi)q̈i + C i(qi , q̇i)q̇i + Di q̇i + f ci
(q̇i) + gi(qi)

= D−1
ni

Dki
vi , (37)

where f ci
(q̇i) ∈ R

3 represents the Coulomb friction term
and Dni

and Dki
∈ R

3×3 are to be defined later. The motors
inertias are included in the matrix H i(qi) so as to have
a minimum set of parameters. The elements of matrices
H1(q1), C1(q1, q̇1), f c1

(q̇1) and g1(q1) of the model for
Robot Arm A465 of CRS Robotics are computed as

h1(1, 1) = aux1 · p1 + aux2 · p2 + aux3 · p3 + aux4 · p4

+ aux5 · p5 + aux6 · p6 + aux7 · p7 + p8

h1(1, 2) = 0

h1(1, 3) = 0

h1(2, 1) = 0

h1(2, 2) = 1

2
p1 + p2 + 2s3p3 + p4 + p9

h1(2, 3) = 1

2
p1 + p2 + s3p3 + p4 + p5

h1(3, 1) = 0

h1(3, 2) = 1

2
p1 + p2 + s3p3 + p4 + p5

h1(3, 3) = 1

2
p1 + p2 + p4 + p10

c1(1, 1) = aux8 · p3 + aux9 · p5 − 1

2
q̇12 sin(2q12)p6

+ 1

2
q̇12 sin(2q12)p7

c1(1, 2) = q̇11 cos(2q12 + q13)p3 + 1

2
q̇11 sin(2q12 + 2q13)p5

− 1

2
q̇11 sin(q12)p6 + 1

2
q̇11 sin(2q12)p7

c1(1, 3) = aux10 · p3 + 1

2
q̇11 sin(2q12 + 2q13)p5

c1(2, 1) = −q̇11 cos(2q12 + q13)p3− 1

2
q̇11 sin(2q12+2q13)p5

+ 1

2
q̇11 sin(2q12)p6 − 1

2
q̇11 sin(2q12)p7

c1(2, 2) = q̇13c3p3

c1(2, 3) = (q̇12c3 + q̇13c3) p3

c1(3, 1) = −
(

1

2
q̇11c3 + 1

2
q̇11 cos(2q12 + q13)

)
p3

− 1

2
q̇11 sin(2q12 + 2q13)p5

c1(3, 2) = −q̇12c3p3

c1(3, 3) = 0

fc1(1) = p14sgn(q̇11)

fc1(2) = p15sgn(q̇12)

fc1(3) = p16sgn(q̇13)

g1(1) = 0

g1(2) = p17c2 + p21 sin(q12 + q13)

g1(3) = p18 sin(q12 + q13).

Also, it is D1 = block diag {p11 p12 p13}. vT
1 = {v11 v12 v13}

is the input voltage. The motor dynamics data are
Dn1 = block diag { 1

r2
11

1
r2

12

1
r2

13
} and Dk1 = block diag

{ Ka11
Ra11 r11

Ka12
Ra12 r12

Ka13
Ra13 r13

}. Where r stands for the gear ratio, Ka

is the torque constant and Ra is the armature resistance. The
associated values are r11 = r12 = r13 = 100, Ka11 = Ka12 =
Ka13 = 0.1424 Nm/A and Ra11 = Ra12 = Ra13 = 0.84�.

The elements of the corresponding matrices for the Robot
Arm A255 are given by

h2(1, 1) = cos(2q22)p̄1 + (2c5 + 2c6) p̄2 + p̄3

h2(1, 2) = 0

h2(1, 3) = 0

h2(2, 1) = 0

h2(2, 2) = p̄4

h2(2, 3) = cos(q22 − q23)p̄5

h2(3, 1) = 0

h2(3, 2) = cos(q22 − q23)p̄5

h2(3, 3) = p̄6

c2(1, 1) = −q̇22 sin(2q22)p̄1 − (s5q̇22 + s6q̇23) p̄2

c2(1, 2) = −q̇21 sin(2q22)p̄1 − q̇21s5p̄2
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Table I. Physical parameters of robot arm A465.

p1 = 0.0055 kg m2 p2 = 0.0080 kg m2 p3 = 0.0024 kg m2 p4 = 0.0118 kg m2 p5 = 0.0041 kg m2

p6 = 0.0009 kg m2 p7 = 0.0007 kg m2 p8 = 2.0007 kg m2 p9 = 11.800 kg m2 p10 = 2.8000 kg m2

p11 = 25.000 N m s p12 = 35.000 N m s p13 = 36.000 N m s p14 = 0.2000 N m p15 = 2.5000 N m
p16 = 2.5000 N m p17 = 22.000 N m p18 = 11.000 N m

Table II. Physical parameters of robot arm A255.

p̄1 = 0.2500 kg m2 p̄2 = 0.0500 kg m2 p̄3 = 0.5750 kg m2 p̄4 = 1.1000 kg m2 p̄5 = 0.0300 kg m2

p̄6 = 0.5700 kg m2 p̄7 = 3.2000 N m s p̄8 = 1.8000 N m s p̄9 = 1.2000 N m s p̄10 = 0.0150 N m
p̄11 = 0.8000 N m p̄12 = 0.7000 N m p̄13 = 0.0001 N m p̄14 = 1.8000 N m

c2(1, 3) = −s6q̇21p̄2

c2(2, 1) = q̇21 sin(2q22)p̄1 + q̇21s5p̄2

c2(2, 2) = 0

c2(2, 3) = sin(q22 − q23)q̇23p̄5

c2(3, 1) = s6q̇21p̄2

c2(3, 2) = − sin(q22 − q23)q̇22p̄5

c2(3, 3) = 0

fc2(1) = p̄10sgn(q̇21)

fc2(2) = p̄11sgn(q̇22)

fc2(3) = p̄12sgn(q̇23)

g2(1) = 0

g2(2) = p̄13c5

g2(3) = p̄14c6.

