

Becoming incrementally reactive: on-line learning of an evolving
decision tree array for robot navigation
G.H. Shah Hamzei*, D.J. Mulvaney**, and I. Sillitoe†
(Received in Final Form: October 1, 1998)

SUMMARY
This paper proposes a novel hierarchical multi-layer
decision tree for representing reactive robot navigation
knowledge. In this representation, the perception space is
decomposed into a hierarchical set of worlds reflecting
environments which are homogeneous in nature and which
vary in complexity in an ordered manner. Each world is
used to produce a corresponding decision tree which is
trained incrementally. The instantaneous perception of the
robot is used to select an appropriate rule from the decision
tree and a sequence of rule activations form the complete
trajectory. The ability to keep the knowledge complexity
manageable and under control is an important aspect of the
technique.

KEYWORDS: Incremental learning; Hierarchical learning; Deci-
sion trees; Machine learning; Intelligent navigation; Robotics;
Incremental tree induction (ITI).

1. INTRODUCTION
Robotics offers a large supply of challenging problems
suitable for investigation using learning techniques. The
vast majority of recently-developed techniques can be
subsumed within the categories of fuzzy logic,1–4 con-
nectionist approaches,5,6 symbolic methods7–9 and genetic
algorithms.10,11 In addition, hybrid versions have been
developed which combine two or more of these techniques
with the aim of improving or optimising certain control
criteria as a result of complementary effects.12,13

Reactive control has shown to be an appropriate paradigm
for autonomous robots,14,15 as this allows the robot to
respond to its immediate perception while exploring a
dynamically changing environment without the need for
mapping. Reactivity has variously been described as:
learning behaviour which is established by some a priori
knowledge of the environment,1,16 pre-formulation of per-
ception-actions into explicit rules,3 or behaviours which are
learned entirely from scratch.17,18

Decision trees19–21 provide a symbolic approach to
learning and have been successfully applied to a wide range

of scientific and engineering problems to implement
intelligent decision-making solutions.12,22,23 Their recent
application to scientific and medical problems,22,24 as well as
to industrial systems,12,23 demonstrate their establishing
popularity as reliable predictors. More relevant to the
current work is their application to robotics and intelligent
control.9,25,26 In reference [9], features from the echoes of an
array of ultrasonic sensors mounted on the circumference of
a robot are collected and used to train a decision tree. This
is then used to classify the contours of the obstacles in the
robot surroundings enabling the robot to perceive and
identify corners, edges and poles, and so aid navigation.
Shah-Hamzei et al employ decision trees in references [25]
and [26] and train these in an off-line manner to allow a
robot to learn new behaviours. The generated trees are
searched and used to synthesise appropriate control rules to
navigate a robot in unseen environments.

This paper builds on recent advances in reactive control
by proposing a novel approach to behaviour learning in
complex and unknown robot environments. In addition, the
work introduces the concept of incrementally evolving
multiple decision trees in order to manage knowledge
complexity. The learning mode is on-line and the robot
environment is broken down, in terms of object configura-
tions, into a number of worlds which are organised in a
hierarchy based on the complexity of the perception. Since
this approach has a biological motivation as its foundation,
namely that of survival, at the outset the robot environment
needs to be sufficiently simple to enable the robot to learn
efficient and simple behaviours only in order to survive.
These behaviours could be, for instance, how to reach a
food source, a light source or other desired destination
(target-seeking behaviour). This is mimicked by first
training the robot in the simplest environment of the
hierarchy in which there are no obstacles. To reach the set
target, the robot typically performs a sequence of random
motions whose quality is assessed under continuous evalua-
tion. Movements which are evaluated as “useful” are
incorporated into the training of an incrementally evolving
decision tree. A tree so-modified is searched in order to
provide a suitable movement for the robot. Once the basic
survival mechanism has been established, the environment
can be transformed to one more “hostile” by introducing
obstacles to populate the environment. The robot can then
be allowed to learn suitable new reactive behaviours in the
more complex environment by shaping the previously
learned knowledge.

