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Abstract

We investigate the degree profile and total weight in Apollonian networks. We study
the distribution of the degrees of vertices as they age in the evolutionary process.
Asymptotically, the (suitably-scaled) degree of a node with a fixed label has a Mittag-
Leffler-like limit distribution. The degrees of nodes of later ages have different asymptotic
distributions, influenced by the time of their appearance. The very late arrivals have a
degenerate distribution. The result is obtained via triangular Pólya urns. Also, via the
Bagchi–Pal urn, we show that the number of terminal nodes asymptotically follows a
Gaussian law. We prove that the total weight of the network asymptotically follows a
Gaussian law, obtained via martingale methods. Similar results carry over to the sister
structure of the k-trees, with minor modification in the proof methods, done mutatis
mutandis.
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1. Introduction

The ancient Greek mathematician and astronomer Apollonius of Perga (c.262–190 bc) is
known for his work on conic sections. His work on circle packing instigated several related
dual problems on triangulation (dividing a triangle into smaller ones). In our modern times,
graphs based on triangulation (or more generally on enriching simplexes of higher order) are
dubbed Apollonian networks, a term perhaps first coined in [1] in 2005. For motivation and
important applications, the title of [1] sums it all—‘Apollonian networks: simultaneously scale-
free, small world, Euclidean, space filling, and with matching graphs’. Each of these phrases
is a significant area of modern research by itself. A random structure related to Apollonian
networks is the random k-tree. We shall discuss it as an offshoot.

2. Random Apollonian networks

For a general index k ≥ 1, a random Apollonian network of index k is a random graph
that grows out of an active k-clique (simplex, the complete graph on k vertices) with vertices
labeled 0. At the nth step, an active k-clique is chosen at random (all active cliques being
equally likely). We allocate a new vertex, connect it with k edges to the k vertices of the
clique, and we then discard the chosen clique; it becomes inactive. In Figure 1 we show the
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Figure 1: The evolution of an Apollonian network of index 3 in two steps.

step-by-step growth of a random Apollonian network of index 3 from an initial triangle in two
stages (n = 2). In Figure 1 a triangle is active if at least one of its sides is drawn solid, whereas
the three sides of an inactive triangle are all dashed.

At the nth step, we add k cliques and deactivate one, a net gain of (k − 1) cliques of order k

each. Thus, τ
(k)
n , the total number of active cliques at time n, is given by

τn = τ (k)
n = (k − 1)n + 1.

The index k is a fixed parameter of the network, and all the random variables we discuss depend
on it. We shall occasionally suppress explicit dependence on k to simplify the notation.

3. Scope and results

Some aspects of Apollonian networks have been investigated in [4]–[6] and [9]. We were
inspired by these very recent works to investigate additional properties.

The study of the distribution of degrees in random networks has been a popular topic.
Knowing the degree of a node can tell us how popular the node is in a social network, or how
much demand there is on it in a routeing network, which can help allocate the appropriate
resources.

Exact results about the degree profile in Apollonian networks are in terms of Pochhammer’s
symbol for the rising factorial and Stirling’s numbers of the second kind. Pochhammer’s symbol
for the rising factorial is 〈x〉s = x(x + 1) · · · (x + s − 1), for any x ∈ R and any integer s ≥ 0,
with the interpretation that 〈x〉0 = 1. The numbers

{
r
i

}
are Stirling’s numbers of the second

kind [10].
Let D(k)

j,n, for j = 1, . . . , n, be the degree of the node labeled j ≤ n in anApollonian network
of index k and of age n. The random variables D

(k)
j,n, for j = 1, . . . , n, describe a profile of

degrees in the random graph.

