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A numerical investigation of solitary internal
waves with trapped cores formed via shoaling
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(Received 11 August 1999 and in revised form 28 June 2001)

The formation of solitary internal waves with trapped cores via shoaling is in-
vestigated numerically. For density fields for which the buoyancy frequency increases
monotonically towards the surface, sufficiently large solitary waves break as they shoal
and form solitary-like waves with trapped fluid cores. Properties of large-amplitude
waves are shown to be sensitive to the near-surface stratification. For the monotonic
stratifications considered, waves with open streamlines are limited in amplitude by the
breaking limit (maximum horizontal velocity equals wave propagation speed). When
an exponential density stratification is modified to include a thin surface mixed layer,
wave amplitudes are limited by the conjugate flow limit, in which case waves become
long and horizontally uniform in the centre. The maximum horizontal velocity in the
limiting wave is much less than the wave’s propagation speed and as a consequence,
waves with trapped cores are not formed in the presence of the surface mixed layer.

1. Introduction
Large-amplitude solitary internal waves are an important topic of wave research,

with a number of studies focusing on waves in stratifications for which the buoyancy
frequency varies monotonically (e.g. Brown & Christie 1998; Terez & Knio 1998; Grue
et al. 2000). In this paper the study of waves in monotonic stratifications is extended
by investigating the fate of a single solitary wave as it propagates into shallow water
at rest. An idealized two-dimensional, inviscid, nonlinear numerical model is used.
One motivation for studying the shoaling behaviour of solitary internal waves is
the ubiquitous nature of such waves in the variable-depth, stratified coastal ocean
(Ostrovsky & Stepanyants 1989; Huthnance 1989). While the monotonic stratifications
considered here are not generally found in the ocean, it is hoped that the present
study makes a useful contribution to our understanding of the shoaling behaviour of
solitary internal waves. This work complements previous laboratory and numerical
studies which have focused on two-layer stratifications.

The investigation by the author of shoaling waves for a variety of stratifications has
shown that only for nearly monotonic stratifications will waves with trapped cores
be formed. Hence, stratifications which increase monotonically in strength towards
the surface are considered almost exclusively in this paper. For these stratifications,
large waves at the breaking limit, where the maximum horizontal velocity and wave
propagation speed are identical, exist. Shoaling waves which break form unsteady,
solitary-like waves with trapped cores in the shallow water. The possible existence
of waves with trapped cores is of great interest because they would provide a very
effective transport mechanism. The effects of modifying the near-surface stratification
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110 K. G. Lamb

by adding a thin surface mixed layer is also briefly considered. It is found that
the presence of a thin surface mixed layer greatly inhibits the formation of waves
with trapped cores. For the mixed-layer stratification large waves do not reach the
breaking limit. Instead, they broaden and become flat in the centre. Such waves are
said to be limited by the conjugate flow limit (Benjamin 1966; Lamb & Wan 1998).
It is conjectured that waves with trapped cores cannot be formed if the solitary wave
amplitudes are limited in amplitude by the conjugate flow limit. This implies that
waves with trapped cores would occur rarely in the ocean. Even in places where the
stratification allows waves with trapped cores to be formed, the detection of them
may be difficult because of the need to make measurements close to the surface
of sufficient accuracy to show that fluid velocities are equal to or larger than wave
propagation speeds.

While no observations of waves with a trapped core have been made in the ocean,
observations of atmospheric solitary waves with trapped cores have been made.
In these observations, the fluid in the core is denser than the surrounding fluid,
indicative of their association with gravity currents generated by downdraughts from
thunderstorms (e.g. Doviak & Christie 1989), cold fronts, or from sea breezes. A
spectacular example of the latter is the Morning Glory in northern Australia (Clarke,
Smith & Reid 1981; Christie 1992). Atmospheric solitary waves with recirculating
cores have also been observed in the nocturnal boundary layer under quiescent
conditions (Cheung & Little 1990), but here again the fluid in the core was denser
than that in the surrounding air. Waves with trapped cores formed by overturning
shoaling waves have core densities equal to that of some of the surrounding fluid. Thus,
atmospheric waves have different properties and different generation mechanisms than
those considered here.

The experimental analogue of thunderstorm downdraught-generated solitary waves
with trapped cores has been conducted by Manasseh, Ching & Fernando (1998).
Mode-one waves with trapped cores have been the subject of both theoretical (Derzho
& Grimshaw 1997) and laboratory (Grue et al. 2000) investigations. Much more
experimental work has been done on mode-two waves with trapped cores (Davis &
Acrivos 1967; Kamachi & Honji 1982; Stamp & Jacka 1996; Schmidt & Spigel 2000).

As a wave shoals it adjusts to its new environment by changing shape and in so
doing may break up into a number of waves. Theoretical studies of shoaling surface
and internal solitary waves, based on extensions of the KdV equation, give two
useful pictures of the shoaling process (Kakutani 1971; Johnson 1973; Djordjevic &
Redekopp 1978; Grimshaw 1983). Adiabatic theory is used when the depth changes
slowly compared to the length scale of the wave. It predicts, to a first approximation,
that the solitary wave adjusts so that it always has the shape of a solitary wave
appropriate to the local water depth. Conservation of wave action flux leads to
the prediction that the amplitude of a shoaling surface solitary wave is inversely
proportional to the water depth (Boussinesq 1872; Grimshaw 1970). The situation for
internal waves is more complicated due to changes in the form of the stratification.
A simple amplitude dependence on the local depth is no longer possible (Grimshaw
1983; Holloway et al. 1997). Mass is not conserved in adiabatic theory. Higher-order
corrections for adiabatically shoaling surface solitary waves predict the appearance
of a long shelf behind the solitary wave and a long reflected wave (see Johnson 1994
and references therein). With these modifications mass is conserved.

If the depth changes very quickly, a shoaling wave reaches shallow water before it
has time to adjust to the new depth. Theoretical models for rapidly shoaling waves
predict that as the wave shoals, the wave form is scaled by a depth-dependent factor.
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Solitary internal waves with trapped cores 111

As a consequence, when it reaches shallow water the wave is no longer a solitary wave
and it subsequently breaks up, or fissions, into a number of solitary waves followed
by a dispersive wave train. For surface waves, the scaled wave form is proportional
to h−1/4 where h is the local depth (Johnson 1973). This is merely Green’s law for
shoaling, long linear waves (Green 1837). The scaling factor is more complicated for
internal waves (Djordjevic & Redekopp 1978). When the shoaling wave encounters
abrupt depth changes a reflected wave is also created. The shoaling process for
internal solitary waves is more complicated than that for surface waves because of
the possibility of critical reflection off the bottom and because waves of other modes
and vertically propagating waves may be formed.

A number of laboratory investigations on shoaling solitary internal waves have
been performed. These have focused exclusively on two-layer fluids using layers of
fresh and salty water with a thin interface. The situation where a shoaling solitary
wave of depression passes through a turning point was investigated by Helfrich &
Melville (1986). Helfrich (1992) considered the case where the interface intercepted the
slope. Wallace & Wilkinson (1988) investigated shoaling periodic waves for the same
situation. Kao, Pan & Renouard (1985) investigated shoaling solitary waves for the
situation where the lower layer depth was greater than the upper layer depth in both
deep and shallow water. In this case the shoaling wave does not encounter a turning
point. Laboratory studies of shoaling periodic wave trains using linearly stratified
water have also been undertaken (Cacchione & Wunsch 1974; Ivey & Nokes 1989).
The only numerical simulations of shoaling solitary waves that have been done are
those by Saffarinia & Kao (1996) who considered waves passing through a turning
point. These authors used a continuous two-layer stratification with a thin pycnocline.

The plan of the paper is as follows. In § 2 the numerical model and the model
stratifications are described. In § 3 the method used to compute the initial solitary
wave is presented. A general discussion of large-amplitude solitary waves, with a
focus on limiting amplitudes for waves with open streamlines, is included here as an
aid in interpreting the behaviour of shoaling waves. In § 4 properties of solitary waves
for the model stratifications are discussed. Results of the numerical simulations of
shoaling waves are given in § 5. In § 6 wave energetics is briefly discussed. A summary
and conclusions are given in § 7.

2. The numerical model
The numerical model used in this study is a modified version of the one described

in Lamb (1994). Rotation is not included for these simulations. For the most part,
the model equations are the incompressible Euler equations with the Boussinesq
approximation, namely

U t +U · ∇U = −∇p− ρgk̂, (1a)

ρt +U · ∇ρ = 0, (1b)

∇ ·U = 0, (1c)

where standard terminology has been used. The rigid lid approximation is made which
removes surface waves from the problem. For the consideration of wave energetics
it has been found necessary to damp some numerical instabilities which arose in the
deep water behind the incident wave. This is discussed in § 6. The model equations
are solved using a second-order projection method (Bell, Colella & Glaz 1989; Bell
& Marcus 1992). Terrain-following (sigma) coordinates are used. All model runs use
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112 K. G. Lamb

evenly spaced grid points in the horizontal with a grid spacing δx. There are J grid
points in the vertical. In the shallow water a variable vertical grid spacing δz has been
used, with δz decreasing quadratically towards the surface in the shallow water. This
provides higher resolution in regions where wave breaking occurs. In the deep-water
region where the initial wave is added δz is vertically uniform. Unless otherwise stated
δx = 2 m and J = 120. In the shallow water the vertical resolution is about 0.53 m
at the bottom and 0.14 m at the surface. Some runs used higher vertical resolution
(J = 150). In addition, some lower resolution runs (δx = 4 m, J = 100) were done to
verify the accuracy of the results. The initial waves are at x = −3000 m.