The fact that the proposed algorithm is not tuned to a
certain environment suggests some similarities with the

* Department of Electronic and Electrical Engineering, Lough-
borough University, Loughborough, Leics LE11 3TU (UK)
E-mail: G.H.Shah-Hamzei@lboro.ac.uk
** Department of Electronic and Electrical Engineering, Lough-
borough University, Loughborough, Leics LE11 3TU (UK)
E-mail: D.J.Mulvaney@lboro.ac.uk
† Department of Technology, University of Borås, 501 15 Borås
(Sweden)
E-mail: Ian@adm.ing.hb.se

Robotica (1999) volume 17, pp. 325–334. Printed in the United Kingdom © 1999 Cambridge University Press

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

work of Braunstingl et al, who describe a wall-following
fuzzy controller.27 Both systems perform robot guidance in
a reactive manner by using a stored representation of the
robot’s immediate perceptions: walls of arbitrary shape and
obstacles are not modelled and path planning is basically of
a local nature. However, the fundamental differences
between the two approaches are that in the work presented
in this paper the combination of co-operating locally
intelligent path planners provides global navigation, and
that these planners are able to learn and cope with an
additional behaviour, namely that of target seeking.

2. THE RATIONALE OF HIERARCHICAL
LEARNING DESIGN
A robust navigation system relies heavily on safe and simple
motions. Since safe and simple motions are local in nature,16

they can be provided in the current work by an array of
locally-intelligent simple decision rules encoded in a finite
number of decision trees. Global motion planning is
accomplished by shaping local intelligence into global
behaviours by cyclic and consecutive sampling of decision
tree array elements.

Sammut et al28 developed a distributed approach incorpo-
rating a number of decision trees representing the dynamic
sub-systems of a Cessna aeroplane in an attempt to produce
an artificial autopilot. Perhaps surprisingly, the decision
trees trained using data supplied by less experienced pilots
were able to perform better than those trees trained using
data from experienced pilots.29 This may have been due to
the less experienced pilots being able to supply the
boundaries of successful piloting. The constructed autopilot
successfully managed to fly an entire flight mission.

3. NOTATION
In the current work, world is defined to be the instantaneous
robot perception. The experiments are conducted using the
simulated mobile robot Khepera (see section 10 for more
details). The input perception P is defined to be that
provided by the set of six circumference sensors as P =
{S0, S1, S2, S3, S4, S5,} in which the range of each sensor
value is defined by si ={0, 1, 2, 3, . . . , 1023}. Any perceived
world is an element of W ={w0, w1, w2, w3, w4}, where w0

is the simplest and w4 the most complex world. w4 is not
represented as an independent rule layer in the hierarchy as
the action space in w4 is limited to a single class regardless
of the goal location, making the generation of a correspond-
ing tree unnecessary. Training vectors need to have the
format f 0, f 1, . . . , f i, . . . , f n, c i., in which f i is a feature with
f i P F and F ={f 0, f 1, . . . , f i, . . . , f n} is the feature vector.
Features can take either continuous or descrete values. ci is
a class with ci P C from the set of available classes C=
{c0, c1, . . . , ci, . . . , cn} in which each class has a finite
number of discrete values.

4. CONTROL SYSTEM ARCHITECTURE
Figure 1 shows the schematic view of the system archi-
tecture. This is composed of three main modules:

(i) Environment. The interface providing data from the
physical world.

(ii) Local Perception Space. Each perception is mapped
on a certain state that falls into a unique world
category. The output is a state vector containing a finite
number of state variables, and this is used to infer or re-
infer tree networks.

(iii) Controller. This accommodates two sub-modules,
namely high-level decision making (whose archi-
tecture is shown in Figure 2), and low-level control.
The former performs predictions based on the current
state vector, whereas the latter generates an appropriate
control action based on the current decision in order to
provide a movement demand to the robot. The control
action a(b, n) is a state variable defined in terms of
turning angle b and a turning velocity n,

Fig. 1. The overall system architecture.

Fig. 2. High level decision module with parallel co-existing
decision trees as intelligent local planners.

Robot navigation326

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

As shown in Figure 2, the current state vector Pn is used to
predict the robot motion, whereas the previous state, Pn21

(if positively rewarded) is used to restructure the tree to
incorporate the new item of knowledge.

5. INCREMENTAL TREE EVOLUTION
The algorithm houses in its core the Incremental Tree
Inducer (ITI-2.8)30 as the learning module. ITI is driven in
its incremental mode and on-line. This means that appro-
priate knowledge entities are given to ITI either for
incorporation into an appropriate existing decision tree or to
instantiate a new tree if none exists already.