For this robot one has D2 = block diag {p̄7 p̄8 p̄9}. The
input voltages vector is given by vT

2 = {v21 v22 v23}. The
motor dynamics data are Dn2 = block diag { 1

r21
2

1
r22

2
1

r23
2 }

and Dk2 = block diag { Ka21
Ra21 r21

Ka22
Ra22 r22

Ka23
Ra23 r23

}. With r21 = r22 =
r23 = 72, Ka21 = Ka22 = Ka23 = 0.0657 Nm/A and Ra21 =
Ra22 = Ra23 = 2.40�. Note that in the model of both robots
we could have chosen the parameters in a different fashion
to have a smaller set. However, we made the definitions
according to the computation of the inertia of the links. The
elements of the analytical Jacobian J a1(q1) of robot A465
are given by

ja1(1, 1) = −a12s1c2 − (d13 + d14)s1 sin(q12 + q13) (38)

ja1(1, 2) = −a12c1s2 + (d13 + d14)c1 cos(q12 + q13) (39)

ja1(1, 3) = (d13 + d14)c1 cos(q12 + q13) (40)

ja1(2, 1) = a12c1c2 + (d13 + d14)c1 sin(q12 + q13) (41)

ja1(2, 2) = −a12s1s2 + (d13 + d14)s1 cos(q12 + q13) (42)

ja1(2, 3) = (d13 + d14)s1 cos(q12 + q13) (43)

ja1(3, 1) = 0 (44)

ja1(3, 2) = a12c2 + (d13 + d14) sin(q12 + q13) (45)

ja1(3, 3) = (d13 + d14) sin(q12 + q13), (46)

and those of J a2(q2) are:

ja2(1, 1) = −a22s4c5 − a23s4c6 − d24s4 (47)

ja2(1, 2) = −a22c4s5 (48)

ja2(1, 3) = −a23c4s6 (49)

ja2(2, 1) = a22c4c5 + a23c4c6 + d24c4 (50)

ja2(2, 2) = −a22s4s5 (51)

ja2(2, 3) = −a23s4s6 (52)

ja2(3, 1) = 0 (53)

ja2(3, 2) = a22c5 (54)

ja2(3, 3) = a23c6. (55)

The constraint Jacobian matrix Jϕ1 (q1) of the robot arm
A465 is:

JT
ϕ1

(q1) =




−a12s1c2 − (d13 + d14)s1 sin(q12 + q13)

−a12c1s2 + (d13 + d14)c1 cos(q12 + q13)

(d13 + d14)c1 cos(q12 + q13)


, (56)

and the constraint Jacobian matrix Jϕ2 (q2) of the robot arm
A255 is:

JT
ϕ2

(q2) =

−a22s4c5 − a23s4c6 − d24s4

−a22c4s5

−a23c4s6


 . (57)

Note that, for simplicity, both J a2(q2) and Jϕ2 (q2) are
expressed with respect with an inertial system fixed at the
base of robot A255.

Tables I and II show the parameter values, and Tables III
and IV the auxiliary variables for both robots. The parameters
for the different Jacobian matrices are presented in Table V.

Table III. Auxiliary definitions.

s1 = sin(q11) c1 = cos(q11)
s2 = sin(q12) c2 = cos(q12)
s3 = sin(q13) c3 = cos(q13)
s4 = sin(q21) c4 = cos(q21)
s5 = sin(q22) c5 = cos(q22)
s6 = sin(q23) c6 = cos(q23)
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Table IV. Auxiliary variables in the model of the robot arm A465.

aux1 = 3
4 + 1

4 cos(2q12 + 2q13)

aux2 = 1
4 − 1

2 cos(2q12 + 2q13)

aux3 = s3 + sin(2q12 + q13)

aux4 = 1
2 + 1

2 cos(2q12 + 2q13)

aux5 = 1
2 − 1

2 cos(2q12 + 2q13)

aux6 = 1
2 + 1

2 cos(2q12)

aux7 = 1
2 − 1

2 cos(2q12)

aux8 = [q̇12 cos(2q12 + q13) + 1
2 q̇13c3 + 1

2 q̇13 cos(2q12 + q13)] 1
seg

aux9 = [ 1
2 q̇13 sin(2q12 + 2q13) + 1

2 q̇12 sin(2q12 + 2q13)] 1
seg

aux10 = [ 1
2 q̇11c3 + 1

2 q̇11 cos(2q12 + q13)] 1
seg

Table V. Data of the different Jacobian matrices.

Robot arm A465 Robot arm A255

d11 = 0.330 [m] d21 = 0.381 [m]
a12 = 0.305 [m] a22 = 0.254 [m]
d13 = 0.330 [m] a23 = 0.254 [m]
d14 = 0.208 [m] d24 = 0.183 [m]
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