The behaviour of shoaling solitary waves will be explored in greatest depth using
exponential stratifications of the form

ρ̄1(z) = 1 + 0.01
1− e(z−H)/S

1− e−H/S
. (2)

Here, the surface is at z = H where H = 100 m is the deep water depth. Results using
three different scale heights, S = 15, 35 and 75 m, will be presented. A hyperbolic
tangent density profile of the form

ρ̄2(z) = 1− 0.01
tanh(z −H/S)

tanh(H/S)
(3)

is also considered, using scale heights S = 20 and 45 m. These values of S yield
similar density profiles to the exponential densities with S = 15 and 35 m. Both these
density profiles have a non-dimensional surface to bottom density change of 0.01 in
the deep water. They also have the property that the buoyancy frequency N(z) is a
monotonically increasing function of z. For the exponential stratifications N ′(z) is an
increasing function of z whereas for the hyperbolic tangent density N ′(z) takes its
maximum value a distance 0.88S below the surface and is zero at the surface. For
waves in a fluid of depth D, the ratio S/D determines the properties of the solitary
waves so changing S is equivalent to changing the shallow water depth. To obtain
precisely the same change in shoaling behaviour by changing the shallow water depth
as by changing the scale height one would need to change the deep water depth and
the shelf width appropriately. Properties of solitary waves for both these stratifications
have been considered by Brown & Christie (1998).

To demonstrate the sensivity of the results to the near-surface stratification, a third
stratification is also briefly considered. This stratification is obtained by modifying
(2) with S = 15 m to include an upper mixed layer approximately 2 m thick. This
modified density is given by

ρ̄m1(z) = 1 + 0.01
1− e(z−H)/15

1− e−H/15

(
1− tanh

(
z −H + 3.0

2

))
+0.0005 (1− 0.02(z −H))

(
1 + tanh

(
z −H + 3.0

2

))
. (4)

The stratifications used in this study are shown in figure 1. The exponential
stratification with scaleheight S = 15 m has a relatively large change in N over
the water column in the shallow water. For S = 75 m the variation is considerably
reduced with N increasing approximately linearly toward the surface. For large S/H ,
N becomes nearly constant, which is the type of stratification considered by Derzho
& Grimshaw (1997).

The evolution of the wave as it shoals will depend on the form of the topography.
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Figure 1. Density and buoyancy frequency profiles for model stratifications. (a) Exponential densities
ρ̄1(z) for scale heights S = 15, 35 and 75 m (solid) and hyperbolic tangent density ρ̄2(z) for S = 20
and 45 m (dashed). Horizontal dotted line indicates height of shelf. (b) Buoyancy frequency profiles
for stratifications shown in (a). (c) Comparison of ρ̄1(z) for S = 15 m (solid), ρ̄2(z) (dashed) and
the mixed-layer stratification ρ̄m1 (dotted). Upper 40 m only. (d) Buoyancy frequency profiles for
stratifications shown in (c).

For simplicity we restrict attention to a single shelf slope given by a hyperbolic
tangent profile. Thus, the bottom is at

z = h(x) =
aT

2

(
1 + tanh

( x
L

))
. (5)

The amplitude aT is fixed at 60 m, so that the waves shoal from a depth of 100 m to a
depth of 40 m in all cases. Three shelf widths, L = 200, 400 and 600 m, are considered.

The shallow-water environment determines the properties of the waves in shallow
water, hence the shallow water depth D = H − aT is the natural length scale of the
problem. For model runs using densities ρ̄1 and ρ̄2 there are three non-dimensional
parameters: aT/D, S/D and L/D. For fixed values of these parameters, all distances
scale with D. In particular, the values of these parameters determine whether or
not waves with trapped cores are formed, the amplitudes of the shoaled waves, the
breaking depth, etc. An appropriate velocity scale in the shallow water is

√
∆ρgD

where ∆ρ is the bottom to surface density difference in the shallow water. For the
inviscid calculations presented here the velocity scale is not qualitatively significant, it
merely affects the time at which events occur. An important non-dimensional number
for solitary waves is the ratio of the propagation speed to the maximum horizontal
velocity in the wave c/Umax. This ratio is independent of ∆ρ.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

63
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100636X


114 K. G. Lamb

3. Solitary wave initialization and limiting wave amplitudes
The initial solitary waves are computed using a reference frame in which the wave

is stationary. The equations of motion (1) then yield the nonlinear solitary wave
eigenvalue problem

∇2η +
N2(z − η)

c2
η = 0, (6)

with boundary conditions η = 0 at z = 0, H and η → 0 as x→ ±∞. Here η(x, z) is the
vertical displacement of the streamline passing through (x, z) relative to its far-field
height, the eigenvalue c is the wave propagation speed and

N2(z) = −gdρ̄

dz
(z) (7)

is the square of the buoyancy frequency outside the wave where ρ̄(z) is the undisturbed
density field non-dimensionalized by the fixed reference density. Equation (6) is the
Dubreil–Jacotin–Long (DJL) equation written in terms of the streamline displacement,
which, for the special case considered here (no background current), is proportional
to the perturbation stream function. It is solved using a variational technique to
minimize the kinetic energy for a specified value, A, of the functional

F(η) =
1

H

∫∫
R

∫ η(x,z)

0

(ρ̄ (z − η(x, z))− ρ̄ (z − s)) ds dx dz, (8)

where R is the computational subdomain in which the initial wave is computed
(Turkington, Eydeland & Wang 1991). The available potential energy of the wave
in an infinitely long domain is equal to gHF(η). Wave amplitudes are specified by a
choice of a value for A, hence the maximum vertical displacement of an isopycnal is
not chosen a priori. Other authors have used different techniques to solve the DJL
equation (Davis & Acrivos 1967; Tung, Chan & Kubota 1982; Brown & Christie
1998). Only mode-one solitary waves can be computed since the derivation of the
DJL equation assumes a wave of permanent form. Higher-mode solitary-like waves
are accompanied by trailing, lower-mode, dispersive waves which imply a continual
energy loss from the solitary-like wave and hence non-steadiness (Akylas & Grimshaw
1992). Once η and c are known the density and velocity fields are given by

ρ(x, z) = ρ̄(z − η(x, z)), (9a)

(u, w) = (cηz,−cηx). (9b)

The solitary waves with open streamlines that can be calculated are limited in
amplitude in three ways.† For small waves, in a reference frame fixed with the fluid
at infinity, the wave propagation speed c is close to the linear long-wave propagation
speed and the maximum horizontal fluid velocity in the direction of wave propagation,
Umax, is much smaller than c. As the wave amplitude increases Umax increases more
rapidly than c. For some stratifications a wave amplitude is reached at which Umax = c.
This point is reached when a streamline, in a reference frame moving with the wave,
first becomes vertical. This limiting amplitude will be called the breaking limit. Larger
waves, with closed streamlines in a recirculating wave core, can be computed. They
are convectively unstable because for these waves z − η goes above/below the fluid
domain for waves of depression/elevation and the density in the centre of the core is

† The terminology open and closed streamlines will always be used in a reference frame moving
with the wave.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

63
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100636X


Solitary internal waves with trapped cores 115

lighter/denser than the surrounding fluid. This occurs because only for stratifications
with non-zero density gradients at the upper/lower boundary has the breaking limit
been reached. A few attempts to compute large waves with N2 decreasing to zero
rapidly at the upper/lower boundary have been made. They were unsuccessful due
to failure of the numerical scheme to converge (see discussion of the stability limit
below). The solution method also does not converge when there are discontinuities
in N at the upper boundary. This may be a problem with the numerical method and
not a fundamental limitation. In monotonic stratifications (N increases or decreases
monotonically) wave amplitudes are limited by either the breaking limit or by the
stability limit discussed below.

Wave amplitudes can also be limited by the conjugate flow limit (Benjamin 1966;
Lamb & Wan 1998). In this situation large waves become flat in the centre and
simply become longer as the energy in the wave increases. Wave properties such as
the maximum isopycnal displacement ηmax (taken positive for waves of depression
and elevation), c and Umax asymptotically approach constant limiting values as the
waves flatten in the centre. This limiting behaviour is typical of stratifications with
broad pycnoclines well removed from the upper or lower boundaries. The horizontally
uniform flow in the centre of long flat waves is called a conjugate flow and can be
found by solving the nonlinear conjugate flow eigenvalue problem

η′′(z) +
N2(z − η(z))

c2
η(z) = 0,

η(0) = η(H) = 0,

 (10)

along with an auxiliary condition,∫ H

0

η′3(z) dz = 0, (11)

which is determined from conservation of momentum flux (Benjamin 1966; Lamb
& Wan 1998). In addition, a conjugate flow solution must satisfy the condition that
η′(z) < 1 in order that all streamlines extend to ±∞. Note that (10) can be obtained
from (6) by taking η to be independent of x. Lamb & Wan (1998) showed that
monotonic stratifications do not have mode-one conjugate flow solutions.

The third way in which wave amplitudes can be limited is by what will be called
the stability limit. As solitary wave amplitudes increase, the minimum Richardson
number in the stratified region of fluid, Rim, decreases. For some stratifications the
iteration procedure used to solve (6) fails to converge before either the breaking limit
or the conjugate flow limit is reached. This typically occurs when Rim is close to 0.25
(waves with minimum Richardson numbers as low as 0.23 have been computed). As
is well known, a minimum Richardson number of less than 0.25 in the flow interior is
necessary for a parallel stratified flow to be unstable (Miles 1961; Howard 1961). This
criterion is widely used to predict instability of internal waves, although Hazel (1972)
has reported on a parallel stratified flow which is stable for minimum Richardson
numbers above about 0.2. Since flow in a solitary wave is not parallel, the Richardson
number criterion for predicting instability of a solitary wave should be used with
caution. The convergence failure of the iteration procedure for Richardson numbers
close to 0.25 suggests that it is because waves are close to being physically unstable,
hence we call this amplitude limitation the stability limit. This limit is typically
reached for stratifications with thin pycnoclines centred away from the mid-depth.
An extreme example of this is a two-layered fluid. It is well known that large solitary
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waves become flat-centred (Turner & Vanden-Broeck 1988). The two-layer conjugate
flow in the centre of these waves is unstable due to a velocity jump across the interface.