Proposition 1. The exact moments of D
(k)
j,n are

E[(D(k)
j,n)

s] = 1

(k − 2)s

(
(k(k − 3))s +

s∑
r=1

(
s

r

)
(k(k − 3))s−r

×
(

(k − 2)r
[〈

(k − 1)j + 1

k − 1

〉
n−j

]−1)

×
r∑

i=1

(−1)r−i

{
r

i

}〈
k

k − 2

〉
i

〈
(k − 1)j + 1 + (k − 2)i

k − 1

〉
n−j

)
.
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In particular, the exact mean of D
(k)
j,n is

E[D(k)
j,n] = 1

(k − 2)

(
k(k − 3) +

(
k

[〈
(k − 1)j + 1

k − 1

〉
n−j

]−1)
〈j + 1〉n−j

)
.

A proper normalization gives rise to a limit distribution following from the results in [7] and
[19], represented in terms of the standard Riemann’s gamma function.

Proposition 2. As n → ∞, the random variable D
(k)
j,n/n

(k−2)/(k−1) converges in distribution
to a random variable D∗

j , which is uniquely characterized by its moments; these moments are

E[(D∗
j )s] = �

(
(k − 1)j + 1

k − 1

)
�

(
k

k − 2
+ s

)

×
[
�

(
k

k − 2

)
�

(
(k − 1)j + 1 + (k − 2)s

k − 1

)]−1

.

Distributions with moments of the form in Proposition 2 are called gamma-type distribu-
tions [15]. The Mittag-Leffler distribution is a special case [14]. When j = jn → ∞ and
jn = o(n), D̃j,n/(n/jn)

(k−2)/(k−1) converges in distribution to a random variable with moments
�(k/(k − 2) + s)/�(k/(k − 2)). These are the moments of a gamma(k/(k − 2), 1) random
variable.

In various types of random graphs, one considers the number of terminal nodes—nodes that
appeared but have yet to participate in further recruiting, as, for instance, leaves in random
trees, which were extensively studied in many tree families; see, for example, [13] and [16]. In
Apollonian networks, terminal nodes are nodes of minimal degree. Understanding their count
is a first step in constructing an alternative degree profile describing the number of nodes of
each possible degree in Apollonian networks.

Proposition 3. Let T
(k)
n be the number terminal nodes in an Apollonian network of index k at

age n. We then have

T
(k)
n

n
→ k − 1

2k − 1
almost surely

and (
T (k)

n − k − 1

2k − 1
n

)
n−1/2 d−→ N

(
0,

k(k − 1)2

(2k − 1)2(3k − 1)

)
.

An important property of an Apollonian network is the ‘weight’ assigned to a clique. The
vertices of a clique have different labels assigned to them. Their sum is the total of the ages
assigned at the vertices of the clique and represents a ‘weight’, and their average represents the
mean age of the clique. This is a property at the microscale. A related, and equally important,
macro characteristic is the total weight in the entire network (the sum of all the weights in all
the cliques), which we call Y

(k)
n .

Theorem 1. We have

Y
(k)
n − (k − 1)n2

n3/2
d−→ N

(
0,

(k − 2)2(k − 1)3

k(k + 1)(2k − 1)

)
.
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4. Proofs

4.1. Degree profile of an Apollonian network

Upon inserting the nth node, we allocate a node labeled n and choose a parent clique for it.
The parent (also called the recruiter) may or may not be incident with the node labeled j . If the
recruiter is incident with the node labeled j , one edge is added to adjoin the nodes labeled j

and n, increasing the degree of the node labeled j by 1. If the recruiter is not incident with the
node labeled j , the degree of this node does not change after the nth insertion. This coincides
with the dynamics of a Pólya urn scheme on two colors. The idea of embedding an Apollonian
network into a Pólya urn was also used in [6].

The urn representing the evolution of the degree of a node of an Apollonian network is
triangular, as we discuss next. Suppose that we wait till the node labeled j appears for the first
time in the Apollonian network. At this point we color all the active cliques incident with the
node labeled j with white and color all the other active cliques with blue, and think of them as
the initial number of balls in a white–blue Pólya urn. There are k white cliques in the network
(i.e. k white balls in the urn), and τ

(k)
j − k = (k − 1)j + 1 − k blue cliques in the network (i.e.