5.1 Feature selection
Concept learning requires that the knowledge to induce
decision trees is “sculptured” into a finite number of
pre-defined vector entities. This is independent of the node
(either batch or incremental) in which the tree induction is
performed.

To produce trees with high discriminatory powers, the
current work uses as features both the proximity sensor
values and the relative location of the target to the robot. To
restrict the dimensionality of the world-dependent trees, the
format of the training examples is configured to be a
function of the world complexity. This means that in world
w0 with no obstacles, each training example is reduced to
the relative location of the goal (GoalRelLoc) and a single
class, allowing the production of a linear decision tree
which is highly goal oriented. In higher order worlds,
proximity sensor values are added to the existing features
resulting in the modified format of feature vector, S0, S1, S2,
S3, S4, S5 GoalRelLoc, ci. In the above, GoalRelLoc ; {N,
NE, E, SE, SW, W, NW} and C ; {F, FR, R, BR, BL, L, FL}
where F is “front”, FR is “front right”, BL is “back left”,
and so on.

5.2 Automatic knowledge acquisition and class prediction
mechanism
One aspect of the approach that facilitates the population of
the parallel co-existing trees in incremental mode, is the
automatic generation of training examples. This is carried
out to collect classification knowledge without the inter-
vention of human experts. Since the robot motion directions
are generated randomly at the training stage, we define the
usefulness U = f(C) as a measure of goodness of the
performed actions. Following the transition from the
previous state n21 to the current state n, the cost C
associated with each motion is calculated according to the
heuristic function

C =S En21 2En

d Dsgn(cos(un 2un21)) (1)

and the usefulness is define as

U =H 1 if C ≥ 0
0 if C < 0 J (2)

In Equation (1), d is the total travelled distance, E is the
Euclidean distance from the robot to the goal, and u is the
robot divergence angle whose details and derivation can be
found in reference [18]. Only those states delivering a
usefulness of unity are positively reinforced by being
remembered, the remainder are forgotten. Each individual
remembered experience is supplied to ITI-2.8 as part of the
training data for the appropriate tree.

5.3 Local independence and global coupling of decision
trees
Figure 2 illustrates that each tree network is an individual
computational entity in itself and is able to make predictions
when activated. In environments of greater complexity, with
arbitrarily shaped walls and corners, a range of different
trees will generally be sampled in order to generate the
appropriate control actions, a suitable sequence of which
forms the global path.

By analysing the process of tree generation in a finite
window of time, one can observe how each individual tree
evolves from a single-class entity to a mature decision tree
capable of predictions, hence the notion of “tree evolution”.
Table 1 provides an illustration of tree evolution, showing
that the effect of behaviour learning is to improve the robot
navigation performance incrementally over a finite number
of iterations.

6. ALGORITHMS
The complete system incorporates the two algorithms
described below:

(i) Behaviour learning. This algorithm precedes naviga-
tion in the executional context as it is able to set the
robot in exploratory mode in order to acquire know-
ledge. It also generates a signal to invoke ITI for tree
induction. The pseudocode for this algorithm is shown
below.

IncrementalLearningMode (Tree, World)

Step 1: IF Goal is not reached
Step 2: THEN Choose a direction at random
Step 3: Evaluate the previous motion
Step 4: IF Previous motion interesting

(output of the cost function)
Step 5: THEN Set up an appropriate

training vector
Step 6: (Re-) Infer previous tree to

absorb new knowledge
Step 7: Knowledge=UseKnowledge

(Tree, World)
Step 8: IF Knowledge
Step 9: THEN IF Goal
Step 10: THEN Go to step

14
Step 11: ELSE Go to step 3
Step 12: ELSE Go to step 2
Step 13: ELSE Go to step 2

Robot navigation 327

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

Step 14: END.

Note that in step 6 only new knowledge entities are
evaluated for possible tree induction. The sub-routine
UseKnowledge allows the tree to be searched con-
currently with new knowledge being acquired, enabling
the robot to have access to its previous experiences.
This sub-routine is defined as follows.