The one-dimensional conjugate flow equations (10) and (11) are not subject to
the same stability limitations as is the solitary wave eigenvalue problem (6). Hence,
conjugate flows with arbitrarily low minimum Richardson numbers, which could be
two-dimensionally unstable, can be computed.

Interestingly, the numerical procedure used to solve the DJL equation to obtain
the initial solitary waves can yield convectively unstable solitary waves with closed
streamlines, yet waves with a shear instability can apparently not be computed.
This may be due to the different sources of energy for the instability (potential and
kinetic respectively) and the fact that the solution procedure is based on a variational
formulation which minimizes the kinetic energy for a specified available potential
energy. Other solution methods of the DJL equation can also result in convectively
unstable waves with trapped cores (Tung et al. 1982; Brown & Christie 1998).

Waves with amplitudes beyond the wave breaking limit have been investigated
by other authors. Mode-two solitary-like waves with recirculating cores have been
observed experimentally (Davis & Acrivos 1967; Kamachi & Honji 1982; Stamp &
Jacka 1996). Recently Grue et al. (2000) have generated mode-one solitary waves
with recirculating cores in the laboratory. They used a continuously stratified fluid
composed of a layer of constant N overlying or underlying a layer of constant density
(a monotonic stratification). Solitary mode-one internal waves with recirculating cores
have also been computed numerically; however, there is uncertainty regarding the
correct properties of the fluid inside the recirculating region (Tung et al. 1982; Brown
& Christie 1998). Assuming a constant density in the core, Derzho & Grimshaw
(1997) have predicted that to leading order the fluid inside the core should be
stagnant, i.e. non-circulating, in a reference frame moving with the wave. They
considered stratifications for which the buoyancy frequency is nearly uniform yielding
a finite-amplitude weakly nonlinear theory (at leading order the equations are linear
due to the nearly constant N). Because of this, waves with closed streamlines will
generally be referred to as having trapped cores, although in all results presented
herein the core is recirculating. It is unclear whether stable waves of permanent form
having trapped cores exist.

Some of the time-dependent numerical simulations of unsteady large-amplitude
solitary internal waves on a thin interface by Terez & Knio (1998) include mode-
one waves with recirculating cores. They considered waves on a thin pycnocline
centred at the mid-depth and, assuming symmetry across the mid-depth, restricted
their computational domain to the upper half of the domain. Thus, while claiming
to study mode-two waves, they in fact computed mode-one solitary waves in a fluid
with a thin stratified layer adjacent to a lower boundary. The buoyancy frequency N
decreased monotonically with height above the boundary. For such a stratification
waves with open streamlines are limited in amplitude by the breaking limit.

4. Properties of solitary waves
Solitary mode-one waves are waves of depression in both the deep and shallow

water for all stratifications considered. Hence, no turning point is encountered as the
waves shoal. For stratifications ρ̄1 and ρ̄2 wave amplitudes are limited by the breaking
amplitude in all depths. For the mixed-layer stratification ρ̄m1, wave amplitudes are
bounded by the stability limit in deep water and by the conjugate flow limit in shallow
water. Solitary waves close to breaking have their maximum velocity at the surface.
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Figure 2. Solitary wave properties for exponential stratifications using S = 15 m (solid), 35 m
(dashed) and 75 m (dash-dot): (a, c, e) deep water (100 m depth); (b, d, f) shallow water (40 m depth).
Plotted in (a, b) are wave amplitudes as a function of A, the value of the potential energy functional
F(η). (c, d) The propagation speed c and maximum horizontal velocity Umax and (e, f) the wave
half-width plotted as functions of solitary wave amplitudes. In addition, the propagation speed and
maximum horizontal velocity for waves with trapped cores obtained from model runs using S = 15
and 35 m are shown in (d). Stars are results obtained using a shelf width of 200 m, diamonds for a
shelf width of 600 m. For these waves Umax is larger than c.

Assuming that Umax = c first occurs at the surface, it is easily seen from (6), (9a)
and (9b) that the horizontal shear uz and the vertical density gradient are zero at the
point where Umax = c. The minimum Richardson number stays well above 0.25 as the
breaking amplitude is approached for stratifications (2) and (3), although it can be
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Figure 3. As in figure 2 but for exponential stratification with S = 15 m (solid), hyperbolic tangent
density with S = 20 (dashed) and S = 45 m (dash-dot) and for the mixed-layer stratification (dots).

below 0.25 for other stratifications. For example, for the exponential stratification Rim
is approximately 0.6 at the breaking amplitude in both the deep and shallow water
for scale heights of 15 and 75 m. For stratifications with nearly constant N, Clarke &
Grimshaw (1999) have shown that the Rim is O(1).

In figures 2 and 3 the wave amplitude, ηmax = max |η|, is plotted as a function of
A, the value of the functional F(η) used to specify wave amplitudes in the solitary
wave solver. Also shown are the wave propagation speed c, the maximum horizontal
velocity Umax, and half-width plotted as functions of ηmax. Values in water depths
of 100 and 40 m are presented. Figure 2 shows the results for the three exponential
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stratifications. It includes some values for the physically unrealizeable, convectively
unstable waves beyond the breaking limit where Umax > c. The breaking amplitudes
increase with S , being approximately 15.5, 23.3 and 27.7 m for scale heights of 15,
35 and 75 m respectively. At the breaking amplitude the propagation speeds are
approximately 1.09, 1.15 and 1.09 m s−1 respectively. In a depth of 40 m, because of
the reduction in the surface to bottom density change associated with an increase in S ,
both c and Umax are decreasing functions of S for all wave amplitudes. The breaking
amplitudes increase with S , being 9.5, 11.4 and 12.1 m. This trend, as expected, is the
same in both water depths since the ratio Umax/c, and hence the breaking amplitude,
depends only on the shape of the density profile and is independent of the surface
to bottom density change. Propagation speeds at the breaking amplitude in shallow
water decrease with S , being 0.70, 0.58 and 0.49 m s−1. The wave half-width is defined
as the distance from the centre of the wave at which the surface velocity is equal to
half the surface velocity at the wave centre. The half-width is a decreasing function
of ηmax and an increasing function of S . Wave widths are smaller in the shallow water
than in the deep water for a given wave amplitude.

In figure 3 the wave properties for the hyperbolic tangent density ρ̄2 with S = 20
and 45 m and for the mixed-layer density ρ̄m1 are compared with those for the
exponential stratification ρ̄1 using S = 15 m. Wave properties for stratifications ρ̄1

with S = 15 m and ρ̄2 with S = 20 m are similar, with the latter having larger
breaking amplitudes. This is associated with a slight increase in propagation speeds
for all wave amplitudes and with a decrease in Umax for large-amplitude waves. Note
Umax is very similar for small waves. For a specified wave amplitude, larger values of
A are required for density ρ̄2. The effects of increasing S in densities ρ̄1 and ρ̄2 are
qualitatively identical.

Comparing the properties of waves for the exponential and mixed layer stratifi-
cations shows that maximum wave currents in large solitary waves are sensitive to
changes in the near-surface density. A small change in the density can result in a
large change in the buoyancy frequency and it is the latter which is dynamically
important. Reducing N near the surface reduces the baroclinic generation of vorticity
and hence the vertical shear of the horizontal velocity near the surface above the
wave. Strengthening this effect is the fact that the layer of modified density near the
surface is stretched vertically when it passes over the centre of the wave and becomes
much thicker than 2 m. For large waves the result is a thick layer of reduced N
and of reduced vorticity. This is responsible for the large decrease in Umax. It also
partially accounts for the reduction of Umax in large waves for density ρ̄2 compared
to those for density ρ̄1 and for the decrease in Umax as S increases for either of
these stratifications, although the effect is not as pronounced. In figure 4 the vertical
profiles of the horizontal velocity down the centre of two solitary waves, one each for
the exponential (S = 15 m) and mixed-layer stratifications, are compared. The waves
have the same value of A and have different amplitudes (14.3 and 14.0 m respectively).
The velocity profiles are similar in the lower 90 m. For the mixed-layer stratification
u is almost constant in the upper 8 m.

Because the vertical stretching is greatest at the surface(bottom) for waves of
depression(elevation), one can expect that mode-one solitary waves of depres-
sion(elevation) will be most sensitive to changes in stratification near the upper(lower)
boundary.

The mixed-layer density ρ̄m1(z) has a conjugate flow which can easily be found
by solving (10)–(11). In 100 m depth the isopycnal which undergoes the maxi-
mum downward displacement in the conjugate flow is initially about 5.7 m below
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Figure 4. Vertical profiles of the horizontal velocity down the centre of two solitary waves in water
of depth 100 m. One wave is in the exponential stratification with S = 15 m (solid). The other wave
is in the mixed-layer stratification (dotted). Wave amplitudes are 14.3 and 14.0 m respectively.

the surface and is displaced down by 43.7 m to close to the mid-depth. In com-
parison, for the undisturbed stratification, the buoyancy frequency maximum is
approximately 4.3 m below the surface. The conjugate flow has a propagation
speed of 1.322 m s−1, bottom and surface currents of −1.324 and 1.306 m s−1 re-
spectively, and a minimum Richardson number of 0.10. The latter suggests that
the conjugate flow is unstable and therefore that stable flat-centred waves do not
exist. Only solitary waves with an amplitude below 22 m, about half the ampli-
tude of the conjugate flow, can be calculated with the numerical method used
to solve (6). The maximum horizontal current in the direction of wave propaga-
tion, Umax, is below the surface for amplitudes larger than about 5 m. The loca-
tion of the maximum current gradually moves deeper as the waves get larger and
is about 4 m below the surface for the 22 m wave. The difference between the
maximum current and the maximum surface current is, however, extremely small,
the maximum difference being about 0.0004 m s−1 for a 16 m wave (compared with
Umax = 0.9020 m s−1).