(k − 1)j + 1 − k blue balls in the urn).
Every time an active white clique is selected to be the recruiter, the degree of the node

labeled j is increased by 1. Also, when k new cliques appear, only one of them is to be colored
blue (i.e. one blue ball is added to the urn), the rest of the k − 1 new cliques are to be colored
white, and the recruiting clique (white) is deactivated, a net gain of k−2 white cliques (i.e. k−2
white balls are added to the urn). On the other hand, every time an active blue clique recruits, k
new cliques appear, and none of them is incident with the node labeled j . Their appearance in
the network does not change the number of cliques incident with the node labeled j . As the
recruiting blue clique is rendered inactive, the net gain is k − 1 blue cliques (i.e. k − 1 blue
balls are added to the urn). The replacement matrix associated with this urn is ( k−2 1

0 k−1 ).
After n−j draws, the urn represents the network at time n. There is a linear relation between

D
(k)
j,n and W

(k)
j,n−j :

W
(k)
j,n−j = (k − 2)D

(k)
j,n − k(k − 3) for n ≥ j.

We appeal to the recent results in [19] to determine the exact distribution of the number of
k-cliques incident with the node labeled j as the network ages, proving Proposition 1.

The asymptotic moments of the scaled random variable D∗
j are obtained by applying Stir-

ling’s approximation to the exact moments of D
(k)
j,n, proving Proposition 2.

In particular, as n → ∞, the asymptotic mean and variance of node j (fixed) are given by

E[D(k)
j,n] ∼ k�(j + 1/(k − 1))

(k − 2)�(j + 1)
n(k−2)/(k−1)

and

var[D(k)
j,n]

∼ �(j + 1/(k − 1))

(k − 2)2

(
2k(k − 1)

�(j + (2k − 3)/(k − 1))
− k2�(j + 1/(k − 1))

�2(j + 1)

)
n2(k−2)/(k−1).

The same methods are applicable to a choice of j = jn growing with n. We find two regimes:
jn = o(n) is growing slowly with respect to n (e.g. jn = �ln n + 5�), and jn is of order n (e.g.
jn = 
 7

9n + 4�).
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The asymptotic mean of a node with slowly growing label is

E[D(k)
j,n] ∼ k

k − 2

(
n

jn

)(k−2)/(k−1)

.

If jn ∼ αnn, with 0 < αn ≤ 1, we have

E[D(k)
j,n] ∼ k

k − 2
(k − 3 + α

−(k−2)/(k−1)
n ).

Note that, for the very late arrivals with jn ∼ n (e.g. jn = n − 
 3
√

n�), we have E[D(k)
j,n] ∼ k.

A similar analysis shows that these very late arrivals have asymptotic variance converging to 0.
Thus, asymptotically these very late arrivals have a degenerate distribution.

4.2. Terminal nodes in random Apollonian networks

Let us color cliques incident with terminal nodes with white and all other cliques with blue.
Consider the network at age 1 to be the initial condition of an urn having k white cliques and
none blue.

Note that no two terminal nodes ever appear in the same clique. So, a count of white cliques
translates directly into a count of terminal nodes (by dividing the former by k). When a white
clique recruits (while active), the terminal node in it is no longer terminal. Thus, the other
(active) k −1 white cliques incident with this (old) terminal node turn into blue. However, new
cliques are born to replace the recruiter. The newborn cliques share one new terminal node
connected to all k vertices of the old white recruiting clique (now inactive), and all k new cliques
created are white; there is no net change in the number of white cliques. On the other hand,
if a blue clique recruits; it becomes inactive (loss of one blue clique) and k new active white
cliques appear. The corresponding Pólya urn scheme has the replacement matrix ( 0 k−1

k −1 ).
This is an instance of the well-studied Bagchi–Pal urn [3], and we can conduct a probabilistic

analysis based on a known urn theory [2], [3] to prove Proposition 3.

4.3. Weight of a random Apollonian network

As discussed, there are τn cliques at the nth step. The �th clique is determined by the labels
in its vertices, and a k-tuple defined as (i

(�)
1,n, . . . , i

(�)
k,n). Note that, at any age n ≥ 0, for any

feasible indices 1 ≤ j ≤ k and 1 ≤ � ≤ τn, the entries i
(�)
j,n are random.

