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For the parabolic–elliptic Keller–Segel system in �2 it has been proved that if the initial mass

is less than 8π/χ, a global solution exists, and in case the initial mass is larger than 8π/χ,

blow-up happens. The case of several chemotactic species introduces an additional question:

What is the analog for the critical mass obtained for the single species system? We find a

threshold curve in the two species case that allows us to determine if the system is a blow-up

or a global in time solution. No radial symmetry is assumed.
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1 Introduction

The Keller–Segel model describes the aggregation of living organisms like cells, bacteria

or amoebae. This is the simplest mechanism of aggregation. The most famous example in

nature for this type of cell motion is the Dictyostelium discoideum or Slime mould; this

amoeba was discovered in the first half of the 20th century. The slime mould is a unicellular

organism that detect an extracellular signal and transforms it into an intracellular signal.

These signal activates oriented cell movement towards a signal, this is an aggregation

process. The signal is a chemical secreted by themselves and is called cyclic Adenosine

Monophosphate (cAMP).

A classical mathematical model in chemotaxis was introduced by Keller and Segel in

1971 [12]. The Keller–Segel model is as follows:

ut = ∇ · (μ∇u− χu∇v) x ∈ Ω, t > 0,

vt = γΔv − βv + αu x ∈ Ω, t > 0,
(1)

where u(x, t) is the cell density and v(x, t) is the concentration of chemical at point x and

time t subject to the homogeneous Neumann boundary conditions and positive initial
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data u(x, 0) = u0 and v(x, 0) = v0. In this model, χ is the chemotactic sensitivity, γ is the

diffusion coefficient of the chemo-attractant, μ is the diffusion coefficient of cell density, β

is the rate of consumption and α is the rate of production, all are positive parameters, and

Ω ⊂ �N has smooth boundary ∂Ω. It was conjectured by Childress and Percus [5] that

in a two-dimensional domain there exists a critical number C such that if
∫
u0(x)dx < C

then the solution exists globally in time, and if
∫
u0(x)dx > C , then blow-up happens. For

different versions of the Keller–Segel model, the conjecture has been essentially proved,

finding the critical value C = 8π/χ; for a complete review of this topic, we refer readers

to [9, 10] and the references therein, and [2, 4, 11, 13, 15].

In the case of several chemotactic species, a new question arises, namely: Is there a

critical curve in the plane of initial masses θ1θ2 delimiting on one side global existence and

blow-up on the other side? This question was previously formulated by Wolansky in [16],

and from Theorem 5 of this last paper we readily deduce the following result.

Theorem 1 Consider the system

∂tu1 = μΔu1 − χ1∇ · (u1∇v)
∂tu2 = Δu2 − χ2∇ · (u2∇v)

0 = Δv + u1 + u2 − v,

along with Dirichtlet boundary conditions for v and initial radial data: u1(0, ·) = ϕ, u2(0, ·) =

ψ, v(0, ·) = φ, with ϕ,ψ, φ � 0 on the two-dimensional disc of radius 1. Further, let θ1, θ2

be the total preserved masses of the chemotactic species. Assume further that

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0, θ1 < 8πμ/χ1, θ2 < 8π/χ2 . (2)

Then for (u1(0,·), u2(0,·)) ∈ YN with

YN =

{
u1, u2 : B(0) → �+ :

∫
ui = θi,

∫
B1(0)

ui log ui < ∞
}
,

there exists a global in time classical solution.

A natural question arises from this last result. What happens if inequalities (2) do not

hold? Is it still possible to have global solutions? With regard to this question it is worth

recalling here a result from Conca et al. [6], who considered the following system in the

whole space in two dimensions:

∂tu1 = μΔu1 − χ1∇ · (u1∇v), x ∈ �2, t > 0

∂tu2 = Δu2 − χ2∇ · (u2∇v), x ∈ �2, t > 0

v(x, t) = − 1
2π

∫
�2 log |x− y| (u1(y, t) + u2(y, t)) dy, x ∈ �2, t > 0

u1(x, 0) = u10 � 0, u2(x, 0) = u20 � 0, x ∈ �2, t > 0

⎫⎪⎪⎬⎪⎪⎭ , (3)

where u1 and u2 are the density variables for two different chemotaxis species and v is the

chemoattractant, χ1, χ2, μ are positive constants and positive initial conditions u10, u20 are
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Figure 1. Regions of global existence in time and blow-up.

given. In their last paper it was proved that if θ1, θ2 satisfy any of the inequalities

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0, θ1 > μ
8π

χ1
, θ2 >

8π

χ2
,

then system (3) can blow up. It was also proved in [6] that the inequalities

θ1 + θ2 <
8π

χ2
, μ � 1

θ1 + θ2 <
8π

χ2
μ, μ < 1

guarantee global existence.