As the water depth decreases, the maximum isopycnal displacement for the con-
jugate flow decreases, as do the bottom and surface currents, and Rim increases. In
a depth of 40 m solitary waves are limited in amplitude by the conjugate flow limit.
The conjugate flow has an amplitude of 14.3 m with the isopycnal undergoing this
maximum downward displacement having a rest height 5.3 m below the surface. The
minimum value of the Richardson number in the conjugate flow is 0.285 and this
occurs 2.5 m above the isopycnal undergoing the maximum displacement. The conju-
gate flow propagation speed is 0.710 m s−1, while the bottom and surface currents are
−0.653 and 0.624 m s−1 respectively. These values provide limiting maximum values
for solitary internal waves in water of 40 m depth for the mixed-layer density ρ̄m1. The
bottom current is larger in magnitude than the surface current in both water depths.
Large solitary waves have this property as well.
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Figure 5. Density contour plots using exponential stratification with S = 15 m. Shelf width is
L = 200 m and initial wave amplitude is 14.3 m. (a) t = 50 min, (b) t = 55 min, (c) t = 60 min,
(d) t = 90 min.

5. Evolution of shoaling waves
We now consider the shoaling characteristics of waves. In all cases, as waves shoal

they increase in amplitude over the shelf slope and steepen at the back, as reported by
Kao et al. (1985) and Saffarinia & Kao (1996). If the initial wave is sufficiently large,
the back of the wave may overturn and wave breaking commences. No evidence of
a shear instability, as reported by Kao et al. (1985), has been detected here. Their
two-layer stratification, however, is quite different from the stratifications used in this
study. On the shelf a leading solitary-like wave emerges which gradually changes shape
as it adjusts to its new depth. Trailing it may be other, smaller, solitary-like waves,
a mode-one dispersive wave train, a large mode-two solitary-like wave and other
higher-mode waves. Reflected waves are also generated, although they are usually
too small to detect in density contour plots. For large initial waves breaking occurs
over the shelf slope; however for smaller waves using the monotonic stratifications ρ̄1

or ρ̄2 wave breaking may occur well onto the shelf. This is a result of the fact that,
for these stratifications, the leading wave grows in amplitude as it adjusts to its new
environment. For both of these stratifications wave breaking results in the formation
of waves with trapped cores. For the mixed-layer stratification wave breaking only
occurs over the shelf slope and is short lived. Waves with trapped cores are not
formed.

We begin by illustrating a variety of shoaling behaviours by presenting density
contour plots from a number of cases.

As an example of a breaking wave which forms a trapped core consider the case
of an initial wave of amplitude 14.3 m (A = 0.6) using the exponential stratification
with S = 15 m and a shelf-slope width L = 200 m. Contour plots of the density
field are shown at four different times in figure 5. As the wave shoals it steepens
at the back and first overturns near the top of the slope at x = 251 m in a depth
of 44.5 m. Fluid from near the surface then plunges forward, filling the depression
ahead of it. This fluid forms the core of the resulting non-steady solitary-like wave
and is slightly denser than both the fluid at the surface and the fluid just below the
core. The density in the centre of the core is equal to that of the undisturbed density

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

63
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100636X


122 K. G. Lamb

100

80

60

40

0 500 1000 1500 2000 2500

(a)

z 
(m

)

100

80

60

40

0 500 1000 1500 2000 2500

(c)

z 
(m

)

100

80

60

40

0 500 1000 1500 2000 2500

(d )

100

80

60

40

0 500 1000 1500 2000 2500

(b)

x (m) x (m)

Figure 6. As in figure 5 but with density scale height S = 35 m. Initial wave amplitude 14.5 m.
(a) t = 50 min, (b) t = 60 min, (c) t = 70 min, (d) t = 100 min.
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Figure 7. Close-up look at the formation of wave with trapped core. Same case as shown in
figure 6. (a) t = 80 min, (b) t = 90 min, (c) t = 100 min, (d) t = 110 min.

about 2 m below the surface. The density of the fluid in the core decreases with time
as the wave evolves, due to mixing and numerical diffusion. By t = 90 min, the wave
field has separated into several distinct features. Farthest on the shelf is the large
solitary wave with the trapped core. Trailing it is a second solitary wave of much
smaller amplitude and then a mode-one dispersive wave train of small amplitude (at
x ≈ 1600 and 1100–1500 m respectively). Behind the wave train is a long mode-two
wave (x ≈ 900 m). The wave field over the top of the slope is more complex.

Results from a model run using the exponential stratification with S = 35 m are
presented in figures 6 and 7. The initial wave amplitude is 14.5 m (A = 1.0) and the
shelf-slope width is 200 m. At t = 50 min the wave is nearing the top of the shelf-slope
in water with a depth of approximately 50 m. The wave is tilted, with the bottom of
the wave lagging the top of the wave. This occurs for waves using S = 15 m as well
but is much more pronounced here. Vigorous overturning commences at the bottom
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Figure 8. Shoaled waves for wider shelf (L = 600 m). (a) Same density and initial wave as in
figure 5 at t = 90 min. (b) Same density and initial wave as in figure 6 at t = 100 min.

(t = 60 min) and then spreads upward to the right. One possible interpretation of
this is as a hydraulic jump associated with the strong off-shelf flow near the bottom
under the shoaling wave. Isopycnal displacements behind the lead wave, at x ≈ 100–
300 m, are much larger than in the case using the smaller scale height. The leading
wave grows in amplitude as it adjusts to its shallow water environment (figure 6b–d ).
Figure 7 shows how it overturns and forms a wave with a trapped core. This occurs
well onto the shelf, with wave overturning commencing at x ≈ 1000 m. The leading
wave has a trapped core which forms by t = 100 min at which time a large mode-one
wave of elevation can be seen propagating ahead of a complex wave field (figure 6).
In contrast to cases with S = 15 m, for which overturning occurs in two disjoint
regions, one near the surface in the overturning lead wave and one at the bottom,
for stratifications with S = 35 and 75 m overturning can occur in a single broad
region which extends from the bottom to the surface along a sloping curve. For
the case shown in figure 6, overturning first occurs near the bottom. The region of
overturning then spreads upward in the on-shelf direction. A separate patch occurs
when overturning in the lead wave takes place as shown in figure 7. For large initial
waves, however, overturning first occurs near the bottom and then rapidly progresses
upward to the right into the leading wave. There are no longer two disjoint patches
of breaking.

In figure 8 results from model runs using the same two stratifications and initial
waves but for wider shelf slopes (L = 600 m) are shown. The leading solitary waves,
which again have a trapped core, are larger and the trailing waves are greatly reduced
in amplitude. Very few waves can be detected behind the leading solitary wave. For
the case with S = 35 m, vigorous overturning did not occur near the bottom in this
case, although it does for larger initial waves.

When the mixed-layer stratification is used (L = 200) a wave with an initial
amplitude of 14.0 m overturns slightly as it shoals but the overturning region quickly
disappears (not shown). This is in contrast to the case shown in figure 5 where a wave
of similar amplitude forms a wave with a trapped core. The leading solitary wave is
close to maximum amplitude.

In figure 9 surface velocity profiles, u(x,H, t), are compared for the 14.0 m wave
in the mixed-layer stratification and the 14.3 m wave in the exponential stratification.
The initial wave velocities are similar except in the centre of the wave, where the
velocities for the exponential stratification are much larger. At t = 55 min the two
waves are almost in the same position. This is expected since most of their time has
been spent in deep water where their propagation speeds are similar (see figure 3).
At t = 55 min the wave for the exponential stratification has started to overturn (see
figure 5) and by t = 100 min has formed a trapped core of fluid. This is indicated by
the velocity minimum over the centre of the wave. It is now propagating faster than
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Figure 9. Surface velocity profiles for two waves at (a) t = 0, (b) t = 55, and (c) t = 100 min. Solid
curves: exponential density with S = 15 m, initial amplitude 14.3 m. Dotted curves: mixed layer
density, initial amplitude 14.0 m.
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Figure 10. Shoaling wave for mixed-layer density. Initial wave amplitude 21.2 m. L = 200 m.
(a) t = 50 min, (b) t = 60 min, (c) t = 100 min, (d) t = 120 min.

the wave in the mixed-layer density. The latter wave is now wider and does not have
a velocity minimum over the centre of the wave. This is indicative of the fact that
it does not have a trapped core. It is close to maximum amplitude as indicated by
surface peak velocity of about 0.61 m s−1 compared with 0.62 m s−1 for the conjugate
flow.

Results for a larger wave in the mixed-layer stratification are shown in figure 10. The
initial wave amplitude is 21.2 m (δx = 2.0, J = 150). This is close to the maximum
initial wave that could be computed. As the wave shoals it steepens at the back
until it overturns. At t = 50 min the maximum horizontal velocity (1.08 m s−1) occurs
in the forward plunging fluid. In comparison, the peak surface velocity is about
0.635 m s−1 which is larger than the fluid velocity at the surface in the conjugate flow
in 40 m depth (0.624 m s−1), but smaller than the conjugate flow propagation speed
(0.710 m s−1). The forward plunging fluid fails to reach the front of the wave and
a wave with a core of trapped fluid is not formed. For the case of an exponential
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stratification the shoaling wave was much narrower and was filled up by the forward
plunging fluid. At t = 120 min the leading solitary wave is a flat-centred wave with a
width of about 300 m. It has a minimum Richardson number of about 0.285, equal
to that for the conjugate flow. The maximum surface velocity is 0.615 m s−1, slightly
less than the corresponding value of 0.624 m s−1 for the conjugate flow (the difference
is possibly not numerically significant).

Four model runs were done using larger shallow-water depths to determine what
waves were formed when the minimum Richardson number in the shallow-water
conjugate flow is less than 0.25. Using L = 200 m, shallow-water depths of 60, 55,
50 and 45 m were considered. In these depths the conjugate flow has minimum
Richardson numbers of 0.172, 0.190, 0.214, and 0.244 respectively. The initial wave
amplitude was the same as that used in figure 10 (21.2 m) in all cases, having a
minimum Richardson number of approximately 0.32. As the shallow-water depth
increases the overturning becomes less vigorous. For a shallow-water depth of 55 m
the shoaling wave overturned slightly for a brief period of time but no significant
overturning occurred. No overturning occurred when the shallow-water depth was
60 m. The minimum Richardson number in the leading solitary wave in shallow-water
depths of 60, 55, 50, 45 and 40 m was approximately 0.235, 0.237, 0.238, 0.258 and
0.285 respectively. There was no evidence of a shear instability.