UseKnowledge (Tree, World)

Step 1: IF Useful knowledge for the current world
Step 2: THEN Fetch knowledge
Step 3: Generate an appropriate control

action using the tree
Step 4: Go to step 5
Step 5: END.

Table I. An illustration of how the linear tree evolves over a series of generations. The tree is highly goal-oriented and is used for
predictions in w0 (an environment with no obstacles). Where a class is present in the tree it is shown together with the number of

training examples used in its derivation

F(1) GoalRelLoc=N GoalRelLoc=N GoalRelLoc=N
F(1) F(2) F(2)
BL(1) BL(1) GoalRelLoc=NW

BL(1)
L(1)

a) 1 generation b) 2 generations c) 3 generations d) 4 generations

GoalRelLoc=N
F(2)
GoalRelLoc=NW
BL(1)
GoalRelLoc=SW

L(1)
FR(1)

GoalRelLoc=N
F(2)
GoalRelLoc=E
FR(1)
GoalRelLoc=NE

BR(1)
GoalRelLoc=NW
BL(1)
BL(1)L(1)

GoalRelLoc=N
F(2)
GoalRelLoc=SW
BL(1)L(1)
GoalRelLoc=NW

BL(1)
GoalRelLoc=E
FR(1)
GoalRelLoc=NE

BR(1)
FR(1)BR(1)

GoalRelLoc=N
F(2)
GoalRelLoc=NW
BL(1)FL(1)
GoalRelLoc=SW

BL(1)L(1)
GoalRelLoc=NE
BR(2)
GoalRelLoc=E

FR(1)
FR(1)BR(1)

e) 5 generations f) 7 generations g) 9 generations h) 11 generations

GoalRelLoc=N
F(2)
GoalRelLoc=NW
BL(1)FL(2)
GoalRelLoc=SW

BL(2)L(1)
GoalRelLoc=W
L(1)
GoalRelLoc=NE

BR(2)
GoalRelLoc=E

FR(1)
FR(1)BR(1)

GoalRelLoc=N
F(3)
GoalRelLoc=NW
BL(1)FL(2)
GoalRelLoc=SW

BL(2)L(1)
GoalRelLoc=W
BL(1)L(1)
GoalRelLoc=NE

BR(3)
FR(2)BR(2)

GoalRelLoc=N
F(3)
GoalRelLoc=NW
BL(2)FL(2)
GoalRelLoc=NE

BR(4)
GoalRelLoc=SW
BL(2)L(1)
GoalRelLoc=W

BL(1)L(1)
GoalRelLoc=E

FR(2)BR(1)
FR(1)BR(1)

GoalRelLoc=N
F(3)
GoalRelLoc=NE
BR(4)
GoalRelLoc=E

FR(2)BR(1)
GoalRelLoc=SE
FR(1)BR(1)
GoalRelLoc=NW

BL(3)FL(2)
GoalRelLoc=SW

BL(2)L(1)
BL(1)L(1)FL(1)

i) 14 generations j) 18 generations k) 21 generations l) 23 generations

GoalRelLoc=N
F(2)
GoalRelLoc=SW
F(1)FL(1)R(1)BR(1)L(1)
GoalRelLoc=NW

FL(2)BL(1)L(2)
GoalRelLoc=W
L(1)
GoalRelLoc=SE

FR(2)
GoalRelLoc=E

FR(2)R(1)BR(3)
FR(3)R(1)BR(3)

GoalRelLoc=NE
FL(2)BL(1)L(4)
GoalRelLoc=SW

F(1)FL(1)R(1)BR(1)L(1)
GoalRelLoc=N
F(2)
GoalRelLoc=W

L(1)
GoalRelLoc=SE

FR(2)
GoalRelLoc=E
FR(2)R(1)BR(4)
FR(4)R(1)BR(4)

GoalRelLoc=NW
FL(3)BL(2)L(7)
GoalRelLoc=SW
F(1)FL(1)R(1)BR(1)L(1)
GoalRelLoc=N

F(2)
GoalRelLoc=W
L(1)
GoalRelLoc=E

FR(2)R(1)BR(4)
GoalRelLoc=SE

FR(2)
FR(7)R(1)BR(6)

m) 28 generations n) 33 generations o) 42 generations

Robot navigation328

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

(ii) Intelligent navigation. This part implements the worlds
w0 to w3 as finite state machines (FSMs) in which each
world is represented as an independent state. The
dynamic behaviour of the robot occurs as a result both
of the actions of the decision trees and of the transitions
between trees, which are controlled by the FSMs. The
procedure for the intelligent navigation process is
shown below.