In the present paper we aim to give a step further improving the results of global

existence from [6] and to prove that even in the non-radial case, inequalities (2) guarantee

global existence for system (3). In consequence, we give a generalization of the threshold

number 8π/χ for the classical parabolic–elliptic Keller–Segel system in �2 to a curve for

the two species system. The global existence in time results of the present paper along

with the blow-up results from [6] are summarised in Figure 1.

2 Preliminaries

Let us proceed formally to find a free energy functional for our system. First we write the

equation for u1 in (3) in the form

∂tu1 = ∇ · u1∇ (μ log u1 − χ1v) . (4)

Next, we multiply both sides of (4) by μ log u1 − χ1v and integrate to obtain∫
�2

u1t (μ log u1 − χ1v) dx =

∫
�2

(μ log u1 − χ1v) ∇ · u1∇ (μ log u1 − χ1v) dx. (5)
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Then using mass conservation and integrating by parts, we see that (5) is equivalent to

d

dt

∫
�2

μu1 log u1dx− χ1

∫
�2

u1tvdx = −
∫

�2

u1 |∇ (μ log u1 − χ1v)|2 dx. (6)

Similarly,

d

dt

∫
�2

u2 log u2dx− χ2

∫
�2

u2tvdx = −
∫

�2

u2 |∇ (log u2 − χ2v)|2 dx. (7)

Now we add 1
χ1

(6) and 1
χ2

(7) to obtain

d

dt

{∫
�2

μ

χ1
u1 log u1dx+

1

χ2

∫
�2

u2 log u2dx

}
−

∫
�2

(u1t + u2t) vdx

= −
∫

�2

u1 |∇ (μ log u1 − χ1v)|2 dx−
∫

�2

u2 |∇ (log u2 − χ2v)|2 dx. (8)

We observe at this point that∫
�2

(u1t + u2t) vdx= − 1

2π

∫
�2

(u1(x, t) + u2(x, t))t

∫
�2

log |x− y| (u1(y, t) + u2(y, t)) dydx

= − 1

4π

d

dt

∫
�2×�2

(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) log |x− y| dydx

=
1

2

d

dt

∫
�2

(u1 + u2)vdx. (9)

In conclusion, we deduce from (8) and (9) that

d

dt

{∫
�2

μ

χ1
u1 log u1dx+

1

χ2

∫
�2

u2 log u2dx− 1

2

∫
�2

(u1 + u2)vdx

}
� 0. (10)

Result (10) motivates us to define the free energy functional for system (3) as

E(t) :=
μ

χ1

∫
�2

u1 log u1dx+
1

χ2

∫
�2

u2 log u2dx− 1

2

∫
�2

u1vdx− 1

2

∫
�2

u2vdx. (11)

In order to give validity to our calculations, we suppose not only that u1, u2 ∈
C0(�+, L1(�2)) ∩ L2((0, T );H1(�2)) but also that u1(1 + |x|2), u2(1 + |x|2), u1 log u1 and

u2 log u2 are bounded in L∞
loc(�

+, L1(�2)). In addition, ∇√
u1,∇

√
u2∈ L1

loc(�
+, L1(�2)) and

∇v ∈ L∞
loc(�

+ × �2).

Then we have that

d

dt
E(t) = − 1

χ1

∫
�2

u1 |μ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫
�2

u2 |∇ log u2 − ∇χ2v|2 dx � 0. (12)

As a consequence of (12) and the Hardy–Littlewood–Sobolev (HLS) inequality [5, 9], the

following entropy bound was obtained in [6].

Theorem 2 If u1 and u2 are positive solutions of (3) on the interval [0, T ) and χ1 � χ2,

then we have the following entropy estimates:
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• If μ > 1, then

(
1 − Mχ2

8π

)∫ T

0

∫
�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dxdt � CT ,

where CT is a constant depending on T and M = θ1 + θ2.

• If μ � 1, then(
1 − Mχ2

8πμ

) ∫ T

0

∫
�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dxdt � CT ,

where CT is a constant depending on T and M = θ1 + θ2.

Theorem 2 gives bounds for the entropy which is a key tool for the proof of global

existence for system (3). In order to improve this last result, it would be desirable to use

the HLS inequality for systems developed by Shafrir and Wolansky in [14]. However, as

we will show in Section 2, a direct application of this tool to our system does not give

the optimal result that we are looking for. We will show how an adequate introduction

of some auxiliary parameters in (12) allows us to improve the result of global existence

obtained in [6], namely we will show that if θ1, θ2 satisfy

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0, θ1 < μ
8π

χ1
, θ2 <

8π

χ2

then global solutions in time exist. No kind of radial symmetry is assumed.