5.1. Evolution of wave amplitudes and velocities

The evolution of the wave amplitudes, ηmax, the maximum horizontal velocity Umax,
and the propagation speed c of the leading wave for a large number of cases are
shown in figures 11–14 for four stratifications: ρ̄1 for S = 15, 35, and 75 m and for the
mixed-layer stratification. The propagation speed c is the average over a 300 s interval
and is determined from the position where the horizontal velocity at the surface is
0.2 m s−1. For the cases shown, the maximum downward isopycnal displacements and
maximum horizontal velocities generally occur in the leading solitary wave throughout
the model runs. An exception occurs for some of the large wave cases using S = 35
and 75 m when the maximum displacement may occur behind the leading wave. For
example, for L = 200 m and S = 35 m at t = 60 min the maximum displacement is at
x = 125 m while the wave is at x = 500 m (see figure 6). This only occurs for a brief
period of time. In figure 12(a) this is the case for model runs for values of x between
0 and 400 m.

For the exponential stratification with scale heights of 15 and 35 m results are
presented for shelf-slope widths of L = 200 and 600 m (figures 11 and 12). In all
cases, the final wave amplitude is larger for the wide than for the narrow shelf slope.
This indicates that there is more energy in the leading solitary wave for the wider
shelf slopes, as predicted by theory. For the cases with S = 35 m there is a limiting
wave amplitude of about 14.9 m in the shallow water. For the wide shelf slope, waves
with initial amplitudes of 14.5, 17.7 and 20.5 m result in a shoaled solitary wave of this
amplitude (figure 12c). For the narrower shelf slope the initial wave with amplitude
14.5 m results in a leading shoaled wave with slightly smaller amplitude (figure 12a).
For a scale height of 15 m there is also a suggestion of a limiting amplitude in the
shallow water.

The dashed line in the amplitude plots indicates the shallow-water breaking ampli-
tude. For cases in which the final wave amplitude exceeds the shallow-water breaking
amplitude the shoaling waves overturned and formed waves with trapped cores. For
cases with final amplitudes below the breaking amplitude, waves with trapped cores
were not formed. In these cases wave breaking in the upper half of the fluid column
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Figure 11. Evolution of wave properties for various initial waves using exponential stratification
with S = 15 m. (a) Maximum downward isopycnal displacement as function of position of maximum
displacement for narrow shelf L = 200 m. Stars indicate plotted values at 300 s intervals. Dashed
line indicates breaking amplitude in shallow water. (b) Evolution of maximum horizontal velocity
(solid) and propagation speed of leading wave (dotted) plotted as functions of time. Narrow shelf
L = 200 m. Dashed lines indicate propagation speed at breaking limit in deep water (upper dashed
line) and shallow water (lower dashed line). (c, d) As in (a) and (b) but for wider shelf L = 600 m.

did not occur either. Overturning could occur at the bottom, particularly for cases
with large scale heights. This occurred as dense fluid pushed up the slope receded
back down the slope.

The plots of maximum horizontal velocity and wave propagation speeds include
dashed lines indicating the wave propagation speed at the breaking amplitude (cbr)
in the deep and shallow water. For cases with final amplitudes above the breaking
amplitude, the maximum velocity in the wave is larger than the wave propagation
speed, both being greater than cbr. For waves with final amplitudes below the breaking
amplitude, the maximum velocity is less than the propagation speed, both being lower
than cbr.

The results also show that Umax depends on the shelf-slope width. The largest final
values for S = 15 m occur for the narrow shelf slope, whereas for S = 35 m the largest
occur for the wide shelf slope. This can be more easily seen in figure 2(d ), where
average values obtained using shelf-slope widths of 200 and 600 m are plotted using
different symbols. This shows that the details of the flow in the wave core depend
on the shelf-slope width. The wave propagation speed appears to be independent
of the shelf-slope width and increases slightly more slowly, as a function of wave
amplitude, than c does for the convectively unstable solitary waves. The maximum
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Figure 12. As in figure 11 but for density scale height S = 35 m.

horizontal velocity for the shoaled waves increases more rapidly than c, at a rate
much less than does Umax for the convectively unstable solitary waves. Because the
fluid in the convectively unstable core is circulating in the opposite sense to that in
the cores of shoaled waves, the large difference is not surprising. For nearly linear
stratifications, Derzho & Grimshaw (1997) predicted that to leading order the fluid
in a wave core is stagnant. While the present results do not show this, there is some
qualitative similarity in the sense that the theory predicts a sharp reduction in the
rate of increase of Umax. The present results agree with the prediction of Derzho &
Grimshaw (1997) that the c vs. amplitude curve flattens out at large amplitudes.

Figure 13 shows the results for the exponential densities with S = 75 m for a
shelf-slope width L = 600 m. These runs used a lower horizontal resolution (δx =
10/3 m) because longer computational domains were required. The time scale of
wave evolution is increased so much that even with the reduced propagation speeds
a longer shallow-water region is required to allow the shoaled wave to evolve to a
final form. For the smaller-amplitude cases a final form has not been reached and
runs were discontinued when breaking occurred or the wave reached the boundary. A
maximum amplitude of 14.1 m for the shoaled waves is attained for the three largest
initial waves. Results obtained using density ρ̄2 for S = 20 and 45 m are qualitatively
similar to those obtained for density ρ̄1 (not shown).

In figure 14 the evolution of waves using the mixed-layer stratification and the
narrow shelf are shown. The results are quite different than for the exponential
stratification. All waves have a final amplitude below the conjugate flow amplitude,
indicated by the dashed line in figure 14(a). In figure 14(b) the dashed lines indicate the
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Figure 13. As in figure 11 but for density scale height S = 75 m. Wide shelf topography
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Figure 14. As in figure 11 but for mixed-layer stratification. Narrow shelf topography L = 200 m
only. Dashed lines in (b) are propagation speed (upper) and maximum horizontal velocity (lower)
of shallow water conjugate flow.

propagation speed and maximum horizontal velocity of the shallow-water conjugate
flow. For all final waves, Umax < c with both values being less than or equal to the
corresponding values for the conjugate flow. This illustrates the result that none of the
shoaled waves have trapped cores. The three largest initial waves, having amplitudes
> 16.9 m, form final on-shelf waves with ηmax, Umax and c equal to the corresponding
conjugate flow values.

5.2. Breaking depths

In figure 15 some data on the locations of initial wave breaking are plotted. Shown
are the water depth, horizontal location and distance below the surface of the first
occurrence of a density inversion in the upper half of the computational grid. Only
these grid points were considered in order to focus on overturning in the shoaling
wave rather than near bottom overturning. Results from the exponential stratifications
with S = 15 and 35 m and for the mixed-layer stratification are presented for three
shelf-slope widths, L = 200, 400 and 600 m.

Consider first the exponential stratification with S = 15 m (first column). Waves
with initial amplitudes 6 15.31 m were considered. At this amplitude Umax/c ≈ 0.99,
indicating that the initial wave is very close to breaking. Runs with larger initial waves
showed a rapid increase in the breaking depth; however the results were sensitive to
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Figure 15. Location of first breaking for three different shelf widths: L = 200 m (solid), 400 m
(dotted) and 600 m (dashed). (a, d, e) Exponential stratification with S = 15 m. (b, e, h) exponen-
tial stratification with S = 35 m. (c, f, i) Mixed-layer stratification. Shown are water depth when
overturning first occurs (a, b, c), horizontal position of first overturning (d, e, f) and height of first
overturning (g, h, i). Only overturning in upper half of computational grid was considered. For
exponential stratifications with S = 35 m sudden change in values for η larger than 12 m (solid
curve) and for η larger than 15 m (dotted curve) is due to breaking occurring at bottom of upper
half of the computational domain rather than in the leading wave. See text.

the numerical resolution. Increasing L increases the depths at which the waves break.
The minimum initial wave amplitude for which breaking occurs is approximately
7.4 m. It decreases slightly as L increases (this cannot be seen in the figure). For
small-amplitude waves, breaking occurs well onto the shelf (figure 15d ) near the
surface (figure 15g). This is expected, since, at the breaking amplitude Umax = c at the
surface for the exponential stratification. As the initial wave amplitude is increased
breaking occurs earlier and further below the surface. For very large waves the water
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depth at which breaking first occurs increases rapidly and breaking occurs closer to
the surface. This is because the initial wave is close to the breaking amplitude. Note
that initial wave breaking occurs at different distances below the surface for different
shelf-slope widths, an indication that the shelf-slope width plays a role in determining
the fluid density in the core. This may be responsible for the different values of Umax

in wave cores obtained using different shelf-slope widths (see figure 2).
For the exponential stratification with S = 35 m (figure 15, second column) breaking

for large waves occurs first near the bottom and then progressively along a sloping
line extending from the bottom up to the surface. In these cases, the breaking location
is at the bottom of the top half of the computational grid and not necessarily in the
leading wave. Indeed, as the shoaling wave has not formed an isolated solitary wave
in the shallow water at that time it is difficult, if not meaningless, to determine when
breaking first occurs in the wave. In figures 15(b, e, h) the sudden upward jump in the
breaking depth and downward jump in x and z for cases with L = 200 at ηmax ≈ 14 m
are indicative of this phenomenon. This effect becomes less pronounced, and occurs
at larger initial wave amplitudes, as the shelf-slope width increases. For small initial
waves, trends are similar to those for S = 15 m.

For the mixed-layer stratification the dependence of the breaking depth on L
is quite different. Increasing L decreases the depth at which the wave breaks and
increases the minimum wave amplitude for which breaking occurs. For L = 600 m
overturning in the solitary wave did not occur.