NavigationMode (Tree, World)

In state n world, wx is detected (wx P World)
Step 1: IF Goal is not reached
Step 2: THEN IF tree x exists (tree x P Tree)
Step 3: THEN IF useful knowledge

available for current world
Step 4: THEN Fetch knowledge
Step 5: Generate an appropriate

control action
Step 6: NavigationMode (Tree,

World)
Step 7: ELSE
Step 8: WHILE (x > 0)
Step 9: x=x21
Step 10: Search tree x for

knowledge to train world
wx+1

Step 11: Go to step 3
Step 12: IncrementalLearningMode

(Tree, World)
Step 13: ELSE Go to step 12
Step 14: END.

7. ILLUSTRATION OF A LOCALLY TRAINED
BINARY DECISION TREE
In the vast majority of cases, a decision tree consists of a
finite number of decision nodes and terminal nodes (classes)
linked together to form a complete network. In extreme
cases, the tree can lead to only a single class (see Table I(a)).
Decision nodes are generated in descending order from the
root of the tree and each accommodates a particular feature
with a unique outcome. The order of each test node in the
hierarchy is arranged either information theoretically20 or is
based on other merits, for example Kalmogrov-Smirnoff
distance in reference [31]. Unlike C4.5,20 which is an ID3
descendant, the decision tree networks produced by ITI-2.8
are of a binary nature. This implies that, at any given test
node, if the test result is positive (yes) the tree branches to
the left, otherwise the search is directed to the right. This
process to find a match for a given pattern proceeds until the
leaf is reached which provides a classification for the
pattern.

Figures 3 to 5 show local predictors (the DTs for w0 and
w2) which are chosen from the hierarchy, and used in
combination with the other DTs to provide a plan for the
global path. The behaviour dominance in the tree hierarchy
changes in a complementary fashion, meaning that, if goal-
orientedness is the dominant behaviour in a layer such as w0,
reactivity is of minor influence. Conversely, in a highly
reactive layer such as w3, target seeking behaviour is
practically non-existent.

Fig. 3. A linear decision tree representing w0 (world zero of the
hierarchy). This is used for prediction in environments without any
objects.

Fig. 4. An intermediate stage in the evolution of w2.

Robot navigation 329

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

8. ACTION SELECTION AND CONFLICT
RESOLUTION
From a decision tree point of view, inconsistent training
examples occur when more than one class would be able to
classify the same input pattern.30 In the current robotics
application, for a given perceptual pattern more than one
rule can be fired to generate a control action. To resolve the
conflict, a single value is generated from a rectangular
distribition to produce a percentage measure. ITI-2.8 also
associates every rule with a “frequency tag”, and that rule is
fired whose frequency tag matches the randomly generated
frequency measure. This results in consistent action com-
mands being sent to the actuation level to drive the robot
forwards.

9. DYNAMIC RULE INHIBITION
Another important aspect of the proposed learning algo-
rithm is the monitoring and long term assessment of
incrementally-learned rules. In the learning phase, when the
goal direction is located between the lines of maximum
sensitivity of two adjacent sensor groups, rules can be
evaluated by the system as useful, although they would
quantitatively be considered to deliver poor performance
under normal navigation circumstances. This effect is also a
source of multiple-class generation. To exclude these types
of rule, each individual rule is assessed after it has been fired
depending on whether the resulting performance was
satisfactory and the performance is used to give an
indication of its overall usefulness. If the overall usefulness
drops below a pre-set level, the rule is flagged and inhibited.

Even though inhibited rules physically exist in the network,
they have no actual contributions. These rules are shown
shaded in Figures 3 to 5, where appropriate, to highlight the
inhibiting mechanism.

10. RESULTS
Each of the aforementioned modules, namely w0 to w3, is a
unique computational entity with a dynamic life time. Some
have a process-long life whereas other types of entity can be
generated during the process, but may also be destroyed to
avoid an unnecessary increase in computational cost.