The most fundamental tool used through this paper is the logarithmic HLS’s inequality

for systems, which we proceed to recall now. Following the notation in [14] we define the

space

ΓM
(
�2

)
=

{
ρ̃ = (ρ̃i)i∈I : ρ̃i � 0,

∫
�2

ρ̃i |log ρ̃i| dx < ∞,∫
�2

ρ̃i = Mi,

∫
�2

ρ̃i log
(
1 + |x|2

)
< ∞, ∀i ∈ I

}
,

where M = (Mi)i∈I is given. Next we define the functional F : ΓM(�2) → R by

F [ρ̃] =
∑
i∈I

∫
�2

ρ̃i log ρ̃idx+
1

4π

∑
j,i∈I

ai,j

∫
�2

∫
�2

ρ̃i (x) log |x− y| ρ̃j (y) dxdy

and the polynomial

ΛJ (M) = 8π
∑
i∈J

Mi −
∑
i,j∈J

aijMiMj, ∀�� J ⊆ I.

Then we have the following.
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Theorem 3 Hardy–Litlewood–Sobolev’s inequality for systems

Let A =
(
aij

)
a symmetric matrix such that aij � 0 for all i, j ∈ I and M ∈ �n

+. Then:

ΛI (M) = 0 and

ΛJ (M) � 0, for all J ⊆ I

if ΛJ (M) = 0 for some J, then aii + ΛJ\{i} (M) > 0, ∀i ∈ J

are necessary and sufficient conditions for the boundedness from below of F on ΓM(�2).

There exists a minimizer ρ of F over ΓM(�2) if and only if

ΛI (M) = 0, and ΛJ (M) > 0, for all J � I

Proof See [30, Theorem 4]. �

3 Global existence

The first result of this section gives us bounds for entropy functionals. We achieve our

aim through an appropriate use of the HLS inequality for systems, Theorem 3. The

main idea of the proof reads as follows: Given that a direct application of the HLS

inequality would allow us to get bounds only on a curve of the θ1θ2-plane for the entropies∫
�2 ui(x, t) log ui(x, t)dx, i = 1, 2, we introduce some parameters before applying the HLS

inequality. This step will allows us ‘to move’, ‘to shrink’ and ‘to dilate’ this curve in such

a way the the full region (18) is swept and therefore obtain estimate (19) in this region.

We suppose throughout this paper that

u10, u20 ∈ L1(�2, (1 + |x|2)dx),
u10 log u10, u20 log u20 ∈ L1(�2, dx)

}
. (13)

Lemma 4 (Lower bound for the entropy functionals) Consider a non-negative weak solu-

tion of (3) such that ui(1 + |x|2), i = 1, 2 are bounded in L∞
loc(�

+, L1(�2)). Then we have∫
�2

ui (x, t) log ui (x, t) � M logM −M log [π (1 + t)] − C, i = 1, 2.

Proof In the following, C will denote a generic constant. We have from [6, Theorem 1]

that

d

dt

∫
�2

(
μ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
|x|2 dx =

4θ1

χ1
μ+

4θ2

χ2
− 1

2π
(θ1 + θ2)

2 . (14)

We define

n :=
μ

χ1
u1 +

1

χ2
u2;

and

K :=
4θ1

χ1
μ+

4θ2

χ2
− 1

2π
(θ1 + θ2)

2 .
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Thus, we obtain ∫
�2

n(x, t) |x|2 dx = Kt+

∫
�2

n(x, 0) |x|2 dx � C(1 + t), (15)

where C := max{K,
∫

�2 n(x, 0) |x|2 dx}. From the inequality ui � Cn, where i = 1, 2 and

(15) we deduce that ∫
�2

ui(x, t) |x|2 dx � C(1 + t), i = 1, 2.

Using the same idea presented in [4, Lemma 2.5], we observe that∫
�2

ui (x, t) log ui (x, t) � 1
1+t

∫
�2

ui (x, t) |x|2 − C +

∫
�2

ui (x, t) log ui (x, t)

=

∫
�2

ui (x, t) log

[
ui (x, t)

e− |x|2
1+t

]
− C.

(16)

Let us now define the variable μ as

μ (x, t) =
1

π (1 + t)
exp

(
− |x|2

1 + t

)
.