For the exponential stratification, for which solitary wave amplitudes are limited
by the breaking limit, wider slopes and the resulting increase in energy in the leading
wave results in a greater tendency for these waves to break as they shoal. Hence,
smaller initial waves break for larger L. The breaking depth increases as L increases
(figure 15a) since for depths less than 70 m (i.e. beyond the centre of the shelf slope
at x = 0), the time a wave spends over the shelf slope before it arrives at a specified
depth increases with L. Hence, the larger L is, the larger the wave is at a given depth
both because the wave has had more time to adjust to its local environment, and
also because of greater energy in the leading wave. Since waves are amplitude limited
by the breaking limit in all depths, the result is that breaking first occurs in greater
depths as L is increased.

For the mixed-layer stratification, shallow water waves are limited in amplitude by
the conjugate flow limit. Thus, these waves are trying to deform to non-breaking waves
as they shoal. Wider slopes give them more time to adjust, hence the minimum wave
amplitude for which breaking occurs increases with L. Waves propagate further and
into shallower water before they break, and for L = 600 wave breaking is completely
counteracted by this adjustment.

5.3. Properties of waves with trapped cores

For the exponential and hyperbolic tangent density profiles, waves which break form
a wave with a trapped, recirculating core of fluid which provides a very effective
means of transporting a parcel of fluid great distances. As shown in figures 11–13, all
waves with a trapped core propagate faster than the propagation speed of a wave at
the breaking limit.

Consider the case shown in figure 5 (exponential density with S = 15 m, initial
amplitude 14.3 m). A close-up of the wave core is given in figure 16 where contour
plots of the density, velocity and the vorticity (uz − wx) fields are presented for two
different times. At t = 80 min, shortly after the wave has broken, a tongue of relatively
light fluid can be seen extending below the core. Most of the fluid in the tongue rises
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Figure 16. Contour plots of a solitary-like wave with a recirculating core. Exponential stratification
with S = 15 m, L = 200 and initial amplitude 14.3 m (same case as shown in figure 5). For
horizontal velocity contour plots the solid curves are values greater than the wave propagation
speed c = 0.73 m s−1, dashed are positive values less than c, and dotted curves are negative values.
For vertical velocity contour plots solid/dotted curves are positive/negative values.

immediately ahead of the core. Some passes under the core and rises more slowly
behind it. This is indicated by the positive w contours near the surface at about
x = 1520 m and the smaller positive values extending up to the surface at about
x = 1470 m. The positive w values just below the surface at x = 1500 m are for the
rising fluid in the core. At t = 100 min the large tongue is no longer apparent. A small
depression in the isopycnal nearest the surface can be seen just ahead of the core.
This feature grows until a new tongue of near-surface fluid passes under the core at
which point it is pinched off, illustrating the unsteady nature of the core. There is
also an indication of some small overturning features at the rear of the wave. Note
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also that light surface fluid passes over the core. The vertical velocities at t = 100
show two peaks in upward motion near the surface at about x = 2405 and 2385 m.
The first of these is associated with the upwelling at the back of the small surface
depression ahead of the core. The second is associated with the fluid motion in the
core itself.

The motion in the core has the form of two counter-rotating vortices. In the upper
8 m (approximately) of the core the vorticity is negative (counter-clockwise). Below,
the vorticity is positive right down to the bottom boundary. Just below the region
of negative vorticity is a small, highly contorted, patch of strong positive vorticity.
Part of it lies inside the core, as is most readily apparent at t = 100 min where
some of it can be seen to lie inside the closed density contour. Examination of
individual particle paths confirms this (not shown). The negative vorticity is created
as the wave overturns at the back. In an exact solitary wave propagating in fluid of
constant depth, the flow is symmetric about the centreline. For waves of depression
propagating to the right, as considered here, positive vorticity is created as fluid
enters the wave where the baroclinic generation term gρx is positive. The vorticity
of a fluid particle reaches its maximum when it reaches the centre of the wave. In
the back half of the wave gρx is negative and, by symmetry, the vorticity of a fluid
particle decreases to zero as it leaves the wave. As a wave shoals its rear steepens.
The baroclinic generation of negative vorticity is enhanced and waves leave the rear
of the wave with negative vorticity. This is particularly pronounced near the surface
as these fluid particles have spent more time in the region of strong negative vorticity
generation. In tandem with the flux of fluid with negative vorticity out of the back
of the wave, waves are shed. When the wave overturns at the back there is strong
negative vorticity generation. As the tongue of fluid falls forward and down, positive
vorticity is generated underneath it. In figure 16 the bottom of the region of negative
vorticity is centred on the patch of fluid with u > c which lies between 5 and 10 m
below the surface. At the front of it are positive vertical velocities and at the surface
there is a local velocity minimum. At t = 100 min the surface velocity maximum is
about 0.7 m s−1 ahead of the core. It drops to 0.5 m s−1 above the core and then
increases again to 0.6 m s−1, before monotonically decreasing to zero behind the wave
(see figure 9c). The dominant counter-clockwise flow in the core agrees with the
results of Terez & Knio (1998); however it is in the opposite sense of those seen in
laboratory exeriments and in atmospheric observations (Manasseh et al. 1998; Doviak
& Christie 1989). This may be a consequence of the formation mechanism which in
the latter two instances is associated with dense gravity currents, as suggested by
Terez & Knio (1998).

Figure 17 shows a close-up of a wave core for a large-amplitude case using the
exponential stratification with S = 35 m for L = 200 m. The initial wave amplitude
was 20.5 m and the shoaled wave has attained the limiting amplitude of 14.8 m (see
figure 12) and has a propagation speed of 0.59 m s−1. Shoaled waves with trapped
cores of limiting amplitude are broad with flat centres. This limiting amplitude
behaviour of wave cores was predicted by Derzho & Grimshaw (1997). In the present
simulations this behaviour occurs for stratifications with the large scale heights,
i.e. for the stratifications most closely resembling those considered by Derzho &
Grimshaw. Below the core the flow is nearly horizontally uniform apart from short
waves superimposed on the main wave. These waves are most apparent near the
lower boundary of the wave core and are presumably associated with instabilities
in the high shear region at the bottom of the core where the Richardson number
is less than 0.25. Inside the core the flow is more irregular. Shoaled waves with
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Figure 17. As in figure 16 but for wave with trapped core at limiting amplitude. Exponential
stratification with S = 35 m, L = 200 m and initial wave amplitude 20.5 m. Solid horizontal vorticity
contours are for u > c = 0.59 m s−1. t = 150 min.
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Figure 18. Particles in and around the recirculating core at times between 80 and 120 min (left to
right), in 5 min intervals. Exponential stratification with S = 15 m, L = 200 and initial amplitude
14.3 m (same case as shown in figure 5). Particles with x < 1400 m are the initial (t = 0) locations
of the particles which are in and around the core at t = 120 min.

cores at the limiting amplitude for density ρ̄2 using S = 45 m are also flat in
the middle. The formation of flat-centred waves with trapped cores suggests that
conjugate flows with closed streamlines may exist for monotonic stratifications, strati-
fications for which conjugate flows with open streamlines do not exist (Lamb & Wan
1998).

For the case depicted in figures 5 and 16, the motion of a dense field of 100 000
particles was monitored in order to determine where the water in the trapped core
originated and to determine the size of the core. The particles were seeded over the
top of the bank slope between x = −500 and 1500 m and between z = 90.0 m and
the surface. Figure 18 shows the positions of the particles in and around the core at
5 minute intervals between t = 80 and 120 min. The figure was created by plotting
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Figure 19. Particles in and around the core and their initial locations at t = 90 and t = 100 min. (a, c)
Particles with initial horizontal coordinates less that 500 m; (b, d) Particles with initial horizontal
coordinates greater that 500 m. Same case as figure 18.

the positions of particles whose x-coordinates are greater than a time-dependent
specified value (for the first time, t = 80 min, only particles whose initial x-coordinate
is less than 1300.0 are shown as the wave is still in the initial field of particles). Also
plotted are the original positions of the particles that are in and around the core at
t = 120 min. There are two sources of these particles. The first is a roughly triangular
region lying in the upper 2.5 m between about x = −100 m and x = 350 m. The
second source is spread over a region between x ≈ 400 m and x = 1500 m. The first
of these are the particles in the fluid that plunges into the depression when the core
is formed. The second set are particles which, in the early stages of the formation of
the core, are in the light fluid ahead and below the forward plunging fluid, and so
are perhaps more accurately described as being wrapped around the core. The first
few groups of particles shown in figure 18 have many more such particles. Note that
the maximum depth of the particles oscillates in time. This illustrates the non-steady
nature of the wave over this time interval.

In figure 19 the positions of particles in and around the wave core, along with their
initial locations, are plotted by splitting them into two groups. The two groups are
those with initial x-coordinates less than and greater than 500.0 m. These correspond,
approximately, to particles in and around the core respectively. At t = 90 min one
can clearly see that, in general, the particles with initial x-coordinates less than 500 m
are inside the core while those with initial x-coordinates greater than 500.0 m are
wrapped around the core. At t = 100 min the number of particles originating from
x > 500.0 m is greatly reduced while the number originating from x < 500 m has not
significantly changed.

In contrast, for the case presented in figure 12, for which a wave with a trapped core
was not formed, no particles remain in the lead wave at t = 120 min. The maximum
transport distance of a particle was approximately 1540 m for a particle whose initial
location was 1 m below the surface at x ≈ 1160 m.