Let us denote the weight of the �th clique at age n by W�,n. So, it is given by W�,n =∑k
j=1 i

(�)
j,n. The (overall, global, total) weight of the entire Apollonian network after n steps

of evolution, Yn, is defined as the sum of the weights of all τn cliques: Yn = ∑τn

l=1 W�,n.

Henceforth, we call it the total weight.
Many of the entries in the tuples defining a clique may be shared with the entries of the

k-tuples of other cliques, as many vertices are common between cliques. This introduces
strong dependence among the weights assigned, rendering the study of the total weight of the
network an interesting challenge.

4.3.1. A stochastic recurrence for the age and its moments. Suppose that the �th clique is
selected as a recruiter at the nth step. A new vertex labeled n will be added, and joined to
the k vertices of the recruiter, forming

(
k

k−1

) = k new cliques in all, and the recruiter will be
deactivated. We can formulate a stochastic recurrence:

Yn = Yn−1 +
k∑

j=1

(
n −

k∑
s=1
s �=j

i
(�)
s,n−1

)
−

k∑
r=1

i
(�)
r,n−1 = Yn−1 + (k − 2)W�,n−1 + kn. (1)
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In what follows, we use the notation Fn for the σ -field generated by the first n evolutionary
steps.

Proposition 4. The mean value of Yn is

E[Yn] = n((k − 1)n + 1).

Proof. Toward a recurrence for E[Yn], we take the conditional expectation of both sides of
the stochastic recurrence (1). We obtain

E[Yn | Fn−1] = Yn−1 + k − 2

τn−1

τn−1∑
�=1

W�,n−1 + kn

= Yn−1 + k − 2

(k − 1)(n − 1) + 1
Yn−1 + kn

= (k − 1)n

(k − 1)(n − 1) + 1
Yn−1 + kn.

Taking another expectation of both sides in the last equation, we obtain a recurrence for the
mean of Yn; namely,

E[Yn] = (k − 1)n

(k − 1)(n − 1) + 1
E[Yn−1] + kn.

This recurrence is to be solved under the initial condition E[Y0] = 0, which yields the average
as stated. �

We can go forward forming recurrences and solving them for higher moments, but this gets
tiresome very quickly, a manifestation of the combinatorial explosion phenomenon. So, for
higher moments, we need a shortcut, such as an asymptotic approach for all moments. We shall
take that up in the martingale approach below. However, variance computation remains key to
all development. We highlight only the important steps of a lengthy calculation. We start by
squaring the basic recurrence (1) and obtain the stochastic recurrence

Y 2
n = (Yn−1 + (k − 2)W�,n−1 + kn)2.

Again we compute the double expectation by first conditioning on Fn−1 and then taking a second
expectation. In the process, E[Yn−1] appears on the right-hand side; however, we have already
developed this in Proposition 4. So, we use that result, and simplify to obtain the following
recursive relationship:

E[Y 2
n ] =

(
1 + 2(k − 2)

(k − 1)(n − 1) + 1

)
E[Y 2

n−1] + 2kn(n − 1)((k − 1)(n − 1) + 1)

+ 2k(k − 2)n(n − 1) + k2n2 + (k − 2)2
E[W2

Ln−1,n−1], (2)

where Ln−1 ∈ {1, 2, . . . , τn−1} is the (uniformly) random index of the recruiting clique chosen
at the nth step. It is evident that to proceed we need to assess E[W2

Ln−1,n−1]. We are able to
calculate it by appealing to the squares of the labels in all the cliques, so we develop that first.

Let us sum the squares of the labels in a clique and define Bn = B
(k)
n as the sum of all these

sums across the τn cliques of the Apollonian network after n steps of evolution.
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Lemma 1. We have

E[Bn] = k(k − 1)n3 + (k2 − k + 1)n2 + (k − 1)n

2k − 1
.