We then obtain from (16) that∫
�2

ui (x, t) log ui (x, t) �

∫
�2

ui (x, t) log

[
ui (x, t)

μ (x, t)

]
dx−M log [π (1 + t)] − C

=

∫
�2

ui (x, t)

μ (x, t)
log

[
ui (x, t)

μ (x, t)

]
μ (x, t) dx−M log [π (1 + t)] − C, (17)

where M = μ
χ1
θ1 + 1

χ2
θ2. Using Jensen’s inequality we get from (17) that∫

�2

ui (x, t) log ui (x, t) � M logM −M log [π (1 + t)] − C.
�

Theorem 5 (Upper bound for entropy functionals) Consider a non-negative weak solution

of (3) such that ui(1 + |x|2), ui log ui, i = 1, 2 are bounded in L∞
loc(�

+, L1(�2)). If (θ1, θ2)

satisfies

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
; 8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0, (18)

then we have ∫
�2

ui(x, t) log ui(x, t)dx � C, (19)

where i = 1, 2 and C is a constant depending only on the parameters θ1 and θ2, μ, χ1, χ2,

E(0).

Proof From (12) we have that

E (t) � E (0) , ∀t > 0.
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In consequence, we have the following estimate:

μ

χ1

∫
�2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫
�2

u2 (x, t) log u2 (x, t) dx

� E (0) − 1

4π

∫
�2

∫
�2

u1 (x, t) u1 (y, t) log |x− y| dxdy

− 1

4π

∫
�2

∫
�2

u1 (x, t) u2 (y, t) log |x− y| dxdy

− 1

4π

∫
�2

∫
�2

u2 (x, t) u1 (y, t) log |x− y| dxdy − 1

4π

∫
�2

∫
�2

u2 (x, t) u2 (y, t) log |x− y| dxdy.

We introduce positive parameters a and b in the last inequality in the following way

μ

χ1

∫
�2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫
�2

u2 (x, t) log u2 (x, t) dx

� E (0) − a2

μ24π

∫
�2

∫
�2

μu1 (x, t)

a

μu1 (y, t)

a
log |x− y| dxdy

− ab

μ4π

∫
�2

∫
�2

μu1 (x, t)

a

u2 (y, t)

b
log |x− y| dxdy

− ab

μ4π

∫
�2

∫
�2

u2 (x, t)

b

μu1 (y, t)

a
log |x− y| dxdy

− b2

4π

∫
�2

∫
�2

u2 (x, t)

b

u2 (y, t)

b
log |x− y| dxdy. (20)

By doing so, we can now apply the HLS inequality for systems (Theorem 3) to the

functions μu1/a and u2/b in identity (20) getting that

μ

χ1

∫
�2

u1 (x, t) log u1 (x, t) +
1

χ2

∫
�2

u2 (x, t) log u2 (x, t)

� E (0) − C +

∫
�2

μ
u1 (x, t)

a
log

(
μ
u1 (x, t)

a

)
dx+

∫
�2

u2 (x, t)

b
log

(
u2 (x, t)

b

)
dx,

where the conditions for the existence of the constant C given by Theorem 3 are

Λ{1} (M) = 8πμ
θ1

a
− a2

(
θ1

a

)2

� 0;

Λ{2} (M) = 8π
θ2

b
− b2

(
θ2

b

)2

� 0;

Λ{1,2} (M) = 8π

(
μ
θ1

a
+
θ2

b

)
−

(
a2 θ1

a

θ1

a
+ 2ab

θ1

a

θ2

b
+ b2 θ2

b

θ2

b

)
= 0.

Equivalently,

θ1 � μ 8π
a
, θ2 � 8π

b

8π
(
μθ1

a
+ θ2

b

)
− (θ1 + θ2)

2 = 0

}
. (21)
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In conclusion we have proved that condition (21) implies

μ

(
1

χ1
− 1

a

)∫
�2

u1 (x, t) log u1 (x, t) +

(
1

χ2
− 1

b

)∫
�2

u2 (x, t) log u2 (x, t)

� E (0) − C +
θ1μ

a
log

μ

a
+
θ2

b
log

1

b
. (22)

We have from Lemma 4 that the functionals
∫
ui log uidx are bounded below for i = 1, 2.

On the other hand, each of the coefficients of the entropy functionals in (22) are positive

as long as a > χ1 and b > χ2. Then we take parameters a and b on the intervals (χ1,∞)

and (χ2,∞) respectively We conclude that estimate (19) hold on region (18). �

Boundedness of entropies in the last theorem is the main tool that we will use to obtain

the following result of global existence.