10.1 The simulated robot
In the current stage of the work, the control algorithm is
verified in different scenarios using the Khepera32 robot
simulator. Khepera is a commercially-available miniature

Fig. 5. The decision tree for w2.

Fig. 6. Actual Khepera robot equipped with vision and gripper
(Photo by Alain Herzog, Courtesy of EPFL Laboratory, Lau-
sanne).

Fig. 7. Simulated Khepera robot seen from above; numbers
associated with sensors are from the set of D={0, 1, 2, 3, . . . ,
1023} which determine the corresponding distance from obsta-
cles. The greater the sensor reading, the closer is the an obstacle
to the corresponding sensor.

Robot navigation330

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

Fig. 8. (a) and (b): Training and initiating the knowledge base in w0 (no obstacles). Sx is the start and Gx is the end of xth trajectory.

Fig. 9. (a) and (b): Example of learning in wl. Learning to become reactive by avoiding simple obstacles scattered in the environment.

Robot navigation 331

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

mobile robot, shown in Figure 6. Figure 7 shows the
simulated counterpart. Khepera has access to an array of
eight light sensors as well as eight infra-red proximity
sensors for range measurement. The current work uses only
the six frontal infra-red distance sensors to scan the areas to
the front and sides of the robot for object detection, and
each returns a value in the range 0 to 1023 depending on the
nature and the range of the detected objects. In general, the
greater the magnitude of a sensor return value, the closer is
the obstacle. The simulated robot is steered differentially by
controlling the wheels individually. The Khepera simulator
has been designed to incorporate realistic assumptions and
to minimise the presence of unrealistic suppositions,
facilitating the transfer of the simulation results without
major change directly to the real Khepera robot.33

10.2 Examples of homing tasks
As discussed previously, global learning is initiated in w0

and propagates up the hierarchy to the more complex

worlds. This is carried out by adjusting the dimensions of
the previous rule layer to adapt to new knowledge in the
current layer. In all the examples, the robot is initially set at
the starting point S and is expected to reach the light source
G, also indicated by a star symbol. The navigation fields
chosen consist of typical situations that can occur in a
navigatory task, for example sharp corners and edges, right
angle corners, and both straight and rounded walls with or
without discontinuities. The different stages of Figure 8
demonstrate an example of the learning process in w0: it
illustrates how the learning is formed (Figures 8(a)) and
improved in two-leg and in multi-leg trajectories (Figures
8(b)). Figures 9, 10 and 11 illustrate learning and adaptation
in the worlds w1, w2 and w3. It is revealing of the operation
of the learning mechanism to view the reaction of the robot
to a new environment (Figure 10(a)) while trying to adapt to
new knowledge. After the corresponding tree has incorpo-
rated sufficient knowledge, the robot is able to navigate
smoothly towards the set target (Figure 10(c)). Behaviour

Fig. 10. (a), (b) and (c): Examples of learning in w2. Showing behaviour learning and performance improvement in homing tasks.

Robot navigation332

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

dominance in a number of the decision trees can trigger
“zigzag” motions when the robot follows a long wall, and
this can be seen in Figures 11(a), (b) and (c).

11. CONCLUSIONS AND FURTHER WORK
This paper has introduced a new approach to behaviour
learning and global navigation which is biologically
inspired and uses decision tree learning. The robot environ-
ment is decomposed into a set of homogeneous perceptual
worlds of differing complexity. The robot learning system
uses the experience of exploring the robot environment to
train each of the layers on-line and incrementally. At the
navigation stage, each perceptual world is mapped to a
unique rule layer which can be searched for prediction
purposes.

The core of the system is composed of two algorithms for
on-line learning and navigation, distributed over a string of
four intelligent local predictors that are independent compu-
tational entities with dynamic life times. They are used in
combination and are sampled continuously to perform

globally-shaped motion predictions. An important attribute
of the system is the dynamic rule inhibition which is based
on a long term assessment of the performance of the rule
layers in the navigation task. The control system ensures
safe and globally tuned predictions: safety is achieved by
individual local predictors and global shaping by their
coupling.