In figure 20 vertical profiles of the horizontal velocity, density and the steady
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Figure 20. Vertical profiles of horizontal velocity (first column), density (second column) and steady
volume flux (third column) through shoaled waves with trapped cores (a–f) and without trapped
cores (g–l). (a–c) Exponential stratification with S = 15 m, L = 200 m, initial amplitude 14.3 m (core
shown in figure 16). (d–f) Exponential stratification with S = 35 m, L = 200 m, initial amplitude
20.5 m (core shown in figure 17). (g–i) Exponential stratification with S = 15 m, L = 200 m, initial
amplitude 6.4 m. (j–l) Mixed-layer stratification, L = 200 m, initial amplitude 21.2 m (shown in
figure 10).

volume flux fs(z), defined by

fs(z) =

∫ z

60

(
u(x, z′, t)− c) dz′, (12)

are presented for the wave cores shown in figures 16 and 17 as well as for two
cases without trapped cores. The steady volume flux is the volume flux between the
bottom and height z in a reference frame moving with the wave. At the surface it
has a value of −cD, where D is the water depth. This value is indicated by a vertical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

63
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100636X


136 K. G. Lamb

20

15

10

5

0
4000 6000 8000

t (s)

A
m

pl
it

ud
e 

(m
)

Figure 21. Comparison of core amplitudes as calculated using particles (solid) and using the
occurrence of density inversion (dotted). Exponential density with S = 15 m using wide topography
L = 600 m. Initial wave amplitudes are 7.6, 11.4 and 14.9 m. Core amplitudes increase with initial
wave amplitude.

dotted line in figure 20. The value of x used for the profiles shown in figure 20 is the
one at which the maximum downward isopycnal displacement in the wave occurs.
The first of the cases without trapped cores is one using density ρ̄1 with S = 15 m,
L = 200 m and an initial amplitude of 6.4 m. For this case wave breaking did not
occur during shoaling. The second case is that presented in figure 12. This wave is
in the mixed-layer stratification (initial amplitude 21.2 m) which is flat centred (i.e. at
the conjugate flow amplitude).

The velocity profiles include a line indicating the wave propagation speed. For the
two cases with cores, it can be seen that there is a thin subsurface region where the
horizontal velocity exceeds the wave propagation speed c. Between this region and
the surface the horizontal velocity is below the wave propagation speed and decreases
with height. From the density profiles one can clearly see a subsurface layer in which
the density is almost constant. For the first case a thin stratified layer overlying
the core is clearly evident. The bottom of the core is below the height at which u
first equals c. This is indicative of the presence of two counter-rotating vortices. For
the cases without cores the horizontal velocity increases monotonically towards the
surface and is always less than the wave propagation speed. The density and steady
volume flux decrease monotonically with z.

Derzho & Grimshaw (1997) modelled a wave with a trapped core by using a
separating streamline which left the surface ahead of the core and rejoined the
surface behind the core. Streamlines were closed above the separating streamline
and open beneath it. For such waves, the volume flux between the bottom and
the separating streamline is independent of horizontal position and equal to −cD.
Derzho & Grimshaw showed that to leading order the fluid is stagnant inside the
core, in which case fs would remain constant above the separating streamline. From
figure 20(c, f ) it is apparent that this is not the case in the present results. As z
increases fs decreases, reaches a local minimum which is greater than −cD, rises and
then falls to −cD at the surface. This shows that there is not a separating streamline
that meets the surface and is indicative of near-surface fluid passing over the core.
Flux profiles for every case looked at showed qualitatively similar behaviour.
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Figure 22. Core amplitudes as a function of final wave amplitude for exponential stratifications.
(a) S = 15 m for shelf-slope widths of 200 m (solid) and 600 m (dotted) and for S = 75 m for a
shelf-slope width of 600 m (dashed). (b) S = 35 m for shelf-slope widths of 200 m (solid) and 600 m
(dotted). Core amplitudes are not steady in time. The error bars indicate range of values.

A couple of methods for determining the amplitude of the core have been consid-
ered. One is to use particle tracking. In this method (Terez & Knio 1998) the motion
of a large number of particles is monitored and the core amplitude is defined as
the maximum distance below the surface of a particle in the core. This is somewhat
tedious so an alternative method is desirable. The second method is to use the greatest
distance below the surface of a density overturn.

In figure 21 the core amplitudes, as determined using particles and density overturns,
are compared for three different waves for the exponential density ρ̄1 with S = 15 m
using the wide topography L = 600 m. Initial wave amplitudes were 7.6, 11.4 and
14.9 m. It can be seen that in all cases the two amplitudes are similar, with the
amplitude based on density overturns being generally larger, in some cases by almost
1 m, a difference of approximately 10%. In figure 22 the core amplitudes (based
on density overturns) are plotted as a function of the wave amplitudes for model
runs using the exponential density with scale heights of 15, 35 and 75 m. Results for
shelf-slope widths of L = 200 and 600 m are shown separately for the two smallest
scale heights. For large waves, the core amplitudes are larger for the narrow shelf
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ηmax L M(0) Final KE(0) Max Final Final
Case A (m) (m) (m2) %∆M (m4 s−2) %∆KE %∆KE %∆E

S15L2c1 0.2 7.64 200 9.70 0.09 219.4 −8.0 −0.6 −0.8
S15L6c1 — — 600 9.66 0.04 219.4 −3.2 −0.2 −0.2
S15L2c2 0.6 14.29 200 14.54 0.41 724.6 −8.0 −6.2 −1.0
S15L6c2 — — 600 14.50 0.01 724.6 −6.1 −5.8 −1.1
modL2c1 0.3 9.65 200 11.09 0.09 340.0 −8.1 −3.7 −0.8
modL6c1 — — 600 11.05 0.02 340.0 −4.3 −3.6 −0.8
modL2c2 1.5 21.17 200 22.58 1.69 1833.0 −14.1 −13.6 −2.1
modL6c2 — — 600 22.54 0.10 1833.0 −13.3 −9.5 −0.5
S35L2c1 0.3 6.89 200 16.33 0.09 307.6 −28.1 −3.1 −1.5
S35L6c1 — — 600 16.25 −0.40 307.8 −11.6 −1.3 −1.0
S35L2c2 1.0 14.53 200 24.98 0.30 1076.3 −23.1 −8.5 −5.2
S35L6c2 — — 600 24.90 0.11 1076.3 −9.7 −3.8 −0.8

Table 1. Mass and energy changes during shoaling.

slope for S = 15 m whereas the core amplitudes are smaller for the narrow shelf
slope when S = 35 m. The error bars on the plots indicate the variation of the
core amplitude. For the S = 75 m cases error bars are not included. For these cases
the waves were monotonically increasing except for the largest waves. Final values
rather than averages have been plotted (see figure 13). The wave and core amplitudes
increase as the incident solitary wave amplitude increases. While the wave amplitudes
are almost constant in time (figure 11–14), core amplitudes show some variability,
particular for the largest waves. These results are consistent with the suggestion by
Terez & Knio (1998) that details of the wave structure do not have a pronounced
effect on the large-scale motion of the wave.

6. Energetics
Energy conservation and energy distribution amongst the various waves present

after a single solitary wave has shoaled is now considered. In the numerical method
used, the model equations (1a)–(1c) are not cast in conservation form. Momentum
is exactly conserved (to machine error) because the time derivative of the velocity
field is written as a linear combination of divergence-free vectors; however mass and
energy are not exactly conserved. A numerical instability which manifested itself in
the deep water made it necessary to add some damping terms to the momentum and
density equations when energetics are considered. The modified equations are

U t +U · ∇U = −∇p− ρgk̂ + (KuU z)z +MU χχ, (13a)

ρt +U · ∇ρ =
(
Kρρz

)
z

+Mρχχ. (13b)

Here χ is the horizontal terrain-following coordinate. Boundary conditions in the
vertical are uz = ρz = 0 along the top and bottom boundaries. The values of Ku,
Kρ and M are 7.5 × 10−4, 1.0 × 10−6 and 2.5×10−3 m2 s−1 in the deep water. They
then decrease by a factor of 100 between about x = −1050 and −950 m. Thus, they
are effectively zero in the shallow water. Comparisons of wave and core amplitudes,
maximum velocity and propagation speeds for model runs with and without damping
show only slight differences.

A total of twelve model runs were done using damping. These runs used the
exponential stratification with S = 15 and 35 m and the mixed-layer stratification.
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Figure 23. Time evolution of kinetic energy (solid curve), potential energy offset by initial kinetic
energy (dotted curve), and total energy (dashed curve) for a shoaling wave using narrow shelf
with L = 200 m (left column) and wide shelf with L = 600 m (right column). (a, b) Exponential
stratification with S = 15 m for initial amplitudes of 7.6 and 14.3 m. (c, d) Mixed-layer stratification
for initial amplitudes of 9.6 and 21.2 m. (e, f) Exponential stratification with S = 35 m for initial
amplitudes of 6.9 and 14.5 m. (e) L = 200 m. (f) L = 600 m.

For each of these stratifications two initial wave amplitudes were used and each
was run for shelf-slope widths of 200 and 600 m. For these runs the total kinetic and
potential energy and the mass anomaly were monitored by integrating the appropriate
fields over the computational domain (−4000 6 x 6 4000 m). The potential energy is
defined so that its value is zero at t = 0. It is not the available potential energy, which
is a function of the size of the computational domain. The mass anomaly M(t) is
defined as the negative of the integral of the density anomaly ρ(x, z, t)− ρ̄(z) over the
computational domain. In table 1 the values of M(0), the initial kinetic energy KE(0),
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Time K1 % in % in
Case (min) (m4 s−2) %K1 %K2 %K3 %m1 %m2 0 < x < m2 x < 0

S15L2c1 120 171.0 78.4 11.9 — 0.5 4.6 1.9 2.7
S15L6c1 — 192.6 87.6 9.1 — 0.2 1.8 0.6 0.7
S15L2c2 — 615.9 90.6 3.6 — 0.8 2.5 1.2 1.3
S15L6c2 — 655.6 96.1 2.2 — 0.1 0.7 0.4 0.4
modL2c1 — 285.3 87.9 4.9 — 0.4 3.9 1.5 1.3
modL6c1 — 308.1 94.3 3.1 — 0.2 1.3 0.5 0.5
modL2c2 — 1196.9 70.9 11.2 2.1 7.0 4.5 2.4 1.8
modL6c2 — 1574.7 95.0 2.3 — — 1.8 0.5 0.4
S35L2c1 150 141.0 47.6 8.2 — 11.9 10.6 9.4 20.0
S35L6c1 — 197.6 64.9 14.6 — 4.1 6.5 3.9 6.0
S35L2c2 — 482 49.3 13.8 3.2 7.0 8.8 5.2 12.6
S35L6c2 — 829 79.1 6.4 1.0 3.4 4.1 2.6 3.4

Table 2. Kinetic energy distribution in the final wave field.

the maximum and final change of kinetic energy and the final change in total energy
(kinetic plus potential) and the mass anomaly are given. The total energy does not
decrease monotonically during a model run; however the maximum and final change
in total energy are the same in all cases. For these runs the numerical model solved
for the density anomaly rather than for the density. Recall that the density has been
non-dimensionalized by a reference value, hence units of kg do not appear. For all
but four cases, the final change in total energy is less than 1% and in all but one
case the mass anomaly changes by less than 1% during the course of the model run.
The largest changes in total energy (5.1%) occur for the large wave case using the
exponential stratification with S = 35 m. For this case vigorous overturning between
the surface and the bottom occurred (see figure 6).