Theorem 6 (Global existence of weak solutions) Under assumption (13) and

8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0, (23)

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
, (24)

system (3) has a global weak non-negative solution such that

(1 + |x|2 + |log ui|)ui ∈ L∞(0, T ;L1(�2))

and

− 1

χ1

∫ ∫
[0,T ]×�2

u1 |μ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫ ∫
[0,T ]×�2

u2 |∇ log u2 − ∇χ2v|2 dx < ∞.

Before giving the proof, let us first give some explanation of this result. Inequality

(23) corresponds to the interior of a rotated parabola in the plane θ1θ2. Choosing the

parameters μ, χ1 and χ2 appropriately, condition (24) may be relevant or can be simply

ignored. Next, Figure 2 illustrates the two possible cases:

More precisely we have that,

• if the parabola

8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 = 0 (25)

intersects either of the lines θ1 = 8πμ/χ1 or θ2 = 8π/χ2 in the first quadrant of the

θ1θ2 plane (which happens exactly when χ1 < μχ2/2 or χ1 > 2μχ2), then system (3) has

global existence in time weak solutions as long as the initial masses satisfy inequalities

(23) together with (24).

• However, if the parabola (25) does not intersect either of the lines θ1 = 8πμ/χ1 or

θ2 = 8π/χ2 (when μχ2/2 � χ1 � 2μχ2) in the first quadrant of the θ1θ2 plane, then

inequality (23) is enough to guarantee that system (3) has a global in time weak solution.
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8π/χ2

8πμ/χ1

Figure 2. Two basic configurations of parabola (25).

On the other hand, we should point out that all of our results are formal so far. In

order to make them rigorous, we should have a local existence result of smooth solutions.

However, we will take another strategy which will allow us to obtain directly global

existence in time of weak solutions with the corresponding mathematical rigour. In order

to prove Theorem 6, we first modify the convolution kernel k0(z) = − 1
2π

log |z| in (3) by

truncating it around zero. This last will allow us to get a regularized version of system (3),

which is rather easier to work. After proving the existence of global solutions of this last

approximate problem, we look for uniform estimates of solutions and then pass to the

limit that will give us the result of global existence we are looking for. After getting this

result we recover properties such as mass conservation or the second moment formula by

testing properly our weak solution. A similar technique was made in the one chemotaxis

species case (see [4, 5]).

Proof (Sketch) For the reader’s convenience, we divide the proof into four steps giving

special attention where technical difficulties arise in comparison to the single species case.

Step 1. Regularization of the system. We define Kε by Kε (z) := K1
(
z
ε

)
, where K1 is a

radial monotone non-decreasing smooth function satisfying

K1 (z) =

{
− 1

2π
log |z| if |z| � 4

0 if |z| � 1
.

Assume also that ∣∣∇K1 (z)
∣∣ �

1

2π |z|

K1 (z) � − 1

2π
log |z| ; − ΔK1 (z) � 0; ∀z ∈ �2

for any z ∈ �2. Then we consider the following regularized version of system (3)⎧⎨⎩
∂tu

ε
1 = Δuε1 − χ1∇ · (uε1∇vε), t � 0, x ∈ �2

∂tu
ε
2 = Δuε2 − χ2∇ · (uε2∇vε), t � 0, x ∈ �2

vε = Kε ∗
(
uε1 + uε2

)
, t � 0, x ∈ �2

, (26)
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which we interpret in the sense of distributions. Since Kε(z) = K1( z
ε
), we also have

|∇Kε (z)| =
1

ε

∣∣∣∇K (z
ε

)∣∣∣ �
1

ε

1

2π |z/ε| =
1

2π |z| . (27)

The proof of global solutions in L2(0, T ;H1(�2) ∩ C
(
0, T ;L2(�2

)
) for system (26) with

initial data in L2(�2) follows essentially the same lines as in [4, Proposition 2.8] and

therefore we omit the proof here.

Step 2. A priori estimates for the approximate solutions uε1, u
ε
2 and vε.

Consider a solution
(
uε1, u

ε
2

)
of the regularized system. If

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
; 8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0,

then, uniformly as ε → 0, with bounds depending only upon
∫

�2 (1 + |x|2)ui0dx and∫
�2 ui0 log ui0dx with i = 1, 2, we have the following estimates:

(i) The function (x, t) → |x|2
(
uε1 + uε2

)
is bounded in L∞ (

�+
loc;L

1(�2)
)
.

(ii) The functions t →
∫

�2 u
ε
j (x, t) log uεj (x, t) dx and t →

∫
�2 u

ε
j (x, t) vε (x, t) dx are

bounded for j = 1, 2.