A shortcoming of the current implementation which is
exhibited in some of the homing tasks (section 10.2), is the
unsmoothness of robot trajectories when following long
walls. This effect has also been reported by Reignier in
reference [34]. Two possible sources for this “zigzag”
motion are the presence of multiple-class rules and abrupt
behaviour switching as control is moved between rule
layers. In the current work, the effect of the former is not
significant as the classes can generally be considered to
have overlapping areas of operation. However, the effect of
the latter source is significant. In response to this drawback,
it is the intention to introduce fuzziness into our algorithm
to blend behaviours and optimise global paths.

Fig. 11. (a), (b) and (c): Example of learning in w3 in order to avoide obstacles (long walls, arbitrary shaped objects and corners) and
homing in on the target.

Robot navigation 333

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

In the current work it is argued that a suitably accurate
robot localisation method combined with the control
concept proposed in this paper can be merged to produce a
robust, computationally inexpensive and easy to implement
intelligent path planner for real-world environments. The
symbolic nature of this technique gives the advantage of
control laws which are intelligible to human users, in
contrast to those obtained as a result of applying con-
nectionist methods.

References
1. P. Reignier, “Fuzzy logic techniques for mobile robots

obstacle avoidance”, Robotics and Autonomous Systems 12
143–153 (1994).

2. C.J. Wu, “Fuzzy robot navigation in unknown environments”,
IEEE International Workshop on Emerging Technology and
Factory Automation (August 11–14, 1992) pp. 624–628.

3. H. Surmann, J. Huser and L. Peters, “A fuzzy system for
indoor mobile robot navigation”, FUZZ-IEEE, Yokohama,
Japan (1995) pp. 83–86.

4. A. Saffiotti, E.H. Ruspini and K. Konolige, “Robust execution
of robot plans using fuzzy logic”, IJCAI’93, Fuzzy Logic in
Artificial Intelligence, Springer-Verlag (1994) pp. 24–37.

5. A.Dubrawski and J. Crowley, “Self-supervised neural system
for reactive navigation”, IEEE International Conference on
Robotics and Automation (1994) Vol. 3, pp. 2076–81.

6. J. Tani and N. Fukumura, “Learning goal-directed sensory-
based navigation of a mobile robot”, Neural Networks, 7, No.
3, 553–563 (1994).

7. T. Shibata, T. Abe, K. Tanie and M. Nose, “Motion planning
of a redundant manipulator-criteria of skilled operators by
Fuzzy-ID3 and GMDH and Optimisation by GA”, Proceed-
ings of the IEEE International Conference on Systems, Man
and Cybernetics (1995) Vol. 4, pp. 3730–3735.

8. T. Zrimec and P. Mowforth, “Learning by an autonomous
agent in the pushing domain”, In: (W. Van de Velde, Ed)
Toward Learning Robots (The MIT Press, Cambridge, Mass.,
1993).

9. I. Sillitoe and T. Elomaa, “Learning decision trees for
mapping the local environment in mobile robot navigation”,
Proceedings of MLC-COLT Workshop on Robot Learning
New Brunswick, N.J. (July, 1994) pp. 119–125.

10. A.C. Schultz, “Learning robot behaviours using genetic
algorithms”, Proceedings of the International Symposium on
Robotics and Manufacturing (August 14–18, 1994) pp. 607–
612.

11. J. Grefenstette, “Evolutionary algorithms in robotics”, Pro-
ceedings of the Fifth International Symposium on Robotics
and Manufacturing, ISRAM’94 (1994) pp. 127–132.

12. J. Bala, J. Huang, H. Vafai, K. DeJong and H. Wechsler,
“Hybrid learning using genetic algorithms and decision trees
for pattern classification”, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence
(IJCAI), Montreal, Canada (August 19–25, 1995) pp. ???.

13. R. Braunstingel, J. Mujika and J.P. Uribe, “A wall following
robot with a fuzzy logic controller optimised by a genetic
algorithm”, FUZZ-IEEE-IFES’95 Fuzzy Robot Competition,
Yokohama (March, 1995) pp. 77–82.

14. D.T. Lawton, R.C. Arkin and M. Cameron, “Qualitative
spacial understanding and reactive control for autonomous
robots”, IEEE International Workshop on Intelligent Robots
and Systems, IROS’90 (1990) Vol. 2, pp. 700–714.