Figure 23 shows the time evolution of the kinetic, potential and total energy for
each of the 12 model runs. Here, for convenience, the potential energy has been offset
by the initial value of the kinetic energy. As a solitary wave shoals the kinetic energy
decreases and the potential energy rises so that the total energy is approximately
conserved. Changes in kinetic energy at this stage are between 8% and 28% for
the narrow topography and between 3% and 13% for the wide topography. For the
small, non-breaking case using the exponential stratification with S = 15 m potential
energy is converted back to kinetic energy as the wave adjusts to its new depth.
After adjustment the percentage change in kinetic energy is less than 1%. For the
other cases the final decrease in kinetic energy is an order of magnitude larger with
a corresponding increase in potential energy. This includes the small-amplitude case
for the mixed-layer stratification for which breaking did not occur during shoaling.
For the cases using the exponential stratification with S = 35 m, a reflected wave is
formed over the shelf slope. It propagates toward the deep water and reflects off the
left boundary of the computational domain. During the reflection kinetic energy is
converted to potential energy. This accounts for the increase in potential energy seen
in figures 23(e, f ) at about t = 7500 s.

In table 2 the kinetic energy distribution amongst various wave forms in the final
wave field are given. K1 is the kinetic energy in the leading wave while %K1, %K2,
and %K3 give the percentage of the total kinetic energy in the three leading mode-one
solitary waves, if present. Other values given are the percentage of the total kinetic
energy: (i) in the mode-one wave train, lying between the mode-one solitary waves
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and the mode-two solitary wave; (ii) in the mode-two solitary wave; (iii) lying between
x = 0 and the mode-two solitary wave; and (iv) lying in the region x < 0. The latter
is largely made up of energy in the reflected waves, although it may not account for
all the reflected energy. For the cases using S = 35 m the percentage of kinetic energy
was calculated using the total kinetic energy in the computational domain before
the leftward propagating reflected wave reached the left boundary. In all cases the
amount of energy in the leading wave is substantially higher, and the energy in the
reflected waves (x < 0) is substantially lower, for runs using the wide shelf than for
the corresponding model runs using the narrow shelf.

7. Summary and conclusions
The evolution of shoaling solitary internal waves, with a focus on the formation

of solitary waves with trapped cores, has been investigated using a two-dimensional
numerical model. The model was initialized with a single solitary wave in water
100 m deep. The wave subsequently propagates into shallow water 40 m deep. It was
found that waves with trapped cores are easily formed in density fields for which
the buoyancy frequency increases monotonically towards the surface (monotonic
stratifications). Two such density fields, given by exponential and hyperbolic tangent
profiles, were considered. The emphasis was on the exponential stratification for which
three different scale heights were used.

One of the exponential stratifications was modified by introducing an upper mixed
layer approximately 2 m thick, 5% of the shallow water depth. This was found to
significantly modify the shoaling behaviour of the waves, completely eliminating
the formation of waves with trapped cores. This result can be understood from a
consideration of limiting wave amplitudes. For the monotonic stratifications, waves
with open streamlines (in a reference frame moving with the wave) are limited in
amplitude by the breaking limit, at which point the maximum horizontal velocity
Umax is equal to the wave propagation speed c. For the mixed-layer stratification,
waves in the shallow water are limited in amplitude by the conjugate flow limit for
which Umax/c = 0.879. Large-amplitude waves in shallow water thus evolve to waves
far from breaking. It is conjectured that waves with trapped cores will not be formed
if conjugate flows with open streamlines exist. This has been confirmed using several
other stratifications. This ongoing work will be reported elsewhere.

These results have significant implications, as they imply that waves with trapped
cores will not be formed in the ocean under most oceanographic conditions. Only
at special locations or times, when the upper mixed layer is exceedingly thin, will
waves with trapped cores possibly be formed. The sensitivity of the results to the
near-surface stratification demonstrates the need to take measurements close to the
surface. For example, solitary waves have been computed using a stratification based
on density measurements taken off the coast of La Jolla, California in water 28 m
deep (C. Lennert-Cody, personal communication). Density measurements were taken
to within 0.5 m of the surface. Calculations done by the author show that in some
cases solitary waves are limited by the breaking limit if the buoyancy frequency is
linearly extrapolated to the surface but is limited by the conjugate flow limit if the
buoyancy frequency is decreased more rapidly. Thus, this is one example of a location
where waves with trapped cores may be formed at certain times. It is also possible
that the presence of a background flow with sufficiently strong near-surface vorticity
would allow waves with trapped cores to be formed.

For all stratifications considered solitary waves are waves of depression. Shoaling
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waves increase in amplitude as they pass over the shelf slope, typically attaining
their peak amplitude over the upper half of the shelf slope. They become asymmetric
during shoaling, being steeper at the rear of the wave where overturning may occur
for sufficiently large waves. Eventually the wave field is composed of a large leading
solitary wave followed by one or two smaller solitary waves (usually one). Trailing
these are a mode-one wave train, a mode-two wave and other higher-mode waves.
Reflected waves are also formed.

For the monotonic stratifications, if overturning occurs at the rear of the wave the
forward plunging fluid fills the wave and an unsteady solitary-like wave with a trapped
fluid core is formed in the shallow water. The shoaling wave may arrive in shallow
water before breaking has occurred. For the shelf slopes considered here the wave has
not had time to completely adjust to the new depth and it continues to evolve after
it has reached the shallow water. As it evolves to a final form it grows in amplitude
and in so doing may exceed the breaking amplitude. Hence, waves may overturn and
form waves with trapped cores well onto the shelf. This behaviour becomes more
pronounced as the scale height for the stratification increases, as this increases the
evolution time scale of the waves. This effect dominates the reduced propagation
speeds so that waves must propagate greater distances to reach a final form. This
makes model runs using stratifications with large scale heights difficult. Waves with
trapped cores have propagation speeds, maximum currents, and amplitudes which
are larger than the corresponding values for the largest non-breaking wave in the
shallow water. The fluid in the core has two counter-rotating vortices. The upper one
is the larger and has negative vorticity uz − wx, i.e. it circulates counter-clockwise,
rising at the front of the core (waves are propagating rightward). A wider shelf slope
results in larger leading solitary waves in the shallow water and the critical initial
wave amplitude, ηcrit, above which shoaling waves break, decreases as the topographic
slope decreases. All breaking waves formed a core, even those with initial amplitudes
only slightly above ηcrit. Indeed, the presence of a recirculating core was often the
only indication that breaking had occurred.

Maximum currents in waves with trapped cores were found to depend on the shelf
width and hence on the details of the formation of the core. For the exponential
densities with scale heights of 35 and 75 m, and for the hyperbolic tangent density
with a scale height of 45 m, waves with trapped cores were limited in amplitude.
Waves at the limiting amplitude were flat in the middle, suggesting the existence of
conjugate flows with closed streamlines. The limiting amplitude depends slightly on
the shelf-slope width.

The flow in the wave cores is variable, as shown by variations in the maximum
horizontal velocity in the core and in the core amplitude. The variability increases as
the resolution increases, suggesting that at a much higher resolution the recirculating
core would have more structure and be more dynamically active. Three-dimensional
effects would probably substantially modify the flow in the wave core with possibly
little effect on the flow outside the core. This warrants investigation. Three-dimensional
effects could also significantly modify the wave field that evolves from regions of strong
overturning behind the leading wave.

Many of the properties of the waves with wave cores are similar to those predicted
by Derzho & Grimshaw (1997) in spite of the fact that the stratifications considered
here do not have nearly constant buoyancy frequency. Similarities include a flattening
of the propagation vs. amplitude curve compared with convectively unstable waves
computed by the solitary wave solver, and the existence of a limiting amplitude for
waves with cores. The limiting amplitude was found for stratifications with the largest
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scale heights considered, i.e. for those most closely resembling the stratifications
considered by Derzho & Grimshaw. There is some indication that wave properties
outside the core are not sensitive to the flow inside the core, as found by Terez &
Knio (1998).

When the exponential density with a scale height S = 15 m is modified to include a
2 m thick upper mixed layer, solitary wave amplitudes are limited by the stability limit
in deep water and by the conjugate flow limit in shallow water. Wave breaking only
occurred over the shelf slope. If the leading solitary wave arrived on the shelf before
breaking then, as it continued to adjust to shallow water, it could not exceed the
conjugate flow amplitude. Hence the maximum horizontal velocity in the wave always
stayed well below the wave propagation speed and no overturning would occur in
the shallow water. A few model runs using the exponential stratification (S = 15 m)
modified to have surface mixed layers 5 and 10 m thick have also been done. The
results were qualitatively similar to those presented for the 2 m mixed-layer case. For
the mixed-layer stratification, because the overturning is restricted to the back of
the shoaling solitary wave, three-dimensional effects are not expected to significantly
modify the leading wave.

This work was funded by a grant from the Natural Sciences and Engineering
Research Council of Canada. Some of the model results presented herein were
obtained using an NEC SX5, time on which was generously provided by R. Peltier.
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