(iii) The function (x, t) → uεj (x, t) log
(
uεj (x, t)

)
is bounded in L∞ (

�+
loc;L

1(�2)
)

for j =

1, 2.

(iv) The function (x, t) → ∇
√
uεj (x, t) is bounded in L2

(
�+
loc × �2

)
for j = 1, 2.

(v) The function (x, t) → uεj (x, t) is bounded in L2
(
�+
loc × �2

)
for j = 1, 2.

(vi) The function (x, t) → uεj (x, t) Δvε (x, t) is bounded in L1
(
�+
loc × �2

)
for j = 1, 2.

(vii) The function (x, t) →
√
uεj (x, t)∇vε (x, t) is bounded in L2

(
�+
loc × �2

)
for j = 1, 2.

The proof of estimates (i)–(vii) follows essentially the same steps as in the one species

case and therefore we refer the reader to [4, Lema 2.11].

As a consequence of estimate (ii), the first two equations of system (3) have the

hyper-contractivity property [4, Theorem 3.5], i.e. for any 1 < p < ∞, there exists a

continuous function hjp : (0, T ) → � such that
∥∥uεj (·, t)∥∥Lp(�2)

� hjp(t), j = 1, 2. Hence,

uεj ∈ L∞((δ, T ), Lp(�2)), p ∈ (1,∞) for any δ ∈ (0, T ). Therefore, we have the following

result:

(viii) The function (x, t) → uεj (x, t) is bounded in L∞((δ, T ), Lp(�2)) for j = 1, 2, p > 1.

Step 3. Construction of a strong convergence subsequence in Lp. To achieve our aim in

this step we will apply the Aubin–Lions compactness lemma.
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First we get a uniform bound on ‖∇uεi ‖L2
loc((δ,T )×�2). We observe that

d

dt

∫
�2

|uεi |
2
dx= −2

∫
�2

|∇uεi |
2
dx+ 2χ1

∫
�2

uεi ∇uεi · ∇vεdx � −2

∫
�2

|∇uεi |
2
dx

+ 2χ1

( ∫
�2

|∇uεi |
2

)1/2 ( ∫
�2

|uεi |
2 |∇vε|2 dx

)1/2

� −2

∫
�2

|∇uεi |
2
dx

+ 2χ1

( ∫
�2

|∇uεi |
2

)1/2 ( ∫
�2

|uεi |
3
dx

)1/3 ( ∫
�2

|∇vε|6 dx
)1/6

, (28)

where we have used the Hölder inequality in the last line. The classical Gagliardo–

Nirenberg–Sobolev inequality along with the Calderon–Zigmund inequality allow us to

conclude that (∫
�2

|∇vε|6 dx
)1/6

� C

(∫
�2

|Δvε|3/2 dx
)2/3

. (29)

From inequalities (28) and (29) we deduce that

d

dt

∫
�2

|uεi |
2
dx

� −2

∫
�2

|∇uεi |
2
dx+ 2Cχ1

( ∫
�2

|∇uεi |
2

)1/2 ( ∫
�2

|uεi |
3
dx

)1/3 ( ∫
�2

|Δvε|3/2 dx
)2/3

� −2

∫
�2

|∇uεi |
2
dx+ 2Cχ1

( ∫
�2

|∇uεi |
2

)1/2 ( ∫
�2

|uεi |
3
dx

)1/3

×
( (∫

�2
|uε1|3/2 dx

)2/3

+

( ∫
�2

|uε2|3/2 dx
)2/3

)
.

Integrating with respect to t and reordering last inequality, we now obtain

2

∫ T

δ

∫
�2

|∇uεi |
2
dxdt− 2Cχ1

{
sup
t∈[δ,T ]

(∫
�2

|uεi |
3
dx

)1/3
(

sup
t∈[δ,T ]

(∫
�2

|uε1|3/2 dx
)2/3

+ sup
t∈[δ,T ]

(∫
�2

|uε2|3/2 dx
)2/3

)}∫ T

δ

(∫
�2

|∇uεi |
2

)1/2

dt+

∫
�2

|uεi |
2
dx−

∫
�2

|uεi (x, 0)|2 dx � 0.

We observe now that∫ T

δ

(∫
�2

|∇uεi |
2
dx

)1/2

dt � (T − δ)1/2
(∫ T

0

∫
�2

|∇uεi |
2
dxdt

)1/2

.