Proof. Conditioning on Fn−1 and Ln−1, we obtain a conditional relationship

Bn | Fn−1, Ln−1 = Bn−1 + (k − 2)

k∑
s=1

(i
(Ln−1)

s,n−1 )2 + kn2,

where i
(Ln−1)

s,n−1 , for s = 1, . . . , k, are the random labels of the vertices of the recruiting (random)
Ln−1th clique at time n− 1. Take the expectation of both sides, with respect to Ln−1, to obtain

E[Bn | Fn−1] = Bn−1 + (k − 2)

τn−1

τn−1∑
�=1

k∑
s=1

(i
(�)
s,n−1)

2 + kn2 = (k − 1)n

(k − 1)(n − 1) + 1
Bn−1 + kn2.

Taking the double expectation and solving the recurrence of E[Bn], we prove the stated result,
completing the proof. �
Lemma 2. We have

E[W2
Ln−1,n

] = (3k2 − 3k + 1)

k(2k − 1)
n2 + O(n).

Proof. Define S2
n = ∑τn

�=1 W2
�,n. By the construction of the Apollonian network, we have a

recursive relationship for S2
n , obtained by conditioning on Fn−1 and Ln−1:

S2
n | Fn−1, Ln−1 = S2

n−1 − W2
Ln−1,n−1 + (k − 1)

k∑
s=1

(i
(Ln−1)

s,n−1 )2

+ 2(k − 2)
∑

1≤s<t≤k

i
(Ln−1)

s,n−1 i
(Ln−1)

t,n−1 + 2(k − 1)n

k∑
s=1

i
(Ln−1)

s,n−1 + kn2.

Take the expectation with respect to Ln−1 to obtain

E[S2
n | Fn−1] = S2

n−1 − S2
n−1

τn−1
+ (k − 1)Bn−1

τn−1
+ 2(k − 2)

τn−1

τn−1∑
�=1

∑
1≤s<t≤k

i
(�)
s,n−1i

(�)
t,n−1

+ 2(k − 1)nYn−1

τn−1
+ kn2.

Note that

S2
n − Bn−1 =

τn−1∑
�=1

( k∑
s=1

i
(�)
s,n−1

)2

−
τn−1∑
�=1

k∑
s=1

(i
(�)
s,n−1)

2 = 2
τn−1∑
�=1

∑
1≤s<t≤k

i
(�)
s,n−1i

(�)
t,n−1.

Simplifying the recurrence yields

E[S2
n | Fn−1] =

(
1 − 1

τn−1
+ k − 2

τn−1

)
S2

n−1 + Bn−1

τn−1
+ 2(k − 1)nYn−1

τn−1
+ kn2.
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Take the expectation, and apply Lemma 1 for the expectation of Bn−1 and Proposition 4 for the
mean total weight after n−1 steps. We obtain a recurrence for E[S2

n], with asymptotic solution

E[S2
n] = (3k2 − 3k + 1)(k − 1)

k(2k − 1)
n3 + O(n2).

Note that Ln−1 is selected uniformly at each step, giving

E[W2
Ln−1,n

] = 1

τn−1
E[S2

n−1] = (3k2 − 3k + 1)

k(2k − 1)
n2 + O(n). �

Having obtained all the elements, we can now solve (2) by applying Lemma 2, and we obtain

E[Y 2
n ] = (k − 1)2n4 + (k − 1)(k4 − 2k3 + 15k2 − 14k + 4)

k(k + 1)(2k − 1)
n3 + O(n2).

We are now poised to compute the variance of the total weight from its second moment and
the square of its mean. We note a remarkable cancellation of the leading terms (of order n4),
leaving behind a relatively small variance.

Proposition 5. The variance of Yn, the age of an Apollonian network of index k at time n, is

var[Yn] = (k − 2)2(k − 1)3

k(k + 1)(2k − 1)
n3 + O(n2).

Some corollaries of the relatively small variance are helpful later in deriving the limit law.
We have a good sharp concentration.

Corollary 1. We have

Yn = (k − 1)n2 + OL1(n
3/2).