15. A. Fagg, D. Lotspeich and G. Bekey, “A reinforcement-
learning approach to reactive control polocy design for

autonomous robots”, IEEE International Conference on
Robotics and Automation (1994) pp. 39–44.

16. M. Kaiser, V. Klingspor, J. Millan and M. Accame, “Using
machine learning techniques in real-world mobile robots”,
Intelligent Robot Systems, IEEE Expert, 37–45 (1995).

17. A. Dubrawski and J. Crowley, “Learning locomotion reflexes:
A self-supervised neural system for a mobile robot”, Robotics
and Autonomous Systems 12, 133–142 (1994).

18. G.H. Shah Hamzei, D.J. Mulvaney and I. Sillitoe, “Multi layer
hierarchical rule learning in reactive robot control using
decision trees”, Int. J. Intelligent and Robotic Systems 1–26
(1998).

19. J.R. Quinlan, “Decision trees and decisionmaking”, IEEE
Transactions on Systems, Man, And Cubernetics 20, No. 2,
339–346 (1990).

20. J.R. Quinlan, C4.5: Programming For Machine Learning
(Morgan Kaufmann Publishers, 1992).

21. P.E. Utgoff, “Incremental induction of decision trees”,
Machine Learning 4, 186 (1989).

22. I. Kononenko, “Inductive and baysian learning in medical
diagnosis”, Applied Artificial Intelligence 7, 317–337 (1993).

23. B. Cestnik, I. Bratko and I. Kononenko, “Assistant 86: A
Knowledge Elicitation Tool for Sophisticated Users”, Pro-
gress in Machine Learning (Proceedings of the 2nd
Euroipean Working Session on Learning) (I. Bratko and N.
Lavrac, Eds.) (Sigma Wilmslow, UK, 1987) pp. 31–45.

24. S. Salzberg, R. Chander, H. Ford, S.K. Murthy and R. White,
“Decision trees for automated identification of cosmic ray hits
in bubble space telescope images”, Publications of Astronom-
ical Society of the Pacific 107, 1–10 (May, 1995).

25. G.H. Shah Hamzei, D.J. Mulvaney and I. Sillitoe, “Batch-
mode decision tree learning applied to intelligent reactive
robot control”, Sixth IEEE International Conference on
Emerging Technologies and Factory Automation ETFA’97,
Los Angeles, USA.

26. G.H. Shah Hamzei and D.J. Mulvaney, “System Instability
and Oscillation Resolution in Reactive Robotics Using
Decision Tree Based Approach to Learning”, International
Conference of Artificial Intelligence and Soft Computing,
Banff, Canada (July 27–August 1, 1997) pp. 411–414.

27. R. Braunstingl, P. Sanz and J.M. Ezkerra, “Fuzzy Logic Wall
Following of a Mobile Robot Based on the Concept of
General Perception”, ICAR’95, The Seventh International
Conference on Advanced Robotics, Sant Feliu de Guixols,
Spain (September 1995) pp. 367–376.

28. C. Sammut, S. Hurst, D. Kedzier and D. Michie (Eds.),
“Learning to Fly”, Proceedings of the Ninth Machine
Learning Conference (Morgan Kaufmann, 1992) pp. 385–
393.

29. J. Cussens, “Machine learning”, Computing & Control
Engineering Journal 7, No. 4, 164–168 (1996).

30. P.E. Utgoff, “Decision Tree Induction Based On Efficient Tree
Restructuring”, Technical Report 95–18 (March 17, 1995).

31. P.E. Utgoff and J.A. Clouse, “A Kolmogrov-Smirnoff Metric
for Decision Tree Induction”, Technical Report 96–3 (1996).

32. O. Michel, Mage Team, I3s Laboratory, CNRS, University of
Nice-Sophia Antipolis, France, downloadable from: http:/
/alto.unice.fr/~om/khep-contest.html.

33. O. Michel and P. Collard, Artificial Neurogenesis, “An
Application to Autonomous Robotics”, Proceedings of the
Eighth International Conference on Tools with Artificial
Intelligence, IEEE Computer Society Press (1996) pp. 207–
214.

34. P. Reignier, “Fuzzy logic techniques for mobile robots
obstacle avoidance”, Robotics and Autonomous Systems 12,
143–153 (1994).

Robot navigation334

https://doi.org/10.1017/S0263574799001319 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001319