Denoting by X := ‖∇uεi ‖L2
loc((δ,T )×�2) and taking into account (viii), we conclude from last

two estimates that for positive constants a, b and c we have that

aX2 − bX + c � 0,

in consequence X := ‖∇uεi ‖L2
loc((δ,T )×�2) is bounded, i.e there exists a constant C such

that

‖∇uεi ‖L2
loc((δ,T )×�2) � C. (30)
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Now we obtain a bound for ‖duεi /dt‖L2((δ,T );H−1(�2)) . First of all we notice that in the

middle of the proof of estimation (30) we have proved that

‖ui∇vε‖L2(�2) �

( ∫
�2

|uεi |
3
dx

)1/3
( (∫

�2
|uε1|3/2 dx

)2/3

+

( ∫
�2

|uε2|3/2 dx
)2/3

)
. (31)

It follows from the last estimate and (viii) that for some constant C we have

‖ui∇vε‖L2(�2) � C. (32)

Let φ ∈ H1(�2), then we have

|〈duεi /dt, φ〉| = |〈Δui − ∇ · (ui∇vε) , φ〉| � |〈∇ui,∇φ〉| + |〈ui∇vε,∇φ〉|
� ‖∇φ‖L2(�2) ‖∇ui‖L2(�2) + ‖∇φ‖L2(�2) ‖ui∇vε‖L2(�2) . (33)

Thus,

‖duεi /dt‖H−1(�2) = sup
‖φ‖

H1(�2)=1

|〈duεi /dt, φ〉| � ‖∇uεi‖L2(�2) + ‖uεi∇vε‖L2(�2) .

From the last estimate and taking into account (30) and (32), it follows that

‖duεi /dt‖L2((δ,T );H−1(�2)) =

(∫ T

δ

‖duεi /dt‖
2
H−1(�2) dt

)1/2

� C. (34)

Compactness: In order to apply the Aubin–Lions Lemma, we define the spaces B0 =

H1(�2) ∩ {f| |x|2 f ∈ L1(�2)}, B := L2(�2) and B1 := B′
0. Let {fi} be an arbitrary

bounded sequence in B0, then we have L2equi-integrability at infinity (cf. [1, Corollary

5.3.1]) as the following account shows:∫
{|x|>R}

f2
i dx�

1

R

∫
{|x|>R}

(
|x| f1/2

i

)
f

3/2
i dx �

1

R

(∫
{|x|>R}

|x|2 fidx
)1/2 (∫

{|x|>R}
f3
i dx

)1/2

�
1

R

(∫
�2

|x|2 fidx
)1/2 (∫

�2

f3dx

)1/2

.

Thus,

lim
R→+∞

∫
{|x|>R}

f2
i dx = 0 uniformly with respect to fi. (35)

From the Rellich–Kondrakov Theorem (cf. [1, Corollary 5.3.1] we obtain the compact

inclusion

B0 ↪→↪→ B.

Given that uεi satisfies (30), (34) and (35), we can now invoke the Aubin–Lions–Simon

theorem to conclude that uεi has a subsequence that converge strongly in L2(δ, T , B).

Therefore, up to a subsequence we have that

uεi → ui a.e. in �2 × [δ, T ]. (36)
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We have also proved uniformly boundedness for ‖uεi ‖Lp(�2)×[δ,T ] , from this, estimation

(36) and the Vitali theorem, we obtain

uεi → ui strongly in Lp(�2 × [0, T ]) for p � 1. (37)

Step 4. Pass to the limit. We pass now to the limit in the weak sense to obtain our result

of global existence. The most significant technical difficulty to show that u1, u2 solved (3)

arise with the nonlinear terms. In order to prove that

uεi ∇vε ⇀ ui∇v, in D′(�+ × �2), (38)

we first notice that the expression uεi |∇vε| is integrable as estimate (vii) of part 2 along

with the following estimate shows(∫
[0,T ]×�2

uεi |∇vε| dxdt
)2

=

(∫
[0,T ]×�2

√
uεi

√
uεi |∇vε| dxdt

)2

�

∫
[0,T ]×�2

uεi dxdt

∫
[0,T ]×�2

uεi |∇vε|2 dxdt � θiT

∫
[0,T ]×�2

uεi |∇vε|2 dxdt.

It follows that we can interpret uεi ∇vε as an element of
(
C∞

0

(
�+ × �2

))′
and therefore

its divergence is defined.

In order to prove that ‖∇vε‖Lr(�n) � C for r > 2, we recall the HLS inequality: For all

f ∈ Lp(�n), g ∈ Lq(�n), 1 < p, q < ∞, such that 1/p+1/q+ λ/n = 2 and 0 < λ < n, there

exists a constant C = C(p, q, λ) > 0 such that∣∣∣∣∣
∫

�n×�n

1

|x− y|λ
f(x)g(y)dxdy

∣∣∣∣∣ � C ‖f‖Lp(�n) ‖g‖Lq(�n) .