(By saying a sequence of random variables Yn is OL1(g(n)), we mean there exist a positive
constant A and a positive integer n0, such that E[|Yn|] ≤ A|g(n)|, for all n ≥ n0.)

Proof. From the asymptotics of the mean and variance, as given in Propositions 4 and 5, we
have

E[(Yn − (k − 1)n2)2] = E[((Yn − E[Yn]) + (E[Yn] − (k − 1)n2))2]
= var[Yn] + (E[Yn] − (k − 1)n2)2

= O(n3).

So, by Jensen’s inequality,

E[|Yn − (k − 1)n2|] ≤
√

E[(Yn − (k − 1)n2)2] = O(n3/2),

and this proves the corollary. �
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4.3.2. The martingale structure of total weight. The random variable Yn is not a martingale.
Nonetheless, we can squeeze a martingale out of it by a transformation involving rescaling and
relocating the center. We define Mn = αnYn + βn, and seek suitable deterministic values αn

and βn that render Mn a martingale. We are able to determine the coefficients αn and βn from
fundamental martingale properties:

E[Mn | Fn−1] = αnE[Yn | Fn−1] + βn

= αn

(
(k − 1)n

(k − 1)(n − 1) + 1
Yn−1 + kn

)
+ βn

= αn−1Yn−1 + βn−1.

This is possible if we select αn and βn to satisfy the recurrences

αn = (k − 1)(n − 1) + 1

(k − 1)n
αn−1, βn = βn−1 − knαn.

These recurrences have solutions

αn = �(n + 1/(k − 1))

�(1/(k − 1))�(n + 1)
α0, βn = − (k − 1)n(n + 1)�(n + 1/(k − 1) + 1)

�(1/(k − 1))�(n + 2)
+ β0,

for arbitrary choices of α0 and β0. For simplicity, we take α0 = 1 and β0 = 0.
The scaling and shifting coefficients have simple asymptotics (as n → ∞) obtained from

Sterling’s approximation to the gamma function:

αn ∼ 1

�(1/(k − 1))n(k−2)/(k−1)
, βn ∼ − k − 1

�(1/(k − 1))
nk/(k−1). (3)

4.3.3. Asymptotic Gaussian law. We would obtain an asymptotic Gaussian law for the total
weight of anApollonian network, if we verify the conditions of martingale central limit theorem
for Mn; see [11, pp. 57–59]. These are the combined conditional Lindeberg’s condition and
the conditional variance condition. These conditions are concisely expressed in terms of the
backward difference operator ∇. Acting on a function h of discrete time, this operator denotes
the difference of the function h at two successive time points, i.e. ∇hn = hn − hn−1.

The conditional Lindeberg’s condition requires that, for some positive sequence ξn, and for
all ε > 0,

Un :=
n∑

j=1

E

[(∇Mj

ξn

)2

1{|∇Mj /ξn|>ε}
∣∣∣∣ Fj−1

]
P−→ 0,

where ‘
P−→’ denotes convergence in probability. The conditional variance condition requires

that, for some constant H �= 0, we have

Vn :=
n∑

j=1

E

[(∇Mj

ξn

)2 ∣∣∣∣ Fj−1

]
P−→ H 2.

When these conditions are satisfied, we obtain

Mn

ξn

d−→ N (0, H 2),
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where the right-hand side is a normally distributed random variable, with variance H . It will
turn out that in the case of the total weight of an Apollonian network, the correct scale factor ξn

is n(k+1)/[2(k−1)].
Before we verify the two conditions, we first establish uniform bounds that are instrumental

in checking both of them.

Lemma 3. The terms |∇Mj |/n1/(k−1) are absolutely uniformly bounded in j = 1, . . . , n.

Proof. By the construction of the martingale, for each 1 ≤ j ≤ n, we have

|∇Mj | = |Mj − Mj−1|
= |(αjYj + βj ) − (αj−1Yj−1 + βj−1)|
≤ αj−1

∣∣∣∣ αj

αj−1
Yj − Yj−1

∣∣∣∣ + kjαj .

≤ αj−1

∣∣∣∣
(

1 − k − 2

(k − 1)j

)
Yj − Yj−1

∣∣∣∣ + kjαj−1.

The last inequality is valid because αj decreases as j increases. The asymptotic properties of
αn (cf. (3)) lead us to conclude that αj−1 ≤ ck/j

(k−2)/(k−1), for some positive ck , and we obtain

|∇Mj | ≤ ck

j (k−2)/(k−1)

∣∣∣∣
(

1 + O

(
1

j

))
Yj − Yj−1

∣∣∣∣ + ckkj

j (k−2)/(k−1)

≤ ck

j (k−2)/(k−1)

(
|Yj − Yj−1| + O

(
max1≤i≤j Yi

j

)
+ kj

)

≤ ckj

j (k−2)/(k−1)
(k + O(1) + k)

≤ hkn
1/(k−1)

for some constant hk that depends on k only, concluding the proof. �

Lemma 4. We have

Un =
n∑

j=1

E

[( ∇Mj

n(k+1)/2(k−1)

)2

1{|∇Mj /n(k+1)/2(k−1)|>ε}
∣∣∣∣Fj−1

]
P−→ 0.

Proof. By the uniform bound established in Lemma 3, for every ε > 0 there exists n0(ε) > 0,
such that for all n > n0(ε), the sets {|∇Mj/n

(k+1)/[2(k−1)]| > ε} are empty, which implies that
the sequence Un converges almost surely to 0. This almost sure convergence is stronger than
the required in-probability convergence. �

Lemma 5. We have

Vn =
n∑

j=1

E

[( ∇Mj

n(k+1)/[2(k−1)]

)2 ∣∣∣∣ Fj−1

]
P−→ (k − 2)2(k − 1)3

k(k + 1)(2k − 1)�2(1/(k − 1))
.
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Proof. Write

Vn = 1

n(k+1)/(k−1)

n∑
j=1

E[(∇(αjYj ) + ∇βj )
2] | Fj−1]

= 1

n(k+1)/(k−1)

n∑
j=1

E[(∇(αjYj ))
2 + 2(∇(αjYj ))∇βj + (∇βj )

2 | Fj−1].

Consider the summand in three parts.

(i) The first part is

E[((∇(αjYj ))
2 | Fj−1]

= E[(αjYj − αj−1Yj−1)
2 | Fj−1]

= α2
j E[Y 2

j | Fj−1] + α2
j−1Y

2
j−1 − 2αjαj−1Yj−1E[Yj | Fj−1]

=
(

(k − 1)(j − 1) + 1

(k − 1)j
αj−1

)2

×
[(

1 + 2(k − 2)

(k − 1)(j − 1) + 1

)
Y 2

j−1 +
(

2kj + 2k(k − 2)j

(k − 1)(j − 1) + 1

)
Yj−1

+ (k − 2)2W2
�,j−1 + k2j2

]
+ α2

j−1Y
2
j−1 − 2((k − 1)(j − 1) + 1)

(k − 1)j
α2

j−1

×
(

(k − 1)j

(k − 1)(j − 1) + 1
Y 2

j−1 + kjYj−1

)
.

(ii) The second part is

E[2(∇(αjYj ))∇βj | Fj−1]
= E[2(αjYj − αj−1Yj−1)(βj − βj−1) | Fj−1]
= −2kjαj (αjE[Yj | Fj−1] − αj−1Yj−1)

= −2kj
(k − 1)(j − 1) + 1

(k − 1)j

× αj−1

[
(k − 1)(j − 1) + 1

(k − 1)j
αj−1

(
(k − 1)j

(k − 1)(j − 1) + 1
Yj−1 + kj

)
− αj−1Yj−1

]
.

(iii) The third part is

E[(∇βj )
2 | Fj−1] = E[(βj − βj−1)

2]
= (−kjαj )

2

= k2j2
(

(k − 1)(j − 1) + 1

(k − 1)j
αj−1

)2

.