Taking the supremum over the ball ‖g‖Lq(�n) = 1 on both sides of the last inequality, we

obtain ∥∥∥∥∥
∫

�n

1

|x− y|λ
f(x)dx

∥∥∥∥∥
L

q
q−1 (�n)

� C ‖f‖Lp(�n) . (39)

In particular∥∥∥∥∫
�n

1

|x− y|f(x)dx
∥∥∥∥
L

q
q−1 (�2)

� C ‖f‖Lp(�2) where 1 < p, q < ∞, and 1/p+ 1/q + 1/2 = 2.

Thus, we have that

‖∇vε‖Lr(�n) = ‖∇Kε ∗ (uε1 + uε2)‖Lr(�n) (40)

�

∥∥∥∥ 1

2π

∫
1

|x− y| (u
ε
1 + uε2)dx

∥∥∥∥
Lr(�n)

� C
(

‖uε1‖Lp(�2) + ‖uε2‖Lp(�2)

)
� C, (41)

where we have used step 2 (viii). From r = q
q−1

and 1/p+ 1/q + 1/2 = 2 we obtain that
1
r

= 1
p

− 1
2
. In addition, p ∈ (1, 2) implies that r ∈ (2,∞). We conclude that (up to a
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subsequence) ∇vε ⇀ h, where h is in Lr. In order to prove that actually h = ∇K ∗ n we

have to do some extra work yet. With this end in mind, we now propose to show that

∇vε → ∇v a.e. (42)

We have that

∇vε − ∇v = − 1

2π

∫
�2

x− y

|x− y|2
((
uε1 + uε2

)
− (u1 + u2)

)
(y, t) dy

+

∫
|x−y|�2ε

(
1

ε
∇K1

(x− y

ε

)
+

|x− y|
2π |x− y|2

)(
uε1 + uε2

)
(y, t)dy. (43)

We deduce from (37) and (39) that (up to a subsequence) the first integral in (43) converges

to zero a.e. On the other hand, estimates (27) allows us to conclude that∣∣∣∣∣
∫

|x−y|�2ε

(
1

ε
∇K1

(x− y

ε

)
+

|x− y|
2π |x− y|2

)(
uε1 + uε2

)
(y, t)dy

∣∣∣∣∣
�

∫
|x−y|�2ε

(
1

π |x− y|

)(
uε1 + uε2

)
(y, t)dy.

Last integral converges to 0 as ε → 0, therefore we conclude (42).

We therefore obtain from [8, Prop. 2.46 (i)] that ∇vε ⇀ ∇K ∗ n weakly in Lr for r � 2.

Finally, we choose conjugate exponents r = 4 and p = 4/3 to conclude the convergence

(38). �

4 Conclusions and open questions

It has been proved in this paper that system (3) has a threshold curve that determines

global existence or blow-up. A more difficult task is to find out if the blow-up has to

be simultaneous or not and also to describe the asymptotics near the blow-up time. A

first step in this direction was given by Espejo et al. in [7], where it was shown that the

blow-up has to be simultaneous in the radial case. Should it be the same in the general

case? Or should it depend on more specific information on the initial data? With regard

to this point it is worth recalling that according to [6] it is possible to have blow-up even

in the case that the total moment

m(t) :=
π

χ1

∫
�2

u1(x, t) |x|2 dx+
π

χ2

∫
�2

u2(x, t) |x|2 dx (44)

is increasing, that is when we have

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0.

This opens up a new possibility: The density of one chemotactic species could be increasing

meanwhile the other decreases. That is to say, the question of a simultaneous blow-up or

not as well as a possible collapse mass separation could eventually not only depend on

the radial symmetry of the initial data but also on the L1 size of the initial data.
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On the other hand, if the parabola

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 = 0 (45)

intersects any of the lines

θ1 =
8π

χ1
or θ2 =

8π

χ2
, (46)

it would be very interesting to study the behaviour of system (3) on this lines. Here

it is worth recalling that the proof of convergence towards a delta function at T = ∞
in the one species case, when total mass is exactly 8π/χ, uses in a essential way that the

second moment is preserved (see, for instance, [3]). In contrast, for the two species case,

the rotated parabola (45) can intersect any of the lines (46) and then we obtain threshold

lines on which the second moment is not preserved. A description of the asymptotic

behaviour in this case seems to require rather different techniques to those used in the

one species case.
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