Combining these three parts, and using the asymptotic equivalents in Corollary 1 for Y 2
j−1 and

Yj−1, we see that the summand in Vn can be expressed as

(k − 2)2(k − 1)4

k(2k − 1)(k − 1)2�2(1/(k − 1))
j2/(k−1) + OL1(j

−(k−3)/(k−1)).

https://doi.org/10.1017/apr.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.11


174 P. ZHANG AND H. MAHMOUD

Summing these terms for j = 1, 2, . . . , n and letting n go to ∞, we obtain

Vn = 1

n(k+1)/(k−1)

×
(

(k − 2)2(k − 1)4

k(2k − 1)(k − 1)2�2(1/(k − 1))((k + 1)/(k − 1))
n2/(k−1)+1 + OL1(n

2/(k−1))

)

→ (k − 2)2(k − 1)3

k(k + 1)(2k − 1)�2(1/(k − 1))
in L1.

This L1 convergence is stronger than the required in-probability convergence.
Having checked the conditions for the martingale central limit theorem, we conclude that

Mn

n(k+1)/2(k−1)

d−→ N

(
0,

(k − 2)2(k − 1)3

k(k + 1)(2k − 1)�2(1/(k − 1))

)
.

Translating this result into Yn, we obtain a main result of this investigation. Write the latter as

αnY
(k)
n + βn

n(k+1)/2(k−1)

d−→ N

(
0,

(k − 2)2(k − 1)3

k(k + 1)(2k − 1)�2(1/(k − 1))

)
.

Using the asymptotics in (3) and making a few adjustments via use of only leading terms, we
arrive at

(
Y

(k)
n

�(1/(k − 1))n(k−2)/(k−1)
− (k − 1)nk/(k−1)

�(1/(k − 1))

)(
n(k+1)/2(k−1)

)−1

d−→ N

(
0,

(k − 2)2(k − 1)3

k(k + 1)(2k − 1)�2(1/(k − 1))

)
,

which is equivalent to the convergence in distribution in Theorem 1, completing its proof. �

5. Random k-trees

A structure closely related to Apollonian networks is the k-tree. The k-tree is the same as
an Apollonian network in every aspect, except that recruiting cliques are not deactivated; all
cliques since the beginning remain active. The k-trees are an old model, introduced in the late
1960s [12]. Interest in the structure has been rekindled in recent times [5], [17]. The 1-tree is
an interesting research tool, it is the standard recursive tree and there exists an extensive body
of literature. We refer the reader to [18] for an extensive survey.

It is clear that the methods applied toApollonian networks would work for k-trees (of course,
mutatis mutandis) and would produce similar types of result. We summarize these results here,
without proof. We shall reuse notation, with tildes. For instance, Ỹn denotes the total weight
of a k-tree of age n.

By an argument similar to that for Apollonian networks, we create a two-color triangular
Pólya urn model in order to study the age profile of the j th node. The replacement matrix is
( k−1 1

0 k
). An analysis following the steps in Section 4.1 gives us, for fixed j , 0 ≤ j ≤ n, that

D̃
(k)
j,n/n

(k−1)/k converges in distribution to a random variable D̃∗
j with moments

E[(D̃∗
j )s] = �

(
kj + 1

k

)
�

(
k

k − 1
+ s

)(
�

(
k

k − 1

)
�

(
kj + 1 + (k − 1)s

k

))−1

.
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The urn scheme for T̃
(k)
n is Bernard Friedman’s urn. The associated central limit theorem

(via martingales) appeared in [8]; of course, it is a special case of the Bagchi–Pal urn [3]. The
ball replacement matrix for this urn is ( 0 k

k 0 ), furnishing a Gaussian law

T̃
(k)
n − n/2√

n

d−→ N

(
0,

1

12

)
.

Finally, we obtain the asymptotic Gaussian law for Ỹ
(k)
n ,

Ỹ
(k)
n − n2(k2/(k + 1))

n3/2
d−→ N

(
0,

k4(k − 1)2

(2k + 1)(k + 2)(k + 1)2

)
.
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